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Abstract Over the past three decades, a variety of meta-reasoning systems which
support reasoning about higher-order abstract specifications have been designed
and developed. In this paper, we survey and compare four meta-reasoning sys-
tems, Twelf, Beluga, Abella and Hybrid, using several benchmarks from the open
repository ORBI that describes challenge problems for reasoning with higher-order
abstract syntax representations. In particular, we investigate how these systems
mechanize and support reasoning using a context of assumptions. This highlights
commonalities and differences in these systems and is a first step towards trans-
lating between them.
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1 Introduction

Mechanizing formal systems and proofs about them plays an increasingly impor-
tant role in designing safe, reliable, and trustworthy software systems in general,
and in programming languages in particular, see projects such as LLVM (Zhao
et al, 2012) and VTS (Appel, 2011), including CompCert (Leroy, 2009) to just
name a few. A key question in this endeavor is how to represent the given object
language (OL) in a given meta-language (i.e., the language of the logical frame-
work) where the mechanization is carried out. While a wide range of approaches
to encoding OLs exist, they vary substantially in how much generic support they
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provide for common details and bureaucratic infrastructure. Higher-order abstract
syntax (HOAS) encodings represent variables in the OL via variables in the meta-
language and inherit thereby α-renaming and term-level substitution. Moreover,
this encoding technique scales to representing formal systems that use hypothetical
and parametrical reasoning by providing generic support for managing hypotheses
and the corresponding substitution lemmas. HOAS encodings aim to relieve users
from having to build up common infrastructure dealing with variables, assump-
tions, and substitutions. We consider it the most advanced encoding technique
for prototyping formal systems, since it enables us to tackle challenging problems
concisely without substantial overhead.

This paper aims to survey the state of the art of several systems supporting
HOAS encodings by implementing the ORBI benchmarks (Open challenge problem
Repository for systems supporting reasoning with BInders) that we have described
in the companion paper (Felty et al, 2014). While we have tried to make the
present paper self-contained, the kind reader would greatly benefit from reading
both papers hand in hand. These benchmark problems are specifically designed to
highlight reasoning using a context of assumptions. This allows us to understand
this one key aspect, in which all these systems differ.

In this paper, we concentrate on the logical framework Twelf (Schürmann,
2009), the functional dependently-typed language Beluga (Pientka, 2008; Pientka
and Dunfield, 2010), the interactive theorem prover Abella (Gacek, 2008), and the
interactive theorem proving environment Hybrid (Momigliano et al, 2008; Felty
and Momigliano, 2012), and show how each of these systems implements the ORBI
benchmark problems.

Surveying the state of the art in this area serves as a starting point to un-
derstand the commonalities and differences between systems. In particular, we
concentrate on the following questions:

– How are contexts represented?
– Which structural properties are enforced and how?
– Do structural properties need to be established individually?
– How do we ensure that all elements in a context are unique?
– How is the substitution property guaranteed?
– How do we relate and reason about different contexts?

We see this as a first step towards formal translation among the different sys-
tems. This paper is intended neither to be a tutorial for coding deductive systems
with HOAS, for which many excellent ones are readily available, nor as an in-
troduction to the basics of the systems we discuss—in fact, we assume a passing
familiarity with them.

We start in Sect. 2 with a recap of the benchmarks proposed in the companion
paper (Felty et al, 2014). Then we discuss the formalizations in Twelf and Beluga
in Sect. 3 and 4, respectively. We present in Sect. 5, the specification logic used
by both Hybrid and Abella, and in Sect. 6 and 7 we review the formalization of
the benchmarks in these two systems, respectively. Sect. 8 draws some compari-
son. Table 1 at the end of that section includes an at-a-glance summary of this
comparison, which the expert reader can view in advance. Finally, we sum up in
Sect. 9. Full details about the challenge problems and their mechanization can be
found at https://github.com/pientka/ORBI/.
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2 Overview of Benchmarks

Encoding an object logic in a logical framework involves formally representing the
OL’s syntax, judgments, inference rules, and context structure. In this paper we use
the ORBI language proposed in the companion paper (Felty et al, 2014) to present
the OLs that constitute our benchmark problems. The ORBI syntax is currently
under development, with the goal of providing a uniform representation of OLs
that can be fairly directly translated to systems supporting reasoning with HOAS.
In its current version, it supports all of the systems considered in this paper. We
give some brief examples in Sect. 2.1, and refer the reader to Appendix A for all
other specifications.

In Sect. 2.2, we list all of the benchmark theorems from Sect. 3 of the companion
paper using the same numbering as in that paper, so that we may refer to them
in subsequent sections as we discuss their proofs in the different systems. We give
only a brief explanation of these theorems here.

2.1 Object Logic Specifications

We start with some examples taken from the first benchmark in the companion
paper, which considers establishing reflexivity, symmetry, and transitivity of al-
gorithmic equality for the untyped lambda-calculus. The Syntax, Judgments, and
Rules sections of an ORBI file adopt the concrete syntax of the Logical Framework
(LF) (Harper et al, 1993). We recall from Sect. 4.1 of the companion paper that
untyped lambda-terms are introduced with the declaration tm:type, followed by
the declarations of the constructors app with type tm -> tm -> tm, and lam with
type (tm -> tm) -> tm in the Syntax section. (See Appendix A.1.) The type for
lam reflects the fact that we represent binders in the object language using binders
in the HOAS meta-language.

