
Proof Pearl: The power of higher-order

encodings in the logical framework LF

Brigitte Pientka

School of Computer Science
McGill University

bpientka@cs.mcgill.ca

Abstract. In this proof pearl, we demonstrate the power of higher-
order encodings in the logical framework Twelf[PS99] by investigating
proofs about an algorithmic specification of bounded subtype polymor-
phism, a problem from the POPLmark challenge [ABF+05]. Our encod-
ing and representation of the problem plays to the strengths of the logical
framework LF. Higher-order abstract syntax is used to deal with issues
of bound variables. More importantly, we exploit the full advantage of
parametric and higher-order judgments. As a key benefit we get a te-
dious narrowing lemma, which must normally be proven separately, for
free. Consequently, we obtain an extremely compact and elegant encod-
ing of the admissibility of general transitivity and other meta-theoretic
properties.

1 Introduction

Stimulated by the POPLmark challenge [ABF+05], there have been many discus-
sions over the last two years about what support current proof assistants provide
for specifying programming languages and proofs about them. In this paper we
present an implementation of bounded subtype polymorphism within the log-
ical framework Twelf [PS99], inspired by the first problems in the POPLmark
challenge[ABF+05]. The logical framework LF [HHP93] provides an elegant
meta-language for the specification of deductive systems together with the proofs
about them. It has been particularly successful in encoding the meta-theory of
programming languages. Encodings in LF typically rely on ideas of higher-order
abstract syntax where object variables and binders are implemented by vari-
ables and binders in the meta-language (i.e. logical framework). One of the key
benefits behind higher-order abstract syntax representations is that one can
avoid implementing common and tricky routines dealing with variables, such as
capture-avoiding substitution, renaming and fresh name generation.

However concentrating on encoding object variables and binders by variables
and binders in the meta-language only utilizes part of the power of higher-order
encodings. One important and often neglected aspect of higher-order encodings
is the direct support for implementing hypothetical and parametric judgments
via higher-order functions. This has two important consequences: 1) A context
or environment to keep track of assumptions is unnecessary. This eliminates the

need of building up a context and managing it explicitly. More importantly,
it eliminates the need to explicitly reason about the properties of the context
such as weakening, exchange, or strengthening. 2) Since we can view hypotheti-
cal judgments as functions, applying a substitution lemma amounts to function
application. As a consequence tedious substitution lemmas need not be proven
separately. Encodings within the logical framework LF usually try to exploit
both properties extensively. This approach typically greatly reduces the size of
the final proofs. Moreover, the meta-theoretic development scales better when
we extend the language by including new constructors.

In this proof pearl we play to the strengths of logical frameworks, and we
follow in spirit the philosophy expressed by Bob Harper’s comments subsequent
to posting our solution to the POPLmark mailing list:

“ You have to listen to the logical framework, as it were, and take its
advice in guiding you towards a better way to formulate your system.
We learned this lesson many years ago when we first invented LF — the
exercise of formalizing a logic in LF does wonders for the logic.” (Bob
Harper’s post to the POPLmark-list 2 May 2006).

In other words, the representation of our problem determines our success or
failure to prove properties about it. Hence, we start by taking a close look at
the original problem posed in the POPLmark challenge, and explain our choice
of representation in the logical framework LF to take full advantage of the logi-
cal framework LF. The pay-off will be substantial, compared to other solutions
which follow the problem specification more literally. We use not only higher-
order abstract syntax to encode bound variables in our object language, but we
model parametric and hypothetical judgments as higher-oder functions thereby
eliminating the need to prove substitution and narrowing lemmas separately.
Our reasoning is purely structural and does not require any extra arguments
to reason explicitly about the size of arguments and derivations. And finally,
our solutions unlike others does not require tedious explicit proofs to show that
certain cases are impossible. As we will demonstrate our proof of admissibility
of transitivity is remarkably short and fits on less than a page.

Organization of the paper

The paper is organized as follows: We first introduce our algorithmic subtyping
relation for bounded polymorphism, and comment on the difference between
this formulation and the original challenge in [ABF+05]. Next, we will discuss
its encoding in the logical framework Twelf, develop the proof that transitivity
is admissible and show its implementation in Twelf. Finally, we will compare
and discuss other POPLmark challenge solutions to this problem.

2 Bounded polymorphic subtyping

In this section, we will briefly introduce bounded subtype polymorphism and the
basic meta-theory of System Fsub (see also Ch. 26 [Pie02b]). In this system, we

enrich polymorphic types such as ∀α.T with a subtype relation and refine the
universal quantifier to carry a subtyping constraint. The syntax of types can be
defined as follows:

Types T ::= top | α | T1 ⇒ T2 | ∀α ≤ T1.T2

Context Γ ::= · | Γ, w:α ≤ T

In ∀α ≤ T1.T2, the type variable α only binds occurrences of α in T2. We will
use small Greek letters such as α, β etc. to denote type variables. The typing
context Γ keeps track of constraints such as α ≤ T . A context Γ, w:α ≤ T is
well-formed if T is a well-formed type in the context Γ and there exists no other
assumption α ≤ S in Γ , i.e. there is a unique constraint α ≤ T for each type
variable. Next, we describe a subtyping algorithm using the judgment:

