
PLPV 2006

Functional programming with higher-order
abstract syntax and explicit substitutions

Brigitte Pientka1

School of Computer Science
McGill University
Montreal, Canada

Abstract

This paper sketches a foundation for programming with higher-order abstract syntax and explicit substitu-
tions based on contextual modal type theory [NPP05]. Contextual modal types not only allows us to cleanly
separate the representation of data objects from computation, but allow us to recurse over data objects
with free variables. In this paper, we extend these ideas even further by adding first-class contexts and
substitutions so that a program can pass and access code with free variables and an explicit environment,
and link them in a type-safe manner. We sketch the static and operational semantics of this language, and
give several examples which illustrate these features.

Keywords: Logical frameworks, type systems

1 Introduction

Higher-order abstract syntax is a simple well-recognized technique for implementing

languages with variables and binders. This issue typically is key when implementing

evaluators, compilers or automated reasoning systems. The central idea behind

higher-order abstract syntax is to implement object-level variables and binders by

variables and binders in the meta-language (i.e. functional programming language).

One of the key benefits behind higher-order abstract syntax representations is that

one can avoid implementing common and tricky routines dealing with variables,

such as capture-avoiding substitution, renaming and fresh name generation.

Higher-order abstract syntax and its usefulness have long been demonstrated

within the logical framework LF [HHP93] and its implementation in the Twelf

system [PS99]. However it has been difficult to extend mainstream functional pro-

gramming languages with direct support for higher-order syntax encodings. The

difficulty is due to the fact that higher-order abstract syntax encodings are not

inductive in the usual sense. The problem is that recursion over higher-order ab-

stract syntax requires one to traverse a λ-abstraction and hence we need to be able

1 Email: bpientka@cs.mcgill.ca

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:bpientka@cs.mcgill.ca

Pientka

to reason about “open” terms. Building on ideas in [NPP05], we present a novel

approach based on contextual modal types which allows recursion over open terms

and also supports first-class environments and contexts.

Most closely related to our work are previous proposals by Despeyroux, Pfen-

ning and Schürmann [DPS97] where the authors present a modal λ-calculus which

supports primitive recursion over higher-order encodings via an iterator. However,

function definitions via iteration do not support pattern matching and do not easily

support reasoning with dynamic assumption. This problem is addressed in [SPS05]

and the ∇-calculus is proposed as a remedy. It also serves as a foundation for the

Elphin language. Their work requires scope stacks and explicit operations on them

such as popping an element of the scope stack. A function is then executed within

a certain scope. The necessity of keeping track of the current scope also permeates

the operational semantics, which explicitly keeps track of scope stacks.

In contrast to these approaches we believe that the contextual modal type the-

ory [NPP05] can provide a clean and elegant framework for extending functional

programming with support for higher-order abstract syntax and pattern matching.

Since we allow abstraction over context variables, we can associate a scope (context)

with each argument passed to a function rather with the function itself. This allows

us to write programs which accept open data objects as inputs and enforces stronger

invariants about data objects and programs. We also believe this will facilitate the

reasoning about the programs we write. Previous approaches by [SPS05] only allow

open objects during recursion but require the objects to be closed at the beginning

of the computation. Moreover, our proposal extends to support first-class substi-

tutions which are independently interesting and useful. First-class substitutions

are potentially interesting in programming with explicit environments, which has a

wide range of applications such as an environment based interpreter, or constant

elimination algorithm. Our underlying contextual modal type system guarantees

that programs can pass and access open terms and that it can be safely linked with

an environment.

In this paper we take a first step towards designing a foundation for program-

ming with higher-order abstract syntax and explicit substitution based on contex-

tual modal type theory. We first introduce an example to highlight some of the

issues when programming with higher-order abstract syntax and then present a

theoretical foundation by adapting and extending contextual modal type theory.

Finally, we give several examples illustrating the basic ideas of programming with

explicit substitutions. Since explicit substitutions can be viewed as value-variable

pairs, this facility essentially allows us to model explicit environments. Moreover,

our underlying type system will ensure the correct usage of this environment and

statically enforce crucial invariants such as every “free” variable occurring in a term

M is bound in some environment.

2 Motivating example

In this section we briefly discuss some of our main ideas and concerns using a

simple example which analyzes and compares the structure of lambda-terms. To

add higher-order encodings to a functional programming language we follow the

2

Pientka

approach taken in [DPS97,SPS05] to separate the representation and computation

level via a modal operator. Data objects M can make use of higher-order abstract

syntax and are injected into programs via the box-construct box M where M de-

notes object-level data. The computation level describes our functional programs

which operate on object-level terms. On this level, we allow recursion and pattern

matching against object-level terms to extract sub-terms. Unlike previous propos-

als however, every object M carries its own local context Ψ such that box(Ψ.M)

thereby allowing programming with open objects.

To illustrate consider first the following two definitions of lambda-terms based

on higher-order abstract syntax.

Object-level expressions Object-level terms

lam : (exp→ exp)→ exp. lam′ : (term→ term)→ term.

app : exp→ exp→ exp. app′ : term→ term→ term.

We are interested in defining a function related which checks whether an expres-

sion is related to a term. This function just compares the basic shape of a term

and an expression but it does not check for equality of variable names. For exam-

ple, we consider the term lam λx.lam λy.app x y to be related to the expression

lam′ λx.lam′ λy.app′ y x. Hence our computation would start of with

related (box(·. lam λx.lam λy.app x y)) (box(·. lam′ λx.lam′ λy.app′ y x))

Recursively, we traverse the lambda-binder and in the next iteration we compute

related (box(x:exp. lam λy.app x y) (box(x:term. lam′λy. app′ y x))

As we see every argument carries its own local context, which is extended when

we traverse the binder. In the next iteration, the local contexts are again extended.

related (box(x:exp, y:exp. app x y)) (box(x:term, y:term. app′ y x))

Finally, we need to check

related (box(x:exp, y:exp. x)) (box(x:term, y:term. y))

How could one write a recursive function related and what type should it have?

