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Abstract

Although type reconstruction for dependently typed languages is common in practical systems,
it is still ill-understood. Detailed descriptions of the issues around it are hard to find and formal
descriptions together with correctness proofs are non-existing. In this paper, we discuss a one-pass
type reconstruction for objects in the logical framework LF, describe formally the type reconstruction
process using the framework of contextual modal types, and prove correctness of type reconstruction.
Since type reconstruction will find the most general types and may leave free variables, we in addition
describe abstraction which will return a closed object where all free variables are bound at the outside.
We also implemented our algorithms as part of the Beluga language, and the performance of our type
reconstruction algorithm is comparable to type reconstruction in existing systems such as the logical
framework Twelf.

1 Introduction

The logical framework LF (Harper et al., 1993) provides an elegant meta-language for
specifying formal systems together together with the proofs about them. It combines a
powerful type system based on dependent types with a simple, yet sophisticated technique,
called higher-order abstract syntax, to encode local variables and hypothesis.

One of the most well known proof assistants based on the logical framework LF is
the Twelf system (Pfenning & Schürmann, 1999). It is a widely used and highly success-
ful system which is particularly suited for formalizing the meta-theory of programming
languages (see for example (Crary, 2003; Lee et al., 2007; Pientka, 2007)) and certified
programming (Necula, 1997; Necula & Lee, 1998). Its theoretical foundation, the depen-
dently typed lambda-calculus, is small and easily understood. Type checking for LF objects
can be implemented in a straightforward way in a few hundred lines of code, and such an
implementation is easily trusted.

Yet, Twelf is “the only industrial-strength proof assistant for developing meta-theory
based on HOAS representations” (Aydemir et al., 2008). We believe one major reason for
this is that the technology which makes systems like Twelf practical and usable are ill-
understood, and remains mysterious to the user and possible future implementors. The sit-
uation is not very different for other related dependently typed systems which also support
recursion such as Coq (Bertot & Castéran, 2004) , Agda (Norell, 2007), Epigram (McBride
& McKinna, 2004). All of these systems are supporting some form of type reconstruction
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to infer omitted arguments. Yet there are hardly any concise formal description on how
this is accomplished and what requirements the user-level syntax should satisfy. Formal
foundations and correctness guarantees are even harder to find.

This is especially unfortunate, because we see recently a push towards incorporating
logical framework technology into mainstream programming languages to support the
tight integration of specifying program properties with proofs that these properties hold
(see (Pientka, 2008; Poswolsky & Schürmann, 2008; Licata & Harper, 2007; Licata et al.,
2008)). However, the lack of foundations for how to build a practical dependently typed
system remains a major obstacle in achieving this goal.

This paper tries to rectify the situation by providing an insider’s guide and formal foun-
dation to one of the most important practical issues: type reconstruction. Its goal is two-
fold: First, we provide a theoretical foundation based on contextual modal types (Nanevski
et al., 2008) for LF type reconstruction together with soundness and completeness proof.
Based on the recipe for LF reconstruction described in (Pfenning, 1991), we explain con-
cisely the conditions for type reconstruction of LF objects, present a bi-directional one-
pass type reconstruction algorithm and prove its correctness. Our formal development
mirrors our implementation of type reconstruction in OCaml as part of the Beluga language
(Pientka, 2008; Pientka & Dunfield, 2008; Pientka & Dunfield, 2010). We have tested it on
all the examples from the Twelf repository1, and the performance of our implementation is
competitive. Second, we hope our description will make LF technology and issues around
type reconstruction in the presence of dependent type in general more accessible to future
implementers and language designers. For example, it should be directly applicable to
systems such as Dedukti (Boespflug, 2010), a proof checking environment based on the
dependently typed lambda-calculus together with theories specified as rewrite rules.

The long-term goal is a precise understanding of programming language constructs
involving dependent types and a sound mathematical basis for reasoning formally about
these languages. We believe our work provides general insights into how to develop type
reconstruction algorithms for dependently typed programming. More generally we believe
it is a valuable step towards developing a clean foundation for dependently typed program-
ming which supports pattern matching and recursion. Already we have used the described
methodology also for type reconstruction of functional programs over dependently-typed
higher-order data in Beluga. Finally, we believe it may help us to understand the necessary
design choices and trade-offs for dependently-typed languages and will help to spread
dependent types to main stream languages.

2 LF Type reconstruction 101

We first review the central ideas behind encodings in the logical framework LF and describe
the general principle of type reconstruction.

The logical framework LF provides two key ingredients: 1) dependent types, which
allow us to track statically powerful invariants and are necessary to adequately represent

1 All examples which do not use definitions or constraint solvers. For some examples, we expanded
the definitions by hand.
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Source-level program

% Types for formulas, individuals
o: type .
i: type .

% Propositions
and: o → o → o.
all:(i → o) → o.

% Natural deduction rules
nd: o → type .
andI:

nd A → nd B
→ nd (and A B).

allI:
(Π a:i. nd (A a))

→ nd (all A).

allE:
nd (all A)

→ Π T:i. nd (A T)

Signature storing reconstructed program and
number of reconstructed arguments

o (0): type .
i (0): type .

and (0): o → o → o.
all (0):(i → o) → o.

nd (0): o → type
andI (2): Π A:o. Π B:o.

nd A → nd B
→ nd (and A B).

allI (1): Π A:i → o.
(Π a:i. nd (A a))

→ nd (all (λx. A x).

allE (1): Π A:i → o.

nd (all (λx. A x)
→ Π T:i. nd (A T).

Fig. 1. Encoding of Natural Deduction in the logical framework LF

proofs, and 2) support for higher-order abstract syntax, where binders in the object lan-
guage are represented by binders in the meta-language. Both features present challenges.
Support for higher-order abstract syntax for example means type reconstruction must rely
on higher-order unification which is in general undecidable. We also must handle issues
regarding η-contraction and expansion. The combination of both makes inferring the type
of free variables and determining omitted arguments non-trivial. Our goal is not only to
engineer a front-end for type reconstruction, but also to develop a theoretical foundation
together with correctness guarantees.

We begin, by illustrating a typical example which showcases LF technology and high-
lights some of the issues which arise during reconstruction. As an example, we formalize
a subset of the natural deduction calculus in LF and present it in Figure 1. We show
the source code of the signature the user writes on the left. We briefly explain the idea
behind this implementation of the natural deduction calculus. We first define a type o

for formulae and a type i for individuals. Next, we define two propositions, conjunction
and universal quantification. Conjunction is defined by the constructor and which takes in
two propositions of type o and returns a proposition of type o. The universal quantifier is
interesting since we need to model the scope of the variable it quantifies over. We achieve
this by defining a constructor all which takes an LF abstraction of type i → o as an
argument and returns an object of type o. Modelling binders in the object language (in
our case formulae) by binders in the meta-language (in our case LF) is the essence of
higher-order abstract syntax. One key advantage of this technique is that α-renaming is
inherited from the meta-language and substitution in the object language can be modelled
via β -reduction in LF. Finally, we consider the implementation of the natural deduction
rules for conjunction introduction and universal quantifier introduction and elimination.
We first define a type family nd which is indexed by propositions. Each inference rules is
then represented as a constant of a specific type. For example, andI is the constant defining
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the conjunction introduction rule. Its type says “Given a derivation of type nd A and a
derivation of type nd B, we can create an object of type nd (and A B).” In the definition
of the constant allI, we again exploit the power of the underlying logical framework to
model parametric derivations. To establish a derivation for nd (all A), we need to show
that “for all parameters a, we have a derivation of type nd (A a).” This is modelled by
the type (Π x:i. nd (A a)) → nd (all A). Finally, the rule for allE. Given a derivation
of type nd (all A) and any term T we can build a derivation of type nd (A T). For an
excellent introduction to LF encodings, we refer the reader to (Pfenning, 1997; Harper &
Licata, 2007).

Our source language supports writing LF objects which are not necessarily in η-expanded
(see for example declaration of allI). The user also may omit declaring free variables
together with their types. The goal of type reconstruction is to take a source-level object
and reconstruct a fully explicit LF object in β -normal and η-long form.

Type reconstruction - Basic: Inferring types of free variables

The right column in Figure 1 shows the reconstructed signature. Type reconstruction pro-
ceeds by processing one declaration at a time in the order they are specified. The main
purpose of reconstruction for the given constant declarations is to infer the type of free
variables occurring in its type or kind. This is a straightforward task for the constants andI,
since all the types of free variables are simple types and are uniquely determined by the
constructor and. In the declaration allI we infer the type of the free variable A as i → o

since it is the argument to the constructor all and we η-expand A.
In general, we can infer the type of a free variable, if there is at least one occurrence

which falls within the pattern fragment (Miller, 1991). This is the case when a free variable
is applied to distinct bound variables. For example the free variable A in the term λx.A x

is a pattern, but its second occurrence in A T is not a pattern, since A is applied to the free
variable T. We will come back to this idea when we describe the inference algorithm more
formally in Section 6.2.2.

In the reconstructed signature shown on the right in Figure 1, we store together with
each constant the number of inferred arguments. We call inferred arguments also implicit
arguments, since these are the arguments one may omit when we use the declared constant.
For example, there are two inferred arguments in the type of the constant andI. Hence,
when we build a derivation using the constant andI we may omit these two arguments. In
all the examples listed here, the number of implicit arguments is equal to the number of
free variables occurring in each declaration. This recipe was first described in (Pfenning,
1991) and works well in practice. We illustrate its basic principle and challenges next.

Type reconstruction - Intermediate: Inferring omitted arguments

To illustrate the idea behind reconstruction, consider proof transformations on natural
deduction derivations such as the following:

trans: nd A → nd B → type .

andI-allI: trans (andI E (allI D)) (allI (λa. (andI E (D a)))).
allE-allI: trans (andI (allE T (allI D)) E) (andI (D T) E).
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Da

A(a)

∀x.A(x)
allIa E

B

(∀x.A(x))∧B
andI

=⇒

Da

A(a)
E
B

A(a)∧B
andI

∀x.(A(x)∧B)
allIa

trans (andI (allI D) E) (allI (a. (andI (D a) E)))

Fig. 2. Proof Transformations

The constant andI-allI specifies the transformation of a formula (∀x.A(x))∧ B into
∀x.(A(x)∧B). andI-allI states that a proof (andI (allI D) E) for the formula (and (

all λa. (A a)) B) can be translated into the proof (allI (λa. (andI (D a) E))) for
the formula (all λa. (and (A a) B)) (see Figure 2). When the user declares this relation,
s/he may omit passing those arguments to a constant which have been inferred when the
constant was originally declared. For example, the constant andI allows us to omit the first
two arguments, and we only need to supply the proof allI D and the proof E but not the
concrete instantiations for A and B which will be inferred.

Reconstruction will translate the source-level signature into a well-typed LF signature
by inserting meta-variables for omitted arguments, inferring the types of free variables and
η-expanding bound and free variables, if necessary. The general idea is easily explained
looking at the constant andI-allI.

We first traverse the term (or type) and insert meta-variables for omitted arguments. By
looking up the type of a given constant, we know how many arguments must have been
omitted. For example, we know that from the kind of trans stored in the signature that
trans takes in two additional arguments, one for A and one for B.When we encounter the
constant andI, its type in the reconstructed signature tells us that two arguments have been
omitted. We show the type of the constant andI-allI after this step where we mark omitted
arguments with underscores.

andI-allI:
trans (and (all (x. A1 x)) A2) (all (x. and (A1 x) A2))

(andI (all (x. A1 x)) A2 (allI (x. A1 x) (λa. D a)) E)

(allI (x. and (A1 x) A2) (λa. andI (A1 a)a A2a (D a) E)).

Since omitted arguments may occur within the scope of a, the holes in the object andI
(A1 a)a A2a (D a) E) may depend on the bound variable a. To describe meta-variables

with their bound variable dependencies more formally, we use contextual meta-variables
(Nanevski et al., 2008). For example, the holes which may depend on the bound variable
a are described by the meta-variables X1 and X2 of contextual type o[a’:i]. The meta-
variable X1 defines a hole of type o which can refer to the bound variable a’:i. Meta-
variables are closures consisting of the actual meta-variable together with a suspended
substitution. We associate X1 and X2 with a substitution [a] which will rename the variable
a’ to a. In general we can omit writing the domain of the substitution, which simplifies the
development. The meta-variable X[.] on the other hand denotes a closed object and is not
allowed to refer to any bound variable. We write [.] for the empty substitution. Contextual
meta-variables will be useful when we describe reconstruction and prove properties about
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it. To summarize, the first step in type reconstruction is to insert meta-variables wherever
an argument is omitted.

For now, let us look at the result of type reconstruction. Unification will try to find the
most general instantiation for the holes and the final result as shown below
andI-allI:

trans (and (all (λx. A1[x])) A2[.]) (all (λx. and (A1[x]) A2[.]))

(andI (all (λx. A1[x])) A2[.] (allI (λx. A1[x]) (λa. D a)) E)

(allI (λx. and (A1[x]) A2[.]) (λa. andI A1[a] A2[.] (D a) E)).

contains the meta-variables A1, A2 describing the most general instantiations for the
holes. We observe that the holes in the object (andI (A1[a])a A2a (D a) E)) are filled
with A1[a] and A2[.] respectively. Although the second hole allowed its instantiation to
depend on the variable a, unification eliminated this bound variable dependency. Since the
variable a does not occur in the derivation described by E, its type cannot depend on it.
Higher-order unification will properly weed out spurious bound variable dependencies.

Finally, we abstract over the meta-variables and free variables and explicitly bind them
by creating a Π-prefix. Meta-variables of contextual type o[x:i] are lifted into ordinary
variables of functional type i → o. The substitution associated with the meta-variable is
turned into a series of applications. So for example, the meta-variable A1[x] is translated
into a Π-bound variable A1 of type i→o which is applied to x. While cyclic dependencies
between meta-variables and free variables are allowed during reconstruction, an issue we
will address in the next section, abstraction only succeeds if there is a linear order for meta-
variables and free variables. The fully reconstructed type for the constants andI-allI is
shown next:
andI-allI: Π A1:i → o. Π A2:o. Π D: Π x:i. nd (A1 x). Π E:nd A2.

trans (and (all (λx. A1 x)) A2) (all (λx. and (A1 x) A2))

(andI (all (λx. A1 x)) A2 (allI (λx. A1 x) (λa. D a)) E)

(allI (λx. and (A1 x) A2) (λa. andI (A1 a) A2 (D a) E)).

Type reconstruction - Advanced: Circular dependencies

While the general idea behind type reconstruction is easily accessible, there are several
subtleties in practice. We draw attention to one such issue in this section.

Let us consider the type reconstruction for allE-allI. We show first the type of allE-
allI where we insert underscores for all the omitted arguments following the same princi-
ple explained in the previous section.
allE-allI: trans (and (A T) B) (and (A T) B)

(andI (A T) B (allE T (allI D)) E
(andI (A T) B (D T) E).

Using the typing rules and higher-order unification, we will infer instantiations for these
omitted arguments. However, these instantiations may need to refer to the free variable
T. This is also obvious when we inspect the expected, final result for type reconstruction
below.
allE-allI: Π A:i → o. Π B:o. Π T:i. Π D:Πa:i.nd (A a) Π E:nd B.

trans (and (A T) B) (and (A T) B)

(andI (A T) B (allE (λx. A x) T (allI (λx. A x) D)) E)
(andI (A T) B (D T) E).
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For example, the first reconstructed argument passed to trans in the definition of allE-
allI is (and (A T) B where T was a free variable occurring in the user-specified object.

This however means that meta-variables characterizing holes may be instantiated with
objects containing free variables; however, the type of free variables themselves is un-
known and may contain meta-variables. Hence, there may be a circular dependency be-
tween meta-variables and free variables. There seems no easy way to avoid these circular-
ities.

Fortunately, J. Reed (2009) pointed out that allowing circularities within meta-variables
and free variables during unification are not problematic, i.e. the correctness of unification
does not depend on it. However, for type reconstruction to succeed, abstraction must find
a non-circular ordering of all the meta-variables and free variables. The exact order of
free variables and the inferred variables (i.e. checking whether there in fact exists one)
can only be determined once the object has been fully reconstructed. This will be done by
abstraction.

In summary, type reconstruction for LF will reconstruct the type of free variables, syn-
thesize omitted arguments, and ensure the final result is in β -normal and η-long form.

3 Implicit LF

In this section, we characterize the implicit syntax for LF which is closely related to the
surface language. We may think of implicit LF as the target of a parser which translates
source-level programs into implicit LF objects.

3.1 Grammar

We begin by characterizing the implicit syntax which features free variables. As a con-
vention, we will use upper-case letters for free variables, and lower-case letters for bound
variables. We will write a and c for type and term constants respectively in bold to dis-
tinguish them from types, terms, kinds and spines. We also support unknowns written as

in the term. These unknowns or holes may occur anywhere in the term, but of course
type reconstruction may not be able to instantiate all holes. We chose to have holes only
as normal objects. This is not strictly necessary, and one could easily allow holes as heads.
But we did not find this choice to be crucial in practice. For simplicity we also do not
support holes on the level of types. This increases the burden on the user slightly since
s/he needs to specify at least a type skeleton when using a Π-declaration. However, it is
worth mentioning that one can infer a type skeleton by adding a pre-processing layer which
explicitly verifies that the source-level expression is “approximately well-typed”2.

Finally, unlike the implementation of LF in the Twelf system, we enforce that the objects
written in the source-language are in β -normal form while the reconstructed objects are in
β -normal and η-long form. Type annotations for lambda-abstractions are unnecessary in
our setting since we will employ a bi-directional type system where we will always check
a lambda-abstraction against a given type. We keep the implicit syntax small and concise
(see Figure 3).

2 We introduce approximate typing on page 11.
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Implicit Kinds k ::= type |Πx:a.k
Implicit Atomic types p ::= a · s
Implicit Types a,b ::= p |Πx:a.b
Implicit Normal Terms m,n ::= λx.m | h · s |
Implicit Spines s ::= nil | m;s
Head h ::= x | c | X

Fig. 3. Implicit LF - Source level syntax

The implicit syntax enforces that terms do not contain any β -redices. However, the
implicit syntax does not require that terms are also η-expanded. For example, we can
write nd (all A) instead of nd (all λa. A a) in Fig. 1 for example. For convenience,
we choose a spine representation (Cervesato & Pfenning, 2003). For example, the implicit
object (all λa. A x) is turned by a parser into

all · (λa.A · ((a ·nil) ; nil) ; nil)

The spine representation is convenient, since it allows us to directly access the head of a
normal term.

3.2 η-contraction for implicit terms

Support for η-expansion and η-contraction is convenient for the user and it is often done
silently. In our setting, the user can choose whether s/he writes a term in its η-expanded
form or not. However, sometimes it is important to consider a special case: a given term M
is simply the η-expansion of a bound variable. This is for example crucial, if we want to
check that a free variable X is indeed applied to distinct bound variables and hence we can
infer its type. Hence, we define here the operation ηcon(m) = x which will verify that m is
the η-expanded form of the term x ·nil.