Γ ` T ≤ S Type T is a subtype of S in the context Γ

Γ ` T ≤ top
sa-top

α ≤ T ∈ Γ

Γ ` α ≤ T
sa-hyp

Γ ` α ≤ α
sa-ref-tvar

Γ ` T1 ≤ S1 Γ ` S2 ≤ T2

Γ ` S1 ⇒ S2 ≤ T1 ⇒ T2

sa-arr
Γ ` α ≤ U Γ ` U ≤ T

Γ ` α ≤ T
sa-tr-tvar

Γ ` T1 ≤ S1 Γ, w:α ≤ T1 ` S2 ≤ T2

Γ ` ∀α ≤ S1.S2 ≤ ∀α ≤ T1.T2
sa-allα,w

The description is algorithmic in the sense that general rules for reflexivity
and transitivity are admissible, and for each type constructor, top, ∀ and ⇒
there is one rule which can be applied. Following standard design principles
found in many logics, we allow hypothetical reasoning, i.e. given an assumption
α ≤ T we can directly conclude α ≤ T . While the resulting algorithm is syntax
directed, it does not eliminate all non-determinism, if viewed as a bottom-up
search algorithm. In the rule sa-tr-tvar for example we still need to guess the
type U . To illustrate how a proof can be derived, consider the following example:

w:α ≤ top, v:β ≤ α ` α ≤ α
sa-ref-tvar

w:α ≤ top, v:β ≤ α ` β ≤ α
sa-hyp

w:α ≤ top, v:β ≤ α ` (α ⇒ β) ≤ (α ⇒ α)
sa-arr

w:α ≤ top ` (∀β ≤ α.α ⇒ β) ≤ (∀β ≤ α.α ⇒ α) sa-allβ,v

· ` (∀α ≤ top.∀β ≤ α.α ⇒ β) ≤ (∀α ≤ top.∀β ≤ α.α ⇒ α)
sa-allα,w

We note that the formulation of the transitivity rule given here is different
from the challenge problem stated in [ABF+05]. Instead of the sa-hyp and the
sa-tr-tvar rule, we typically find the following specialized transitivity rule:

(α ≤ U) ∈ Γ Γ ` U ≤ T

Γ ` α ≤ T
sa-tr’

In contrast to the rule sa-tr-tvar, there is no need to guess U . Clearly, the
rule sa-tr’ is a derived rule in the system we stated. In other words, the sys-
tem we consider is slightly more general. The lack of a general hypothesis rule
is compensated by using sa-tr’ together with reflexivity. For example to prove
w:α ≤ β ` α ≤ β, we will use first transitivity to look up α ≤ β in the context,
and then prove that β ≤ β by reflexivity. As we will show, our logically motivated
algorithmic description of subtyping will lead to a much cleaner meta-theoretic
development and is a nice example how the original problem specification influ-
ences the proofs about it.

3 Representing bounded polymorphism using HOAS

In this section, we encode bounded polymorphic types together with the algo-
rithmic subtyping system in the Twelf system, which is an implementation of
the logical framework LF. Twelf supports the specification of deductive systems,
given via axioms and inference rules, together with the proofs about them, and
is hence ideally suited for this task. The LF language, a dependently typed
lambda-calculus, can be briefly described as follows:

Kinds K ::= type | Πx:A.K

Types A ::= a M1 . . . Mn | A1 → A2 | Πx : A1.A2

Objects M ::= x | c | M1 M2 | λx:A.M

Objects provided by the logical framework LF include lambda-abstraction, ap-
plication, constants and variables. The type label at the lambda-abstraction can
be omitted in practice. Types classify objects, and range over type constants
a which may be indexed by objects M1 . . . Mn, as well as non-dependent and
dependent function types. Viewing types as propositions, LF types can be inter-
preted as logical propositions. The atomic type a M1 . . . Mn corresponds to an
atomic proposition, the non-dependent function type A1 → A2 corresponds to
an implication, and the dependent function type Πx:A.B can be interpreted as
the universal quantifier. We will use types and formulas interchangeably. Kinds
classify types. For a thorough introduction to LF including the typing rules and
meta-theoretic development we refer the reader to [Pfe97]. Here we focus on how
to use the full power of LF to formalize the example of bounded polymorphism
and proofs about it.

3.1 Encoding bounded polymorphic types

To represent the previous system describing bounded subtype polymorphism, we
start with representing the language of types as objects in LF. The first obvious
question is how to represent the polymorphic type ∀α ≤ T1.T2, in particular
how to represent type variables α and the fact that any occurrence of the type
variable α in the type T2 is bound by the universal quantifier. Encodings in
the logical framework LF are typically based on higher-order abstract syntax
where we represent variables in the object language (i.e. the type variables α in

∀α ≤ T1.T2) with variables in the meta-language (i.e. bound variables in LF). In
other words, type variables α bound by ∀ in the object-language will be bound
by λ-abstraction in the meta-language. With this representation the framework
provides α-conversion and substitution for the object language.