The function related takes as input an open object of type term and open object of

type exp. The local context associated with each open object will be reflected in

its type. While in previous proposals object-level data of type term was given the

type 2term, we write term[x:term] for an open object M which has type term in the

context x:term. Similarly, we write exp[x:exp, y:exp] for an open object M which

has type exp in the context x:exp, y:exp. To actually write recursive programs and

assign a type to them, we need to be able to abstract over the concrete context, since

it changes during execution and we must characterize valid instances for context

variables. Valid instances of context variables can be described by context schemas

or worlds (see also [SP03]). Let exprW be the constant describing the context

schema x1:exp, . . . , xn:exp, and termW be the constant describing the context schema

3

Pientka

y1:term, . . . , yk:term. Then we can declare a dependent type for the function related
as:

related : Πγ:exprW.Πψ:termW.exp[γ]→ term[ψ]→ bool.

Before we present the code for the function related, we discuss a few considerations

here. First, a recursive function will be defined via pattern matching and needs

to extract sub-expression. To describe “holes” which can be matched against open

sub-expressions, we draw upon ideas from [PP03,NPP05] and use contextual modal

variables u[σ]. u[σ] denotes a closure with the postponed substitution σ. Second,

we need to be able to pattern match against object-level variables. This will be

achieved by imposing constraints on occurrences of context variables. The context

variable ψ(x:term) denotes a context of type termW which must contain at least one

element x:term. We can now give the code for the function related next.

fun related [g] [g’] (box g’(y:exp).y) (box g(x:term).x) =

true

| related [g] [g’] (box g. lam [x]. u[id g, x/x])

(box g’. lam’ [y]. v[id g’,y/y’]) =

related [g, x:exp] [g’, y:term]

(box g, x:exp. u[id g, x/x])

(box g’, y:term. v[id g’, y/y’])

| related [g] [g’] (box g. app u1[id g] u2[id g])

(box g’. app’ v1[id g’] v2[id g’]) =

related [g] [g’] (box g. u1[id g]) (box g’.v1[id g’])

andalso

related [g] [g’] (box g. u2[id g]) (box g’.v2[id g’])

One interesting question is how to modify this program such that we check for

exact shapes. One possible solution is to modify the type of the function related

such that both objects share the same context. Such a generalized context has

the following shape: (x1:term, y1: exp), . . . , (xn:term, yn: exp). We use brackets to

emphasize the fact that this context is built up of tuples (xi:term, yi:exp). Let

termExpW be the constant describing this world. Then we can declare a dependent

type for the function rel as Πγ:termExpW.exp[γ]→ term[γ]→ bool.

fun rel [g] (box g(x:term, y:exp).x) (box g(x:term,y:exp).y) =

true

| rel [g] (box g. lam [x]. u[id g, x/x’])

(box g. lam’ [y]. v[id g,y/y’]) =

rel [g, x:term, y:exp] (box g, x:term, y:exp. u[id g, x/x’])

(box g, x:term, y:exp. v[id g, y/y’])

| rel [g] (box g. app u1[id g] u2[id g])

(box g. app’ v1[id g] v2[id g]) =

rel [g] (box g. u1[id g]) (box g.v1[id g])

andalso

rel [g] (box g. u2[id g]) (box g.v2[id g])

An important issue in our setting is α-equivalence and the scope of context

variables. Do we consider box(ψ(x:term). x) α-equivalent to box(ψ(y:term). y)? Is

box(x:term, y:term. y) α-equivalent to box(z:term, w:term. w)? What operations do

4

Pientka

we allow on context variables? – In the following theoretical development, we will

pay careful attention to these issues.

3 Formalities

Object-level terms and typing

In this section, we introduce the formal definition and type system based on

contextual modal type theory. We start with th object language which is defined

following ideas in [NPP05] and define only objects which are in canonical form

since only these are meaningful for representing object-languages. For simplicity,

we restrict it to the simply-typed fragment.

Types A,B,C ::= α | A→ B

Normal Terms M,N ::= λx.M | R
Neutral Terms R ::= x | c | RN | u[σ]

Substitutions σ, ρ ::= · | σ,M/x | s[σ] | idψ(ω)

Contexts Ψ,Φ ::= · | Ψ, x:A | ψ(ω)

Meta-contexts ∆ ::= · | ∆, u::A[Ψ] | ∆, s::Ψ[Φ] | ψ::W

Constraints ω ::= · | ω, x:A

There are several interesting aspects about the simply-typed modal lambda-

calculus. First, we distinguish between ordinary bound variables x and contextual

modal variables u[σ]. Contextual modal variable u[σ] denotes a closure with the

postponed substitution σ. As we briefly alluded to in the previous section, contex-

tual modal variables will be used to define pattern matching. Sometimes we also

call contextual modal variables meta-variables. Our intention is to apply σ as soon

as we know which term u should stand for. The domain of σ describes the free

variables which can possibly occur in the term which represents u. For more details

on contextual modal variables we refer the interested reader to [NPP05]. Here we

propose to extend the calculus with context variables ψ and substitution variables

s[σ]. Context variables ψ may be annotated with constraints ω which impose con-

dition on the context ψ. For example ψ(x:A) denotes a context which is built out

of blocks xi:A and contains at least one such block. In other words the variable x

of type A must occur in the context. We also note that ψ(ω),Ψ is only well-formed

if the variables mentioned in ω are not also declared in Ψ. At the moment, we

restrict the use of constraints to context variables occurring in object. Context

variables occurring in types are not allowed to be associated with any constraints 2 .

We also require a first-class notion of identity substitution idψ(ω). Abstracting over

contexts and substitution seems an interesting and essential next step, if we aim at

using contextual modal types as a foundation for programming with higher-order

abstract syntax. Contextual modal variables u, substitution variables s and context

variables ψ are declared in the meta-context ∆. Context variables are declared to

2 Allowing constraints in types would yield to complications when defining substitution

5

Pientka

belong to a context schema W , which we assume to be declared in the a signature Σ

similar to type and world declarations in Twelf [SP03]. We omit here the exact defi-

nition for worlds and context schemas and refer the interested reader to [SP03,S00].

Typically we also suppress the signature Σ since it never changes during a typing

derivation, but keep in mind that all typing judgments have access to a well-formed

signature. Checking a type A is well-formed in a signature Σ is straightforward since

there are no dependencies. Next, we follow essentially ideas in [NPP05] to describe

object-level canonical forms only. We assume only simple types (no dependencies)

and object level type constants a together with constants denoting context schemas

have been declared in a signature. Next, we describe the main typing judgments

and typing rules.