ηcon(λy1 . . .yn.x · (m1; . . . ;mn;nil)) = x if for all i ηcon(mi) = yi

If n = 0, we have ηcon(x ·nil) = x. We note that η-contraction of implicit terms is not
type-directed, because we typically will not know the type of m when we want to use
η-contraction.

4 Explicit LF

In this section, we present explicit LF which is the target of type reconstruction. The goal
of type reconstruction will be to transform an implicit LF object into an equivalent explicit
LF object.

4.1 Grammar

Explicit LF (see Figure 4) will feature meta-variables u[σ ], which are used to describe
omitted implicit arguments, and are essentially based on the contextual modal type theory
described in (Nanevski et al., 2008). In addition, we add free variables to explicit LF.
Abstraction then eliminates meta-variables and free variables by explicitly quantifying over
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Kinds K ::= type |Πx:A.K
Atomic types P ::= a ·S
Types A,B ::= P |Πx:A.B
Normal Terms M,N ::= λx.M | R
Neutral Terms R ::= H ·S | u[σ ]
Head H ::= x | c | X
Spines S ::= nil |M;S
Substitutions σ ::= · | σ ,M | σ ;x

Contexts Ψ ::= · |Ψ,x:A
Free variable contexts Φ ::= · |Φ,X : A
Meta-contexts ϒ ::= · | ϒ,u::P[Ψ]
Signature Σ ::= · | Σ,a : (K, i) | Σc : (A, i)

Fig. 4. Explicit LF with meta-variables - Target of type reconstruction

them. The result of abstraction is a pure LF object which does not contain free variables nor
meta-variables. In this development we do not introduce a different grammar for explicit
LF with meta-variables and free variables on the one hand and pure LF on the other.

Our grammar for explicit LF will enforce that terms are in β -normal form, i.e. terms
do not contain any β -redices. Our typing rules will in addition guarantee that well-typed
terms must be in η-long form.

We assume that there is a signature Σ where term and type constants are declared, and
their corresponding types and kinds are given in pure LF, i.e. the types of constants are
fully known when we use them. In addition, we store together with constants the number
i of inferred arguments. This is possible since we process a given program one declaration
at a time, and it is moved to the signature Σ once the type (or kind) of a declared constant
has been reconstructed. We suppress the signature in the actual reconstruction and typing
judgments since it is the same throughout. However, we keep in mind that all judgments
have access to a well-formed signature.

In the implementation of type reconstruction of LF we treat meta-variables as refer-
ences and ϒ which describes the set of meta-variables essentially characterizes the state of
memory. We assume all generated meta-variables are of atomic type. This can always be
achieved by lowering (Dowek et al., 1996). ϒ describes an unordered set of meta-variables
and the context Φ describes the unordered set of free variables. The final order of Φ and
ϒ and whether such an order in fact exists, can only be determined after reconstruction is
complete, since only then the types of the free variables are known. Our typing rules will
not impose an order, and we allow circularities following similar ideas as by Reed (2009).

Substitutions σ are built either from normal objects M or heads H. This is necessary
since when we apply σ to a term λx.M we must extend σ . However, the bound variable x
may not denote a normal object unless it is of atomic type. Hence, σ ,x is ill-typed, since
x is not in η-long form. Consequently, there are two different substitutions which denote
the same substitution: one where we encounter σ ;x and the other where we encounter
σ ,M where M can be η-contracted to x. Consequently, comparing two substitutions for
equality must take into account η-contraction. We postpone the definition of η-contraction
of explicit terms here to later, but remark it is essentially identical to the one we gave for
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implicit terms. However, we will come back to the issue when we deal with eta-expansion
and -contractions. We write id(Ψ) to describe the identity substitution for the context Ψ.

4.2 Typing rules for explicit LF

Figure 5 summarizes the typing rules for dependently-typed LF objects. Our typing rules
ensure that LF objects are in β -normal and η-long form. This is convenient because
concentrating on normal forms together with a bi-directional type system allows us to
eliminate typing annotations for λ -abstractions. This simplifies the overall development
since we do not need to ensure that such typing annotations are valid. We employ the
following typing judgments:

ϒ;Φ;Ψ ` M ⇐ A Term M checks against type A
ϒ;Φ;Ψ ` S : A ⇐ P Spine S checks against type A and has target type P
ϒ;Φ;Ψ ` σ ⇐Ψ′ Substitution σ has domain Ψ′ and range Ψ

All judgments are in checking mode. For example, in the judgment for spines, we check
that the spine S has type A and target type P, i.e., S, A, and P are given.

We concentrate here on the typing rules for LF objects and substitutions. We assume
that type constants a together with constants c have been declared in a signature. We will
tacitly rename bound variables, and maintain that contexts declare no variable more than
once. Note that substitutions σ are defined only on ordinary variables x, not on modal
variables u. We also require the usual conditions on bound variables. For example, in the
rule for λ -abstraction, the bound variable x must be new and cannot already occur in the
context Ψ. This can always be achieved via α-renaming.

Deciding whether [σ ]a
Ψ

P′ is equal to P is essentially syntactic equality but must take into
account η-contraction when comparing two substitutions.

It is also worth stating when meta-variable contexts and free variable contexts are well-
formed. The circularity between these two contexts becomes obvious:

for all u::P[Ψ] ∈ ϒ ϒ;Φ;Ψ ` P⇐ type ϒ;Φ `Ψ ctx

`Φ ϒ mctx

for all X :A ∈Φ ϒ;Φ; · ` A⇐ type

ϒ `Φ fctx

In the definition of meta-variable contexts we rely on a free variable context Φ. Free
variables declared in Φ are essentially treated as constants in a signature.

4.3 Substitutions

Hereditary substitutions The typing rules for neutral terms rely on hereditary substitu-
tions that preserve canonical forms (Watkins et al., 2002; Nanevski et al., 2008). Sub-
stitution is written as [M/x]aA. The idea is to define a primitive recursive functional that
always returns a canonical object. In places where the ordinary substitution would construct
a redex (λy.M)N we must continue, substituting N for y in M. Since this could again
create a redex, we must continue and hereditarily substitute and eliminate potential redices.
Hereditary substitution can be defined recursively, considering both the structure of the
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Normal Terms

ϒ;Φ;Ψ,x:A `M⇐ B
ϒ;Φ;Ψ ` λx.M⇐Πx:A.B

ϒ(u) = P′[Ψ′] ϒ;Φ;Ψ ` σ ⇐Ψ′ [σ ]a
Ψ′P
′ = P

ϒ;Φ;Ψ ` u[σ ]⇐ P

Σ(c) = (A, ) Φ;Ψ ` S : A⇐ P
ϒ;Φ;Ψ ` c ·S⇐ P

x:A ∈Ψ ϒ;Φ;Ψ ` S : A⇐ P
ϒ;Φ;Ψ ` x ·S⇐ P

X :A ∈Φ ϒ;Φ;Ψ ` S : A⇐ P
ϒ;Φ;Ψ ` X ·S⇐ P

Spines

ϒ;Φ;Ψ ` nil : P⇐ P

ϒ;Φ;Ψ `M⇐ A ϒ;Φ;Ψ ` S : [M/x]aAB⇐ P

ϒ;Φ;Ψ `M;S : Πx:A.B⇐ P

Substitutions

ϒ;Φ;Ψ ` · ⇐ ·
ϒ;Φ;Ψ ` σ ⇐Ψ′ ϒ;Φ;Ψ `M⇐ [σ ]a

Ψ′A

ϒ;Φ;Ψ ` σ ,M⇐Ψ′,x:A

ϒ;Φ;Ψ ` σ ⇐Φ Ψ(x) = A′ A′ = [σ ]a
Ψ′A

ϒ;Φ;Ψ ` σ ;x⇐Ψ′,x:A

Fig. 5. Typing rules for LF objects

term to which the substitution is applied and the type of the object being substituted. We
also indicate with the superscript a that the substitution is applied to a type. Similarly, the
superscript n indicates the substitution is applied to a term, the superscript l indicates we
apply the substitution to a spine S, the superscript s indicates it is applied to a substitution
σ and the superscript c indicates it is applied to a context. To guarantee that applying a
substitution terminates, it is simpler to stick to non-dependent type of the object being
substituted.

We therefore first define type approximations α and an erasure operation () that re-
moves dependencies. Before applying any hereditary substitution [M/x]aA(B) we first erase
dependencies to obtain α = A and then carry out the hereditary substitution formally as
[M/x]aα(B). A similar convention applies to the other forms of hereditary substitutions.
Types relate to type approximations via an erasure operation ()− which we overload to
work on types. Type approximations are however not only important to ensure termination
of substitution, but we will also rely on the approximate types when defining and reasoning
about η-expansion and define the relationship between explicit terms and implicit terms.

Type approximations α,β ::= a | α → β

(a ·S)− = a
(Πx:A.B)− = A−→ B−

Let us now consider the definition of hereditary substitution for normal terms. The full
definition (including the definition for spines) can be found in the appendix.
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Normal terms

[M/x]nα(λy.N) = λy.N′ where N′ = [M/x]nα(N)
choosing y 6∈ FV(M) and y 6= x

[M/x]nα(u[σ ]) = u[σ ′] where σ ′ = [M/x]sα(σ)

[M/x]nα(c ·S) = c ·S′ where S′ = [M/x]lα S
[M/x]nα(X ·S) = X ·S′ where S′ = [M/x]lα S
[M/x]nα(x ·S) = reduce(M : α,S′) where S′ = [M/x]lα S
[M/x]nα(y ·S) = y ·S′ where y 6= x and S′ = [M/x]lα S

In general, we simply apply the substitution to sub-terms observing capture-avoiding
conditions. The important case is when we substitute into a neutral term x ·S, since we may
create a redex and simply replacing x by the term M is not meaningful. We hence define a
function reduce(M : α,S) which eliminates possible redices.

reduce(λy.M : α1→ α2,(N;S)) = M′′ where[N/y]nα1
M = M′

and reduce(M′ : α2,S) = M′′

reduce(R : a,nil) = R
reduce(M : α,S) fails otherwise

When we substitute M for x in the neutral term x · S, we first compute the result of
applying the substitution [M/x] to the spine S which yields the spine S′. Second, we reduce
any possible redices which are created using the given definition of reduce.

Substitution may fail to be defined only if substitutions into the subterms are undefined.
The side conditions y 6∈ FV(M) and y 6= x do not cause failure, because they can always
be satisfied by appropriately renaming y. However, substitution may be undefined if we
try for example to substitute a neutral term R for x in the term x · S where the spine S
is non-empty. The substitution operation is well-founded since recursive appeals to the
substitution operation take place on smaller terms with equal approximate type α , or the
substitution operates on smaller types (see the case for reduce(λy.M : α1→ α2,(N;S))).

Lemma 4.1 (Hereditary substitution lemma for LF objects)
If ϒ;Φ;Ψ ` N⇐ A and ϒ;Φ;Ψ,x : A,Ψ′ `M⇐ B
then ϒ;Φ;Ψ, [N/x]cA(Ψ′) ` [N/x]nA(M)⇐ [N/x]aA(B)

Similar lemmas hold for all other judgments. For a full discussion on hereditary substi-
tutions we refer the reader to (Nanevski et al., 2008).

Contextual substitutions Meta-variables u[σ ] give rise to contextual substitutions, which
are only slightly more difficult than ordinary substitutions. To understand contextual sub-
stitutions, we take a closer look at the closure u[σ ] which describes the meta-variable u
together with a delayed substitution σ . We apply σ as soon as we know which term u
should stand for. Moreover, we require that meta-variables have base type P and hence, we
will only substitute neutral objects for meta-variables. This is not a restriction, since we
can always lower the type of a meta-variable. An important consequence is that contextual
substitution does not need to be hereditarily defined, since no redices can be created.
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Finally because of α-conversion, the variables that are substituted at different occur-
rences of u may be different. As a result, substitution for a meta-variable must carry a
context, written as [[Ψ̂.R/u]]N and [[Ψ̂.R/u]]σ where Ψ̂ binds all free variables in R. This
complication can be eliminated in an implementation of our calculus based on de Bruijn
indexes.

Applying a single meta-substitutions Ψ̂.R/u to an object N, type A, substitution σ or
context Φ is defined inductively in the usual manner. In each case, we apply it to its sub-
expressions. The only interesting case is when we encounter N = u[σ ]. Here, we first
compute some σ ′ = [[Ψ̂.R/u]]σ and we replace u by [σ ′]R. Note that because all meta-
variables are lowered, we can only replace meta-variables by neutral terms R. Hence,
no redex is created by replacing u with [σ ′]R and the termination of meta-substitution
application only relies on the fact that applying σ ′ to R terminates (see previous sec-
tion). Therefore, the termination for meta-substitutions is straightforward. Technically,
we need to annotate contextual substitutions with the type of the meat-variable u and
write [[Ψ̂.R/u]]P[Ψ](N), since when we encounter N = u[σ ] and we compute [σ ′]n

Ψ
R where

we annotate the substitution [σ ′]n
Ψ

with its domain. We usually omit this annotation on
contextual substitutions subsequently to improve readability.

Theorem 4.2 (Contextual Substitution Principles)
If ∆1;Φ ` R⇐ P and ∆1,u::P[Φ],∆2;Ψ `M⇐ A then
∆1, [[Ψ̂.R/u]]∆2; [[Ψ̂.R/u]]Ψ ` [[Ψ̂.R/u]]M⇐ [[Ψ̂.R/u]]A.

The simultaneous contextual substitution ρ maps meta-variables from ∆ to a meta-
variable context ∆′. As mentioned earlier, the meta-variable context ∆ is not necessarily
ordered which is reflected in its typing rule (see also Reed (2009)). This is different from
the definition of contextual substitutions previously given for example in (Nanevski et al.,
2008) where we require that meta-variables are in a linear order. Finally, we must take into
account the dependency between free variables and meta-variables.

∆′ `Φ · ⇐ ·
for all(Ψ̂.R/u) ∈ ρ ∆(u) = P[Ψ] ∆′;Φ; [[ρ]]Ψ ` R⇐ [[ρ]]P

∆′ `Φ ρ ⇐ ∆

Applying circular contextual substitution will still terminate and it will produce a well-
typed object. Intuitively a simultaneous meta-substitution can be viewed as a series of
individual meta-substitutions. Hence it is still meaningful to reason about its application.

4.4 η-expansion

Since in our framework terms must be in η-long form, it is sometimes necessary to be
able to η-expand a bound variable x. Type approximations suffice for the definition of
η-expansion and simplify the theoretical properties about η-expanded terms. We define a
function ηexpα(x) = M which when given a bound variable x with type approximation α

will produce its η-expanded term M.
We note that if n = 0 then we have ηexpa(x) = x ·nil. For sake of completeness, we also

define η-contraction for explicit terms in an identical manner to η-contraction for implicit
terms, since it is necessary for comparing two substitutions for equality. It also highlights
the duality of η-contraction and η-expansion.
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ηexpβ1→...→βn→a(x) = λy1 . . .λyn.x · (ηexpβ1
(y1); . . . ;ηexpβn(yn);nil)

ηcon(λy1 . . .λyn.x · (M1; . . . ;Mn;nil)) = x if for all i ηcon(Mi) = yi

Subsequently, we usually write ηexpA(x) instead of ηexpα(x) where α = A− but we
keep in mind that we erase type dependencies before applying the definition of η-expansion.
We state some simple properties about η-expansion next.

Lemma 4.3
1. If ηexpA(x) = M then FV(M) = {x}.
2. ηcon(ηexpA(x)) = x.

Theorem 4.4
1. If ϒ;Φ;Ψ1,x:A,Ψ2 ` N⇐ B then [ηexpA(x)/x]nAN = N.
2. If ϒ;Φ;Ψ1,x:A,Ψ2 ` S : B⇐ P then [ηexpA(x)/x]lAS = S.
3. If ϒ;Φ;Ψ1,x:A,Ψ2 ` σ ⇐Ψ then [ηexpA(x)/x]sα σ = σ .
4. If ϒ;Φ;Ψ `M⇐ A then [M/y]nA(ηexpA(y)) = M.

Proof
Mutual induction on N, S, and A (see appendix).

Lemma 4.5
If ϒ;Φ;Ψ ` A⇐ type, Ψ(x) = A then ϒ;Φ;Ψ ` ηexpA(x)⇐ A.

Proof
Structural nduction A using the previous theorem.

5 Equivalence relation between implicit and explicit terms

The goal of reconstruction will be to translate an implicit term m into an equivalent ex-
plicit term M. Hence we characterize in this section when implicit terms are considered
equivalent to explicit terms.

The equivalence relation between implicit terms and explicit terms will only compare
terms which have the same approximate type. Defining equivalence in a type-directed
manner is necessary, since the equivalence relation must take into account η-expansion.

The erasure operation ()− on types A to obtain its type approximations α has been
defined previously on page 11. We can extend the erasure operation to bound variable
contexts in a straightforward way and will write ψ for the context approximating a bound
variable context Ψ.

We define the relationship between the source-level object m and the reconstructed
object M using the following judgment:

ψ ` m ≈ M : α term m is equivalent to term M at type approximation α

ψ ` s ≈ S : α ⇐ a spine s is equivalent to spine S at type approximation α

and target type approximation a
ψ `i s ≈ S : α ⇐ a spine s is equivalent to spine S at type approximation α

and target type approximation a but the first i-th element
of S are irrelevant
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Equivalence on normal objects

ψ,x:α ` m≈M : β

ψ ` λx.m≈ λx.M : α → β

ψ,x:α ` h · s@((x ·nil);nil)≈M : β

ψ ` h · s≈ λx.M : α → β

Σ(c) = (A, i) ψ `i s≈ S : A−⇐ a
ψ ` c · s≈ c ·S : a

Φ(X) = A ψ ` s≈ S : A− : a
ψ ` X · s≈ X ·S : a

ψ(x) = α ψ ` s≈ S : α ⇐ a
ψ ` x · s≈ x ·S : a ψ ` ≈ R : a

Equivalence on spines with omitted arguments

ψ ` s≈ S : α ⇐ a
ψ `0 s≈ S : α ⇐ a

ψ `i−1 s≈ S : β ⇐ a
ψ `i s≈ (M;S) : α → β ⇐ a

Equivalence on spines

ψ ` m≈M : α ψ ` s≈ S : β ⇐ a
ψ ` (m;s)≈ (M;S) : α → β ⇐ a ψ ` nil≈ nil : a⇐ a

Fig. 6. Equivalence between implicit and explicit terms

We will omit here the context for meta-variables ϒ and the context for free variables Φ

in the definition of the rules, since they remain constant. Our equivalence relation will only
compare well-typed terms. In particular, we assume that M has type A where α = A−.

