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Abstract. In this paper, we present an overview to programming with
proofs in the reasoning framework, Beluga. Beluga supports the specifi-
cation of formal systems given by axioms and inference rules within the
logical framework LF. It also supports implementing proofs about formal
systems as dependently typed recursive functions. What distinguishes
Beluga from other frameworks is that it not only represents binders us-
ing higher-order abstract syntax, but directly supports reasoning with
contexts and contextual objects. Contextual types allows us to charac-
terize precisely hypothetical and parametric derivations, i.e. derivations
which depend on variables and assumptions, and lead to a direct and
elegant implementation of inductive proofs as recursive functions. Be-
cause of the intrinsic support for binders and contexts, one can think of
the design of Beluga as the most advanced technology for specifying and
prototyping formal systems together with their meta-theory.

1 Introduction

The POPLmark challenge [ABF*05] triggered wide-spread interest in mecha-
nizing the meta-theory of programming languages, and today, knowing how to
formalize proofs in a proof assistant is an essential skill. The interest in mech-
anizing proofs has also gone beyond small toy examples and several large-scale
formalizations to verify compilers using proof-assistants are on their way (see for
example [Chl10,Chl07,LCHO7,Ler09]).

Although mechanizing properties about programming language are nowadays
common, this endeavor is unfortunately still plagued by the necessary overhead
to manage bureaucratic details. T. Altenkirch [Alt93] remarked about his for-
malization of the strong normalization proof for system F in Lego in 1993:

”When doing the formalization, I discovered that the core part of the
proof...is fairly straightforward and only requires a good understanding
of the paper version. However, in completing the proof I observed that
in certain places I had to invest much more work than expected, e.g.
proving lemmas about substitution and weakening” [A1t93]

Today, not much has changed. In this paper, we will identify key operations
good meta-languages should support to easily and elegantly represent formal



systems and proofs about them and give a tutorial to programming proofs in
the Beluga environment [Pie08,PD08,PD10]. Beluga is a two-level framework for
programming with and reasoning about formal systems. The first layer supports
the representation of formal systems within the logical framework LF[HHP93].
On top of LF, we provide a functional language that supports analyzing and
manipulating LF data via pattern matching.

Beluga’s strength and elegance come from supporting encodings based on
higher-order abstract syntax (HOAS), in which binders in the object language
are represented as binders in LF’s meta-language. As a consequence, users can
avoid implementing common and tricky routines dealing with variables, such as
capture-avoiding substitution, renaming and fresh name generation. In addition,
Beluga provides intrinsic support for contexts and contextual reasoning. This is
particularly convenient when representing proofs, since in this setting a natural
question arises: how to represent hypothetical and parametric derivations? One
may of course represent such assumptions explicitly as lists, but as a consequence
we would need to enforce properties such as well-formedness, scope, uniqueness
of assumptions, weakening, etc. explicitly. In Beluga, contextual objects directly
characterize hypothetical and parametric derivations, and hence the user can
stay away from the bureaucracy of explicitly managing and reasoning about
contexts. This allows a direct and elegant implementation of inductive proofs
about hypothetical and parametric derivations as recursive functions over con-
textual objects. Because of the intrinsic support for binders and contexts, one
can think of the design of Beluga as the most advanced technology for specifying
and prototyping formal systems together with their meta-theory.

In this paper, we will first revisit the formalization of the simply-typed
lambda-calculus together with its type uniqueness proof (Sec. 2). In particu-
lar, we will identify and highlight challenges any meta-language used for mech-
anizing formal systems and proofs must address. Second, we will give a tutorial
to Beluga showing how induction proofs can be directly translated into Beluga
functions (Sec. 3). Finally, we summarize the theoretical foundation of Beluga
and discuss its implementation (Sec. 4) . In particular, we will touch on the
issues of type reconstruction for Beluga. Last but not least, we compare Beluga
to related frameworks which support higher-order abstract syntax encodings of
formal systems and proofs about them (Sec. 5).

2 Revisiting the simply-typed lambda-calculus

We begin by revisiting the simply-typed lambda-calculus. We introduce the base
type nat and function type arr 77 T5. The lambda-terms are either variables,
abstractions or applications.