∆; Ψ `M ⇐ A Check normal object M against type A

∆; Ψ ` R⇒ A Synthesize type A for atomic object R

∆; Φ ` σ ⇐ Ψ Check substitution σ against context Ψ

We will tacitly rename bound variables, and maintain that contexts and substi-

tutions declare no variable more than once. Note that substitutions σ are defined

only on ordinary variables x and not modal variables u. We also streamline the

calculus slightly by always substituting simultaneously for all ordinary variables.

This is not essential, but saves some tedium in relating simultaneous and iterated

substitution. We will omit here the definitions for well-formed contexts and well-

formed constraints, but focus on typing of terms and substitutions. During typing

we refer to ω : W which guarantees that the constraints ω correspond to the context

schema W .

Object-level terms

∆; Ψ, x:A `M ⇐ B

∆; Ψ ` λx.M ⇐ A→ B

∆; Ψ ` R⇒ P ′ P ′ = P

∆; Ψ ` R⇐ P

x:A ∈ Ψ
∆; Ψ ` x⇒ A

x:A ∈ ω x:A 6∈ Ψ ψ:W ∈ ∆ ω : W

∆;ψ(ω),Ψ ` x⇒ A
c:A ∈ Σ

∆; Ψ ` c⇒ A

u::A[Φ] ∈ ∆ ∆; Ψ ` σ ⇐ Φ

∆; Ψ ` u[σ]⇒ A

∆; Ψ `M ⇒ A→ B ∆; Ψ ` N ⇐ A

∆; Ψ `M N ⇒ B

Object-level substitutions

∆; Ψ ` · ⇐ ·
∆; Ψ ` σ ⇐ Φ ∆; Ψ `M ⇐ A

∆; Ψ ` (σ,M/x)⇐ (Φ, x:A)

s::Φ1[Φ2] ∈ ∆ Φ = Φ1 ∆; Ψ ` ρ⇐ Φ2

∆; Ψ ` (s[ρ])⇐ Φ

ψ : W ∈ ∆ ω : W

∆;ψ(ω),Ψ ` idψ(ω) ⇐ ψ(ω)

We note that we require the usual conditions on bound variables. For example

in the rule for lambda-abstraction the bound variable x must be new and cannot

6

Pientka

already occur in the context Ψ. This can be always achieved via alpha-renaming.

Computation-level expressions

Our goal is to cleanly separate the object level and the computation level. While

the object level describes data, the computation level describes the programs which

operate on data. Computation-level types may refer to object-level types via the

contextual type A[Ψ] which denotes an object of type A which may contain the

variables specified in Ψ. To allow quantification over context variables ψ, we in-

troduce a dependent type Πψ:W.τ where W denotes a context schema and context

abstraction via Λψ.e.

Types τ ::= A[Ψ] | Φ[Ψ] | τ1 → τ2 | Πψ:W.τ

Expressions e ::= y | rec f.e | e1 e2 | fn y.e | Λψ.e | e dΨe | (e : τ)

| box(Ψ.M) | sbox(Ψ. σ) | case e of p1 | . . . | pn

Branch p, q ::= εu::A[Ψ].p | εs::Φ[Ψ].p | box(Ψ.M) 7→ e | sbox(Ψ. σ) 7→ e

Contexts Γ ::= · | Γ, y:τ

Data can be injected into programs via the box-construct box(Ψ.M). Here M

denotes an object-level term M which may contain the variables specified in the

context Ψ. Similarly, we can inject substitutions sbox(Ψ. σ) where Ψ is the range of

the substitution σ. Since substitutions can be viewed as pairs between variables and

object-level terms, this facility essentially allows us to model explicit environments.

Finally, we allow pattern matching on object-level terms via case-statement. To

simplify the theoretical development, we require that all contextual modal variables

occurring in a pattern are explicitly specified. However we do not yet consider

matching against context variables. We overload the → which is used to denote

function types on the object level as well as the computation level. Also we may

use x and y for object-level variables and program variables. However, it should be

clear from the usage which one we mean.

Next, we consider typing rules for programs. We distinguish here between typing

of expressions and branches. Note that in order to type expressions and branches

we will refer to the typing of object-level terms. Moreover, we adopt a bi-directional

view.

∆; Γ ` e⇐ τ expression e has type τ

∆; Γ ` e⇒ τ synthesize type τ for expression e

∆; ∆′; Γ ` p : τ ′ ⇐ τ branch p checks against τ ′ ⇐ τ

The typing rules for expressions are next. We only point out a few interesting

issues. First the typing rule for box(Ψ.M). M denotes a object-level term whose

free variables are defined in the context Ψ, i.e. it is closed with respect to a context

Ψ. To type box(Ψ.M) we switch to object-level typing, and forget about the previ-

ous context Γ which only describes assumptions on the computation-level. Similar

7

Pientka

reasoning holds for the typing rule for sbox(Ψ. σ). To access data, we provide a case-

statement with pattern matching. The intention is to match against the contextual

modal variables occurring in the pattern.

Expressions

∆, ψ:W ; Γ ` e⇐ τ

∆; Γ ` Λψ.e⇐ Πψ:W.τ

∆; Γ, f :τ ` e⇐ τ

∆; Γ ` rec f.e⇐ τ

∆; Γ, y:τ1 ` e⇐ τ2

∆; Γ ` fn y.e⇐ τ1 → τ2

∆; Ψ `M ⇐ A Ψ ≤ Ψ′

∆; Γ ` box(Ψ.M)⇐ A[Ψ′]
∆; Ψ ` σ ⇐ Φ Ψ ≤ Ψ′

∆; Γ ` sbox(Ψ. σ)⇐ Φ[Ψ′]