The rules for defining the equivalence between implicit and explicit terms are given in
Figure 6. The equivalence of terms at function type α → β falls into two cases: a) both
terms are lambda-abstractions. In this case, we check that the bodies are equivalent at type
β in the extended context ψ,x:α . b) the implicit term is not in η-expanded form, while the
explicit term is. In this case, we incrementally η-expand m.

When comparing neutral terms, we only need to be careful, when we encounter a neutral
term with a constant at the head. In this case, we look up the type of the constant together
with the number i describing how many arguments can be omitted. We then skip over the
first i arguments in the explicit spine and continue to compare the remaining explicit spine
with the implicit spine.

From the equivalence between implicit and explicit terms we can directly derive rules
which guarantee that an implicit term is approximately well-typed by keeping the implicit
term M and the approximate types but dropping the explicit term M. We will use the
following judgments to describe that an implicit term is approximately well-typed.

ψ ` m : α term m has type approximation α

ψ ` s : α ⇐ a spine s has type approximation α and target type approximation a
ψ `i s : α ⇐ a spine s has type approximation α and target type approximation a

but the first i-th elements defined by the type α are irrelevant

We note that the approximate typing rules have access to a signature Σ which contains
fully explicit types and kinds. In general, approximate typing rules are similar to the typing
rules we find in the simply typed lambda-calculus with two exception: 1) we typically
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do not η-expand terms which is handled in our typing rules. 2) we have the judgment
ψ `i s : α⇐ a which allows us to skip over the first i arguments in the type approximation
α .

Finally, we prove that if an implicit term m has approximate type A−, and m can be η-
contracted to a variable x where x has type A, then m is equivalent to the η-expanded form
of x. This lemma is used in the soundness proof of reconstruction.

Lemma 5.1
If ηcon(m) = x and Ψ− ` m⇐ A− and Ψ(x) = A then Ψ− ` m≈ ηexpA(x) : A−.

Proof
Induction on A (see appendix).

6 LF type reconstruction de-constructed

The reconstruction phase takes as input an implicit normal object m (resp. spine s, type
a, kind k) and produces a dependent objects M (resp. S, A, K). The resulting object M is
dependently typed. The main judgements are as follows:

ϒ1;Φ1;Ψ ` m ⇐ A /ρ (ϒ2 ; Φ2)M Reconstruct normal object
ϒ1;Φ1;Ψ ` s : A ⇐ P /ρ (ϒ2 ; Φ2)S Reconstruct spine

Reconstruction is type-directed. The given judgements define an algorithm where we
separate the inputs from the outputs by /. The inputs in a given judgment are written on
the left of / and the outputs occur on the right. Given a source-level expression m which is
stipulated to have type A in a context ϒ1 of meta-variables, a context Φ1 of free variables,
and a context Ψ of bound variables, we generate a well-typed object M together with
the new context ϒ2 of meta-variables, the context Φ2 of free variables, and a contextual
substitution ρ . The contextual substitution ρ maps meta-variables from ϒ1 to the new meta-
variable context ϒ2. We assume that all inputs ϒ1, Φ1, Ψ and A are well-typed and m is
well-formed. Hence, the following invariants must hold:

Assumptions: · `Φ1 ϒ1 mctx

ϒ1 ` Φ1 fctx

ϒ1;Φ1 ` Ψ ctx

ϒ1;Φ1;Ψ ` A⇐ type

Throughout we have that Φ1 characterizes some of the free variables occurring in the
object m, but not all of them yet, i.e. Φ1 ⊆ FV(m). In the beginning, Φ1 will be empty and
the idea is that we add to Φ1 the free variable once we encounter it and are able to infer its
type.

In this presentation, we do not assume that m has approximate type A−, but choose
to identify in the inference rules precisely where we rely on this information. This will
highlight why we need the assumption that implicit objects are approximately well-typed.

All generated objects, types, meta-variable context ϒ2 and free variable context Φ2 are
well-typed, and we will maintain the following invariant:
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Postconditions: · `Φ2 ϒ2 mctx

ϒ2 ` Φ2 fctx

ϒ2 `Φ2 ρ ⇐ ϒ1

ϒ2;Φ2; [[ρ]]Ψ ` M ⇐ [[ρ]]A
ϒ2;Φ2; [[ρ]]Ψ ` S : [[ρ]]A ⇐ [[ρ]]P

In our implementation, meta-variables are implemented via references and have a global
status. Similarly, we are threading through the context of free variables and collect the
free variable together with its dependent type as we traverse a given LF object. All free
variables in Φ1 will also occur in Φ2. However, Φ2 may contain more free variables and
the type of free variables which were already present in Φ1 may have been refined, i.e.
Φ2 ⊇ [[ρ]]Φ1. We give an overview of all the rules in Figure 7, but we will discuss them
individually below.

6.1 Reconstruction of normal objects

6.1.1 Reconstruction of lambda-abstraction

Reconstruction of an abstraction is straightforward. We reconstruct recursively the body of
the abstraction. We add the assumption x : A to the context Ψ and continue to reconstruct
m. This yields the reconstructed term M together with a new meta-variable context ϒ2 and
free variable context Φ2. By the stated invariants both contexts make sense independently
of Ψ and we can simply preserve them in the conclusion and return λx.M as the final
reconstructed object.

ϒ1;Φ1;Ψ,x:A ` m⇐ B /ρ (ϒ2 ; Φ2)M
ϒ1;Φ1;Ψ ` λx.m⇐Πx:A.B /ρ (ϒ2 ; Φ2)λx.M

6.1.2 Reconstruction of atomic objects

Atomic objects are those which are not lambda-abstractions, i.e. they are of the form h · s.
As mentioned earlier, reconstruction is type-directed. If we encounter an atomic object
which is not of atomic type, we need to first eta-expand it.

η-expandIng atomic objects type, we will η-expand it. η-expansion is done by incre-
mentally. We write s@(x · nil);nil for appending to the spine s the spine (x · nil);nil. This
means we add the object x ·nil to the end of the spine s.

ϒ1;Φ1;Ψ,x:A ` h · (s@((x ·nil);nil))⇐ P /ρ (ϒ2 ; Φ2)M
ϒ1;Φ1;Ψ ` h · s⇐Πx:A.B /ρ (ϒ2 ; Φ2)λx.M

Note that the term x · nil is not necessarily in η-expanded form yet. This is fine, since
we do not require that objects in the source-level syntax are η-expanded. The variables
x1, . . . ,xn will be expanded at a later point when it is necessary.

There are five possible atomic objects h · s depending on the head h. Since different
actions are required depending on the head h, our spine representation is particularly useful.
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Normal Terms

ϒ1;Φ1;Ψ,x:A ` m⇐ B /ρ (ϒ2 ; Φ2)M

ϒ1;Φ1;Ψ ` λx.m⇐Πx:A.B /ρ (ϒ2 ; Φ2)λx.M

ϒ1;Φ1;Ψ,x:A ` h · (s@((x ·nil);nil))⇐ B /ρ (ϒ2 ; Φ2)M

ϒ1;Φ1;Ψ ` h · s⇐Πx:A.B /ρ (ϒ2 ; Φ2)λx.M

Σ(c) = (A, i) ϒ1;Φ1;Ψ `i s : A⇐ P /ρ (ϒ2 ; Φ2)S

ϒ1;Φ1;Ψ ` c · s⇐ P /ρ (ϒ2 ; Φ2)c ·S

x:A ∈Ψ ϒ1;Φ1;Ψ ` s : A⇐ P /ρ (ϒ2 ; Φ2)S

ϒ1;Φ1;Ψ ` x · s⇐ P /ρ (ϒ2 ; Φ2)x ·S

s is a pattern spine
X 6∈Φ1 ϒ1;Φ1;Ψ ` s⇐ P / S : A ϒ1;Φ1;Ψ ` prune A⇒ (ϒ2 ; ρ)

ϒ1;Φ1;Ψ ` X · s⇐ P /ρ (ϒ2 ; [[ρ]]Φ1,X : [[ρ]]A)X ·S

Φ1(X) = A ϒ1;Φ1;Ψ ` s : A⇐ P /ρ (ϒ2 ; Φ2)S

ϒ1;Φ1;Ψ ` X · s⇐ P /ρ (ϒ2 ; Φ2)X ·S

ϒ1;Φ1;Ψ ` ⇐ P /id(ϒ1) (ϒ1,u::P[Ψ] ; Φ1)u[id(Ψ)]

Synthesize type A from pattern spine

ϒ1;Φ1;Ψ ` nil⇐ P / nil : P

ηcon(m) = x Ψ(x) = A
ηexpA(x) = M Ψ− ` m⇐ A− ϒ1;Φ1;Ψ ` s⇐ P / S : B [y/x]aAB = B′

ϒ1;Φ1;Ψ ` m;s⇐ P / M;S : Πy : A.B′

Synthesize spine

ϒ1;Φ1;Ψ ` s : A⇐ P /ρ (ϒ2 ; Φ2)S

ϒ1;Φ1;Ψ `0 s : A⇐ P /ρ (ϒ2 ; Φ2)S

ϒ1;Φ;Ψ ` lower A⇒ (M,u::Q[Ψ′])
ϒ1,u::Q[Ψ′];Φ1;Ψ `i−1 s : [M/x]aA(B)⇐ P /ρ (ϒ2 ; Φ2)S ρ = ρ ′,Ψ̂′.R/u

ϒ1;Φ1;Ψ `i s : Πx:A.B⇐ P /ρ ′ (ϒ2 ; Φ2)[[ρ]]M;S

Check spine

ϒ1;Φ1;Ψ ` a ·S′ .= a ·S/(ρ , ϒ2)

ϒ1;Φ1;Ψ ` nil : a ·S′⇐ a ·S /ρ (ϒ2 ; [[ρ]]Φ1)nil

ϒ1;Φ1;Ψ ` m⇐ A /ρ1 (ϒ2 ; Φ2)M
ϒ2;Φ2; [[ρ1]]Ψ ` s : ([M/x]aA([[ρ1]]B))⇐ [[ρ1]]P /ρ2 (ϒ3 ; Φ3)S ρ = [[ρ2]]ρ1

ϒ1;Φ1;Ψ ` m;s : Πx:A.B⇐ P /ρ (ϒ3 ; Φ3)[[ρ2]]M;S

Fig. 7. Reconstruction rules for LF
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Reconstructing atomic objects with a bound variable as head To reconstruct the object
x · s, we will need to reconstruct the spine s by checking it against the type of x.

x:A ∈Ψ ϒ1;Φ1;Ψ ` s : A⇐ P /ρ (ϒ2 ; Φ2)S
ϒ1;Φ1;Ψ ` x · s⇐ P /ρ (ϒ2 ; Φ2)x ·S

Reconstructing atomic objects with constant as head When we reconstruct c · s, we
first look up the constant c in the signature and obtain the type of c as well as the number
i of implicit arguments (i.e. the number of arguments which may be omitted). We will
now reconstruct the spine s by first synthesizing i new arguments and then continue to
reconstruct the spine s (see “Synthesize Spine”).

Σ(c) = (A, i) ϒ1;Φ1;Ψ `i s : A⇐ P /ρ (ϒ2 ; Φ2)S
ϒ1;Φ1;Ψ ` c · s⇐ P /ρ (ϒ2 ; Φ2)c ·S

Reconstructing atomic objects with free variable as head – Case 1: The type of free
variable is known When we encounter a neutral object X · s where the head is a free
variable, there are two possible cases. If we already inferred the type A of the free variable
X then we simply look it up in the free variable context Φ1 and reconstruct the spine s by
checking it against A.

Φ1(X) = A ϒ1;Φ1;Ψ ` s : A⇐ P /ρ (ϒ2 ; Φ2)S
ϒ1;Φ1;Ψ ` X · s⇐ P /ρ (ϒ2 ; Φ2)X ·S

Reconstructing atomic objects with free variable as head – Case 2: The type of free
variable is unknown If we do not yet have a type for X , we will try to infer it from
the target type P. This is however only possible, if s is a pattern spine, i.e. a list of distinct
bound variables. This is important, because pattern spines can be directly mapped to pattern
substitutions, i.e. a substitution where we map distinct bound variables to distinct bound
variables. Such substitutions have the key property that they are invertible and we will
exploit this fact when inferring the type for X . More generally, given the target type P
and a spine of distinct bound variables x1, . . . ,xn which must have been declared in Ψ, we
can infer a type A for X where A = ΠΨ′.P′ and there exists some renaming substitution
σ = x1; . . . ;xn with domain Ψ′ and range Ψ s.t. P′ = [σ ]−1P.

Because bound variables may occur in its η-expanded form, checking for a pattern spine
must involve η-contraction. We will discuss this issue when we consider the rules for
synthesizing a type A from pattern spine (see page 21).

Since free variables are thought to be quantified at the outside, the type A is not allowed
to refer to any bound variables in Ψ. In other words, the type A must be closed. We
therefore employ pruning to ensure that there exists a type A′ s.t. [[ρ]]A = A′ and where
ρ is a pruning substitution which eliminates any undesirable bound variable dependencies.
This is best illustrated by an example. Given the assumptions p:i→o,a:i, we have the
object D a which is known to have type nd X[p;a]. The type we infer for the free variable
D is Πx:i.nd X[p;x]. Because D is only applied to the variable a, but not the variable
p, the bound variable p is left-over in the synthesized type for D. However, since the
free variable D will be eventually bound at the outside and its type must be closed, it
cannot contain any free variables. We hence prune the meta-variable X which has the
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contextual type o[q:i→o,x:i] such that it can never depend on q. This is achieved by
creating a meta-variable Y with type o[x:i] and replacing any occurrence of X with Y[

x]. We call the contextual substitution which achieves this refinement of meta-variables
a pruning substitution. Applying the pruning substitution to the synthesized type of the
free variable will ensure it is closed. The final type synthesized for the free variable D

after pruning, is Πx:i.nd Y[x]. In general, the pruning substitution ρ will restrict the
meta-variables occurring in the synthesized type A in such a way that they are closed, i.e.
ϒ2; [[ρ]]Φ1; · ` [[ρ]]A⇐ type. Pruning is an operation which is well-known in higher-order
pattern unification algorithms (see for example (Pientka, 2003; Dowek et al., 1995; Dowek
et al., 1996)).

s is a pattern spine
X 6∈Φ1 ϒ1;Φ1;Ψ ` s⇐ P / S : A ϒ1;Φ1;Ψ ` prune A⇒ (ϒ2 ; ρ)

ϒ1;Φ1;Ψ ` X · s⇐ P /ρ (ϒ2 ; [[ρ]]Φ1,X : [[ρ]]A)X ·S

Note, we omit here the case where we encounter a term X · s where s is a non-pattern
spine. In this case, we cannot infer the type of X . Instead, we postpone reconstruction of
X · s in the implementation, and reconsider this term later once we have encountered some
term X · s′ where s′ is a pattern spine which enables us to infer a type for X . In practice one
occurrence of the free variable X together with a pattern spine suffices to infer the type of
it. We have not modelled this delaying of some parts of the terms explicitly here in these
rules. This could be done using an extra argument, but not much is gained by formalizing
this at this point. We formalize synthesizing a type from a pattern spine on page 21.

Reconstructing holes Finally, we allow holes written as in the source language. We
restrict holes here to be of atomic type. This is however not strictly necessary, since one
can eta-expand holes to allow more flexibility. If we encounter a hole of atomic type, we
simply generate a meta-variable for it.

ϒ1;Φ1;Ψ ` ⇐ P /id(ϒ1) (ϒ1,u::P[Ψ] ; Φ1)u[id(Ψ)]

Let us consider the reconstruction of spines next. There are three different ones: 1)
Checking a spine against a given type A. 2) Synthesizing a type A from a spine s and
its target type P. 3) Synthesizing a new spine and inferring omitted arguments given the
type A.

6.2 Working with spines

Depending on the head of a term, spines are processed differently. In the simplest case,
we make sure that the spine associated with a head is well-typed. We may however also
use the spine s together with an overall type P of a term X · s to infer the type of the free
variable X . Finally, maybe the most important case: given a spine s and a type A, we need
to infer omitted arguments and produce a spine S which indeed checks against A.
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6.2.1 Checking a spine

In the simplest case, we need to ensure the spine is well-typed. When we encounter an
empty spine, we must ensure that the inferred type a ·S′ is equal to the expected type a ·S.
This is achieved by unification. In this theoretical description we rely on decidable higher-
order pattern unification to compute a substitution ρ under which both types are equal.
In practice, unification could leave some constraints which will be stored globally and
revisited periodically. Most importantly, we revisit these constraints once reconstruction is
finished, and check whether these constraints can be solved.

ϒ1;Φ1;Ψ ` a ·S′ .= a ·S/(ρ , ϒ2)
ϒ1;Φ1;Ψ ` nil : a ·S′⇐ a ·S /ρ (ϒ2 ; [[ρ]]Φ1)nil

When we encounter a spine m;s which is stipulated to have type Πx:A.B then we first
reconstruct m by checking it against A, and then continue to reconstruct the spine s by
checking it against [M/x]aA(B). Recall that only approximate types are necessary to guar-
antee termination of this substitution. We do not have to apply ρ1 to A and annotate the
substitution [M/x] with [[ρ1]]A, since all dependencies in A will be erased before applying
the substitution and (A)− = ([[ρ]]A)−.

ϒ1;Φ1;Ψ ` m⇐ A /ρ1 (ϒ2 ; Φ2)M
ϒ2;Φ2; [[ρ1]]Ψ ` s : ([M/x]aA([[ρ1]]B))⇐ [[ρ1]]P /ρ2 (ϒ3 ; Φ3)S ρ = [[ρ2]]ρ1

ϒ1;Φ1;Ψ ` m;s : Πx:A.B⇐ P /ρ (ϒ3 ; Φ3)[[ρ2]]M;S

6.2.2 Synthesizing a type A from a pattern spine s

When we encounter a free variable X ·s whose type is still unknown, we synthesize its type
from a type A and the spine s. We can only synthesize a type A from a spine s, if s is a
pattern spine, i.e. a list of distinct bound variables. We employ the following judgment:

ϒ1;Φ1;Ψ ` spattern ⇐ P / S : A

Given a pattern spine spattern and the target type P of X · s, we can synthesize the type A
which X must have. In addition to the type A we map the pattern spine spattern in implicit
LF to the corresponding pattern spine S in explicit LF. Because spattern is a pattern spine,
we do not generate a new meta-variable context ϒ2, a new free variable context Φ2 or a
substitution ρ as we would in other judgements for reconstructing objects.

If s is empty, then we simply return P as the type.

ϒ1;Φ1;Ψ ` nil⇐ P / nil : P

The more interesting case is when the spine has the form m;s. As mentioned earlier,
given the target type P and a spine of distinct bound variables x1, . . . ,xn which must have
been declared in Ψ, we can infer a type A for X where A = ΠΨ′.P′ and there exists some
renaming substitution σ = x1; . . . ;xn with domain Ψ′ and range Ψ s.t. P′ = [σ ]−1P.