Types T, S ::= nat Terms M, N ==z
|arr T S | lam z:T.M
|app M N



We label the input z in the lambda-abstraction lam x:T.M with its type T'
to ensure that every lambda-term has a unique type.

2.1 Context-free formulation of typing rules

We give first a context-free formulation of the typing rules following Gentzen’s
original presentation of the natural deduction calculus [Gen35]. Let us first define
the typing judgment more formally:

Typing Judgment: oft M T read as “M is of type T”

Next, we give two typing rules, one for abstractions and one for applications
and we label the inference rules with their names. Due to the context-free rep-
resentation of the rules, we do not need a rule for variables, since whenever a
variable is encountered when traversing an abstraction, we generate a new vari-
able x together with the assumption u: oft x T. To indicate the scope of the
parameter x and the hypothesis u: oft x T, we annotate the rule name t_lam
with super-scripts x, u.

oftx T u

oft M S N oft M (arrTS) oft NT
oft (lamx:T M) (arr T S

x, a
) tam oft (app M N) S PP
Since our goal is to prove, type uniqueness we also introduce an equality
judgement which states that two types are equal if they are identical.

Equality Judgment: eq ST read as “S is equal to the type T”

We only have the reflexivity axiom to define equality.

q TT ref

2.2 Formulation of typing rules with explicit contexts

While the context-free representation is sufficient and convenient for describing
typing derivations, a formulation with explicit contexts to keep track of the
assumptions is often used when actually implementing a type-checker based on
these typing rules and also when reasoning about the given type system.
Before we give a formulation of the typing rules based on explicit contexts, we
define the context more precisely. In particular, we specify that we are introduc-
ing the variable x together with the assumption u:oft x T. As a consequence, we
know that every variable x will be associated with a typing assumption u:oft x T

Context I' := | [z, woftx T



We give the typing rules with explicit contexts next. While in the previous
context-free formulation no variable rule was present, we now must have a rule
which allows us to look up an assumption in the context. This look-up function
relies on the fact that every variable in I" has a typing assumption associated with
it. We typically assume that it is associated with a unique typing assumption.
This is silently enforced in the typing rule t_lam where we implicitly rename the
variable x, if z is already present in I', before extending the context I" with the
variable x together with the assumption oft z T

rz,u: oftxT el
't oftxT

u

Izu: oftz THoft M S wulFoft M(arT'S) I'Foft NT
I' = oft (lama:T.M) (arr T S) t-lam I't-oft (app M N) S

t_app

2.3 Type uniqueness

Finally, let us discuss the proof that every lambda-term has a unique type. While
this theorem is quite simple, it is still interesting, since its proof relies on various
properties of contexts and bound variables.

Theorem 1. If D:I'+oft MT and C:I'Foft M S then E£: eqT S.

Proof. Induction on first typing derivation D.

Case 1
Dl DQ
'+ oftM(arTS) I'F oft NT
D= t.app
I't oft (app M N) S
C1 Ca
't oft M (arrT'S") I'k oft NT'
C= t_app
T+ oft (app M N) S’
E:eq (arr T S) (arr T S") by i.h. using Dy and C;
E:eq (arrT S)(arrTS) and S=5"and T =T' by inversion on reflexivity

Therefore there is a proof for eq S S’ by reflexivity (since we know S = 5”).

Case 2 D, e
Iz,uofte THoft M S I'o,wofte T oft M S’
D= t_lam C= t_lam
I' - oft (lam z:T.M) (arr T S) I' = oft (lam z:T.M) (arr T S")
E:eq 5SS by i.h. using D; and Cy
E:eq SS and S=9 by inversion using reflexivity

Therefore there is a proof for eq (arr T S) (arr T S’) by reflexivity.



Case 8
zyucoftx T €I’ z,v:ofta S el
D=——  u C=—— v
' oftxT 'k oftx S

Every variable z is associated with a unique typing assumption (property of the con-
text), hence v =w and S =T.