To clarify the translation between object-level types and their representation
in LF, we introduce the following function p·q which maps object-level types to
their representation in the logical framework LF. On the left, we show how to
translate object-level types to their representation into LF, and on the right we
show the definition of the constructors in LF.

Encoding object-level types to LF objects Data-type definition in LF

tp : type.

pαq = α

ptopq = top top : tp.

pT1 ⇒ T2q = arr pT1q pT2q arr : tp -> tp -> tp.

p∀α ≤ T1.T2q = all pT1q λα.pT2q all : tp -> (tp -> tp) -> tp.

On the right, we define an LF type called tp, with the constructors top, arr,
and all. The type for the constructor all takes in two arguments, an argument
of type tp and another argument of function type (tp -> tp). Intuitively, the
first argument stands for the bound, while the second argument represents the
body of the forall-expression. The key idea to note is that in the type ∀α ≤ T1.T2

the type variable α is a binding occurrence with scope T2 and is not allowed to
occur in T1. Variables α in the object-level are represented by variables α in the
meta-level. To illustrate the encoding of a concrete type, consider the following
examples.

Object-level type LF object
∀α ≤ top.α ⇒ α all top (λα. arr α α)

∀α ≤ top.∀β ≤ α.β ⇒ α all top (λα. all α (λβ. arr β α))

To prove the adequacy of this encoding we need to show that there is a
bijection between the types represented in our object-language and the types
described in the logical framework LF. This follows standard principles which
are extensively discussed for example in [HL06]. We need to prove that every
object-level type T which may contain the free type variables α1, . . . , αn has
a representation as an LF object T of type tp in an LF context a1:tp, . . .,

an:tp, and vice versa. Here we will highlight only the role of the LF context,
since Twelf provides us with the ability to specify the shape of it and check that
indeed every LF object of type tp will be generated in this context. This is done
by the following combination of block and world declarations

%block g : block a:tp.

%worlds (g) (tp).

The block and world declaration states that the LF context is essentially of
the form a1:tp, . . ., an:tp. This guarantees that every valid LF object of type

tp is either generated by a constant from the signature or by an assumption in
the LF context.

3.2 Encoding subtyping relation

A succinct feature of higher-order abstract syntax encodings is that we do not
represent variables as a syntactic category explicitly, but variables are implicit.
This will play a important role when we encode the subtyping relation described
in the previous section. Recall that the algorithmic description is syntactically
defined by cases for each possible type. Moreover there are two rules, sa-ref-tvar
and sa-tr-tvar, which are specifically restricted to type variables. A direct im-
mediate encoding seems problematic since trying to distinguish on variables as
syntactic entities is inherently against the idea of higher-order abstract syntax!
The benefit of HOAS is that it eliminates the need for object level variables, but
the price is that we now cannot directly access them and we cannot even state
a generic rule for variables.

There are different approaches to solve this problem – for example one could
introduce a separate judgment to check if a given object is in fact a type vari-
able. This approach has been followed in the implementation by Ashley-Rollman,
Crary, and Harper [MARH]. However, this has also some disadvantages. In par-
ticular, we have to prove substitution and narrowing lemmas separately, as well
as various lemmas about impossible cases. Here we will take a different ap-
proach: Instead of a general variable rule, we will add rules for reflexivity and

transitivity for each type variable. In other words, every time we introduce a
type variable α, we also introduce the corresponding reflexive and transitive
properties such as α ≤ α and an assumption which says for all U and V , if
α ≤ U and U ≤ V then α ≤ V . Taking full advantage of the power of our
meta-language, we allow not only atomic assumptions such as α ≤ T or α ≤ α,
but we also allow more complex assumptions which from a meta-logic point of
view can be described using universal quantifiers and implications in the meta-
logic. So “for all U and V , if α ≤ U and U ≤ V then α ≤ V ” is represented as
ΠU.ΠV.α ≤ U → U ≤ V → α ≤ V . Now we can rewrite our formal algorithmic
system given in the previous section.

Γ ` T ≤ top
sa-top

α ≤ T ∈ Γ

Γ ` α ≤ T
sa-hyp

Γ ` T1 ≤ S1 Γ ` S2 ≤ T2

Γ ` S1 ⇒ S2 ≤ T1 ⇒ T2

sa-arr

Γ ` T1 ≤ S1

Γ, tr:ΠU.ΠV.α ≤ U → U ≤ V → α ≤ V

w:α ≤ T1, ref :α ≤ α ` S2 ≤ T2

Γ ` ∀α ≤ S1.S2 ≤ ∀α ≤ T1.T2

sa-all

It is worth keeping in mind that in order to use a universally quantified
assumption ΠU.ΠV.α ≤ U → U ≤ V → α ≤ V we first must instantiate U and
V appropriately.

We are now ready to show the encoding of these subtyping rules in LF.
We first define the constant sub which describes the subtyping relation. Next,

we represent each inference rule in the object-language as a clause consisting
of nested universal quantifiers and implications. Upper-case letters denote logic
variables which are implicitly bound by a Π-quantifier at the outside.

sub : tp -> tp -> type.

sa top : sub S top.

sa arr : sub S2 T2 -> sub T1 S1

-> sub (arr S1 S2) (arr T1 T2) .

sa all : (Πa:tp.