However, source-level terms may be η-expanded and we must take into consideration η-
contraction. Unfortunately, η-contracting a source-level object m cannot be type-directed,
since we do not yet know its type. As a consequence, we could have an ill-typed term
m which could be reconstructed to some well-typed term M. For example, let m = λx.yx
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where y has some atomic type Q. η-contracting m yields some y. The corresponding η-
expanded term of y will still be y, since it has atomic type. Our final result will be well-
typed and preserve the invariants stated. This leads to the question whether one should
accept such an ill-typed term from the source-level language. In this work, we take a
conservative approach and assume that m must be approximately well-typed, i.e. if m can
be η-contracted to some variable x and x has type A in the context Ψ, then m has type A−.
The guarantee that m is approximately well-typed will also make is easier to establish a
relationship between m and M which is important when establishing correctness of type
reconstruction.

ηcon(m) = x Ψ(x) = A
ηexpA(x) = M Ψ− ` m⇐ A− ϒ1;Φ1;Ψ ` s⇐ P / S : B [y/x]aAB = B′

ϒ1;Φ1;Ψ ` m;s⇐ P / M;S : Πy : A.B′

In general, to synthesize the type of the spine m;s, we must find a B′ s.t. [M/y]B′ = B
where M is the reconstructed object of m. This is in general impossible. By lemma 4.4, we
know that if M is the η-expanded form of a variable x at type A, then [M/y]aA(B′) = [x/y]B.
Hence the restriction to pattern spines will ensure that we only have to consider finding
a B′ s.t. [x/y]aAB′ = B. To obtain B′ we simply apply the inverse of [x/y]aA to B, i.e. B′ =
[x/y]−1B = [y/x]aAB.

The type we now infer for m;s is composed of A, the type for m, and the type B which
we infer for the spine s. Before we can however create a Π-type, we must possibly rename
any occurrence of x with y.

The last question we must consider is what reconstructed spine should be returned. Since
we require that the reconstructed spine is in η-expanded form we cannot return x · nil;S
since x may not be normal if it is of function type. Hence, we first η-expand x to some
object M and return M;S.

6.2.3 Inferring omitted arguments in a spine

Finally, the interesting case is how we in fact add missing arguments to a spine s. The
judgment for inferring omitted arguments, takes as input the number i of arguments to be
inferred as well as the type A which tells us what the type of each argument needs to be. In
addition, we pass in the target type P.

ϒ1;Φ1;Ψ `i s : A ⇐ P /ρ (ϒ2 ; Φ2)S

If i is zero, then no arguments need to by synthesized, and we simply reconstruct s by
checking it against the type A and expected target type P.

ϒ1;Φ1;Ψ ` s : A⇐ P /ρ (ϒ2 ; Φ2)S

ϒ1;Φ1;Ψ `0 s : A⇐ P /ρ (ϒ2 ; Φ2)S

If i is not zero, we generate a new object M containing a meta-variable of atomic type
by employing lowering. Intuitively, given a type A = ΠΨq.Q in a context Ψ, we generate
a meta-variable u of type Q[Ψ,Ψq] and the term M = λ Ψ̂q.u[id(Ψ,Ψq). After substituting
M into the expected type B of the remaining spine, we infer omitted arguments.
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ϒ1;Φ;Ψ ` lower A⇒ (M,u::Q[Ψ′])
ϒ1,u::Q[Ψ′];Φ1;Ψ `i−1 s : [M/x]aA(B)⇐ P /ρ (ϒ2 ; Φ2)S ρ = ρ ′,Ψ̂.R/u

ϒ1;Φ1;Ψ `i s : Πx:A.B⇐ P /ρ ′ (ϒ2 ; Φ2)[[ρ]]M;S

Since ρ is a substitution mapping meta-variables in ϒ1,u::Q[Ψ′] to ϒ2, but in the con-
clusion we need to return a substitution which maps meta-variables from ϒ1 to ϒ2 we must
take out the instantiation for u::Q[Ψ′] which should not be present and necessary anymore.

Lowering is also an operation well-known from the literature on higher-order pattern
unification (see (Pientka, 2003; Dowek et al., 1996)) and can be described as follows:

ϒ;Φ;Ψ ` lower P⇒ (u[id(Ψ)] ; u::P[Ψ])

ϒ;Φ;Ψ,x:A ` lower B⇒ (M ; u::P[Ψ′])
ϒ;Φ;Ψ ` lower Πx:A.B⇒ (λx.M ; u::P[Ψ′])

The judgment ϒ;Φ;Ψ ` lower A⇒ (M ; u::P[Ψ,Ψ′]) can be read as follows: Given a
context Ψ and a type A which is well-kinded in Ψ, we generate an η-expanded term M
with a meta-variable u of atomic type P[Ψ,Ψ′] where A = ΠΨ′.P and M has type A.

Lemma 6.1 (Lowering)
If ϒ;Φ;Ψ ` lower A⇒ (M ; u::P[Ψ′]) then
ΠΨ.A = ΠΨ′.P and ϒ,u::P[Ψ′] ; Φ ; Ψ `M⇐ A.

Proof
Structural induction on A.

6.3 Soundness and completeness of LF reconstruction

Throughout reconstruction, we will maintain that the context for meta-variables and the
free variable context are well-formed contexts according to our definition given on page
10. Reconstruction then guarantees that the LF object M (resp. S, A, K) is well-typed, a
fact we will prove in this section. Reconstruction generates a contextual substitution ρ

with domain ϒ2 and range ϒ′, and we have

ϒ
′; [[ρ]]Φ2 , [[ρ]]Ψ `M⇐ [[ρ]]A.

In addition, m is equivalent to M. To ensure variable dependencies are properly taken into
account, we will need to prune the type of existing meta-variables during reconstruction
Because the type of meta-variables may be pruned and meta-variables are refined during
unification, the relationship between the contexts ϒ1 and Φ1 on the one hand and the
context ϒ2 and Φ2 on the other hand is not a simple subset relation. Instead, there exists a
contextual substitution ρ s.t. ϒ2 `Φ2 ρ ⇐ ϒ1 and [[ρ]]Φ1 ⊆Φ2.

In our implementation, variables bound in the context Ψ are represented using de Bruijn
indices, while free variables are described using names. Since we do not yet know the
types of the free variables their order cannot yet be determined and hence we cannot index
them via de Bruijn indices. In the statement of soundness, we assume that all contexts,
types etc. are well-formed. This is implicit in our statement. We are however explicit
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about the well-formedness of the contexts we create. This will emphasize why we for
example employ pruning and other restrictions during reconstruction. Finally, we can state
and prove soundness of reconstruction.

Theorem 6.2 (Soundness of reconstruction)
1. If ϒ1;Φ1;Ψ ` m⇐ A /ρ (ϒ2 ; Φ2)M then

ϒ2;Φ2; [[ρ]]Ψ `M⇐ [[ρ]]A and ϒ2
−;Φ2

−;Ψ− ` m≈M : A−

ϒ2 `Φ2 ρ ⇐ ϒ1 and ϒ2 `Φ2 fctx and `Φ2 ϒ2 mctx and [[ρ]]Φ1 ⊆Φ2.
2. If ϒ1;Φ1;Ψ `i s : A⇐ Q /ρ (ϒ2 ; Φ2)S then

ϒ2;Φ2; [[ρ]]Ψ ` S : [[ρ]]A⇐ [[ρ]]Q and ϒ2
−;Φ2

−;Ψ− `i s≈ S : A−⇐ Q−

[[ρ]]Φ1 ⊆Φ2 and ϒ2 `Φ2 ρ ⇐ ϒ1 and ϒ2 `Φ2 fctx and `Φ2 ϒ2 mctx.
3. If ϒ1;Φ1;Ψ ` s : A⇐ Q /ρ (ϒ2 ; Φ2)S then

ϒ2;Φ2; [[ρ]]Ψ ` S : [[ρ]]A⇐ [[ρ]]Q and ϒ2
−;Φ2

−;Ψ− ` s≈ S : A−⇐ Q−

[[ρ]]Φ1 ⊆Φ2 and ϒ2 `Φ2 ρ ⇐ ϒ1 and ϒ2 `Φ2 fctx and `Φ2 ϒ2 mctx.
4. If ϒ1;Φ1;Ψ ` s⇐ P / S : A then

ϒ1;Φ1;Ψ ` S : A⇐ P and ϒ2
−;Φ2

−;Ψ− ` s≈ S : A−⇐ P− and
ϒ1;Φ1;Ψ ` A⇐ type.

Proof
Structural induction on the reconstruction judgment (see appendix).

The presented type reconstruction algorithm is also complete in the following sense: if
an implicit term m is equivalent to an explicit term M at type approximation α and M has
type A s.t. A− = α , then type reconstruction will return some explicit term M′ s.t. M is an
instance of M′.

Our definition of equivalence between implicit and explicit terms relies on the fact that
we already know the type of all the free variables. As a consequence, we never need to
infer the type of a free variable in m during reconstruction.

To state the completeness theorem, we also need to reason about how the context of
meta-variables evolves. In particular, we need to know that when we have a term M which
has type A in the meta-variable context ϒ, then there is a contextual substitution ρ0 which
allows us to move from a meta-variable context ϒ1 to the current meta-variable context ϒ.

Theorem 6.3 (Completeness of type reconstruction)
1. If Ψ− ` m≈M : A− and ϒ `[[ρ0]]Φ ρ0⇐ ϒ1

and ϒ; [[ρ0]]Φ; [[ρ0]]Ψ `M⇐ [[ρ0]]A then
ϒ1;Φ;Ψ ` m⇐ A /ρ (ϒ2 ; Φ′)M′ and there exists a contextual substitution θ s.t.
[[θ ]]ρ = ρ0 and ϒ ` θ ⇐ ϒ2 and [[θ ]]M′ = M, [[ρ]]Φ = Φ′.

2. If Ψ− ` s≈ S : A−⇐ P− and ϒ `[[ρ0]]Φ ρ0⇐ ϒ1

and ϒ; [[ρ0]]Φ; [[ρ0]]Ψ ` S : [[ρ0]]A⇐ [[ρ0]]P then
ϒ1;Φ;Ψ ` s : A⇐ P /ρ (ϒ2 ; Φ′)S′ and there exists a contextual substitution θ s.t.
[[θ ]]ρ = ρ0 and ϒ ` θ ⇐ ϒ2 and [[θ ]]S′ = S, and [[ρ]]Φ = Φ′.

3. If Ψ− `i s≈ S : A−⇐ P− and ϒ `[[ρ0]]Φ ρ0⇐ ϒ1

and ϒ; [[ρ0]]Φ; [[ρ0]]Ψ ` S : [[ρ0]]A⇐ [[ρ0]]P then
ϒ1;Φ;Ψ `i s : A⇐ P /ρ (ϒ2 ; Φ′)S′ and there exists a contextual substitution θ s.t.
[[θ ]]ρ = ρ0 and ϒ ` θ ⇐ ϒ2 and [[θ ]]S′ = S, [[ρ]]Φ = Φ′.

Proof
Structural induction on the first derivation (see appendix).



ZU064-05-FPR recon 10 August 2010 8:39

25

7 Abstraction

A final step in the type reconstruction process is the abstraction over the free meta-variables
and the free ordinary variables in a given declaration. Here we need to ensure that there
exists some ordering for the free variables in Φ and the meta-variables in ϒ. Given a LF
object M (resp. A) with the free variables in Φ and the meta-variables in ϒ, the correct order
of Φ is determined by the order in which they occur in M (res. A). In our implementation,
we traverse the object M (resp. A) and collect from left to right all meta-variables and
free variables. This will determine their order. Intuitively, the variables occurring later
in the term can only depend on the variables occurring earlier. Finally, all meta-variable
occurrences u[σ ] where u has type P[Ψ] are translated as follows: We first create a bound
variable x of type ΠΨ.P, and translate the delayed substitution σ into a spine S whose
elements are η-expanded. Any occurrence of u[σ ] is then replaced by x · S. We first state
the judgments:

ϒ;Φ | (Ψ0)Ψ ` M ⇐ B / (Ψ1)N
ϒ;Φ | (Ψ0)Ψ ` S : A ⇐ P / (Ψ1)S′

ϒ;Φ | (Ψ0)Ψ ` σ ⇐Ψ′ / (Ψ1)σ ′

Ψ0 ` σ ⇐Ψ1 / S

The final abstracted term N (resp. S′, σ ′) must be a closed object, i.e. it does not refer
to any meta-variables or free variables. The final result of abstraction then satisfies the
following property:

(·; ·) |Ψ1,Ψ ` N⇐ B

During abstraction, we take a slightly more liberal view of contexts Ψ0 here since we
pair the bound variable name up with either a free variable or a meta-variable. We may
pair a free variable with a bound variable name even if we do not yet know the type of the
variable. This is necessary to check for cycles.

Context Ψ ::= · |Ψ,x:A |Ψ,X∼x:A |Ψ,u∼x:A |Ψ,X∼x: |Ψ,u∼x:

From this more liberal context, we can obtain an ordinary LF context by dropping
the association of a bound variable with a free variable or meta-variable respectively.
Declarations X∼x: are dropped completely. We will do this silently when it is convenient.

When given a LF object which may still contain meta-variables and free variables from
the context ϒ and Φ respectively, we recursively traverse M (resp. the spine S or the
substitution σ ) and replace meta-variables and free variables with new bound variables.
The context Ψ0 keeps track of what meta-variable (and free variable) we already have
replaced with a bound variable. This context which keeps track of these associations is
threaded through. The result of abstracting over M is a new LF object N where all meta-
variables and free variables have been replaced with bound variables listed in Ψ1 and N is
a pure LF object. We note that only the object we abstract over will contain meta-variables
and free variables, but the context Ψ0,Ψ and the types A, B, P are pure LF objects. The
abstraction algorithm is presented in Figure 8. For better readability, we drop the meta-
variable context ϒ and the free variable context Φ both of which remain constant.
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Abstraction for normal terms

(Ψ0)Ψ,x:A `M⇐ B / (Ψ1)N
(Ψ0)Ψ ` λx.M⇐Πx:A.B / (Ψ1)λx.N

Σ(c) = (A, ) (Ψ0)Ψ ` S : A⇐ P / (Ψ1)S′

(Ψ0)Ψ ` c ·S⇐ P / (Ψ1)c ·S′

Ψ(x) = A (Ψ0)Ψ ` S : A⇐ P / (Ψ1)S′

(Ψ0)Ψ ` x ·S⇐ P / (Ψ1)x ·S′
X∼x:A ∈Ψ0 (Ψ0)Ψ ` S : A⇐ P / (Ψ1)S′

(Ψ0)Ψ ` X ·S⇐ P / (Ψ1)x ·S′

X 6∈Ψ0 Φ(X) = A
(Ψ0,X∼x: ) ` A⇐ type / (Ψ1)A′ (Ψ1,X∼x:A′)Ψ ` S : A′⇐ P / (Ψ2)S′

(Ψ0)Ψ ` X ·S⇐ P / (Ψ2)x ·S′

u 6∈Ψ0 ϒ(u) = Q[Ψq] [σ ′]a
Ψ′q

Q′ = P x is new
(Ψ0,u∼x: ) `Ψq ctx / (Ψ1)Ψ′q
(Ψ1) Ψ′q ` Q ⇐ type / (Ψ2)Q′

(Ψ2,u∼x:ΠΨ′1.Q
′) Ψ ` σ ⇐Ψ′q / (Ψ3)σ ′

(Ψ3) Ψ ` σ ′ ⇐Ψ′q / S

(Ψ0)Ψ ` u[σ ]⇐ P / (Ψ3)x ·S

u∼x:ΠΨq.Q ∈Ψ0 [σ ′]a
Ψ′q

Q = P (Ψ0)Ψ ` σ ⇐Ψq / (Ψ1)σ ′ subToSpineΨq
(σ ′) = S

(Ψ0)Ψ ` u[σ ]⇐ P / (Ψ1)x ·S

Abstraction for spines

(Ψ0)Ψ ` nil : P⇐ P / (Ψ0)nil

(Ψ0)Ψ `M⇐ A / (Ψ1)M′ (Ψ1)Ψ ` S : [M′/x]aA(B)⇐ P / (Ψ2)S′

(Ψ0)Ψ `M;S : Πx:A.B⇐ P / (Ψ2)M′;S′

Abstraction of substitutions

(Ψ0)Ψ ` · ⇐ · / (Ψ0)·
(Ψ0)Ψ ` σ ⇐Ψ′ / (Ψ1)σ ′ (Ψ1)Ψ `M⇐ [σ ′]a

Ψ′(A) / (Ψ2)M′

(Ψ0)Ψ ` σ ,M⇐Ψ′,x:A / (Ψ2)(σ ′,M′)

(Ψ0)Ψ ` σ ⇐Ψ′ / (Ψ1)σ ′ A = [σ ′]a
Ψ′(A

′)(Ψ0,Ψ)(x) = A

(Ψ0)Ψ ` σ ;x⇐Ψ′,x:A′ / (Ψ1)(σ ′;x)

Fig. 8. Abstraction for LF objects

In addition to the abstraction judgments over normal objects, spines and substitutions,
we must be able to translate substitutions to spines. Recall that substitutions are associated
with meta-variables u[σ ]. When we encounter a meta-variable u[σ ] of type P[Ψ], we
generate a new bound variable of type ΠΨ.P and translate the substitution to the corre-
sponding spine. In fact, substitutions and spines are closely connected. We define a function
subToSpineψ(σ) S = S′ which expects a substitution σ together with its approximate
typing context ψ and an accumulator S and will return the corresponding spine S′. Initially
the accumulator argument S is the empty spine. We sometimes write subToSpineΨ(σ) S,
but keep in mind that type dependencies are erased from Ψ before computing the corre-
sponding spine S.
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subToSpineΨ σ = toSpineψ σ nil where ψ = Ψ−

toSpine· · S = S
toSpineψ,x:α (σ ;x) S = toSpineψ σ (ηexpα(x);S)
toSpineψ,x:α (σ ,M) S = toSpineψ σ (M;S)

Intuitively, the i-th argument in a substitution corresponds to the i-th argument in the
spine. If the i-th argument was known to be a variable x then the i-th argument in the
spine is the eta-expansion of the variable x. If the i-th argument in the substitution was a
normal term M, the spine will have M at the i-th position. For translating substitutions to
spines only approximate types matter, since approximate types carry enough information
to support η-expansion. This simplifies the development.

Lemma 7.1 (Substitutions relate to spines)
If Ψ ` σ ⇐Ψ0 and Ψ ` S : [σ ]a

Ψ0
A⇐ P and toSpineψ0

σ S = S′ where ψ0 = (Ψ0)
−

then Ψ ` S′ : ΠΨ0.A⇐ P.