2.4 Requirements for “good” meta-languages

“Good” meta-languages should free the user from dealing with tedious and bor-
ing bureaucratic details, so s/he is able to concentrate on the essence of a proof
or algorithm. Ultimately, this means users can mechanize proofs quicker, since
time is not wasted on cumbersome and tedious details, resulting proofs are eas-
ier to understand, since it captures the essential steps, and automation of such
proofs is more feasible. In this section, we briefly review two important aspects
which arise when mechanizing formal systems and their proofs.

Support for schematic variables and bound variables When inspecting the typing
rules, we notice at least two different kinds of variables. In lam z.M, we bind all
occurrence of the variable = in the term M. Similarly, we rely on a-renaming of
bound variables and also rely on substitution for bound variables, when we for
example define the reduction semantics for the lambda-calculus. In addition to
bound variables, we also have used schematic variables to describe the typing
rules. For example, M, N, T, S are schematic variables. When we use the typing
rules to construct a concrete typing derivation for some concrete lambda-term,
we instantiate these schematic variables appropriately. We will subsequently call
the schematic variables M, N, T, and S meta-variables. In addition, we also use
context variable I' to denote the sequence of assumptions. Finally, we revisit the
variable rule

r,u: oftxT €l
't oftxT

In this rule, the variable z is not a bound variable, but is a special schematic
variable; it represents any variable declared in the context I'. This is in contrast
to schematic meta-variables, which represent any concrete lambda-term. We will
call x a parameter variable standing for concrete variables from a context I.

In addition to a-renaming and substitution for bound variables, we hence also
have substitutions for context variables, meta-variables and parameter variables.

Support for contexts Providing intrinsic support for representing contexts and
reasoning about them, will ease the mechanization of proofs. In the previous
example, we silently assumed that every declaration occurs at most once. In
addition, we often rely on weakening, strengthening and substitution lemmas.
Managing and reasoning about contexts is an essential part of proofs about
formal systems (see also the benchmarks we recently proposed together with A.



Felty in [FP]). Supporting such reasoning about contexts simplifies the proof
developments, leads to quicker prototyping, and helps to identify mistakes more
easily, since the user can concentrate on the main issues of the proof without
being distracted by bookkeeping.

3 Beluga: a framework for programming proofs

3.1 Overview

Beluga is a two-level system. On the first level, it provides an implementation of
the logical framework LF [HHP93] similar to the implementation of LF in the
Twelf system [PS99]. This supports a compact representation of formal systems
and derivations exploiting higher-order abstract syntax and dependent types.

One important characteristic is that our encodings of the object language
are adequate, i.e. there is a one-to-one correspondence between the terms in the
object language and the terms characterized in the meta-language, namely LF.
Consequently, proofs about the typing rules and lambda-terms do not deal with
proof obligations which establish that the given derivation is well-formed or that
a given derivation is impossible.

On top of LF, we provide a functional language which supports writing re-
cursive functions via pattern matching on LF objects. Taking a fresh look at
the proofs-as-programs paradigm, we can identify the following correspondence
between on paper proofs and Beluga functions.

On paper proof Proofs as functions in Beluga

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

Case analysis on a derivation in the on paper proof will correspond to a case-
expression which pattern matches on contextual objects describing the deriva-
tion. An inversion step in the informal proof corresponds to a case-expression
with one case which can be be written using a let-expression in Beluga. Finally,
the appeal to the induction hypothesis corresponds to the recursive call in a
Beluga program.

As mentioned earlier, a key feature of Beluga is its support for contextual
types to characterize contextual objects. Contextual types characterize contex-
tual objects and thereby directly ensure we are only working with well-scoped
derivations. Moreover, we can parameterize programs over contexts using con-
text variables. This is essential when we want to model cases where the context
grows as in the proof for type uniqueness when we considered the case which con-
cluded with the typing rule for lambda-abstractions. It also allows us to express
fine grained invariants and distinguish between different contexts.

Taken together, Beluga allows for a compact and elegant representation of
proofs about formal system.



3.2 Representing simply-typed lambda-calculus in LF

To represent the simply-typed lambda-calculus in the logical framework LF, we
define two LF types: the LF type tp for describing the types of our simply-
typed lambda-calculus, and the LF type tm for characterizing the terms of the
lambda-calculus.

tp: type. tm: type.
nat: tp. lam : tp — (tm—tm) — tm.
arr: tp — tp — tp. app : tm — tm — tm.