(ΠU.ΠV.sub U V -> sub a U -> sub a V) ->

sub a T1 -> sub a a ->

sub (S2 a) (T2 a))

-> sub T1 S1

-> sub (all S1 (λv.(S2 v))) (all T1 (λv.(T2 v))).

%block l0 :

some {T:tp}
block {a:tp} {tr:ΠU.ΠV. sub U V -> sub a U -> sub a V}

{w: sub a T}{ref: sub a a}.
%worlds (l0) (sub).

Using a higher-order logic programming interpretation, we can read the
clause sa arr as follows: To prove the goal sub (S1 => S2) (T1 => T2), we
must prove sub T1 S1 and then sub S2 T2. Similarly we can read the clause
sa all: To prove sub (all S1 (λv.(S2 v))) (all T1 (λv.(T2 v))), we need
to prove first sub T1 S1, and then assuming tr: ΠU.ΠV. sub U V -> sub a

U -> sub a V, w:sub a T1, and ref:sub a a, prove that sub (S2 a) (T2 a)

is true where a is a new parameter of type tp.
LF objects belonging to the type sub T S are derivations showing that in-

deed T is a subtype of S. All derivations for sub T S (i.e. all LF objects belonging
to the type sub T S) are generated either by a constant in the signature or by
an element in the LF context which assert the following four assumptions:a:tp,
tr:ΠU.ΠV.sub U V->sub a U->sub a V, w:sub a T, ref:sub a a. The block
declaration describes the shape of the LF context, and the world declaration veri-
fies that these are the only LF contexts constructed. Next we show the derivation
for the example considered earlier encoded as an LF object:

ex1 : sub (all top (λa. all a (λ b.arr a b)))

(all top (λa. all a (λ b.arr a a))) =

sa all

(λa:tp. λtra:ΠU:tp.ΠV:tp.sub U V -> sub a U -> sub a V.

λw:sub a top. λrefa:sub a a.

sa all

(λb:tp.λtrb:ΠU:tp.Π.V:tp.sub U V -> sub b U -> sub b V

λv:sub b a.λrefb:sub b b. sa arr v refa) refa)

sa top.

3.3 Encoding admissibility of transitivity

Finally, we can turn our attention to encoding the proof for transitivity.

Theorem 1 (Admissibility of transitivity).
If Γ ` S ≤ Q and Γ ` Q ≤ T then Γ ` S ≤ T .

Typically, this requires the proof of the following narrowing lemma which
needs to be proven simultaneously.

Lemma 1 (Narrowing).
If Γ, w:α ≤ Q ` J and Γ ` T ≤ Q then Γ, v:α ≤ T ` J .

However, in our setting, since we localized all rules involving type variables,
we will see this is unnecessary. Following the general LF philosophy, we now
encode the proof that transitivity is admissible as a relation between derivations.
The implementation of the proof is shown in Figure 1.

% Transitivity proof:

trans: ΠQ:tp.sub S Q -> sub Q T -> sub S T -> type.

%mode trans +Q +D +E -F.

tr-top: trans T D sa top sa top.

tr-ar: trans Q2 D2 E2 F2 ->

trans Q1 E1 D1 F1 ->

trans (arr Q1 Q2) (sa arr D2 D1) (sa arr E2 E1) (sa arr F2 F1).

tr-all:

(Πa:tpΠv:sub a T1.Πref: sub a a

Πtr:ΠU.ΠV.sub a U -> sub U V -> sub a V.

% Assumption v

(ΠP:tp.ΠE:sub T1 P.trans T1 v E (tr T1 P v E)) ->

(% Reflexivity

ΠP:tp.ΠE:sub a P. trans a ref E E) ->

(% Transitivity

ΠT’:tp.ΠS’:tp.ΠU’:tp.ΠD’:sub a U’.ΠD’’:sub U’ T’.

ΠE’:sub T’ S’.ΠF’:sub U’ S’.

trans T’ D’’ E’ F’ ->

trans T’ (tr U’ T’ D’ D’’) E’ (tr U’ S’ D’ F’)) ->

% i.h. on D2’ and E2

trans (Q2 a) (D2 a (tr v E1) ref tr) (E2 a v ref tr) (F2 a v ref tr)) ->

% i.h. on E1 and D1

trans Q1 E1 D1 F1 ->

trans (all Q1 Q2) (sa all D2 D1) (sa all E2 E1) (sa all F2 F1).

Fig. 1. Admissibility of transitivity implemented in Twelf

We begin by defining a type family, which may be thought of as a meta-
predicate corresponding to our lemma that transitivity is admissible as follows:

trans: ΠQ.sub S Q -> sub Q T -> sub S T -> type.

%mode +P +D +E -F.