∆; Γ ` e⇒ A[Ψ] for all i ∆; ·; Γ ` pi : A[Ψ]⇐ τ

∆; Γ ` case e of p1 | . . . | pn ⇐ τ

∆; Γ ` e⇒ Φ[Ψ] for all i ∆; ·; Γ ` pi : Φ[Ψ]⇐ τ

∆; Γ ` case e of p1 | . . . | pn ⇐ τ

∆; Γ ` e⇒ τ ′ τ = τ ′

∆; Γ ` e⇐ τ

∆; Γ ` e⇐ τ

∆; Γ ` (e : τ)⇒ τ

y:τ ∈ Γ

∆; Γ ` y ⇒ τ

∆; Γ ` e⇒ Πψ:W.τ ` Ψ : W

∆; Γ ` e dΨe ⇒ [[Ψ/ψ]]τ

∆; Γ ` e1 ⇒ τ2 → τ ∆; Γ ` e2 ⇐ τ2

∆; Γ ` e1 e2 ⇒ τ

Branches

∆; (∆′, u::A[Φ]); Γ ` p : τ1 ⇐ τ

∆; ∆′; Γ ` εu::A[Φ].p : τ1 ⇐ τ

∆, (∆′, s::Ψ[Φ]); Γ ` p : τ1 ⇐ τ

∆; ∆′; Γ ` εs::Ψ[Φ].p : τ1 ⇐ τ

∆′; Γ ` box(Ψ.M)⇐ τ1 (∆,∆′); Γ ` e⇐ τ

∆; ∆′; Γ ` box(Ψ.M) 7→ e : τ1 ⇐ τ

∆′; Γ ` sbox(Ψ. σ)⇐ τ1 (∆,∆′); Γ ` e⇐ τ

∆; ∆′; Γ ` sbox(Ψ. σ) 7→ e : τ1 ⇐ τ

Contexts

ψ(ω) ≤ ψ
Ψ ≤ Ψ′

Ψ, x:A ≤ Ψ′, x:A · ≤ ·

Here we also observe the usual bound variable renaming conditions. In the

function rule we assume that the variable x is new and does not occur already in

Γ. Context variables are explicitly quantified and bound by Λψ.e. In particular,

the context variable ψ in box(ψ.M) is not bound by box. Recall also, that we do

not allow constraints at binding occurrences of context variables in types. As a

consequence, comparing two contexts Ψ and Ψ′ as in the rule for box for example,

8

Pientka

just checks whether we can obtain Ψ′ from Ψ by erasing any constraints ω which

may be present in a context variable ψ.

In the rules for explicit substitutions, we need to possibly rename the domain

of σ. This can always be achieved. Renaming of the domain of a substitution can

be done explicitly by σ′/Ψ. Similarly, in the rule for box(Ψ.M) we may need to

rename the variables in Ψ′ to match the variables in Ψ.

4 Ordinary and contextual substitutions

In this section we define the operations of substitution. There are multiple sub-

stitution operations because we have several different kinds of variables. We will

consider each of these operations in turn.

Ordinary substitution for program and object-level variables

The operations are capture-avoiding and defined in a standard manner. Our

convention is that substitutions as defined operations on object-level terms and

expressions are written in prefix notation [M/x]N for an object-level substitution

and [e/x]e′ for computation-level substitution. Note that in [M/x]N the bound

variable x denotes an object-level term, while in the [e/x]e′ the bound variable x

denotes a computation-level expression. We only show the substitutions on the

computation level to illustrate some basic principles. The details for [M/x]N can

be found in [NPP05]. Next, we define substitution for computation-level expressions

and branches.

[e/x](x) = e

[e/x](y) = y if y 6= x

[e/x](Λψ.e′) = Λψ.[e/x]e′ provided ψ 6∈ FV(e)

[e/x](e′ dΨe) = [e/x]e′ dΨe
[e/x](fn y.e′) = fn y.[e/x]e′ provided y 6∈ FV(e) and y 6= x

[e/x](rec f.e′) = rec f.[e/x]e′ provided f 6∈ FV(e) and f 6= x

[e/x](e1 e2) = ([e/x]e1) ([e/x]e2)

[e/x](box(Ψ.M)) = box(Ψ.M)

[e/x](sbox(Ψ. σ)) = sbox(Ψ. σ)

[e/x](case e′ of p1 | . . . | pn) = case [e/x]e′ of [e/x]p1 | . . . | [e/x]pn

[e/x](εu::A[Φ].p) = εu::A[Φ].[e/x]p

[e/x](εs::Ψ[Φ].p) = εs::Ψ[Φ].[e/x]p

[e/x](box(Ψ.M) 7→ e′) = box(Ψ.M) 7→ [e/x]e′

[e/x](sbox(Ψ. σ) 7→ e′) = sbox(Ψ. σ) 7→ [e/x]e′

9

Pientka

Note that box(Ψ.M) does not contain any free occurrences of program variables x,

and therefore substitution has no effect. Similarly, the case for sbox(Ψ. σ) where no

change is visible when [e/x] is applied to it.

Theorem 4.1 (Substitution on computation-level variables)

If ∆; Γ ` e⇐ τ and ∆; Γ, x:τ,Γ′ ` J then ∆; Γ,Γ′ ` [e/x]J .

Proof. By induction on the structure of the second given derivation. 2

A similar substitution principle holds for object-level variables.

Theorem 4.2 (Substitution on object-level variables)

If ∆; Ψ `M ⇐ A and ∆; Ψ, x:A,Ψ′ ` J then ∆; Ψ,Ψ′ ` [M/x]J .

Proof. By induction on the structure of the second given derivation. 2

Contextual substitution for meta-variables

Substitutions for contextual variables u are a little more difficult. We can think

of u[σ] as a closure where as soon as we know which term u should stand for we can

apply σ to it. Because of α-conversion, the variables that are substituted at different

occurrences of u may be different, contextual substitution for a meta-variable must

carry a context, written as [[Ψ.M/u]]N , [Ψ.M/u]σ, and [[Ψ.M/u]e where Ψ binds

all free variables in M . This complication can be eliminated in an implementation

of our calculus based on de Bruijn indexes. We show contextual substitution into

objects-level terms next.

[[Ψ.M/u]](x) = x

[[Ψ.M/u]](λy.N) = λy.[[Ψ.M/u]]N

[[Ψ.M/u]](R N) = ([[Ψ.M/u]]R) ([[Ψ.M/u]]N)

[[Ψ.M/u]](u[σ]) = [[[Ψ.M/u]]σ/Ψ]M

[[Ψ.M/u]](v[σ]) = v[[[Ψ.M/u]]σ] provided v 6= u

[[Ψ.M/u]](·) = ·
[[Ψ.M/u]](σ,N/y) = [[Ψ.M/u]]σ, ([[Ψ.M/u]]N)/y

[[Ψ.M/u]](s[ρ]) = [[s[([[Ψ.M/u]]ρ)]

[[Ψ.M/u]](idψ) = idψ

Applying [[Ψ.M/u]] to the closure u[σ] first obtains the simultaneous substitution

σ′ = [[Ψ.M/u]]σ, but instead of returning M [σ ′], it proceeds to eagerly apply σ′ to

M . Before σ′ can be carried out, however, it’s domain must be renamed to match

the variables in Ψ, denoted by σ′/Ψ. Contextual substitution into computation-level

expressions is next.