The LF type tp has two constructors, nat and arr, corresponding to the
types nat and arr T' S respectively. Since arr is a constructor which takes in two
arguments, its type is tp — tp — tp.

The LF type tm also has two constructors. The constructor app takes as input
two objects of type tm and allows us to construct an object of type tm. The con-
structor for lambda-terms also takes two arguments as input; it first takes an ob-
ject of type tp for the type annotation and the body of the abstraction is second.
We use higher-order abstract syntax to represent the object-level binding of the
variable z in the body M. Accordingly, the body of the abstraction is represented
by the type (tm—tm). For example, lam z:(arr nat nat).lamy:nat.app x y is
represented by lam (arr nat nat) Ax.lam nat Ay.app x y. This encoding
has several well-known advantages: First, the encoding naturally supports a-
renaming of bound variables, which is inherited from the logical framework.
Second, the encoding elegantly supports substitution for bound variables which
reduces to -reduction in the logical framework LF.

Next, we represent the context-free typing rules given earlier. Following the
judgments-as-types principle, we define the type family oft which is indexed by
terms tm and types tp. Each inference rule is then represented as a constant
of the type oft M T. The rule t_app encodes the typing rule for applications:
from derivations of oft M (arr T S) and oft N T we obtain a derivation for
oft (app M N) S. The rule t_1lam encodes directly the parametric hypothetical
derivation “for all x assuming oft x T" we can derive oft M S” using the de-
pendent function type {x:tm} oft x T—oft (M x) S. While in the on-paper
formulation of the rule, we silently assumed that we renamed = appropriately to
ensure that = is new, we explicitly rename the bound variables in the represen-
tation of this rule in LF. This is achieved by the LF application M x.

oft: tm — tp — type. eq: tp — tp — type.

f: TT.
t_app: oft Ml (arr T S) — oft N T ret: eq

— oft (app M N) S.
t_lam: ({x:tm} oft x T — oft (M x) S)
— oft (lam T M) (arr T S).

Finally, we represent the equality judgement as the type family eq which is
indexed by two objects tp. Reflexivity is the only constant inhabiting the type
eq T S. For a longer introduction on how to represent formal systems in the
logical framework LF, we refer the reader to Pfenning’s course notes [Pfe97].



3.3 Representing theorems as types in Beluga

Due to its support for dependent types and binders, Beluga is an ideal meta-
language for representing theorems and proofs. Let us recall the theorem for
type uniqueness from the previous section.

Theorem 2. If D:I'Foft MT and C:I'Foft M S then E£: eqT S.

This statement makes explicit the context I' containing variables together
with their typing assumptions. Before showing how to implement it, we describe
more precisely the shape of contexts I', using a context schema declaration:

schema tctx = some [t:tp] block x:tm. oft x t;

The schema tctx describes a context containing assumptions x:tm, each
associated with a typing assumption oft x t for some type t. Formally, we
are using a dependent product X (used only in contexts) to tie x to oft x t.
We thus do not need to establish separately that for every variable there is a
unique typing assumption: this is inherent in the definition of tctx. The schema
classifies well-formed contexts and checking whether a context satisfies a schema
will be part of type checking. As a consequence, type checking will ensure that we
are manipulating only well-formed contexts, that later declarations overshadow
previous declarations, and that all declarations are of the specified form.

To illustrate, we show some well-formed and some ill-formed contexts.

Context Is of schema tctx?
bl:block x:tm.oft x (arr nat nat),
b2:block y:tm.oft y nat yes
x:tm, u:oft x (arr nat nat) no (not grouped in blocks)
y:tm no (typing assumption for y is missing)
b:block x:tm.oft y nat no (y is free)
bl:block x:tm.oft x (arr nat nat),
b2:block y:tm.oft x nat no (wrong binding structure)

Let us now show the type of a recursive function in Beluga which corresponds
to the type uniqueness theorem.