Twelf binds implicitly variables S and T at the outside via Π-quantifier and
reconstructs their appropriate types. We will however quantify explicitly over the
variable Q, since our induction will proceed on the structure of the type Q and
the first derivation sub S Q. The meta-predicate trans specifies how to translate
the derivation D:sub S Q and E:sub Q T to a derivation F:sub S T. In other
words, given D:sub S Q and E:sub Q T we aim to construct a derivation F:sub

S T. This translation must be total, i.e. it must be defined on all possible inputs.
While the theoretical foundation underlying the logical framework guarantees
that only valid derivations are constructed, we must verify separately that all
cases are covered and all appeals to the induction hypothesis are valid, relying
on external checkers such as mode, coverage, termination and totality. The mode
declaration specifies that the first two derivations together with the type Q are
viewed as inputs. The last derivation sub S T is viewed as an output. To verify
totality we need to show that every appeal to the induction hypothesis is valid.
The induction will proceed simultaneously on the type Q and the derivation D

= sub S Q, and we can apply the induction hypothesis if either Q is smaller or
if Q stays the same, the derivation D is decreasing. Because of this we explicitly
reason about the the type Q and we explicitly quantify over it at the beginning.
Each case in the proof will correspond to a clause in our meta-program. Next,
we will consider each case in the proof individually.

Case First, we consider a generic case for top.

D =
Γ ` S ≤ Q

and E = sa-top
Γ ` Q ≤ top

Clearly, there exists a derivation F : Γ ` S ≤ top by using the rule sa-top.
This is represented as a clause in our meta-program as follows:

tr top : trans Q D (sa top) (sa top).

Case D =

D1

Γ ` Q1 ≤ S1

D2

Γ ` S2 ≤ Q2

sa-arr
Γ ` S1 ⇒ S2 ≤ Q1 ⇒ Q2

This derivation is repre-
sented as sa arr D2 D1.

E =

E1

Γ ` T1 ≤ Q1

E2

Γ ` Q2 ≤ T2

sa-arr
Γ ` Q1 ⇒ Q2 ≤ T1 ⇒ T2

This derivation is repre-
sented as sa arr E2 E1.

F1 : Γ ` T1 ≤ S1 by i.h. on E1 and D1

F2 : Γ ` S2 ≤ T2 by i.h. on D2 and E2

F : Γ ` (S1 ⇒ S2) ≤ (T1 ⇒ T2) by rule sa-arr using F1 and F2

The appeal to the induction hypothesis corresponds to recursively applying
the meta-predicate trans to sub-derivations E1 and D1 and D2 and E2 respec-
tively. This case corresponds to the following case in the implementation of the
proof.

tr-ar:

trans Q2 D2 E2 F2 ->

trans Q1 E1 D1 F1 ->

trans (arr Q1 Q2) (sa arr D2 D1) (sa arr E2 E1) (sa arr F2 F1).

The most interesting case is the case for sa-all.

Case In the case for sa-all we have the following:

D = Γ ` ∀α ≤ S1.S2 ≤ ∀α ≤ Q1.Q2 E = Γ ` ∀α ≤ Q1.Q2 ≤ ∀α ≤ T1.T2

By inversion on D we get:

D1 : Γ ` Q1 ≤ S1 and
D2 : Γ, tr:ΠU.ΠV.α ≤ U → U ≤ V → α ≤ V, w:α ≤ Q1, ref :α ≤ α ` S2 ≤ Q2.

We note that D2 is parametric in α and hypothetical in the three assumptions
tr, w, and ref . This parametric and hypothetical derivation is encoded as a
function in Twelf. The LF object describing the derivation D is described by the
following term:

(sa all (λa:tp.λtr:ΠU.ΠV.sub U V -> sub a U -> sub a V.

λw:sub a Q1.λref:sub a a.D2 a tr w ref)

D1)

By inversion on E we get:

E1 : Γ ` T1 ≤ Q1 and
E2 : Γ, tr:ΠU.ΠV.α ≤ U → U ≤ V → α ≤ V, v:α ≤ T1, ref :α ≤ α ` Q2 ≤ T2.

This is described by the derivation

(sa all (λa:tp.λtr:ΠU.ΠV.sub U V -> sub a U -> sub a V.

λv:sub a T1.λref:sub a a. E2 a tr v ref)

E1)

To prove that there exists a derivation for F = Γ ` ∀α ≤ S1.S2 ≤ ∀α ≤ T1.T2

we first appeal to the induction hypothesis on E1 and D1 to obtain a derivation

F1 = Γ ` T1 ≤ S1

This can be represented in Twelf as trans Q1 E1 D1 F1. If we now could
derive some derivation

F2 : Γ, tr:∀U∀T.α ≤ U → U ≤ T → α ≤ T, v:α ≤ T1, ref :α ≤ α ` S2 ≤ T2

then we could simply assemble a derivation F using the sa-all rule together
with F1 and F2. However applying the induction hypothesis on D2 and E2 to
obtain such a F2 will not work because D2 depends on the assumption w:a ≤ Q1

while E2 depends on the assumption v:α ≤ T1. We need to first create a derivation
D′

2 which depends on v:α ≤ T1! How can this be done? – This is the place where
typically we must appeal to the narrowing lemma which allows us to replace the
assumption w:a ≤ Q1 with the assumption v:a ≤ T1 since T1 ≤ Q1. Here, we
will take however a different view.