10

Pientka

[[Ψ.M/u]](x) = x

[[Ψ.M/u]](Λψ.e) = Λψ.[[Ψ.M/u]]e

[[Ψ.M/u]](e dΨe) = ([[Ψ.M/u]]e) dΨe
[[Ψ.M/u]](rec f.e) = rec f.[[Ψ.M/u]]e

[[Ψ.M/u]](fn y.e) = fn y.[[Ψ.M/u]]e

[[Ψ.M/u]](e1 e2) = ([[Ψ.M/u]]e1) ([[Ψ.M/u]]e2)

[[Ψ.M/u]](box(Φ. N)) = box(Φ. [[Ψ.M/u]]N)

[[Ψ.M/u]](sbox(Φ. σ)) = sbox(Φ. [[Ψ.M/u]]σ)

[[Ψ.M/u]](case e of p1 | . . . | pn) = case [[Ψ.M/u]]e1 of [[Ψ.M/u]]p1 | . . . | [[Ψ.M/u]]pn

The cases for function and recursion do not have to consider capture-avoiding

side conditions. Since M must be closed with respect to Ψ and meta-variables u

are distinct from computation-level variables x no clashes can happen. Finally,

contextual substitution into computation-level branches.

[[Ψ.M/u]](εv::B[Φ].p) = εv::B[Φ].[[Ψ.M/u]]p if v 6∈ FMV(M) and v 6= u

[[Ψ.M/u]](εs::Ψ[Φ].p) = εs::Ψ[Φ].[[Ψ.M/u]]p if s 6∈ FMV(M)

[[Ψ.M/u]](box(Φ. N) 7→ e)) = box(Φ. N) 7→ [[Ψ.M/u]]e

[[Ψ.M/u]](sbox(Φ. σ) 7→ e)) = sbox(Φ. σ) 7→ [[Ψ.M/u]]e

Finally, the cases for the branches are interesting. We require that all the contextual

variables occurring in a pattern N 7→ e are explicitly quantified by ε and hence we

do not apply the contextual substitution [[Ψ.M/u]] to the object N describing the

pattern, but only to e. Contextual substitution satisfies the following substitution

property.

Theorem 4.3 (Contextual modal substitution)

(i) If ∆; Ψ `M ⇐ A and ∆, u::A[Ψ]; Γ ` J then ∆; Γ ` [[Ψ.M/u]]J .

(ii) If ∆; Ψ `M ⇐ A and ∆, u::A[Ψ]; Φ ` J then ∆; Φ ` [[Ψ.M/u]]J .

Proof. By structural induction on the second derivation. 2

Contextual substitution for context variables

Next, we consider substitutions for context variables. Unlike the previous sub-

stitution operations which were total, substitution of a context Ψ into a context

variable ψ(ω) may fail if Ψ does not satisfy ω. We start with considering context

substitution into computation-level expressions.

11

Pientka

[[Ψ/ψ]](x) = x

[[Ψ/ψ]](Λγ.e) = Λγ.[[Ψ/ψ]]e provided that γ 6∈ FV(Ψ)

[[Ψ/ψ]](e dΦe) = ([[Ψ/ψ]]e) d[[Ψ/ψ]]Φe
[[Ψ/ψ]](fn y.e) = fn y.[[Ψ/ψ]]e

[[Ψ/ψ]](rec f.e) = rec f.[[Ψ/ψ]]e

[[Ψ/ψ]](e1 e2) = ([[Ψ/ψ]]e1) ([[Ψ/ψ]]e2)

[[Ψ/ψ]](box(Φ. N)) = box([[Ψ/ψ]]Φ. [[Ψ/ψ]]N)

[[Ψ/ψ]](sbox(Φ. σ)) = sbox(Φ. [[Ψ/ψ]]σ)

[[Ψ/ψ]](case e of p1 | . . . | pn) = case [[Ψ/ψ]]e1 of q1 | . . . | qk
where [[Ψ/ψ]]pi = qi for some i

In the case for box(Φ. N) we apply the substitution [[Ψ/ψ]] to both the context

Φ and the object N . While the object N does not contain context variables ψ, it

may contain the identity substitution id(ψ) which needs to be unfolded. Similar

considerations hold for the case sbox(Φ. σ). Note that applying substitution [[Ψ/ψ]]

to some of the branches pi may actually fail, and the substitution operation elim-

inates these branches, since they are unreachable. Coverage checking [SP03] will

guarantee that there is at least one branch where applying substitution [[Ψ/ψ]] to it

will succeed and we can guarantee progress. Hence applying the substitution [[Ψ/ψ]]

to an expression is only total if we covered all possible cases which guarantees that

there must be at least one case where applying [[Ψ/ψ]] to the branch succeeds. The

most interesting case is where actual substitution must happen.

[[Ψ/ψ]](·) = ·
[[Ψ/ψ]](Φ, x:A) = ([[Ψ/ψ]]Φ), x:A provided x 6∈ V([[Ψ/ψ]]Φ)

[[Ψ/ψ]](ψ(ω)) = Ψ if Ψ satisfies ω.

[[Ψ/ψ]](φ(ω)) = φ for φ 6= ψ.

[[Ψ/ψ]](·) = ·
[[Ψ/ψ]](σ,M/x) = [[Ψ/ψ]]σ, [[Ψ/ψ]]M/x

[[Ψ/ψ]](s[ρ]) = s[[[Ψ/ψ]]ρ]

[[Ψ/ψ]](idψ(ω)) = id(Ψ) if Ψ satisfies ω.

[[Ψ/ψ]](idφ(ω)) = idφ(ω)

We recall that the only construct binding a context variable ψ is context abstrac-

tion Λψ.e and box(ψ.M) or sbox(ψ. σ) does not bind ψ. Expansion of the identity

substitution is defined as follows:

12

Pientka

id(·) = ·
id(Ψ, x:A) = id(Ψ), x/x

id(ψ(ω)) = idψ(ω)

Lemma 4.4 If id(Ψ) = σ then ∆; Ψ,Ψ′ ` σ ⇐ Ψ.

Proof. Induction on the structure of Ψ. 2

Lemma 4.5

(i) If ∆, ψ:W ;ψ(ω),Φ `M ⇐ A and Ψ : W and Ψ satisfies ω

then ∆; Ψ,Φ `M ⇐ A.