{g:tctx} (oft (M ..) Tlgl — (oft (M ..) S)[gl — (eq T O[]

We can read this type as follows: For all context g of schema tctx, given a
derivation for oft (M ..) Tin the context g and a derivation for oft (M ..) Sin
the context g, we return a derivation showing that eq T S in the empty context.
Although we quantified over the context g at the outside, it need not be passed
explicitely to a function of this type, but Beluga will be able to reconstruct it.

We call the type (oft (M ..) T)[g] a contextual type and the object inhabit-
ing it a contextual object. Since the term M can depend on the variables declared
in the context g, we write (M ..). Formally, M itself is a contextual object of type
tm[g] and .. is the identity substitution which a-renames the bound variables.
On the other hand, T and S stand for closed objects of type tp and they can-
not refer to declarations from the context g. Note that these subtleties were not
captured in our original informal statement of the type uniqueness theorem.



3.4 Representing inductive proofs as recursive programs

We now show the program which corresponds to the inductive proof given in
Section 2.3. The proof of type uniqueness proceeds by case analysis on the
first derivation. Accordingly, the recursive function pattern-matches on the first
derivation d which has type (oft (M..) T) [g].

rec unique : {g:tctx}
(oft (M ..) Tlgl — (oft M ..) S)[g]l — (eq T S[] =
fn d = fn £ = case d of
| [g] t_app (D1 ..) (D2 ..) = % Application case
let [g] t_app (F1 ..) (F2 ..) = f in
let [ ] ref = unique ([g] D1 ..) ([g] F1 ..) in
[ 1 ref

| [g] t_lam (Ax.Au. D .. x u) = % Abstraction case
let [g] t_.lam (Ax.Au. F .. xu) = £ in
let [ ] ref = unique ([g,b:block x:tm.oft x _ ] D .. b.1 b.2)
([g,p] F .. b.1 b.2) in

[ ] ref
| [g] #q9.2 .. = %d: oft #q1T % Assumption case
let [g] #r.2 .. = £f in % f: oft #q.1S8S
[ 1 ref ;

We consider each case individually. Each case in the proof on page 4 will
correspond to one case in the case-expression.

Application case: If the first derivation d concludes with t_app, it matches the
pattern [g] t_app (D1..) (D2..), and is a contextual object in the context g of
type oft (app (M..) (N..)) S. D1 corresponds to the first premise of the typing
rule for applications and has the contextual type (oft (M ..) (arr T 8)) [g].
Using a let-binding, we invert the second argument, the derivation £ which

must have type (oft (app (M ..) (N ..)) S8’)[g]. F1 corresponds to the first
premise of the typing rule for applications and has the contextual type (oft
M ..) (arr T’ S°))[gl. The appeal to the induction hypothesis using D1 and
F1 in the on-paper proof corresponds to the recursive call unique ([g] D1 ..)

([g] F1 ..). Note that while unique’s type says it takes a context variable
{g:tctx}, we do not pass it explicitly; Beluga infers it from the context in the
first argument passed. The result of the recursive call is a contextual object of
type (eq (arr T S) (arr T’ S’)) [ ]. The only rule that could derive such an
object is ref, and pattern matching establishes that arr TS = arr T’ S’ and
hence T = T’ and S = s’. Therefore, there is a proof of [ ] eq S S’ using the
rule ref.

Abstraction case: If the first derivation d concludes with t_lam, it matches the
pattern [g] t_lam (Ax.Au.D .. x u), and is a contextual object in the context
g of type oft (lam T (Ax.M .. x)) (arr T S). Pattern matching—through a
let-binding—serves to invert the second derivation £, which must have been by
t_lam with a subderivation F1 ..x u deriving oft (M ..x) S’ that can use x,
u:oft x T, and assumptions from g.
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The use of the induction hypothesis on D and F in a paper proof corresponds
to the recursive call to unique. To appeal to the induction hypothesis, we need
to extend the context by pairing up x and the typing assumption oft x T. This
is accomplished by creating the declaration b:block x:tm. oft x T. In the code,
we wrote an underscore _ instead of T, which tells Beluga to reconstruct it. (We
cannot write T there without binding it by explicitly giving the type of D, so it is
easier to write _.) To retrieve x we take the first projection b.1, and to retrieve
x’s typing assumption we take the second projection b.2.