Proof
Structural induction on the first derivation (see appendix).

‘

Theorem 7.2 (Soundness of abstraction)
Let `Ψ0,Ψ ctx.

1. If (Ψ0)Ψ `M⇐ B / (Ψ1)N and Ψ0,Ψ ` B⇐ type then
Ψ1,Ψ ` N⇐ B and Ψ0 ⊆Ψ1 and `Ψ1 ctx.

2. If (Ψ0)Ψ ` S : A⇐ P / (Ψ1)S′

and Ψ0,Ψ ` A⇐ type and Ψ0,Ψ ` P⇐ type then
Ψ1,Ψ ` S′ : A⇐ P and Ψ0 ⊆Ψ1 and `Ψ1 ctx.

3. If (Ψ0)Ψ ` σ ⇐Ψ′ / (Ψ1)σ ′ and `Ψ′ ctx then
Ψ1,Ψ ` σ ′⇐Ψ′ and Ψ0 ⊆Ψ1 and `Ψ1 ctx.

Proof
Structural induction on the abstraction judgment (see appendix).

8 Implementation

We implemented the two described phases of type reconstruction together with higher-
order unification in OCaml as part of the Beluga implementation. Instead of eagerly apply-
ing substitution as we have described in previous section, we employ explicit substitutions
(Abadi et al., 1990). There are a few subtle issues which arise when implementing type
reconstruction and unification in this setting. The first one is working with η-expanded
terms. This is convenient for type checking however as we described we need to be careful
when dealing with substitutions, since elements in the substitution may not always be in η-
expanded form. In our implementation, we try to keep substitutions in η-contracted form,
since this facilitates checking whether a substitution is a pattern substitution.

Closest to our implementation is the one in the Twelf system. There are however several
subtle differences. We list here a few examples which illustrate them: Our parser does not
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accept objects which contain β -redices, because our implementation is centered around
bidirectional type checking and normal forms. This means we can omit for example typing
annotations at λ -abstractions. We also for example always create meta-variables as low-
ered, and hence we do not need to lower them during normalization. Another aspect is
our higher-order unification implementation which distinguishes itself in the treatment of
the cases outside of the pattern fragment. We have followed a slightly more conservative
approach when considering solving the case u[σ ] = R, i.e. where σ is a pattern substitution
and u is a meta-variable. In this case, we must ensure that [σ ]−1(R) exists. This is typically
accomplished by pruning the meta-variables in R to obtain some R′ s.t. [σ ]−1(R′) is guar-
anteed to exist. In our implementation, pruning will fail, if we encounter within R a meta-
variable v[τ] outside the pattern fragment and where we cannot guarantee that applying
the inverse substitution [σ ]−1 to it will indeed exist. In the Twelf implementation, pruning
R will not fail. Instead, it will replace the offending meta-variable v[τ] with a new meta-
variable w[id] and generate a constraint v[τ] = w[id]. While this seems sensible at first,
it has been noted by Reed (2009) that this may lead to non-termination for some exotic
examples.

Finally, we do not support type variables and consequently the user needs to provide
at least a type skeleton at Π-abstractions. In practice, this did not seem to cause any real
problems and only few Twelf examples needed this additional information and the overall
design is simpler if we omit type variables. This feature can be added to our implementation
in a pre-processing phase where we compute the approximate type. This a similar strategy
as employed in the Twelf system.

At this point, we also do not support type annotations in the implementation, although
adding them seems straightforward.

So far, we have tested our implementation on most of the examples from the Twelf
example library, and our implementation is competitive.

9 Related work

Type reconstruction for dependently-typed languages is non-trivial, and is in general un-
decidable (Dowek, 1993). In this guide, we describe the philosophy in systems such as
Elf (Pfenning, 1991) and Twelf (Pfenning & Schürmann, 1999). If a constant declaration
has an implicit quantifier-prefix, then we must omit those arguments whenever we use
this constants. Underscores may be used at any point in the term wherever a term was
legal. The analysis is done one constant at a time for LF declarations. We follow the same
methodology in the implementation LF type reconstruction in Beluga (Pientka & Dunfield,
2010). Unlike our one-pass reconstruction algorithm, the Twelf system implements type
reconstruction in two phases. During the first phase, we for example η-expand terms and
infer missing type annotations at Π-types. This first phase is driven by approximate types.
In the second phase, we infer the instantiation of omitted arguments and the full type of free
variables. There are two advantages to this approach: we can infer the type annotations in
Π-types and it leads to improved and more meaningful error messages. On the other hand,
establishing the overall correctness of such a two-phase type reconstruction algorithm is
more cumbersome, since we need to formalize both phases. We found it also easier to
explain the essential challenges in an one-pass algorithm which resembles in spirit the
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one-pass Hindley-Milner-style type inference algorithms. Therefore, we prefer to view a
two-phase algorithm for LF type reconstruction as an optimization of the presented one-
pass algorithm.

Unlike systems such as Agda (Norell, 2007), we provide no explicit way to specify an
argument should be synthesized or to explicitly override synthesis. In the case where type
reconstruction needs more information, the user needs to supply a typing annotation. How-
ever so far we have only discovered one example where such an explicit type annotation is
necessary because part of the unification problem is outside the pattern fragment.

In contrast to other systems, we also support free variables, and synthesize their type.
This is important in practice. Specifying all variables together with their type up front
is cumbersome in many dependently typed constant declarations. To ease the burden on
the user, some systems (such as Agda) supports simply listing the variables occurring in a
declaration without the type. This however requires that the user chose the right order. Even
worse, the user must anticipate all the variables which could occur as implicit arguments.

More importantly, providing the user with the additional flexibility of not specifying
the type of free variables leads to a circular dependency between meta-variables and free
variables and we can only during abstraction check whether a linear ordering indeed exists.

Finally, we have no typing annotation on lambda-abstraction; this is unnecessary if we
have a bi-directional type system, and in fact simplifies the reconstruction.

Elaboration from implicit to explicit syntax has been first mentioned by Pollack (1990)
although no concrete algorithm to reconstruct omitted arguments is given. Luther (2001)
refined these ideas as part of the TYPELab project. He describes an elaboration and re-
construction for the calculus of construction. This work is closely related to ours, but
differs substantially in the presented foundation. Similar to our approach, Luther describes
bi-directional elaboration. However, there are some substantial differences between his
work and the one we describe here. Our bi-directional type system is driven by char-
acterizing only canonical forms. This allows us for example to omit typing annotations
at λ -abstractions while Luther’s work does not. We use meta-variables characterized by
contextual types during reconstruction. This allows us to generate a dependent type of a
meta-variable and our reconstruction algorithm generates a context of dependently typed
meta-variables. This allows us to explicitly track and reason about the instantiation of
these meta-variables. Finally, reconstructing of a full dependently typed object is done
in one pass in our setting, while in Luther’s algorithm elaboration and reconstruction are
intimately intertwined. This makes it harder to understand its correctness.

Norell (2007) discusses in his PhD thesis elaboration and type reconstruction for Agda
which in turn is based on Epigram. Norell considers reconstruction for Martin Löfs type
theory, but there is no treatment of synthesizing the type of free variables. The lack of
contextual modal types means we cannot easily describe all the meta-variables occurring
in a type reconstruction problem and reason about the substitutions for meta-variables.
Instead, the foundation is centered around a system of constraints. From a more practical
point of view, Agda does not support higher-order unification and not even higher-order
pattern unification. The algorithm only solves fully applied patterns, i.e. meta-variables
which are applied to all the bound variables in whose scope it occurs in. This avoids the
need for pruning, and constraint handling, since unification for this fragment is essentially
like first-order unification. This would be too weak in our setting.
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Alternatively to reconstructing omitted arguments, one could try to give a direct founda-
tion to implicit syntax. This has been explored in the past for the calculus of construction in
(Miquel, 2001; Hagiya & Toda, 1994). In the setting of LF, Jason Reed (2004) provides a
foundation for type checking a more compact representation of LF objects directly without
first reconstructing it. This is particularly useful in applications where compact proof ob-
jects matter such as proof-carrying code. Unfortunately, we loose flexibility and sometimes
more information must be supplied to guarantee that we can type check those compact LF
objects.

10 Conclusion

We have presented a foundation for type reconstruction in the dependently typed setting
of the logical framework LF together with soundness of reconstruction and practical im-
plementation experience. Reconsidering type reconstruction using contextual modal types
allows us to reason about substitutions for meta-variables. Our presented guide highlights
some of the difficulties we encounter such as inferring the type of a free variable, ensuring
bound variable dependencies, η-expansion and η-contraction, and abstraction over free
and meta-variables. We believe this foundation is particularly important as we consider
type reconstruction for dependently type programming languages which feature pattern
matching and recursion.

In the future, we plan to extend the presented reconstruction framework to formally
describe type reconstruction for programming with dependently-typed higher-order data
as found in Beluga (Pientka & Dunfield, 2008).
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A Appendix

A.1 Ordinary substitution

In the definition for ordinary substitutions, we need to be careful because the only meaning-
ful terms are those in canonical form. To ensure that substitution preserves canonical form,
we use a technique pioneered by (Watkins et al., 2002) and described in detail in (Nanevski
et al., 2008). The idea is to define hereditary substitution as a primitive recursive functional
that always returns a canonical object.

In the formal development, it is simpler if we can stick to non-dependent types. We
therefore first define type approximations α and an erasure operation ()− that removes
dependencies. Before applying any hereditary substitution [M/x]aA(B) we first erase de-
pendencies to obtain α = A− and then carry out the hereditary substitution formally as
[M/x]aα(B). A similar convention applies to the other forms of hereditary substitutions.
Types relate to type approximations via an erasure operation ()− which we overload to
work on types.

Type approximations α,β ::= a | α → β

(a N1 . . .Nn)
− = a

(Πx:A . . .B)− = A−→ B−

We can define [M/x]nα(N), [M/x]rα(R), and [M/x]sα(σ) by nested induction, first on the
structure of the type approximation α and second on the structure of the objects N, R and
σ . In other words, we either go to a smaller type approximation (in which case the objects
can become larger), or the type approximation remains the same and the objects become
smaller. The following hereditary substitution operations are defined in Figure A 1.

[M/x]nα(N) = N′ Normal terms N

[M/x]lα(S) = S′ Spine S

[M/x]sα(σ) = σ ′ Substitutions σ

Next, we concentrate on eliminating possible redices which may have been created in
the case [M/x]nα(x ·S) using the definition of reduce(M : α,S).

reduce(λy.M : α1→ α2,(N;S)) = M′′

where[N/y]nα1
M = M′ and reduce(M′ : α2,S) = M′′

reduce(R : a,nil) = R
reduce(M : α,S) fails otherwise

We first compute the result of applying the substitution [M/x] to the spine S which
yields the spine S′. Second, we reduce any possible redices which are created using the
given definition.

Substitution may fail to be defined only if substitutions into the subterms are undefined.
The side conditions y 6∈ FV(M) and y 6= x do not cause failure, because they can always
be satisfied by appropriately renaming y. However, substitution may be undefined if we
try for example to substitute an atomic term R for x in the term x · S where the spine S
is non-empty. The substitution operation is well-founded since recursive appeals to the
substitution operation take place on smaller terms with equal type A, or the substitution
operates on smaller types (see the case for reduce(λy.M : α1→ α2,(N;S))).
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Normal terms

[M/x]nα (λy.N) = λy.N′ where N′ = [M/x]nα (N)
choosing y 6∈ FV(M)
and y 6= x

[M/x]rα (u[σ ]) = u[σ ′] where σ ′ = [M/x]sα (σ)

[M/x]nα (c ·S) = c ·S′ where S′ = [M/x]lα S
[M/x]nα (X ·S) = X ·S′ where S′ = [M/x]lα S
[M/x]nα (x ·S) = reduce(M : α,S′) where S′ = [M/x]lα S
[M/x]nα (y ·S) = y ·S′ where y 6= x

and S′ = [M/x]lα S

Spines

[M/x]lα (nil) = nil

[M/x]lα (N;S) = N′;S′ where N′ = [M/x]nα N and S′ = [M/x]lα S

Substitutions

[M/x]sα (·) = ·
[M/x]sα (σ ,N) = (σ ′,N′) where σ ′ = [M/x]sα σ and N′ = [M/x]nα N
[M/x]sα (σ ;y′) = (σ ′;y′) where σ ′ = [M/x]sα σ and x 6= y′

[M/x]sα (σ ;x) = (σ ′,M) where σ ′ = [M/x]sα σ

Fig. A 1. Ordinary substitution

We write α ≤ β and α < β if α occurs in β (as a proper subexpression in the latter
case). If the original term is not well-typed, a hereditary substitution, though terminating,
cannot always return a meaningful term. We formalize this as failure to return a result.
However, on well-typed terms, hereditary substitution will always return well-typed terms.
This substitution operation can be extended to types for which we write [M/x]aα(A). The
operation [M/x]∗α( ) where ∗= {a,n, l,s} terminates, either by returning a result or failing
after a finite number of steps.

Theorem 4.1 (Hereditary Substitution Principles)

If ∆;Ψ `M⇐ A and ∆;Ψ,x:A,Ψ′ ` J then
∆;Ψ, [M/x]∗α Ψ′ ` [M/x]∗α(J) where ∗= {a,n, l,s}.

Building on (Nanevski et al., 2008), we can also define simultaneous substitution [σ ]nψ(M)
(respectively [σ ]lψ(S) and [σ ]sψ(σ)). We write ψ for the context approximation of Ψ which
is defined using the erasure operation ()−.

(·)− = ·
(Ψ,x:A)− = (Ψ)−,x:(A)−

A.2 Substitution for contextual variables

In this section, we summarize contextual substitution. Just as we annotated the substitu-
tion [M/x]A with the type of the variable x, we will annotate the contextual substitution
[[Ψ.R/u]]P[Ψ] with the type of the meta-variable P[Ψ].



ZU064-05-FPR recon 10 August 2010 8:39

35

[[Ψ̂.R/u]]nP[Ψ](λy.N) = λy.N′ where N′ = [[Ψ̂.R/u]]nP[Ψ]N
[[Ψ̂.R/u]]nP[Ψ](c ·S) = c ·S′ where S′ = [[Ψ̂.R/u]]lP[Ψ]S
[[Ψ̂.R/u]]nP[Ψ](X ·S) = X ·S′ where S′ = [[Ψ̂.R/u]]lP[Ψ]S
[[Ψ̂.R/u]]nP[Ψ](x ·S) = x ·S′ where S′ = [[Ψ̂.R/u]]lP[Ψ]S
[[Ψ̂.R/u]]nP[Ψ](u[σ ]) = R′ where σ ′ = [[Ψ̂.R/u]]sP[Ψ]σ and R′ = [σ ′]n

Ψ
R

[[Ψ̂.R/u]]P(v[σ ]) = v[σ ′] where σ ′ = [[Ψ̂.R/u]]sP[Ψ]σ and provided v 6= u

[[Ψ̂.R/u]]lP[Ψ](nil) = nil

[[Ψ̂.R/u]]lP[Ψ](N;S) = N′;S′ where N′ = [[Ψ̂.R/u]]nP[Ψ]N and S′ = [[Ψ̂.R/u]]lP[Ψ]S

[[Ψ̂.R/u]]sP[Ψ](·) = ·
[[Ψ̂.R/u]]sP[Ψ](σ ,N) = σ ′,N′ where σ ′ = [[Ψ̂.R/u]]sP[Ψ]σ and N′ = [[Ψ̂.R/u]]nP[Ψ]N
[[Ψ̂.R/u]]sP[Ψ](σ ;x) = σ ′;x where σ ′ = [[Ψ̂.R/u]]sP[Ψ]σ

Fig. A 2. Substitution for meta-variables

Applying [[Ψ̂.R/u]] to the closure u[σ ] first obtains the simultaneous substitution σ ′ =
[[Ψ.R/u]]σ , but instead of returning R[σ ′], it proceeds to eagerly apply σ ′ to R. We define
the operations in Figure A 2.

We note that maintaining canonical forms is easy since we enforce that every occur-
rence of a meta-variable must have base type. The computation of σ ′ recursively invokes
[[Ψ̂.R/u]] on σ , a constituent of u[σ ]. Then τ ′ is applied to R, but applying simultane-
ous substitutions has already been defined without appeal to meta-variable substitution.
[[Ψ̂.R/u]]∗P[Ψ]( ) and where ∗ ∈ {a,n, l,s} terminate, either by returning a result or failing
after a finite number of steps.

Theorem 4.2 (Contextual Substitution Principles)
If ∆1;Φ ` R⇐ P and ∆1,u::P[Φ],∆2;Ψ ` J then
∆1, [[Ψ̂.R/u]]∗P[Ψ]∆2; [[Ψ̂.R/u]]∗P[Ψ]Ψ ` [[Ψ̂.R/u]]∗P[Ψ]J where ∗= {a,n, l,s}.

A.3 Key lemmas about η-expansion

Theorem 4.4
1. If ϒ;Φ;Ψ1,x:A,Ψ2 ` N⇐ B then [ηexpA(x)/x]nAN = N.
2. If ϒ;Φ;Ψ1,x:A,Ψ2 ` S : B⇐ P then [ηexpA(x)/x]lAS = S.
3. If ϒ;Φ;Ψ1,x:A,Ψ2 ` σ ⇐Ψ then [ηexpA(x)/x]sα σ = σ .
4. If ϒ;Φ;Ψ `M⇐ A then [M/y]nA(ηexpA(y)) = M.

Proof
By mutual induction on N, S, and A.