Recall D2 is a parametric and hypothetical derivation which can be viewed
as a function which expects as inputs tr:ΠU.ΠV.α ≤ U → U ≤ V → α ≤ V , an
object of type α ≤ Q1, and ref :α ≤ α. In other words, we need to turn a function
which expects an object of type α ≤ Q1 into a function which expects an object
v of type α ≤ T1. The idea is to substitute a derivation W which depends on
v:α ≤ T1 for any use of w:α ≤ Q1. We can construct such a derivation W as
follows:

Wα,v =

v
α ≤ T1

E1

T1 ≤ Q1

tr
α ≤ Q1

Note that the derivation W is parametric in α and hypothetical in v:α ≤ T1. By
substituting W for any use of w in the hypothetical derivation D2, we obtain a
derivation D′

2

α,v
which is parametric in α and hypothetical in v:α ≤ T1. Now

we are able to appeal to the i.h. on D′
2

α,v
and E2

α,v, and obtain

F2 : Γ, tr:∀U∀T.α ≤ U → U ≤ T → α ≤ T, v:α ≤ T1, ref :α ≤ α ` S2 ≤ T2

This derivation W can be represented as an object (tr T1 Q1 v E1) in LF.
To obtain a derivation D′

2 from D2 we simply apply D2 to a, (tr T1 Q1 v E1),
ref, and tr. This will be encoded by the following line in the proof

trans (Q2 a)

(D2 a tr (tr T1 Q1 v E1) ref) (E2 a tr v ref) (F2 a tr v ref))

We are not done yet with the case for sa-all. Since our context keeps track
of local rules for reflexivity and transitivity, our proof must also account for
these cases locally. In particular the appeal to the i.h. on D′

2 and E2 takes place
in a context where we have the assumptions tr, v, and ref. These cases will be
part of the encoding of of the case for sa all. We will consider each of the local
assumptions next and show the encoding for each of them, before we assemble all
the pieces into the encoding for the case of sa-all. We emphasize that these cases
correspond to the local assumptions by writing the name of the rule in question
in type-writer font. Note that these proofs about local assumptions take place in
the context where we have in fact the local assumptions tr, v, and ref. Hence,
we are free to use some of these assumptions in our proof.

Case Given D = v
Γ ` α ≤ T1

and E = Γ ` T1 ≤ P

we must construct a derivation F = Γ ` α ≤ P .

First, we note that we must prove this case for any type P and for any derivation
E :Γ ` T1 ≤ P , if we have a derivation D:Γ ` α ≤ T1 and a derivation E we can
construct a derivation Γ ` α ≤ P . How can this be achieved? This is done by
instantiating the transitivity rule tr with T1 and P and using D and E to fill
in the premises. Since all proofs are done in an LF context where we have the
assumption tr denoting the transitivity rule for type variables, this is feasible.
Therefore this case will be represented as

(ΠP:tp.Π.E:sub T1 P.trans T1 v E (tr T1 P v E))

We explicitly quantify universally over P and E to emphasize the fact that
this translation holds universally.

Case Given D = ref
Γ ` α ≤ α

and E = Γ ` α ≤ P ,

we must construct a derivation F = Γ ` α ≤ P , but this is simply achieved by
providing E . Again, this must be proven for all types P and all derivations E ,
and we explicitly quantify universally over P and E to emphasize the fact that
this translation holds universally. Therefore this case is represented as :

(ΠP:tp.ΠE:sub a P.trans a ref E E)

Case Given D =

D′

Γ ` α ≤ U ′

D′′

Γ ` U ′ ≤ T ′

tr
Γ ` α ≤ T ′

and E ′ = Γ ` T ′ ≤ S′

we must show that there exists a derivation F = Γ ` α ≤ S ′.

F ′ : Γ ` U ′ ≤ S′ by i.h. on D′′ and E ′

F : Γ ` α ≤ S′ by tr rule using D′ and F ′.

This case will be represented as:

ΠT’:tp.ΠS’:tp.ΠU’:tp.

ΠD’:sub a U’.ΠD’’: sub U’ T’.ΠE’:sub T’ S’.ΠF’: sub U’ S’.

trans T’ D’’ E’ F’ -> % appeal to i.h. on D’’ and E’

trans T’ (tr U’ T’ D’ D’’) E’ (tr U’ S’ D’ F’))

Again we explicitly quantify over the type variables T’, S’, U’, and the
derivations involved in this case to emphasize that we prove this statement for
all types T’, S’, and U’, and all derivations D’, D’’, and E’.

Finally, we can assemble all the pieces to represent the polymorphic case
which is described in Figure 1.