Now we can appeal to the induction hypothesis using D1 ..b.1 b.2 and
F1 .b.1 b.2 in the context g,b:block x:tm.oft x T1. From the i.h. we get
a contextual object, a closed derivation of (equal (arr T S) (arr T S’)) [ ].
The only rule that could derive this is ref, and pattern matching establishes
that S must equal S’, since we must have arr T S = arr T1 S’. Therefore, there
is a proof of [] equal S S’, and we can finish with the reflexivity rule ref.

Assumption case: Here, we must have used an assumption from the context
g to construct the derivation d. Parameter variables allow a generic case that
matches a declaration block x:tm.oft x T for any T in g. Since our pattern match
proceeds on typing derivations, we want the second component of the parameter
#q, written as #q.2. The pattern match on d also establishes that M = #q.1.
Next, we pattern match on f, which has type oft (#q.1 ..) S in the context
g. Clearly, the only possible way to derive £ is by using an assumption from
g. We call this assumption #r, standing for a declaration block y:tm. oft y S,
so #r.2 refers to the second component oft (#r.1 ..) S. Pattern matching
between #r.2 and f also establishes that #r.1 = #q.1. Finally, we observe that
#r.1 = #q.1 only if #r is equal to #q. We can only instantiate the parameter
variables #r and #q with bound variables from the context or other parameter
variables. Consequently, the only solution to establish that #r.1 = #q.1 is the
one where both the parameter variable #r and the parameter variable #q refer
to the same bound variable in the context g. Hence, we must have #r = #q, and
both parameters must have equal types, and S = 8> = T = T’. (In general,
unification in the presence of X-types does not yield a unique unifier, but in
Beluga only parameter variables and variables from the context can be of X
type, yielding a unique solution.)

4 Revisiting the design of Beluga

4.1 Theoretical foundation

Beluga’s foundation rests on the idea of contextual modal type theory which
was introduced in detail in [NPPOS]. A contextual object [#]M has contextual
type A[¥] if M has type A in the context ¥. In the setting of Beluga, we use
a contextual type to describe an LF object within a context. By design, vari-
ables occuring in M can never extrude their scope. Generalizing ideas in [DPS97)
data of type A[¥] may be embedded into computations and analyzed via pat-
tern matching. Consequently, different arguments to a computation may have
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different local contexts and we can distinguish between data of type A[ ] which is
closed and open data of type A[¥] giving us fine-grained control. Since we want
to allow recursion over open data objects and the local context ¥ may grow as
we analyze the object M, our foundation supports context variables.

In [Pie08], we presented a simply-typed foundation for Beluga which included
a bi-directional type system together with type preservation and progress proofs.
Subsequently in [PD08], we extended this work to account for dependent types.

The design of Beluga distunguishes cleanly between bound variables on the
LF-level and schematic variables, such as meta-variables, parameter variables
and context variables.

4.2 Implementation

Beluga is implemented in OCaml. It provides a re-implementation of the logical
framework LF together with LF type reconstruction and LF type checking based
on explicit substitutions [ACCL90]. In addition, we designed a palatable source
language for writing recursive functions about contextual objects. We list some
of the challenges we addressed below.

Type reconstruction for LF Our LF type reconstruction algorithm is designed
around the ideas in [Pfe91] and closely resembles the implementation of LF type
reconstruction in the Twelf system [PS99]. The essential principle can be sum-
marized as follows: Process every declaration one at a time. Given a constant
declaration, we infer the type of the free variables and any omitted arguments
n-expanding variables when necessary. The free variables and the variables oc-
curring in omitted arguments together constitute the implicit arguments of the
constant. When subsequently using this constant we must omit passing implicit
arguments. To ilustrate, let us briefly revisit the declaration of t_lam.

t_lam: ({x:tm} oft x T — oft (M x) S)
— oft (lam T M) (arr T S).

Type reconstruction will produce the following type:

t_lam: {T:tp}{M:tm -> tm}{S:tp}
({x:tm} oft x T — oft (M x) S)
— oft (lam T (A\x. M x)) (arr T S).