Statement 1

Case 1 D =
ϒ;Φ;Ψ1,x:A,Ψ2,y:B1 ` N′⇐ B2

ϒ;Φ;Ψ1,x:A,Ψ2 ` λy.N′⇐Πy:B1.B2

[ηexpA(x)/x]nAN′ = N′ by i.h.
[ηexpA(x)/x]nA(λy.N′) = λy.[ηexpA(x)/x]nAN′ = λy.N′ by subst. properties
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Case 2 D =
ϒ;Φ;Ψ1,x:A,Ψ2 ` S : A⇐ P

ϒ;Φ;Ψ1,x:A,Ψ2 ` x ·S⇐ P

[ηexpA(x)/x]lAS = S by i.h.
[ηexpA(x)/x]nA(x ·S) = to show
= reduce(ηexpA(x) : A−,S) = by substitution definition
w.l.g. A = ΠΨ.P and Ψ = x1:B1, . . . ,xn:Bn

= reduce(λ Ψ̂.x · (ηexpB1
(x1); . . . ;ηexpBn(xn);nil) : A−,S) by definition of ηexp

w.l.g. S = M1; . . . ;Mn;nil and |Ψ|= n
= [Mn/xn]nBn

. . . [M1/x1]nB1
(x · (ηexpB1

(x1); . . . ;ηexpBn(xn);nil)))
by n-times reduce-definition

= x · ([M1/x1]nB1
ηexpB1

(x1); . . . ; [Mn/xn]nBn
ηexpBn(xn);nil)

by def. substitution and lemma 4.3
x ·M1; . . . ;Mn;nil since [Mi/xi]nBi

(ηexpBi
(xi) = Mi for all i by i.h. (3)

= x ·S by previous lines

Statement 2

Case 1 D =
ϒ;Φ;Ψ1,x:A,Ψ2 ` nil : P⇐ P

[ηexpA(x)/x]lAnil = nil by definition

Case 2 D =
ϒ;Φ;Ψ1,x:A,Ψ2 `M⇐ B1 ϒ;Φ;Ψ1,x:A,Ψ2 ` S : [M/x]nB1

B2⇐ P

ϒ;Φ;Ψ1,x:A,Ψ2 `M;S : Πx:B1.B2⇐ P

(B2)− = ([M/x]aB1
B2)− by erasure

[ηexpA(x)/x]nAM = M by i.h. (1)
[ηexpA(x)/x]lAS = S by i.h. (2)
[ηexpA(x)/x]lA(M;S) = [ηexpA(x)/x]nAM; [ηexpA(x)/x]lAS by definition

Statement 3

Case 1 D =
ϒ;Φ;Ψ1,x:A,Ψ2 ` · ⇐Ψ

[ηexpA(x)/x]sA(·) = · by rule

Case 2 D =
ϒ;Φ;Ψ1,x:A,Ψ2 ` σ ⇐Ψ ϒ;Φ;Ψ1,x:A,Ψ2 `M⇐ B

ϒ;Φ;Ψ1,x:A,Ψ2 ` σ ,M⇐Ψ,y:B

[ηexpA(x)/x]nA(M) = M by i.h. (1)
[ηexpA(x)/x]sA(σ) = σ by i.h. (3)
[ηexpA(x)/x]sA(σ ,M) = [ηexpA(x)/x]sAσ , [ηexpA(x)/x]nAM = σ ,M by substitution
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Case 3 D =
ϒ;Φ;Ψ1,x:A,Ψ2 ` σ ⇐Ψ (Ψ1,x:A,Ψ2)(y) = B′ [σ ]sΨB′ = B

ϒ;Φ;Ψ1,x:A,Ψ2 ` σ ;y⇐Ψ,y:B

[ηexpA(x)/x]sA(σ) = σ by i.h. (3)
[ηexpA(x)/x]sA(σ ;x) = [ηexpA(x)/x]sA(σ),ηexpA(x) by substitution
= σ ;x since ηcon(ηexpA(x)) = x by lemma 4.3

Statement 4 Let A = ΠΨ.P and M = λ Ψ̂.R, since M checks against type A. Moreover, let
Ψ = x1:B1, . . . ,xn:Bn.

[λ Ψ̂.R/y]nA(ηexpA(y)) = [λ Ψ̂.R/y]nA(λ Ψ̂.y · (ηexpB1
(x1); . . . ;ηexpBn(xn);nil))

by definition of ηexp

= λ Ψ̂.reduce(λ Ψ̂.R : A−, [λ Ψ̂.R/y]nA(ηexpB1
(x1); . . . ;ηexpBn(xn);nil)))

by definition
= λ Ψ̂.reduce(λ Ψ̂.R : A−,(ηexpB1

(x1); . . . ;ηexpBn(xn);nil))
since y 6∈ FV(ηexpBi

(yi)) (see also lemma 4.3)
= λ Ψ̂.[ηexpBn(xn)/xn]nBn

. . . [ηexpB1
(x1)/x1]nB1

R by n-times reduce
= λ Ψ̂.R by n-times i.h. (1)

Lemma 5.1
If ηcon(m) = x and Ψ− ` m⇐ A− and Ψ(x) = A then Ψ− ` m≈ ηexpA(x) : A−.

Proof
Induction on A.

Let A = ΠΨ0.Q0 and Ψ0 = y1:B1, . . . ,yn:Bn.
Moreover, by definition of η-contraction we have m = λy1 . . .λyk.x ·(m1; . . .mk;nil) where
for all i, ηcon(mi) = yi.
Ψ− ` m⇐ A− by assumption
Ψ−,y1:B1

−, . ,yk:Bk
− ` x · (m1; . . .mk;nil)⇐ (Πyk+1:Bk+1, . . .yn:Bn.Q0)

−

by typing inversion
Ψ−,y1:B1

−, . ,yk:Bk
−,yk+1:Bk+1

−, . . .yn:Bn
−

` x · (m1; . . . ;mk;(yk+1 ·nil); . . . ;(yn ·nil);nil)⇐ (Q0)−

by typing inversion
for all 1≤ j ≤ k, we have
Ψ−,y1:B1

−, . ,yk:Bk
−,yk+1:Bk+1

−, . . .yn:Bn
− ` m j⇐ B j

− by typing inversion
for all k +1≤ j ≤ n, we have ηcon(y j ·nil) = y j and
(Ψ−,y1:B1

−, . ,yk:Bk
−,yk+1:Bk+1

−, . . .yn:Bn
−)(y j) = B j

− and
(Ψ−,y1:B1

−, . ,yk:Bk
−,yk+1:Bk+1

−, . . .yn:Bn
−) ` y j ·nil⇐ B j

− by typing rules
for all 1≤ i≤ k, we have
(Ψ−,y1:B1

−, . ,yk:Bk
−,yk+1:Bk+1

−, . . .yn:Bn
−) ` mi ≈ ηexpBi

(yi):Bi
− by i.h.

for all k +1≤ i≤ n, we have
(Ψ−,y1:B1

−, . ,yk:Bk
−,yk+1:Bk+1

−, . . .yn:Bn
−) ` yi ·nil≈ ηexpBi

(yi):Bi
− by i.h.

(Ψ−,y1:B1
−, . ,yk:Bk

−,yk+1:Bk+1
−, . . .yn:Bn

−)
` m1; . . . ;mk;(yk+1 ·nil); . . . ;(yn ·nil);nil
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≈ ηexpB1
(y1); . . . ;ηexpBk

(yk);
ηexpBk+1

(yk+1); . . . ;ηexpBn(yn);nil : (ΠΨ0.Q0)−⇐ (Q0)−

(Ψ−,y1:B1
−, . ,yk:Bk

−,yk+1:Bk+1
−, . . .yn:Bn

−)
` x ·m1; . . . ;mk;(yk+1 ·nil); . . . ;(yn ·nil);nil

≈ x · (ηexpB1
(y1); . . . ;ηexpBk

(yk);ηexpBk+1
(yk+1); . . . ;ηexpBn(yn);nil)⇐ (Q0)−

by typing rule
Ψ− ` λy1 . . .λyk.x ·m1; . . . ;mk;nil

≈ λy1 . . .λyn.x · (ηexpB1
(y1); . . . ;ηexpBn(yn);nil)⇐ (ΠΨ0.Q0)−

by typing rules (η-rule and lambda-rule)
Ψ− ` λy1 . . .λyk.x ·m1; . . . ;mk;nil≈ ηexpΠΨ0.Q0

(x)⇐ (ΠΨ0.Q0)−

by definition of η-expansion

A.4 Soundness and completeness proof for type reconstruction

Theorem 6.2 (Soundness of reconstruction)
1. If ϒ1;Φ1;Ψ ` m⇐ A /ρ (ϒ2 ; Φ2)M then

ϒ2;Φ2; [[ρ]]Ψ `M⇐ [[ρ]]A and ϒ2
−;Φ2

−;Ψ− ` m≈M : A−

ϒ2 `Φ2 ρ ⇐ ϒ1 and ϒ2 `Φ2 fctx and `Φ2 ϒ2 mctx and [[ρ]]Φ1 ⊆Φ2.
2. If ϒ1;Φ1;Ψ `i s : A⇐ Q /ρ (ϒ2 ; Φ2)S then

ϒ2;Φ2; [[ρ]]Ψ ` S : [[ρ]]A⇐ [[ρ]]Q and ϒ2
−;Φ2

−;Ψ− `i s≈ S : A−⇐ Q−

[[ρ]]Φ1 ⊆Φ2 and ϒ2 `Φ2 ρ ⇐ ϒ1 and ϒ2 `Φ2 fctx and `Φ2 ϒ2 mctx.
3. If ϒ1;Φ1;Ψ ` s : A⇐ Q /ρ (ϒ2 ; Φ2)S then

ϒ2;Φ2; [[ρ]]Ψ ` S : [[ρ]]A⇐ [[ρ]]Q and ϒ2
−;Φ2

−;Ψ− ` s≈ S : A−⇐ Q−

[[ρ]]Φ1 ⊆Φ2 and ϒ2 `Φ2 ρ ⇐ ϒ1 and ϒ2 `Φ2 fctx and `Φ2 ϒ2 mctx.
4. If ϒ1;Φ1;Ψ ` s⇐ P / S : A then

ϒ1;Φ1;Ψ ` S : A⇐ P and ϒ2
−;Φ2

−;Ψ− ` s≈ S : A−⇐ P− and
ϒ1;Φ1;Ψ ` A⇐ type.

Proof
Proof by structural induction on the reconstruction judgment (see appendix).

Statement (1) : Normal terms

Case D =
ϒ1;Φ1;Ψ,x:A ` m⇐ B /ρ (ϒ2 ; Φ2)M

ϒ1;Φ1;Ψ ` λx.m⇐Πx:A.B /ρ (ϒ2 ; Φ2)λx.M

ϒ2;Φ2; [[ρ]](Ψ,x:A) `M⇐ [[ρ]]B by i.h. (1)
ϒ2
−;Φ2

−;(Ψ,x:A)− ` m≈M : B− by i.h. (1)
[[ρ]]Φ1 ⊆Φ2 and ϒ2 `Φ2 ρ ⇐ ϒ1 by i.h. (1)
ϒ2 `Φ2 fctx and `Φ2 ϒ2 mctx by i.h. (1)
ϒ2
−;Φ2

−;Ψ−,x:A− ` m≈M : B− by definition of erasure
ϒ2
−;Φ2

−;Ψ− ` λx.m≈ λx.M : Πx:A−.B− by equivalence relation ≈
ϒ2
−;Φ2

−;Ψ− ` λx.m≈ λx.M : (Πx:A.B)− by definition of erasure
ϒ2;Φ2; [[ρ]]Ψ,x:[[ρ]]A `M⇐ [[ρ]]B by definition of substitution
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ϒ2;Φ2; [[ρ]]Ψ ` λx.M⇐Πx:[[ρ]]A.[[ρ]]B by typing rule
ϒ2;Φ2; [[ρ]]Ψ ` λx.M⇐ [[ρ]]Πx:A.B by definition of substitution

Case D =
Σ(c) = (A, i) ϒ1;Φ1;Ψ `i s : A⇐ P /ρ (ϒ2 ; Φ2)S

ϒ1;Φ1;Ψ ` c · s⇐ P /ρ (ϒ2 ; Φ2)c ·S

ϒ2;Φ2; [[ρ]]Ψ ` S : [[ρ]]A⇐ [[ρ]]P by i.h. (2)
ϒ2
−;Φ2

−;Ψ− `i s≈ S : A−⇐ P− by i.h. (2)
[[ρ]]Φ1 ⊆Φ2 and ϒ2 `Φ2 ρ ⇐ ϒ1 by i.h. (2)
ϒ2 `Φ2 fctx and `Φ2 ϒ2 mctx by i.h. (2)
Σ(c) = (A, i) and A is closed by assumptions
ϒ2
−;Φ2

−;Ψ− ` c · s≈ c ·S⇐ P− by equivalence relation ≈
[[ρ]]A = A by substitution definition
ϒ2;Φ2; [[ρ]]Ψ ` c ·S⇐ [[ρ]]P by typing rule

Case D =
x:A ∈Ψ ϒ1;Φ1;Ψ ` s : A⇐ P /ρ (ϒ2 ; Φ2)S

ϒ1;Φ1;Ψ ` x · s⇐ P /ρ (ϒ2 ; Φ2)x ·S

ϒ2;Φ2; [[ρ]]Ψ ` S : [[ρ]]A⇐ [[ρ]]P by i.h. (3)
ϒ2
−;Φ2

−;Ψ− ` s≈ S : A−⇐ P− by i.h. (3)
[[ρ]]Φ1 ⊆Φ2 and ϒ2 `Φ2 ρ ⇐ ϒ1 by i.h. (3)
ϒ2 `Φ2 fctx and `Φ2 ϒ2 mctx by i.h. (3)
x:[[ρ]]A ∈ [[ρ]]Ψ by previous lines
ϒ2
−;Φ2

−;Ψ− ` x · s≈ x ·S : P− by equivalence relation ≈
ϒ2;Φ2; [[ρ]]Ψ ` x ·S⇐ [[ρ]]P by typing rule

Case D =

s is a pattern spine
X 6∈Φ1

ϒ1;Φ1;Ψ ` s⇐ P / S : A
ϒ1;Φ1;Ψ ` prune A⇒ (ϒ2 ; ρ)

ϒ1;Φ1;Ψ ` X · s⇐ P /ρ (ϒ2 ; [[ρ]]Φ1,X : [[ρ]]A)X ·S

ϒ1;Φ1;Ψ ` S : A⇐ P by i.h. (4)
ϒ1
−;Φ1

−;Ψ− ` s≈ S : A−⇐ P− by i.h. (4)
ϒ2 `[[ρ]]Φ1 ρ ⇐ ϒ1, `[[ρ]]Φ1 ϒ2 mctx and ϒ2 ` [[ρ]]Φ1 fctx by correctness of pruning
[[ρ]]Φ1 ⊆ [[ρ]]Φ1,X : [[ρ]]A by definition
ϒ2; [[ρ]]Φ1; · ` [[ρ]]A⇐ type by correctness of pruning
ϒ2; [[ρ]]Φ1; [[ρ]]Ψ ` [[ρ]]S : [[ρ]]A⇐ [[ρ]]P by substitution lemma
ϒ2; [[ρ]]Φ1,X :[[ρ]]A; [[ρ]]Ψ ` [[ρ]]S : [[ρ]]A⇐ [[ρ]]P by weakening
ϒ2; [[ρ]]Φ1,X :[[ρ]]A; [[ρ]]Ψ ` S : [[ρ]]A⇐ [[ρ]]P S is a pattern spine and [[ρ]]S = S
([[ρ]]Φ1,x:[[ρ]]A)(X) = [[ρ]]A by definition
ϒ2; [[ρ]]Φ1,X : [[ρ]]A; [[ρ]]Ψ ` X ·S⇐ [[ρ]]P by typing rule
ϒ1 `Φ1 fctx by assumption
ϒ2 ` [[ρ]]Φ1 fctx by previous line (see correctness of pruning)
ϒ2 ` [[ρ]]Φ1,X :[[ρ]]A fctx by typing rule
(Φ1,X :A)− = ([[ρ]]Φ1,X :[[ρ]]A)− by erasure definition
ϒ2
−;([[ρ]]Φ1,X :[[ρ]]A)−;Ψ− ` s≈ S : [[ρ]]A−⇐ P− by substitution
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and erasure properties
ϒ2
−;([[ρ]]Φ1,X :[[ρ]]A)−;Ψ− ` X · s≈ X ·S⇐ P− by equivalence relation ≈

Case D =
Φ1(X) = A ϒ1;Φ1;Ψ ` s : A⇐ P /ρ (ϒ2 ; Φ2)S

ϒ1;Φ1;Ψ ` X · s⇐ P /ρ (ϒ2 ; Φ2)X ·S

ϒ2;Φ2; [[ρ]]Ψ ` S : [[ρ]]A⇐ [[ρ]]P by i.h. (3)
ϒ2
−;Φ2

−;Ψ− ` s≈ S : A−⇐ P− by i.h. (3)
[[ρ]]Φ1 ⊆Φ2 and ϒ2 `Φ2 ρ ⇐ ϒ1 by i.h. (3)
ϒ2 `Φ2 fctx and `Φ2 ϒ2 mctx by i.h. (3)
Φ2(X) = [[ρ]]A by assumption and previous line
ϒ2;Φ2; [[ρ]]Ψ ` X ·S⇐ [[ρ]]P by typing rule
ϒ2
−;Φ2

−;Ψ− ` X · s≈ X ·S⇐ P− by equivalence relation ≈

Case D =
ϒ1;Φ1;Ψ,x:A ` h · (s@((x ·nil);nil))⇐ B /ρ (ϒ2 ; Φ2)M

ϒ1;Φ1;Ψ ` h · s⇐Πx:A.B /ρ (ϒ2 ; Φ2)λx.M

ϒ2;Φ2; [[ρ]](Ψ,x:A) `M⇐ [[ρ]]B by i.h. (1)
ϒ2
−;Φ2

−;(Ψ,x:A)− ` h · s@((x ·nil);nil)≈M : B− by i.h. (1)
[[ρ]]Φ1 ⊆Φ2 and ϒ2 `Φ2 ρ ⇐ ϒ1 by i.h. (1)
ϒ2 `Φ2 fctx and `Φ ϒ2 mctx by i.h. (1)
ϒ2;Φ2; [[ρ]]Ψ,x:[[ρ]]A `M⇐ [[ρ]]B by definition of substitution
ϒ2;Φ2; [[ρ]]Ψ ` λx.M⇐Πx:[[ρ]]A.[[ρ]]B by typing rule
ϒ2;Φ2; [[ρ]]Ψ ` λx.M⇐ [[ρ]](Πx:A.B) by def. of substitution
ϒ2
−;Φ2

−;(Ψ)− ` h · s≈ λx.M : Πx:A−.B− by equivalence relation ≈

Case D =
ϒ1;Φ1;Ψ ` ⇐ P /id(ϒ1) (ϒ1,u::P[Ψ] ; Φ1)u[id(Ψ)]

ϒ1 `Φ1 fctx and `Φ1 ϒ1 mctx by assumptions
ϒ1;Φ1;Ψ ` P⇐ type by assumption
ϒ1;Φ1 `Ψ ctx by assumptions
ϒ1;Φ;Ψ ` P⇐ type by assumption
ϒ1,u::P[Ψ];Φ;Ψ ` P⇐ type by weakening
`Φ ϒ1,u::P[Ψ] mctx by typing rules
ϒ1,u::P[Ψ] `Φ1 id(ϒ1)⇐ ϒ1 by typing rules
ϒ1,u::P[Ψ] ; Φ1;Ψ ` id(Ψ)⇐Ψ by typing rule
ϒ1,u::P[Ψ] ; Φ1;Ψ ` u[id(Ψ)]⇐ [id(Ψ)]a

Ψ
P by typing rule

P = [id(Ψ)]a
Ψ

P = ([id(Ψ)]a
Ψ

P) = [[id(ϒ1)]]P by definition
[[id(ϒ1)]]Φ1 = Φ1 by definition of substitution
[[id(ϒ1)]]Φ1 ⊆Φ1 by definition
ϒ1,u::P[Ψ] `Φ1 fctx by weakening
(ϒ1,u::P[Ψ])−;Φ1