Checking modes, termination, coverage To verify that the encoding indeed con-
stitutes a proof, meta-theoretic properties such as coverage and termination need
to be established separetely. Coverage guarantees that all cases have been cov-
ered, and termination guarantees that all appeals to the induction hypothesis
are valid. In Twelf, the user must declare specifically which checkers are to be
used. This is shown in Figure 2. The mode declaration %mode trans +Q +D +E

-F specifies inputs and outputs of the defined meta-predicate, and directly cor-
responds to what we assume in the statement of transitivity and what we need
to prove. The mode checker [RP96] verifies that all inputs are known when the
predicate is called and all output arguments are known after successful execu-
tion of the predicate. To guide the coverage checker [SP03], we must declare the
context we prove the theorem in. This block and world declaration must include
all the dynamic parameters and dynamic hypothesis. Then the coverage decla-
ration %covers trans +Q +D +E -F verifies that we have covered all cases for
the inputs Q and D in the proof for trans, i.e. either there is a case for objects
generated by the signature or there is a case which arises due to our dynamic
parameters and assumptions. The declaration %terminates {Q D} (trans Q D

E F). verifies that in all appeals to the induction hypothesis either the type Q

was decreasing or if Q stayed the same the derivation D decreased in size [Pie05b].
Finally, the totality declaration verifies that our proof is total relying on mode,
coverage and termination1.

%block l :

some {T1:tp}
block {a:tp}

{tr:ΠU:tp.ΠT:tp.sub U T -> sub a U -> sub a T}
{w:sub a T1}
{ref:sub a a}
{tr-w :ΠU:tp.ΠE:sub T1 U.trans T1 w E (tr T1 U E w)}
{tr-ref:ΠU:tp.ΠE:sub a U.trans a ref E E}
{tr-tr :(ΠT’:tp.ΠS’:tp.ΠU’:tp.

ΠD’:sub a U’.ΠD’’:sub U’ T’.

ΠE’:sub T’ S’.ΠF’:sub U’ S’.

trans T’ D’’ E’ F’ ->

trans T’ (tr U’ T’ D’’ D’) E’ (tr U’ S’ F’ D’))}.
%worlds (l) (trans Q D E F).

%covers trans +Q +D +E -F.

%terminates {Q D} (trans Q D E F).

%total {Q D} (trans Q D E F).

Fig. 2. Checking totality of the trans encoding

1 Technically, we can only specify total, but we found it cleaner to specify the decla-
rations corresponding to the different parts of the totality checker separately.

Remark 1 In addition to the proof for admissibility of transitivity, we have
also encoded the proof that reflexivity is admissible, and showed that the algo-
rithm described here is a correct implementation of the declarative description
of bounded subtype polymorphism where we have general reflexivity and tran-
sitivity rules. To use the admissibility lemmas, we were required to weaken the
worlds of some of the lemmas such that they all shared a common world. This
is an artifact of Twelf’s world checker. The full implementation is available at
http://www.cs.mcgill.ca/~bpientka/code/pearl and is an interesting ex-

ample of higher-order judgments in the logical framework and their power.

Remark 2 In addition to reasoning about a formal specification it is interesting
to investigate whether we can execute and test our specification. This is im-
portant since it allows the developer to generate sample behavior and animate
a given specification. In our view, whether a given specification can be directly
executed is to a large extent determined by the underlying operational semantics
used. Using the types-as-formulas paradigm, we can assign types a higher-order
logic programming interpretation [Pfe91] which allows us to execute specifica-
tion. The encoding provided for subtyping is, maybe surprisingly, executable,
although at first sight, it may seem we did not gain an algorithm since there
is some non-deterministic left; however, this non-determinism is very limited to
the specialized transitivity rules. A simple loop detection mechanism as provided
by the tabled higher-order logic programming engine [Pie02a,Pie05a] in Twelf is
able to handle the remaining non-determinism in the transitivity rule.

4 Conclusion

We have presented a higher-order encoding of subtyping algorithm for bounded
polymorphism, one of the challenge problems from the POPLmark challenge.
We not only use higher-order abstract syntax for implementing the types but
exploit the full power of parametric and higher-order judgments. As a key benefit
we get the narrowing lemma for free. This makes the encoding of the proof
that general transitivity is admissible is extremely compact. Our reasoning is
purely structural and does not require any extra size argument. Finally, unlike
other encodings based on higher-order abstract syntax ours does not require
proofs showing that some cases are impossible. It is remarkable that the proof
for admissibility of transitivity fits on less than a page, and it is by far the
shortest one so far submitted. We believe our development illustrates nicely
how the problem formulation does wonders for the subsequent meta-theoretic
development.

As mentioned, our case study is inspired by one of the POPLmark challenge
problems, and there have been several solutions submitted exploring a wide range
of possible variable encodings. We can categorize the solutions into several cate-
gories: encoding variables via de Bruijn indices, encoding variables via concrete
names, encoding variables in a nameless approach, and giving an encoding using
nominal types. All these solutions must prove the narrowing lemma and often

various other properties about variables separately. Closest to our solution is the
one by Ashley-Rollman, Crary, and Harper within the logical framework Twelf.
While their proposal uses higher-order abstract syntax for encoding bound type
variables, it does not exploit the full power of higher-order functions to imple-
ment hypothetical judgments. Our solution differs from their solution in that we
push the power of hypothetical and parametric judgments and it demonstrates
what is possible if we design the specification following the LF methodology.