The variables T:tp, S:tp, and M:tm — tm are called implicit arguments. Note,
we also n-expanded M, where it was necessary. When we subsequently use the
constant t_lam, for example within the program unique where we pattern match
on the shape of the objects of type (oft (M ..) (T ..))[gl, we simply write [g
1 t_lam (Ax.Au. D .. x u) and omit passing the arguments for T:tp, S:tp, and
M:tm — tm.

However there are a few subtle differences between our implementation and
the one found in the Twelf system: Our implementation of the constraint-based
unification algorithm [EP91,Pfe91] is more conservative and addresses some
known shortcomings [Ree09]. Our surface language is also slightly more restric-
tive than Twelf’s surface language, since we only handle n-expansion and require
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that the user writes LF objects in S-normal form. This makes the implementa-
tion and the theoretical foundation for LF type reconstruction more streamlined.
Type reconstruction is, in general, undecidable for LF and our algorithm reports
a principal type, a type error, or that the source term needs more type informa-
tion.

Type reconstruction for Beluga programs In Beluga, we write recursive programs
over contextual LF objects which are embedded within computations. Hence,
we first generalized LF type reconstruction so it can be used for contextual LF
objects. This is necessary, since these objects may contain context-variables,
meta-variables and parameter variables which are absent from the pure logical
framework LF. We also extended the unification algorithm to handle parameter
variables and X-types for variables.

In addition, we extended the general principle behind LF reconstruction to
support type reconstruction for computations: given a computation-level type
such as for example

{g:tctx} (oft (M ..) TD[g]l — (oft (M ..) S)[gl — (eq T S)[ ]
we first infer the contextual type of M, T and S.

{g:tctx{M: :tm[g] }{T::tpl 1}{S::tpl 1}
(oft M ..) T)lgl — (oft (M ..) S)[gl — (eq T S)[ ]

In general, the free variables and the variables occurring in omitted argu-
ments together with the context variable constitute the implicit arguments of
the function and must be omitted when using the function. In the type of unique,
we have no omitted arguments and hence the implicit arguments are the context
variable g and the free variables T, S, and M. When we make a recursive call to
unique in for example the t_app case, we simply write unique ([g] D1 ..) ([g]

F1 ..) omitting the implicit arguments.

We provide special syntax for declaring that a context must be passed ex-
plicitely and will not be reconstructed. In this case, the schema of the context
variable we quantify over is wrapped in ( )*.

Finally, case-expressions pose unique challenges in the presence of dependent
types, since pattern matching on an object may refine the type of the object.
In our implementation, we first reconstruct the types of free variables occurring
in the pattern itself and insert any omitted arguments. Next, we reconstruct
a refinement substitution which is then stored together with the pattern. For
example, when we pattern match on [g] t_lam Ax.Au. D .. x u the scrutinee
had type (oft (M ..) T)[g] but the pattern has the contextual type (oft (lam

Ax. N .. x ) (arr T1 T2))[g]l. Hence, we synthesize the refinement (lam Ax.N
.x)=M..and (arr T1 T2) = T.

Context subsumption Beluga also supports context subsumption, so one can
provide a contextual object in a context ¥ in place of a contextual object in some
other context @, provided ¥ can be obtained by weakening . This mechanism,
similar to world subsumption in Twelf, is crucial when assembling larger proofs.
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For example, if we require a context that contains only declarations tm, then we
can supply a context which contains declarations block x:tm. oft x nat.

Totality Type-checking guarantees local consistency and partial correctness, but
does not guarantee that functions are total. For verifying that the implemented
function is total and constitutes a valid proof, we need to verify that all cases
are covered and that the function is terminating, i.e. all recursive calls are on
smaller arguments. Building on the algorithm described in [DP09], Joshua Dun-
field recently added a coverage checker to Beluga. The final missing piece to
verifying totality is a termination checker which we envision will follow ideas
used in the Twelf system [RP96,Pie05] for checking that arguments in recursive
calls are indeed smaller.