(ii) If ∆, ψ:W ;ψ(ω),Φ ` e⇐ τ , e coverage checks, Ψ : W and Ψ satisfies ω

then ∆; Ψ,Φ ` e⇐ τ .

Proof. Structural induction on the first derivation. 2

Next, we give a brief definition for substituting for substitution variables.

[[Ψ.σ/s]](x) = x

[[Ψ.σ/s]](λy.N) = λy.[[Ψ.σ/s]]N

[[Ψ.σ/s]](N1 N2) = ([[Ψ.σ/s]]N1) ([[Ψ.σ/s]]N2)

[[Ψ.σ/s]](u[ρ]) = u[[[Ψ.σ/s]]ρ]

[[Ψ.σ/s]](·) = ·
[[Ψ.σ/s]](σ,N/y) = [[Ψ.σ/s]]σ, ([[Ψ.σ/s]]N)/y

[[Ψ.σ/s]](s[ρ]) = [[[([[Ψ.σ/s]]ρ)/Ψ]σ

[[Ψ.σ/s]](s′[ρ]) = [[s′[([[Ψ.σ/s]]ρ)]

[[Ψ.σ/s]](idφ) = idφ

Applying [[Ψ.σ/s]] to the closure s[ρ] first obtains the simultaneous substitution

ρ′ = [[Ψ.σ/s]]ρ, but instead of returning σ[ρ′], it proceeds to eagerly apply ρ′ to σ.

Before ρ′ can be carried out, however, it’s domain must be renamed to match the

variables in Ψ, denoted by ρ′/Ψ.

Lemma 4.6

(i) If ∆; Ψ ` σ ⇐ Ψ′ and ∆, s::Ψ′[Ψ]; Φ ` J then ∆; Φ ` [[Ψ.σ/s]]J .

(ii) If ∆; Ψ ` σ ⇐ Ψ′ and ∆, s::Ψ′[Ψ]; Γ ` J then ∆; Γ ` [[Ψ.σ/s]]J .

Proof. By structural induction on the second derivation. 2

13

Pientka

5 Operational semantics

In this section, we sketch a small-step operational semantics for the presented lan-

guage. During execution type annotations should be unnecessary, and we define

evaluation only on expressions where all type annotations have been erased. First,

we define the values in this language.

Value v ::= fn y.e | Λγ.e | box(Ψ.M) | sbox(Ψ. σ)

Next, we define a small-step evaluation judgment:

e −→ e′ Expression e evaluates in one step to e′.

∆ ` box(Ψ.M)
.
= p −→ e′ Branch p matches box(Ψ.M) and steps to e′

∆ ` sbox(Ψ. σ)
.
= p −→ e′ Branch p matches to sbox(Ψ. σ) and steps to e′

In the judgment for branches, we note that box(Ψ.M) does not contain any

meta-variables, i.e. it is closed, and ∆ characterizes the meta-variables occurring

in the branch p. We only concentrate on three interesting cases, where actual com-

putation happens. The case for function application is straightforward. Values for

program variables are propagated by computation-level substitution. Instantiations

for context variables are propagated by applying a concrete context Ψ to a context

abstraction Λψ.e. Finally, the case for pattern matching against box(Ψ.M) and

sbox(Ψ. σ). Here we need to propagate object-level terms via contextual substitu-

tion.

(fn y.e) v −→ [v/y]e (Λψ.e) [Ψ] −→ [[Ψ/ψ]]e

· ` box(Ψ.M)
.
= pi −→ e′

(case (box(Ψ.M)) of p1 | . . . | pn) −→ e′

· ` sbox(Ψ. σ)
.
= pi −→ e′

(case (sbox(Ψ. σ)) of p1 | . . . | pn) −→ e′

Since evaluation relies on pattern matching object-level terms, we describe

briefly this process. In particular, we rely on higher-order pattern matching to

match box(Ψ.M) against box(Ψ.M ′) 7→ e. Higher-order patterns in the sense of

Miller [Mil91] restrict syntactically the occurrences of contextual modal variables

u[σ]. The pattern restriction enforces that the substitution σ which is associated

with the contextual modal variable u only maps variables to variables and has the

following form: y1/x1, . . . , yn/xn. This ensures that higher-order pattern matching

remains decidable in the presence of λ-abstraction. The judgment for higher-order

pattern matching can be described as follows:

∆; Ψ `M .
= M ′/θ M matches M ′ s.t. [[θ]]M ′ = M

A description of higher-order pattern matching for contextual modal variables

can be found in [Pie03]. It seems feasible to extended this description to incorporate

14

Pientka

also substitution while preserving correctness and crucial invariants of higher-order

pattern matching such as

(i) θ has domain ∆ and instantiates all modal variables in ∆ s.t. · ` θ : ∆.

(ii) M = [[θ]]N , i.e. object M is syntactically equal to [[θ]]N .

We are now in a position to describe computation-level pattern matching of

box(Ψ.M) against a pattern p. Pattern matching of sbox(Ψ. σ) follows similar ideas.

∆, v::A[Φ] ` box(Ψ.M)
.
= p −→ e′

∆ ` box(Ψ.M)
.
= (εv::A[Φ].p) −→ e′

∆, s::Φ′[Φ] ` box(Ψ.M)
.
= p −→ e′

∆ ` box(Ψ.M)
.
= (εs::Φ′[Φ].p) −→ e′

∆; Ψ `M .
= M ′/θ

∆ ` box(Ψ.M)
.
= (box(Ψ.M ′) 7→ e) −→ [[θ]]e

Given the current setup, we can prove type safety for our proposed functional

language with higher-order abstract syntax and explicit substitutions. Let |e| be

the erasure of all type assignments of e.

Theorem 5.1

(i) If ·; · ` e ⇒ τ and e coverage checks then either |e| is a value or there exists

an expression e′ s.t. |e| −→ |e′| and ·; · ` e′ ⇒ τ .

(ii) If ·; · ` e ⇐ τ and e coverage checks then either |e| is a value or there exists

an expression e′ s.t. |e| −→ |e′| and ·; · ` e′ ⇐ τ .

Proof. By structural induction on the first derivation using canonical forms lemma,

correctness of coverage, correctness of higher-order pattern matching, and various

substitution properties we proved earlier. 2

6 Examples

In this section, we will show several examples to illustrate the potential applications

of the ideas presented. All the examples require context variables to denote an

open world we recurse over. This world is known during run-time, but changes. We

believe that the foundation is strong enough to handle most of the examples using

higher-order abstract syntax from the Twelf repository [PS99]. The examples do

not yet make essential use of substitution variables and first-class substitutions.