−;Ψ− ` ≈ u[id(Ψ)] : P− by equivalence relation ≈

Statement (2) : Synthesizing spine
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Case D =
ϒ1;Φ1;Ψ ` s : A⇐ P /ρ (ϒ2 ; Φ2)S

ϒ1;Φ1;Ψ `0 s : A⇐ P /ρ (ϒ2 ; Φ2)S

ϒ2;Φ2; [[ρ]]Ψ ` S : [[ρ]]A⇐ [[ρ]]P by i.h. (3)
[[ρ]]Φ1 ⊆Φ2 and ϒ2 `Φ2 ρ ⇐ ϒ1 by i.h. (3)
ϒ2 `Φ2 fctx and `Φ2 ϒ2 mctx by i.h. (3)
ϒ2
−;Φ2

−;Ψ− ` s≈ S : A−⇐ P− by i.h. (3)
ϒ2
−;Φ2

−;Ψ− `0 s≈ S : A−⇐ P− by equivalence relation ≈

Case D =

ϒ1;Φ1;Ψ ` lower A⇒ (M,u::Q[Ψ′])
ϒ1,u::Q[Ψ′];Φ1;Ψ `i−1 s : [M/x]aA(B)⇐ P /ρ (ϒ2 ; Φ2)S ρ = ρ ′,Ψ̂′.R/u

ϒ1;Φ1;Ψ `i s : Πx:A.B⇐ P /ρ ′ (ϒ2 ; Φ2)([[ρ]]M);S

ϒ1;Φ1 `Ψ′ ctx and ϒ1;Φ1;Ψ′ ` Q⇐ type by lowering
· `Φ1 ϒ1 mctx by assumption
· `Φ1 ϒ1,u::Q[Ψ′] ctx by typing rules
ϒ2;Φ2; [[ρ]]Ψ ` S : [[ρ]]([M/x]aAB)⇐ [[ρ]]P by i.h. (2)
[[ρ]]Φ1 ⊆Φ2 and ϒ2 `Φ2 ρ ⇐ ϒ1,u::Q[Ψ′] by i.h. (2)
ϒ2
−;Φ2

−;Ψ− `i−1 s≈ S : ([M/x]aAB)−⇐ P− by i.h. (2)
ϒ2
−;Φ2

−;Ψ− `i−1 s≈ S : B−⇐ P− since B− = [M/x]aA(B)−

ϒ2
−;Φ2

−;Ψ− `i s≈ ([[ρ]]M);S : (Πx:A.B)−⇐ P− by equivalence relation ≈
ϒ2 `Φ2 fctx and `Φ2 ϒ2 mctx by i.h. (2)
ϒ2 `Φ2 ρ ′,Ψ̂′.R/u⇐ ϒ1,u::Q[Ψ′] since ρ = ρ ′,Ψ̂′.R/u
ϒ2 `Φ2 ρ ′⇐ ϒ1 by inversion
ϒ2;Φ2; [[ρ]]Ψ ` S : [[[ρ]]M/x]aA([[ρ]]B)⇐ [[ρ]]P by definition of substitution
ϒ1;Φ1 `Ψ ctx and
ϒ1;Φ1;Ψ `Πx:A.B⇐ type and
ϒ1;Φ1;Ψ ` P type by assumption
ΠΨ.A = ΠΨ′.Q and ϒ1,u::Q[Ψ′];Φ1;Ψ `M⇐ A by lemma lowering
ϒ2;Φ2; [[ρ ′]]Ψ ` S : [[[ρ]]M/x]aA([[ρ ′]]B)⇐ [[ρ ′]]P by strengthening
ϒ2;Φ2; [[ρ]]Ψ ` [[ρ]]M⇐ [[ρ]]A by subst. lemma
ϒ2;Φ2; [[ρ ′]]Ψ ` [[ρ]]M⇐ [[ρ ′]]A by strengthening
ϒ2;Φ2; [[ρ ′]]Ψ ` [[ρ]]M;S : Πx:[[ρ ′]]A.[[ρ ′]]B)⇐ [[ρ ′]]P by typing rule
ϒ2;Φ2; [[ρ ′]]Ψ ` [[ρ]]M;S : [[ρ ′]](Πx:A.B)⇐ [[ρ ′]]P by def. of substitution

Statement (3) : Checking spine

Case D =

ϒ1;Φ1;Ψ ` m⇐ A /ρ1 (ϒ2 ; Φ2)M
ϒ2;Φ2; [[ρ1]]Ψ ` s : [M/x]aA([[ρ1]]B)⇐ [[ρ1]]P /ρ2 (ϒ3 ; Φ3)S ρ = [[ρ2]]ρ1

ϒ1;Φ1;Ψ ` s : Πx:A.B⇐ P /ρ (ϒ3 ; Φ3)[[ρ2]]M;S

ϒ2;Φ2; [[ρ1]]Ψ `M⇐ [[ρ1]]A by i.h. (1)
ϒ2
−;Φ2

−;Ψ− ` m≈M : A− by i.h. (1)
[[ρ1]]Φ1 ⊆Φ2 and ϒ2 `Φ2 ρ1⇐ ϒ1 by i.h. (1)
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ϒ2 `Φ2 fctx and `Φ2 ϒ2 mctx by i.h. (1)
ϒ3;Φ3; [[ρ]]Ψ ` S : [[ρ2]]([M/x]aA[[ρ1]]B)⇐ [[ρ]]P by i.h. (3)
ϒ3
−;Φ3

−;([[ρ1]]Ψ)− ` s≈ S : ([M/x]aA[[ρ1]]B)−⇐ ([[ρ1]]P)− by i.h. (3)
ϒ3
−;Φ3

−;Ψ− ` s≈ S : B−⇐ P− since ([M/x]aA[[ρ1]]B)− = B−

and ([[ρ1]]P)− = P− and ([[ρ1]]Ψ)− = Ψ−

ϒ3
−;Φ3

−;Ψ− ` m≈M : A− by substitution and erasure property
ϒ3
−;Φ3

−;Ψ− ` (m;s)≈ (M;S) : Πx:A.B−⇐ P− by equivalence relation ≈
[[ρ2]]Φ2 ⊆Φ3 and ϒ3 `Φ3 ρ2⇐ ϒ2 by i.h. (3)
ϒ3 `Φ3 fctx and `Φ3 ϒ3 mctx by i.h. (3)
ϒ3;Φ3; [[ρ]]Ψ ` [[ρ2]]M⇐ [[ρ]]A by substitution lemma and subst. def.
[[ρ2]]([M/x]aA([[ρ1]]B)) = [[[ρ2]]M/x]aA([[ρ]]B) by substitution definition
ϒ3;Φ3; [[ρ]]Ψ ` S : ([[[ρ2]]M/x]aA[[ρ]]B)⇐ [[ρ]]P by previous line
ϒ3;Φ3; [[ρ]]Ψ ` [[ρ2]]M;S : Πx:[[ρ]]A.[[ρ]]B⇐ [[ρ]]P by typing rule
ϒ3;Φ3; [[ρ]]Ψ ` [[ρ2]]M;S : [[ρ]]Πx:A.B⇐ [[ρ]]P by substitution definition

Case D =
ϒ1;Φ1;Ψ ` a ·S′ .= a ·S/(ρ , ϒ2)

ϒ1;Φ1;Ψ ` nil : a ·S′⇐ a ·S /ρ (ϒ2 ; [[ρ]]Φ1)nil

[[ρ]](a ·S) = [[ρ]](a ·S′) by correctness of HOP unification
ϒ2 `Φ2 ρ ⇐ ϒ1 where Φ2 = [[ρ]]Φ1 by correctness of HOP unification
ϒ2 `Φ2 fctx by correctness of HOP unification
`Φ2 ϒ2 mctx by correctness of HOP unification
[[ρ]]Φ1 ⊆ [[ρ]]Φ1 by definition
ϒ2; [[ρ]]Φ1; [[ρ]]Ψ ` nil : [[ρ]](a ·S′)⇐ [[ρ]](a ·S) by typing rule
(a ·S′)− = (a ·S)− = a by definition of erasure
ϒ2
−;Φ1

−;Ψ− ` nil≈ nil : (a ·S′)−⇐ (a ·S)− by equivalence relation ≈

Statement (4) : Synthesize type from spine

Case D =
ϒ1;Φ1;Ψ ` nil⇐ P / nil : P

ϒ1;Φ1;Ψ ` nil : P⇐ P by typing rule
ϒ1;Φ1;Ψ ` P⇐ type by assumption
ϒ1
−;Φ1

−;Ψ− ` nil≈ nil : P−⇐ P− by equivalence relation ≈

Case D =

ηcon(m) = x Ψ(x) = A
ηexpA(x) = M Ψ− ` m⇐ A− ϒ1;Φ1;Ψ ` s⇐ P / S : B B = [x/y]B′

ϒ1;Φ1;Ψ ` m;s⇐ P / M;S : Πy : A.B′

ϒ2;Φ2;Ψ ` S : B⇐ P by i.h. (4)
ϒ2
−;Φ2

−;Ψ− ` s≈ S : B−⇐ P− by i.h. (4)
ϒ2;Φ2;Ψ ` B⇐ type by i.h. (4)
Ψ(x) = A by assumption
ϒ1;Φ1;Ψ `M⇐ A by eta-expansion lemma 4.5
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([x/y]aA(B′) = [M/y]aA(B′) by eta-expansion lemma 4.4
ϒ1;Φ1;Ψ ` S : [M/x]aA(B′)⇐ P by previous lines
ϒ1;Φ1;Ψ `M;S : Πy:A.B′⇐ P by typing rule
ϒ1;Φ1;Ψ,y:A ` B′⇐ type by inverting subst.
ϒ1;Φ1;Ψ `Πy:A.B′⇐ type by kinding rules
ϒ1
−;Φ1

−;Ψ− ` m≈M : A− by lemma 5.1
ϒ1
−;Φ1

−;Ψ− ` m;s≈M;S : (Πx:A.B)−⇐ P− by equivalence relation ≈

Theorem 6.3 (Completeness of type reconstruction)
1. If Ψ− ` m≈M : A− and ϒ `[[ρ0]]Φ ρ0⇐ ϒ1

and ϒ; [[ρ0]]Φ; [[ρ0]]Ψ `M⇐ [[ρ0]]A then
ϒ1;Φ;Ψ ` m⇐ A /ρ (ϒ2 ; Φ′)M′ and there exists a contextual substitution θ s.t.
[[θ ]]ρ = ρ0 and ϒ ` θ ⇐ ϒ2 and [[θ ]]M′ = M, [[ρ]]Φ = Φ′.

2. If Ψ− ` s≈ S : A−⇐ P− and ϒ `[[ρ0]]Φ ρ0⇐ ϒ1

and ϒ; [[ρ0]]Φ; [[ρ0]]Ψ ` S : [[ρ0]]A⇐ [[ρ0]]P then
ϒ1;Φ;Ψ ` s : A⇐ P /ρ (ϒ2 ; Φ′)S′ and there exists a contextual substitution θ s.t.
[[θ ]]ρ = ρ0 and ϒ ` θ ⇐ ϒ2 and [[θ ]]S′ = S, and [[ρ]]Φ = Φ′.

3. If Ψ− `i s≈ S : A−⇐ P− and ϒ `[[ρ0]]Φ ρ0⇐ ϒ1

and ϒ; [[ρ0]]Φ; [[ρ0]]Ψ ` S : [[ρ0]]A⇐ [[ρ0]]P then
ϒ1;Φ;Ψ `i s : A⇐ P /ρ (ϒ2 ; Φ′)S′ and there exists a contextual substitution θ s.t.
[[θ ]]ρ = ρ0 and ϒ ` θ ⇐ ϒ2 and [[θ ]]S′ = S, [[ρ]]Φ = Φ′.

Proof
Induction on the first derivation.

Case: D =
Ψ
−,x:A− ` m≈M : B−

Ψ
− ` λx.m≈ λx.M : (Πx:A.B)−

ϒ `[[ρ0]]Φ ρ0⇐ ϒ1 by assumption
ϒ; [[ρ0]]Φ; [[ρ0]]Ψ ` λx.M⇐ [[ρ0]](Πx:A.B) by assumption
ϒ; [[ρ0]]Φ; [[ρ0]]Ψ,x:[[ρ0]]A `M⇐ [[ρ0]]B by substitution and inversion
ϒ1;Φ;Ψ,x:A ` m⇐ B /ρ (ϒ2 ; Φ′)M′ by i.h. (1)
ϒ `[[ρ0]]Φ θ ⇐ ϒ2 and [[θ ]]M′ = M and [[θ ]]ρ = ρ0 and [[ρ]]Φ = Φ′ by i.h. (1)
ϒ1;Φ;Ψ ` λx.m⇐Πx:A.B /ρ (ϒ2 ; Φ2)λx.M′ by rules
λx.[[θ ]]M′ = λx.M by equality
[[θ ]]λx.M′ = λx.M by substitution

Case D =
Ψ
−,x:A− ` h · s@((x ·nil);nil)≈M : B−

ψ ` h · s≈ λx.M : (Πx:A.B)−

ϒ `[[ρ0]]Φ1 ρ0⇐ ϒ1 by assumption
ϒ; [[ρ0]]Φ1; [[ρ0]]Ψ ` λx.M⇐ [[ρ0]]Πx:A.B by assumption
ϒ; [[ρ0]]Φ; [[ρ0]]Ψ,x:[[ρ0]]A `M⇐ [[ρ0]]B by substitution and inversion
ϒ1;Φ1;Ψ,x:A ` h · s@((x ·nil);nil)⇐ B /ρ (ϒ2 ; Φ2)M′ by i.h. (1)
ϒ `[[ρ0]]Φ1 θ ⇐ ϒ2 and [[θ ]]M′ = M, [[θ ]]ρ = ρ0 and [[ρ]]Φ1 = Φ2 by i.h. (1)



ZU064-05-FPR recon 10 August 2010 8:39

44 Brigitte Pientka

ϒ1;Φ1;Ψ ` h · s⇐Πx:A.B /ρ (ϒ2 ; Φ2)λx.M by rules
λx.[[θ ]]M′ = λx.M by equality
[[θ ]]λx.M′ = λx.M by substitution

Case D =
Σ(c) = (A, i) Ψ

− `i s≈ S : A−⇐ P−

Ψ
− ` c · s≈ c ·S : P−

ϒ `[[ρ0]]Φ1 ρ0⇐ ϒ1 by assumption
ϒ; [[ρ0]]Φ1; [[ρ0]]Ψ ` c ·S⇐ [[ρ0]]P by assumption
ϒ; [[ρ0]]Φ1; [[ρ0]]Ψ ` S : A⇐ [[ρ0]]P by inversion
A = [[ρ0]]A since A is closed
ϒ1;Φ1;Ψ `i s : A⇐ P /ρ (ϒ2 ; Φ2)S′ by i.h. (2)
ϒ `[[ρ0]]Φ1 θ ⇐ ϒ2 and [[θ ]]S′ = S, and [[θ ]]ρ = ρ0 and [[ρ]]Φ1 = Φ2 by i.h.
ϒ1;Φ1;Ψ ` c · s⇐ P /ρ (ϒ2 ; Φ2)c ·S′ by rule
c · [[theta]]S′ = c ·S by equality
[[θ ]](c ·S′) = c ·S by substitution

Case D =
Ψ(x) = A− Ψ

− ` s≈ S : A−⇐ P−

Ψ
− ` x · s≈ x ·S : P−

ϒ `[[ρ0]]Φ1 ρ0⇐ ϒ1 by assumption
ϒ; [[ρ0]]Φ1; [[ρ0]]Ψ ` x ·S⇐ [[ρ0]]P by assumption
ϒ; [[ρ0]]Φ1; [[ρ0]]Ψ ` S : [[ρ0]]A⇐ [[ρ0]]P by inversion
ϒ1;Φ1;Ψ ` s : A⇐ P /ρ (ϒ2 ; Φ2)S′ by i.h. (2)
ϒ `[[ρ0]]Φ1 θ ⇐ ϒ2 and [[θ ]]S′ = S, and [[θ ]]ρ = ρ0 and [[ρ]]Φ1 = Φ2 by i.h. (2)
Ψ(x) = A since ([[ρ0]]Ψ)(x) = [[ρ0]]A
ϒ1;Φ1;Ψ ` x · s⇐ P /ρ (ϒ2 ; Φ2)x ·S′ by rule
x · [[theta]]S′ = c ·S by equality
[[θ ]](x ·S′) = c ·S by substitution

Case D =
([[ρ0]]Φ1)(X) = [[ρ0]]A Ψ

− ` s≈ S : ([[ρ0]]A)−⇐ P−

Ψ
− ` X · s≈ X ·S : P−

ϒ `[[ρ0]]Φ1 ρ0⇐ ϒ1 by assumption
ϒ; [[ρ0]]Φ1; [[ρ0]]Ψ ` X ·S⇐ [[ρ0]]P by assumption
ϒ; [[ρ0]]Φ1; [[ρ0]]Ψ ` S : [[ρ0]]A⇐ [[ρ0]]P by inversion
A− = ([[ρ0]]A)− by erasure
ϒ1;Φ1;Ψ ` s : A⇐ P /ρ (ϒ2 ; Φ2)S′ by i.h. (2)
ϒ `[[ρ0]]Φ1 θ ⇐ ϒ2 and [[θ ]]S′ = S, [[θ ]]ρ = ρ0 and [[ρ]]Φ1 = Φ2 by i.h. (2)
Φ1(X) = A since ([[ρ0]]Φ1)(X) = [[ρ0]]A
ϒ1;Φ1;Ψ ` X · s⇐ P /ρ (ϒ2 ; Φ2)X ·S′ by rule
X · [[theta]]S′ = X ·S by equality
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[[θ ]](X ·S′) = X ·S by substitution

Case D =
Ψ
− ` ≈ R : P−

ϒ `[[ρ0]]Φ1 ρ0⇐ ϒ1 by assumption
ϒ; [[ρ0]]Φ1; [[ρ0]]Ψ ` R⇐ [[ρ0]]P by assumption
ϒ `[[ρ0]]Φ1 ρ0,Ψ̂.R/u⇐ ϒ1,u::P[Ψ] by typing rule
ϒ1,u::P[Φ] `Φ1 id(ϒ1)⇐ ϒ1 by definition
let θ be ρ0,Ψ̂.R/u.
[[ρ0,Ψ̂.R/u]](u[id(Ψ)]) = R by definition
[[id(ϒ1)]]Φ = Φ by definition
[[ρ0,Ψ̂.R/u]]id(ϒ1) = ρ0 by definition
ϒ1;Φ1;Ψ ` ⇐ P /id(ϒ1) (ϒ1,u::P[Ψ] ; Φ1)u[id(Ψ)] by rule