We believe this case study provides interesting insights in how higher-order
encodings can yield extremely compact implementations. The key behind this
encoding is to think about derivations as higher-order functions, and compose
higher-order functions to create new derivation. Due to the compactness of our
encoding we also believe it is easier to scale. For example, to add new type
constructors for cross products we simply add the corresponding cases in the
subtyping algorithm and in the transitivity proof. However, we do not need to
prove any additional lemmas.

In the future, it would be interesting to investigate whether our approach can
be replicated in other systems which support higher-order abstract syntax and
hypothetical and parametric judgments. For example, Momigliano and Ambler
[MA03] propose an extension to Hybrid which supports meta-reasoning with
higher-order abstract syntax in Isabelle HOL. In Coq, Felty has developed a
two-level meta-logic to facilitate hypothetical and parametric reasoning [Fel02].
Another meta-logic capable of replicating our proof idea is FOλ5N by McDowell
and Miller [MM02]. Replicating the meta-theoretic development in this paper in
other systems would provide valuable insights into how well the methodology
scales to other systems. It also would allow a direct comparison between these
systems concerning their philosophy, automatic proof support, and complexity
of encoding.

Acknowledgment

I would like to thank Chad E. Brown, Stefan Monnier, David Xi Li, and Amy
Felty for listening and commenting on the implementation.

References

[ABF+05] B. Aydemir, A. Bohannon, M. Fairbairn, J. Foster, B. Pierce, P. Sewell,
D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic. Mechanized
metatheory for the masses: The POPLmark challenge. In Joe Hurd and
Thomas F. Melham, editors, Proceedings of the Eighteenth International
Conference on Theorem Proving in Higher Order Logics (TPHOLs), Ox-
ford, UK, August 22-25, volume 3603 of Lecture Notes in Computer Sci-
ence(LNCS), pages 50–65. Springer, 2005.

[Fel02] Amy P. Felty. Two-level meta-reasoning in Coq. In Fifteenth International
Conference on Theorem Proving in Higher-Order Logics, pages 198–213.
Springer-Verlag Lecture Notes in Computer Science, August 2002.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the Association for Computing Machinery, 40(1):143–184,
January 1993.

[HL06] Robert Harper and Daniel Licata. Mechanizing metatheory in a logical
framework. (Submitted for publication.), October 2006.

[MA03] Alberto Momigliano and Simon J. Ambler. Multi-level meta-reasoning with
higher-order abstract syntax. In Sixth International Conference on Foun-
dations of Software Science and Computational Structures, pages 375–391.
Springer-Verlag Lecture Notes in Computer Science, April 2003.

[MARH] Karl Crary and Michael Ashley-Rollman and Robert Harper. Twelf solution
to POPLmark challenge. electronically available at
http://fling-l.seas.upenn.edu/~plclub/cgi-bin/poplmark/.

[MM02] Raymond C. McDowell and Dale A. Miller. Reasoning with higher-order
abstract syntax in a logical framework. ACM Transactions on Computational
Logic, 3(1):80–136, 2002.

[Pfe91] Frank Pfenning. Logic programming in the LF logical framework. In Gérard
Huet and Gordon Plotkin, editors, Logical Frameworks, pages 149–181. Cam-
bridge University Press, 1991.

[Pfe97] Frank Pfenning. Computation and deduction, 1997.
[Pie02a] Brigitte Pientka. A proof-theoretic foundation for tabled higher-order logic

programming. In P. Stuckey, editor, 18th International Conference on Logic
Programming, Copenhagen, Denmark, Lecture Notes in Computer Science
(LNCS), 2401, pages 271 –286. Springer-Verlag, 2002.

[Pie02b] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
[Pie05a] Brigitte Pientka. Tabling for higher-order logic programming. In Robert

Nieuwenhuis, editor, 20th International Conference on Automated Deduc-
tion (CADE), Talinn, Estonia, volume 3632 of Lecture Notes in Computer
Science, pages 54–68. Springer, 2005.

[Pie05b] Brigitte Pientka. Verifying termination and reduction properties about
higher-order logic programs. Journal of Automated Reasoning, 34(2):179–
207, 2005.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf — a
meta-logical framework for deductive systems. In H. Ganzinger, editor,
Proceedings of the 16th International Conference on Automated Deduction
(CADE-16), pages 202–206, Trento, Italy, July 1999. Springer-Verlag Lec-
ture Notes in Artificial Intelligence (LNAI) 1632.

[RP96] Ekkehard Rohwedder and Frank Pfenning. Mode and termination checking
for higher-order logic programs. In Hanne Riis Nielson, editor, Proceedings
of the European Symposium on Programming, pages 296–310, Linköping,
Sweden, April 1996. Springer-Verlag Lecture Notes in Computer Science
(LNCS) 1058.

[SP03] Carsten Schürmann and Frank Pfenning. A coverage checking algorithm for
LF. In D. Basin and B. Wolff, editors, Proceedings of the 16th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs 2003),
pages 120–135, Rome, Italy, September 2003. Springer-Verlag LNCS 2758.