Variable counting

First, we show a very simple function which counts the bound variables occurring

in an expression defined using higher-order abstract syntax. We assume, we have

declared a data-type exp for expressions using higher-order abstract syntax which

contains the objects lam : (exp → exp) → exp and app : exp → exp → exp.. We

assume we have available basic computation-level types such as nat, string or bool.

15

Pientka

rec cnt.

Λγ.fn e.case e of box(γ(x:exp). x) 7→ 1

| εu::exp[γ, x′:exp]. box(γ. lam λx:exp.u[idγ , x/x
′]) 7→

cnt dγ, x:expe (box(γ, x:exp. u[idγ , x/x
′]))

| εu::exp[γ] εv::exp[γ]. box(γ. app u[idγ] v[idγ]) 7→
cnt dγe (box(γ. u[idγ])) + cnt dγe (box(γ. v[idγ]))

Note we need to use a context variable γ to denote our context of variables which

may occur in the term e and which will be built up during recursion. Only during

runtime, do we know the actual context. Omitting some type information (which

we think of being implicit) and following Twelf-like syntax where λ-abstraction is

denoted by [x] ... this can be beautified to:

rec cnt: Pi g:expW. exp[g] -> int =

Lam g => fn e =>

case e of (box g(x). x) => 1

|(box g. (app u[id g] v[id g])) =>

cnt [g] (box g. u[id g]) + cnt(box g. v[id g])

|(box g. (lam [x] u[id g, x/x]) =>

cnt [g,x] (box g,x. u[id g, x/x])

Double negation translation

In this example, we give a functional implementation of translating first-order

formulas using double negation. Formulas can be defined using higher-order abstract

syntax in a straightforward way, where we define a type i for individuals and a type

prop for propositions. We only concentrate on the fragment for implication and

universal quantification here, and include an equality predicate here. The constant

eq will have type i -> i -> prop, the constant all has type (i -> prop) ->

prop and the constant imp has type prop -> prop -> prop. Next, we present a

program which translates propositions via double-negation. Let iW denote a context

where we have individuals, i.e. x1:i, ... xn:i. To ease readability, we use let-

expressions let box g’.u = e in e’ end as an abbreviation for case e of box

g’.u => e’.

rec dneg: Pi g: iW. prop[g] -> prop[g] =

Lam g => fn e =>

case e of (box g. eq t1[id g] t2[id g]) =>

(box g. neg (neg (eq t1[id g] t2[id g])))

| (box g. imp f1[id g] f2[id g]) =>

let box g. u1 = dneg [g] (box g. f1[id g])

box g. u2 = dneg [g] (box g. f2[id g])

in (box g. neg(neg (imp u1[id g] u2[id g]))) end

| (box g. all [x] f[id g, x/x]) =>

let box g,x. u = dneg [g,x] (box g,x. f[id g, x/x’])

in box (g. neg(neg(all [x] u[id g, x/x’]))) end

16

Pientka

Substitution-based evaluator

Finally, we the functional implementation of a substitution-based evaluator. We

first define the following data-type declaration for numbers and expressions and use

higher-order abstract syntax to denote the binder in the let-expression.

z nat.

suc: nat -> nat.

num: nat -> exp

Add: exp -> exp -> exp.

Let: exp -> (nat -> exp) -> exp.

We assume we defined a function for addition add:nat[]*nat[] -> nat[].

Then we can define a simple evaluator in a straightforward way. If we encounter a

let-expression let x = e in e’ end then we first evaluate the expression e to some

value v, and then we replace all occurrences of the binder x in e’ with the value v.

This is handled by building the closure u[id g,v[]/x]. It should be obvious how

to extend this evaluator to other forms of arithmetic expressions.

rec eval: exp[] -> nat[] =

fn e => case e of(box . Nat n[]) => (box . n[])

| (box . Add(e1[], e2[])) =>

let val a = eval (box . e1[])

val b = eval (box . e2[])

in add (a, b) end

| (box . Let(e[], [x]. u[x/x])) =>

let box v = eval (box . e[])

in eval(box . u[v[]/x]) end

While the substitution-model has many advantages from a theoretical point of

view, in an implementation it is usually considered too expensive. Alternatively,

we can use an environment model where we associates variables with values in an

environment. When we evaluate a let-expression let x = e in e’ end then we

evaluate the expression e to some value v, and then evaluate e’ in an environment

where we associate the binder x with the value v. When we encounter a variable x,

we lookup its value in the environment. Explicit substitutions seem ideally suited

to model the run-time environment. In the future, we plan to explore this direction

further.

7 Related Work

Techniques for supporting higher-order abstract encodings in functional program-

ming languages have received wide spread attention. One of the first proposals for

functional programming with support for binders and higher-order abstract syntax

was presented by Miller [Mil90]. Later, Despeyroux, Pfenning, and Schürmann, have

developed proof-theoretic foundations for programming and reasoning with higher-

order abstract syntax [DPS97,SPS05] based on modal types. However, there are no

contextual types and their theoretical development lacks first-class meta-variables

and a context of meta-variables. This has deep consequences for the theoretical

development and leads to difficulties in proving progress of the proposed language.

Since in our framework the type of a meta-variable determines its local scope, local

scope is naturally enforced. No scope stacks and operations on them is required,

17

Pientka

which simplifies the theoretical development. For example, the operational seman-

tics does not have to take into account a stack of contexts and there are no explicit

operations for popping a context of the stack in the proposed language. Instead

we naturally enforce that we can only evaluate closed expressions, i.e. expressions

which do not contain any meta-variables. This seems to be critical to achieve a

proof for progress and preservation. In addition, context abstraction in our setting

allows us to enforce stronger invariants about programs since we can distinguish

between different context and different worlds. The nature of the nabla-quantifier

allows only reasoning within one world or context. This seems to be contained in

the fragment we present where we have only one context variable γ and all argu-

ments depend on this context γ. However, our framework is richer in the sense

that it allows us to consider different context variables. Moreover, we propose to

extend the framework with explicit substitutions, which seem interesting in its own,

although their full impact still needs to be explored.

In functional programming, various formulations of context as a primitive

programming construct have been considered [SSB01,SSK02,Nis00,Mas99,HO01].