5 Comparison with other systems supporting HOAS

Encodings based on higher-order abstract syntax represent binders in the object
language via binders in the meta-language. As a consequence, they inherit all
the properties from the meta-language such as renaming of bound variables and
substitution for bound variables. This means the user can avoid implementing
tedious and sometimes tricky operations, such as capture-avoiding substitution.
However, even in systems supporting HOAS we find different approaches to
supporting contexts and the properties about them.

The Hybrid system [MMFO08] tries to exploit the advantages of HOAS within
the well-understood setting of higher-order logic as implemented by systems
such as Isabelle and Coq. Hybrid provides a definitional layer where higher-order
abstract syntax representations are compiled to de Bruijn representations, with
tools for reasoning about them using tactical theorem proving and principles of
(co)induction. This is a flexible approach, but contexts must be defined explicitly
and properties about them must be established separately [FMO09].

Abella [Gac08] is an interactive theorem prover for reasoning about specifica-
tions of formal systems. Its theoretical basis is different, but it supports encodings
based on higher-order abstract syntax. However, contexts are not first-class and
must be managed explicitly. For example, type uniqueness requires a lemma that
each variable has a unique typing assumption, which comes for free in Beluga.

On the other side of spectrum, we find systems such as Twelf, Delphin
and Beluga. Twelf is the most mature system and it provides a uniform meta-
language for specifying formal systems together with their proofs using HOAS.
Proofs are implemented as relations, and one establishes separately that the
relation constitutes a total function and Twelf supports both termination and
coverage checking. Delphin [PS09] is closest to Beluga. Proofs are implemented
as functions (like Beluga) rather than relations, and its implementation uses
much of the Twelf infrastructure.

In Twelf and Delphin, contexts are implicitely supported and we can reason
about the contexts using world checking. However, the user does not have fine-
grained control over the context. In particular we cannot state that a given object
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is closed while some other object is not. In the statement of the type uniqueness
theorem for example, we cannot distinguish between the fact that the typing
derivation depends on assumptions from the context while the proof that two
types are equal does not depend on the context.

Another difference to Twelf and Delphin lies in the type reconstruction and
coverage algorithms for Beluga programs. In the type uniqueness proof for exam-
ple, Beluga crucially relies on the fact that the type constructor arr is injective;
given an object of type eq (arr T S) (arr T S’)[ ] we reason by inversion that
the only possible way we could have derived an object of this type is by the rule
ref. Therefore, type reconstruction will synthesize S = s’ which is then used to
finish the proof. In Twelf and Delphin, we need to prove a lemma stating ”if
eq (arr T 8) (arr T S’) then eq S S’, since the coverage checker will otherwise
not accept the proof.

Beluga may be thought of as the most advanced system for reasoning about
formal systems, since it provides not only support for binders but also for con-
texts. Contexts are explicit in the system; we can distinguish between different
contexts, reason with them using context subsumption, and even observe their
shape by matching on them.

6 Conclusion

Beluga is a powerful programming environment for implementing formal sys-
tems together with their meta-theory. Besides the type uniqueness example, our
test suite includes standard examples such as the Church-Rosser theorem, cut-
admissibility, Natural Deduction to Hilbert-style proof translations, proofs about
compiler transformations, and preservation and progress for various ML-like lan-
guages. Together with A. Felty, we have proposed a list of simple benchmarks
[FP] which highlight the challenges due to representing and managing a context
of assumptions. Recently, we also re-implemented part one of the POPLmark
challenge [ABFT05], soundness and completeness of algorithmic subtying for
System Fgyp, following the proof pearl in [Pie07] where we exploit a higher-
order representation of the assumptions.

Beluga is however not only a reasoning environment, but may also serve as an
experimental framework for programming with dependent types and proof ob-
jects, useful for certified programming and proof-carrying code [Nec97]. We used
Beluga to implement for example type-preserving CPS translations, translations
between deBruijn and HOAS representation of terms, certifying type checking
algorithms, and type-preserving interpreters.

In the future, we plan to concentrate on automating proofs. Currently, the
recursive functions that implement induction proofs must be written by hand.
We plan to explore how to enable the user to interactively develop functions in
collaboration with theorem provers that can fill in parts of functions (that is,
proofs) automatically.
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