Case D =
Ψ
− ` nil≈ nil : (a ·S)−⇐ (a ·S′)−

ϒ `[[ρ0]]Φ1 ρ0⇐ ϒ1 by assumption
ϒ; [[ρ0]]Φ1; [[ρ0]]Ψ ` nil : [[ρ0]](a ·S)⇐ [[ρ0]](a ·S′) by assumption
[[ρ0]](a ·S) = [[ρ0]](a ·S′) by typing inversion
let P = a ·S′ and Q = a ·S.
ϒ1;Φ1;Ψ ` Q .= P/(ρ , ϒ2) and there exists a θ s.t. [[θ ]]ρ = ρ0

and ϒ `[[ρ0]]Φ1 θ ⇐ ϒ2 and ϒ2 ` ρ ⇐ ϒ1 completeness of hop
ϒ1;Φ;Ψ ` nil : Q⇐ P /ρ (ϒ2 ; Φ2)nil

Case D =
Ψ
− ` m≈M : A− Ψ ` s≈ S : B−⇐ P−

Ψ
− ` (m;s)≈ (M;S) : (Πx:A.B)−⇐ P−

ϒ `[[ρ0]]Φ1 ρ0⇐ ϒ1 by assumption
ϒ; [[ρ0]]Φ1; [[ρ0]]Ψ `M;S : [[ρ0]](Πx:A.B)⇐ [[ρ0]]P by assumption
ϒ; [[ρ0]]Φ1; [[ρ0]]Ψ `M⇐ [[ρ0]]A
ϒ; [[ρ0]]Φ1; [[ρ0]]Ψ ` S : [M/x]aA[[ρ0]]B⇐ [[ρ0]]P by inversion
ϒ1;Φ1;Ψ ` m⇐ A /ρ1 (ϒ2 ; Φ2)M by i.h. (1)
there exists some θ s.t. ϒ `[[ρ0]]Φ1 θ ⇐ ϒ2 and [[θ ]]M′ = M and [[θ ]]ρ1 = ρ0 by i.h. (1)
[[ρ1]]Φ1 = Φ2 by i.h. (1)
[[ρ0]]Φ1 = [[θ ]][[ρ1]]Φ1 = [[θ ]]Φ2 by previous lines
B− = ([M/x]aA[[ρ]]B)− = ([[ρ]]B)− by erasure
ϒ; [[θ ]]Φ2; [[θ ]]([[ρ1]]Ψ) ` S : [[θ ]]([M′/x]aA([[ρ1]]B))⇐ [[θ ]]([[ρ1]]P) by ρ0 = [[θ ]]ρ1

ϒ2;Φ2; [[ρ1]]Ψ ` s : [M′/x]aA([[ρ1]]B)⇐ [[ρ1]]P /ρ2 (ϒ3 ; Φ3)S′ by i.h. (2)
there exists some θ ′ s.t. ϒ `[[ρ0]]Φ1 θ ′⇐ ϒ3 and [[θ ′]]S′ = S and [[ρ2]]Φ2 = Φ3

and θ = [[θ ′]]ρ2, and therefore M = [[θ ]]M′ = [[θ ′]][[ρ2]]M′

Let ρ = [[ρ2]]ρ1 and
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ϒ1;Φ1;Ψ ` m;s : Πx:A.B⇐ P /ρ (ϒ3 ; Φ3)([[ρ2]]M′;S′) by rule
and θ ′ is a contextual substitution s.t. ρ0 = [[θ ′]]ρ
Φ3 = [[ρ2]]Φ2 = [[ρ2]][[ρ1]]Φ1 = [[ρ]]Φ1, and [[θ ′]]([[ρ2]]M′;S′) = (M;S) by equality

Case D =
Ψ
− ` s≈ S : A−⇐ P−

Ψ
− `0 s≈ S : A−⇐ P−

ϒ `[[ρ0]]Φ1 ρ0⇐ ϒ1 by assumption
ϒ; [[ρ0]]Φ1; [[ρ0]]Ψ ` S : [[ρ0]]A⇐ [[ρ0]]P by assumption
ϒ1;Φ1;Ψ ` s : A⇐ P /ρ (ϒ2 ; Φ2)S′ by i.h.
there exists some θ s.t. ϒ `[[ρ0]]Φ1 θ ⇐ ϒ2 and [[θ ]]ρ = ρ0 and [[θ ]]S′ = S by i.h.
ϒ1;Φ1;Ψ `0 s : A⇐ P /ρ (ϒ2 ; Φ2)S′ by rule

Case D =
Ψ `i−1 s≈ S : B−⇐ P−

Ψ
− `i s≈ (M;S) : (Πx:A.B)⇐ P−

ϒ `[[ρ0]]Φ1 ρ0⇐ ϒ1 by assumption
ϒ; [[ρ0]]Φ1; [[ρ0]]Ψ `M;S : [[ρ0]](Πx:A.B)⇐ [[ρ0]]P by assumption
ϒ; [[ρ0]]Φ1; [[ρ0]]Ψ ` S : [M/x]aA[[ρ0]]B⇐ [[ρ0]]P by inversion
ϒ; [[ρ0]]Φ1; [[ρ0]]Ψ `M⇐ [[ρ0]]A by inversion
W.l.g. let A = ΠΨ0.Q0 then M = λ Ψ̂0.R and
ϒ; [[ρ0]]Φ1; [[ρ0]]Ψ, [[ρ0]]Ψ0 ` R⇐ [[ρ0]]Q0 by inversion
Let Ψ1 = Ψ,Ψ0.
ϒ `[[ρ0]]Φ1 ρ0,Ψ̂1.R/u⇐ ϒ1,u::Q0[Ψ1] and ρ ′0 = ρ0,Ψ̂1.R/u by typing rules

ϒ; [[ρ ′0]]Φ1; [[ρ ′0]]Ψ ` S : [λ Ψ̂0.R/x]aA[[ρ0]]B⇐ [[ρ ′0]]P by previous lines
[λ Ψ̂0.R/x]aA[[ρ0]]B = [[ρ ′0]]([λ Ψ̂0.u[id(Ψ1)]/x]aAB) by substitution
ϒ; [[ρ ′0]]Φ1; [[ρ ′0]]Ψ ` S : [[ρ ′0]]([λ Ψ̂0.u[id(Ψ1)]/x]aAB)⇐ [[ρ ′0]]P by previous lines

ϒ1,u::Q0[Ψ1];Φ1;Ψ `i−1 s : [λ Ψ̂0.u[id(Ψ1)]/x]aAB⇐ P /ρ (ϒ2 ; Φ2)S′

there exists θ s.t. ϒ `[[ρ0]]Φ1 θ ⇐ ϒ2 and [[θ ]]ρ = ρ ′0 and [[ρ]]Φ1 = Φ2 by i.h.
and [[θ ]]S′ = S by i.h.
[[θ ]]ρ = ρ ′0 = ρ0,Ψ̂1.R/u by previous lines
[[θ ]]ρ = [[θ ]]ρ ′,Ψ̂1.[[θ ]]R′/u by equality and previous lines
ϒ2 `[[ρ]]Φ1 ρ ⇐ ϒ1,u::Q0[Ψ1] by invariant
ϒ2 `[[ρ]]Φ1 ρ ⇐ ϒ1 by typing inversion
[[θ ]]ρ = [[θ ]]ρ ′, [[θ ]](Ψ̂1.R′)/u = ρ0,Ψ̂1.R/u and [[θ ]]R′ = R
[[θ ]][[ρ]](λ Ψ̂0.u[id(Ψ1)]) = λ Ψ̂0.R = M recall by previous lines
ϒ1;Φ1;Ψ ` lower A⇒ (Q0[Ψ1],λ Ψ̂0.u[id(Ψ1)]) by definition of lowering
ϒ1;Φ1;Ψ `i s : Πx:A.B⇐ P /ρ ′ (ϒ2 ; Φ2)([[ρ]](λ Ψ̂0.u[id(Ψ1)]);S′) by rule
[[θ ]]([[ρ]](λ Ψ̂0.u[id(Ψ1)]);S′) = M;S by substitution and equality rules
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A.5 Soundness proof for abstraction

Before showing the soundness proof for abstraction, we give the proof that well-typed
substitutions relate to well-typed spines.

Lemma 7.1 (Substitutions relate to spines)
If Ψ ` σ ⇐Ψ0 and Ψ ` S : [σ ]a

Ψ0
A⇐ P and toSpineψ0

σ S = S′ where ψ0 = (Ψ0)
−

then Ψ ` S′ : ΠΨ0.A⇐ P.

Proof
Proof by induction on the first derivation.

Case D =
Ψ ` · ⇐ ·

toSpine· · S = S by definition
Ψ ` S : A⇐ P by assumption

Case D =
Ψ ` σ ⇐Ψ0 Ψ `M⇐ [σ ]aΨ0

(B)

Ψ ` σ ,M⇐Ψ0,x:B
Ψ ` S : [σ ,M]a

Ψ0,x:BA⇐ P by assumption
toSpine(ψ0,x:β ) (σ ,M) S = S′ by assumption
toSpineψ0

σ (M;S) = S′ by definition
Ψ `M;S : Πx:[σ ]a

Ψ0
B.[σ ;x]a

Ψ0,x:BA⇐ P by typing rules
Ψ `M;S : [σ ]a

Ψ0
(Πx:B.A)⇐ P by substitution properties

Ψ ` S′ : ΠΨ0Πx:B.A⇐ P by i.h.

Theorem 7.2 (Soundness of abstraction)
Let `Ψ0,Ψ ctx.

1. If (Ψ0)Ψ `M⇐ B / (Ψ1)N and Ψ0,Ψ ` B⇐ type then
Ψ1,Ψ ` N⇐ B and Ψ0 ⊆Ψ1 and `Ψ1 ctx.

2. If (Ψ0)Ψ ` S : A⇐ P / (Ψ1)S′

and Ψ0,Ψ ` A⇐ type and Ψ0,Ψ ` P⇐ type then
Ψ1,Ψ ` S′ : A⇐ P and Ψ0 ⊆Ψ1 and `Ψ1 ctx.

3. If (Ψ0)Ψ ` σ ⇐Ψ′ / (Ψ1)σ ′ and `Ψ′ ctx then
Ψ1,Ψ ` σ ′⇐Ψ′ and Ψ0 ⊆Ψ1 and `Ψ1 ctx.

Proof
By induction on the abstraction judgment.

Case D =
(Ψ0)Ψ,x:A `M⇐ B / (Ψ1)N

(Ψ0)Ψ ` λx.M⇐Πx:A.B / (Ψ1)λx.N

Ψ1,Ψ,x:A ` N⇐ B and Ψ0 ⊆Ψ1 by i.h. (1)
Ψ1,Ψ ` N⇐Πx:A.B by typing rule
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Case D =
Σ(c) = (A, ) (Ψ0)Ψ ` S : A⇐ P / (Ψ1)S′

(Ψ0)Ψ ` c ·S⇐ P / (Ψ1)c ·S′

Ψ1,Ψ ` S′ : A⇐ P and Ψ0 ⊆Ψ1 by i.h. (2)
Ψ1,Ψ ` c ·S′⇐ P by typing rule

Case D =
X∼x:A ∈Ψ0 (Ψ0)Ψ ` S : A⇐ P / (Ψ1)S′

(Ψ0)Ψ ` X ·S⇐ P / (Ψ1)x ·S′

Ψ1,Ψ ` S′ : A⇐ P and Ψ0 ⊆Ψ1 by i.h. (2)
X∼x:A ∈Ψ1 by previous line
Ψ1,Ψ ` x ·S′⇐ P by typing rule

Case D =

X 6∈Ψ0 Φ(X) = A (Ψ0,X∼x: ) · ` A⇐ type / (Ψ1)A′

(Ψ′1,X∼x:A′) Ψ ` S : A′⇐ P / (Ψ2)S′

(Ψ0)Ψ ` X ·S⇐ P / (Ψ2)x ·S′

x is new by premises
`Ψ0 ctx by assumption
Ψ1, · ` A′⇐ type and `Ψ1 ctx and Ψ0 ⊆Ψ1 by i.h.
`Ψ1,X ∼ x:A′ ctx by typing rules
Ψ0 ⊆ (Ψ1,X ∼ x:A′) by prefix property
Ψ2,Ψ ` S′ : A′⇐ P and Ψ1,X ∼ x:A′ ⊆Ψ2 and `Ψ2 ctx by i.h. (2)
Ψ2(x) = A′ since (Ψ1,X∼x:A′)(x) = A′ and previous line
Ψ2,Ψ ` x ·S′⇐ P by typing rules
Ψ0 ⊆Ψ2 by transitivity

Case

D =

u 6∈Ψ0 ϒ(u) = Q[Ψq] [σ ′]a
Ψ′q

Q′ = P

(Ψ0,u∼x: ) `Ψq ctx / (Ψ1)Ψ′q
(Ψ1) Ψ′q ` Q ⇐ type / (Ψ2)Q′

(Ψ2,u∼x:ΠΨ′q.Q
′) Ψ ` σ ⇐Ψ′q / (Ψ3)σ ′ subToSpineΨ′q

(σ ′) = S

(Ψ0)Ψ ` u[σ ]⇐ P / (Ψ3)x ·S

x is new by assumption
Ψ1 `Ψ′q ctx and Ψ0 ⊆Ψ1 and `Ψ1 ctx by i.h.
Ψ2 `Ψ′q ctx by weakening
Ψ2,Ψ

′
q ` Q′⇐ type and Ψ1 ⊆Ψ2 and `Ψ2 ctx by i.h.

`Ψ2,X∼x:ΠΨ′q.Q
′ ctx by typing rules

Ψ3,Ψ ` σ ′⇐Ψ′q and Ψ2,X∼x:ΠΨ′q.Q
′ ⊆Ψ3 by i.h. (3)

[σ ′]a
Ψ′q

(Q′) = P by premise

subToSpineΨ′q
(σ ′) = toSpineΨ′q

(σ ′) nil = S by definition
Ψ3,Ψ ` nil : [σ ′]a

Ψ′q
(Q′)⇐ P by typing rule

Ψ3,Ψ ` S : ΠΨ′q.Q
′⇐ P by lemma 7.1
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x:ΠΨ′q.Q
′ ∈Ψ3 by previous lines

Ψ3,Ψ ` x ·S⇐ P by typing rule

Case D =

X∼x:ΠΨq.Q ∈Ψ0 [σ ′]a
Ψq

Q = P
(Ψ0)Ψ ` σ ⇐Ψq / (Ψ1)σ ′ subToSpineΨq σ ′ = S

(Ψ0)Ψ ` u[σ ]⇐ P / (Ψ1)x ·S′

Ψ1,Ψ ` σ ′⇐Ψq and Ψ0 ⊆Ψ1 and `Ψ1 ctx by i.h. (3)
subToSpineΨ′q

(σ ′) = toSpineΨ′q
(σ ′) nil = S by definition

Ψ3,Ψ ` nil : [σ ′]a
Ψ′q

(Q′)⇐ P by typing rule
Ψ1,Ψ ` S : ΠΨq.Q⇐ P by lemma 7.1
Ψ1,Ψ ` x ·S⇐ P by typing rule

Case D =
(Ψ0)Ψ ` nil : P⇐ P / (Ψ0)nil

· `Ψ0Ψ ctx and Ψ0,Ψ ` P⇐ type by assumption
Ψ0,Ψ ` nil : P⇐ P by typing rule
Ψ0 ⊆Ψ0 by definition
`Ψ0 ctx by assumption

Case D =
(Ψ0)Ψ `M⇐ A / (Ψ1)M′ (Ψ1)Ψ ` S : [M′/x]aA(B)⇐ P / (Ψ2)S′

(Ψ0)Ψ `M;S : Πx:A.B⇐ P / (Ψ2)M′;S′

Ψ1,Ψ `M′⇐ A by i.h. (1)
`Ψ1 ctx and Ψ0 ⊆Ψ1 by i.h. (1)
Ψ0,Ψ `Πx:A.B⇐ type by assumption
Ψ0,Ψ,x:A ` B⇐ type by typing inversion
Ψ1,Ψ,x:A ` B⇐ type by weakening using Ψ0 ⊆Ψ1

Ψ1,Ψ ` [M′/x]aA(B)⇐ type by substitution lemma
Ψ2,Ψ ` S′ : [M′/x]aA(B)⇐ P by i.h. (2)
`Ψ2 ctx and Ψ1 ⊆Ψ2 by i.h. (2)
Ψ2,Ψ `M′⇐ A by weakening (Ψ1 ⊆Ψ2)
Ψ2,Ψ `M′;S′ : Πx:A.B⇐ P by typing rule

Case D =
(Ψ1)Ψ `M⇐ [σ ′]a

Ψ′A / (Ψ2)M′ (Ψ0)Ψ ` σ ⇐Ψ
′ / (Ψ1)σ ′

(Ψ0)Ψ ` σ ,M⇐Ψ
′,x:A / (Ψ2) (σ ′,M′)

` (Ψ′,x:A) ctx by assumption
`Ψ′ ctx and Ψ′ ` A⇐ type by typing rules
Ψ1,Ψ ` σ ′⇐Ψ′ by i.h. (3)
`Ψ1 and Ψ0 ⊆Ψ1 by i.h. (3)
Ψ1,Ψ ` [σ ′]a

Ψ′(A)⇐ type by substitution lemma
Ψ2,Ψ `M′⇐ [σ ′]a

Ψ′A by i.h. (1)
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`Ψ2 ctx and Ψ1 ⊆Ψ2 by i.h. (1)
Ψ2,Ψ ` σ ′⇐Ψ′ by weakening
Ψ2,Ψ ` σ ′,M′⇐Ψ′,x:A by typing rule

Case D =
(Ψ0,Ψ)(x) = A′ [σ ′]a

Ψ′(A) = A′ (Ψ0)Ψ ` σ ⇐Ψ
′ / (Ψ1)σ ′

(Ψ0)Ψ ` σ ;x⇐Ψ
′,x:A / (Ψ2) (σ ′,x)

` (Ψ′,x:A) ctx by assumption
`Ψ′ ctx and Ψ′ ` A⇐ type by typing rules
Ψ1,Ψ ` σ ′⇐Ψ′ by i.h. (3)
`Ψ1 and Ψ0 ⊆Ψ1 by i.h. (3)
Ψ1,Ψ ` [σ ′]a

Ψ′(A)⇐ type by substitution lemma
(Ψ1,Ψ)(x) = A′ and [σ ′]a

Ψ′(A) = A′ by previous lines
Ψ1,Ψ ` σ ′;x⇐Ψ′,x:A by typing rule

Case D =
(Ψ0)Ψ ` · ⇐ · / (Ψ0)·

· `Ψ0,Ψ ctx and Ψ0,Ψ ` P⇐ type by assumption
Ψ0,Ψ ` · ⇐ · by typing rule