Nishizaki [Nis00] for example extends a lambda-calculus with explicit substitutions

in the spirit of the explicit substitution calculus proposed by Abadi et. al.[ACCL90].

However, unlike Abadi’s work, the author proposes a polymorphic calculus where

we can quantify over explicit substitutions. This work crucially relies on de Bruijn

indices. Although the use of de Bruijn indices is useful in an implementation, name-

less representation of variables via de Bruijn indices are usually hard to read and

critical principles are obfuscated by the technical notation M. Sato et al. [SSK02]

introduce a simply typed λ-calculus which has both contexts and environments (=

substitutions) as first-class values, called λκ,ε-calculus. There are many distinctions,

however, between λκε and the contextual modal type theory we propose as a foun-

dation. Most of these differences arise because the former is not based on modal

logic. For example, they do not allow α-conversion open objects and they do not

require open objects to be well-formed with respect to a local context. Moreover,

they do not cleanly distinguish between meta-variables and ordinary variables. All

these restrictions together make their system quite heavy, and requires fancy substi-

tution operations and levels attached to ordinary variables to maintain decidability

and confluence.

8 Conclusion future plans

We have sketched a foundation for functional programming with higher-order ab-

stract syntax and explicit substitution based on contextual modal types. Our pro-

posal builds on earlier ideas by [DPS97,SPS05] where modal types have been used to

distinguish between object-level terms and computation-level programs. In contrast

to earlier proposals, we distinguish between contextual meta-variables and ordinary

variables which we believe leads to a cleaner and more expressive framework for

programming with higher-order abstract syntax. The distinction between contex-

tual meta-variables and ordinary bound variables has already provided interesting

insights into higher-order proof search, higher-order unification and logical frame-

works in general (see for example [PP03,Pie03]). It has allowed us to clarify many

18

Pientka

theoretical issues and invariants related to the interplay of meta-variables (= con-

textual variables) and ordinary variables. Contextual modal types also have been

applied to staged functional programming to generate code which may possibly be

open [NPP05]. In this paper, we apply contextual modal types to programming

with open terms based on higher-order abstract syntax.

There are many aspects left to consider. One important aspect of this work is

that our proposal ensures the adequate encoding of on-paper formulations. We be-

lieve that it is possible to prove adequacy about our examples since our object-level

theory draws on ideas from logical frameworks, and adequacy proofs for encodings

within logical frameworks are standard. In the future, we also hope to gain a better

understanding of the expressiveness of the presented language. Some features such

as substitution variables have not been used to their full power in practice yet. The

status of context variables and the operations allowed on them may also need to be

expanded for some practical examples. Finally, an interesting aspect is how we can

combine datatypes defined via higher-order abstract syntax with ordinary types.

References

[ACCL90] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lèvy. Explicit substitutions.
In Symposium on Principles of Programming Languages, POPL’90, pages 31–46, San Francisco,
California, 1990. ACM.

[DPS97] Joëlle Despeyroux, Frank Pfenning, and Carsten Schürmann. Primitive recursion for higher-order
abstract syntax. In R. Hindley, editor, International Conference on Typed Lambda Calculus and
Applications, TLCA’97, pages 147–163, Nancy, France, April 1997. Springer-Verlag LNCS. An
extended version is available as Technical Report CMU-CS-96-172, Carnegie Mellon University.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of
the Association for Computing Machinery, 40(1):143–184, January 1993.

[HO01] Masatomo Hashimoto and Atsushi Ohori. A typed context calculus. Theoretical Computer
Science, 266(1–2):249–272, 2001.

[Mas99] Ian A. Mason. Computing with contexts. Higher-Order and Symbolic Computation, 12(2):171–
201, 1999.

[Mil90] Dale Miller. An extension to ml to handle bound variables in data structures. In G. Huet and
G. Plotkin, editors, Proceedings of the First Workshop on Logical Frameworks, pages 323–335,
1990.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction, function variables, and
simple unification. Journal of Logic and Computation, 1(4):497–536, 1991.

[Nis00] Shin-Ya Nishizaki. A polymorphic environment calculus and its type-inference algorithm. Higher
Order Symbol. Comput., 13(3):239–278, 2000.

[NPP05] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.
submitted, 2005.

[Pie03] Brigitte Pientka. Tabled higher-order logic programming. PhD thesis, Computer Science
Department, Carnegie Mellon University, December 2003.

[PP03] Brigitte Pientka and Frank Pfennning. Optimizing higher-order pattern unification. In
F. Baader, editor, International Conference on Automated Deduction, CADE’03, Lecture Notes
in Computer Science (LNAI 2741), pages 473–487, Miami, Florida, 2003. Springer.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf - a meta-logical framework
for deductive systems. In H. Ganzinger, editor, International Conference on Automated
Deduction, CADE’99, volume 1632 of Lecture Notes in Artificial Inteligence, pages 202–206,
Trento, Italy, 1999. Springer-Verlag.

[S00] Carsten Schürmann. Automating the meta theory of deductive systems. Department of
Computer Sciences, Carnegie Mellon University, Available as Technical Report CMU-CS-00-146,
2000.

19

Pientka

[SP03] Carsten Schürmann and Frank Pfenning. A coverage checking algorithm for LF. In D. Basin
and B. Wolff, editors, Proceedings of the 16th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs 2003), pages 120–135, Rome, Italy, September 2003. Springer-
Verlag LNCS 2758.

[SPS05] Carsten Schürmann, Adam Poswolsky, and Jeffrey Sarnat. The ∇-calculus. functional
programming with higher-order encodings. In Pawel Urzyczyn, editor, Proceedings of the 7th
International Conference on Typed Lambda Calculi and Applications(TLCA’05), Nara, Japan,
April 21-23, 2005, volume 3461 of Lecture Notes in Computer Science, pages 339–353. Springer,
2005.

[SSB01] Masahiko Sato, Takafumi Sakurai, and Rod Burstall. Explicit environments. Fundamenta
Informaticae, 45(1-2):79–115, 2001.

[SSK02] Masahiko Sato, Takafumi Sakurai, and Yukiyoshi Kameyama. A simply typed context calculus
with first-class environments. Journal of Functional and Logic Programming, 2002(4), March
2002.

20

	Introduction
	Motivating example
	Formalities
	Ordinary and contextual substitutions
	Operational semantics
	Examples
	Related Work
	Conclusion future plans
	References