A predicate representing the algorithmic equality judgment is introduced in
the Judgments section, followed by object-level inference rules for these judgments
in the Rules section. For algorithmic equality, we have the predicate aeq of type
tm -> tm -> type, and the following two inference rules, where the ORBI text is
a straightforward HOAS encoding of the associated rules.

ae_a: aeq M1 N1 -> aeq M2 N2
-> aeq (app M1 M2) (app N1 N2).

Γ ` aeqM1 N1 Γ ` aeqM2 N2

Γ ` aeq (appM1 M2) (app N1 N2)
aea

ae_l: ({x:tm} aeq x x -> aeq (M x) (N x))
-> aeq (lam (\x. M x)) (lam (\x. N x)).

Γ, x : tm; aeq x x ` aeqM N

Γ ` aeq (lamx.M) (lamx.N)
ael

Sect. 2 of the companion paper presents a theory of contexts of assumptions that
we use in the benchmarks. There, we present context formation rules defining
the structure of contexts and discuss structural properties that contexts should
satisfy. We recall here that contexts are made up of blocks (also referred to as
declarations), the semi-colon is used as a separator within blocks, and the comma is
used to separate blocks. This structure can be seen in the hypothesis of the ael rule
above. In other words, we can think of a schema as originating from the negative
occurrences of the defined type/predicate (here in the example tm and aeq) in the
given constructors (here lam and ae_l). In general context schemas are used to
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specify such context structure (see Felty et al, 2014, Sect. 2.2). In Appendix A.1,
the following two context schemas are declared in the ORBI Schemas section.

schema xG: block (x:tm).
schema xaG: block (x:tm; u:aeq x x).

Moreover, context relations (see Felty et al, 2014, Sect. 2.4) are defined inductively
in ORBI in the Definitions section. For example, the following definition relates
two contexts satisfying the above two schemas.

inductive xaR: {G:xG} {H:xaG} prop =
| xa_nil: xaR nil nil
| xa_cons: xaR G H -> xaR (G, block (x:tm)) (H, block (x:tm; u:aeq x x)).

In the next subsection we will write (xG Φx) and (xaG Φxa) to mean that the
contexts Φx and Φxa satisfy the above two schemas, respectively, and (xaR Φx Φxa)
to say that the pair of contexts satisfies the above relation. By convention the suffix
G will be used for context schemas and R for n-ary context relations. To look up an
assumption in a context, we simply write A ∈ Γ , meaning that there is some block
D in context Γ such that A ∈ D. We will also overload the notation to indicate
that a context contains an entire block.

Contexts schemas can have alternatives. For example, one of our benchmark
problems extends the notion of algorithmic equality to the polymorphically-typed
lambda-calculus. In addition to app and lam, this OL includes the constants tapp

of type tm -> tp -> tm and tlam of type (tp -> tm) -> tm for type application
and type abstraction, respectively, where tp is the constant introduced to represent
object-level types. (See Appendix A.2.) The following two context schemas from
that benchmark include an alternative for types, and thus contexts satisfying these
schemas may contain blocks of both forms.

schema axG: block (a:tp) + block (x:tm).
schema aeqG: block (a:tp; u:atp a a) + block (x:tm; v:aeq x x).

In the formal proofs in the rest of this paper, we will refer to the structural
properties of contexts in Sect. 2.3 of the companion paper. We do not repeat them
here, but just note that we distinguish between weakening, strengthening, and
exchange within a single declaration and over a context as a whole. The former
are called d-wk, d-str, and d-exc, while the latter are called c-wk, c-str, and c-exc.

2.2 A Recap of the Benchmark Theorems

The benchmarks in the companion paper are structured around different shapes
and properties of contexts. To help the reader we repeat here the classification
after some initial considerations, but we refer to the companion paper for its
motivations. All of these benchmarks include both G and R versions of the theorem
statements. These two approaches are discussed in detail in the companion paper.
Here, we simply note that the G approach uses a common context for all judgments
in the statement of a theorem, while the R version may use different contexts and
relate them. The reader is again referred to Appendix A for all definitions of
context schemas and context relations.

Some special care is required w.r.t. inference rules for well-formed terms and
types, as presented in Sect. 2.4 of the companion paper. Such inference rules can be
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inferred from the declarations in the Syntax section of an ORBI specification. We
do not present them explicitly, but just note here that we name them by prefixing
is_ to the judgment name. In the statements below, we have is_tm and is_tp. In
general, these predicates are used in theorem statements when the proof involves
induction over the well-formedness inference rules (e.g., Theorems 7 and 8). We
also implicitly assume that if x:tm ∈ Φ, then [Φ |- is_tm x], and similarly for
tp and is_tp.

Basic Linear Context Extensions The first benchmark (algorithmic equality for
the untyped lambda-calculus) includes Lemmas and Theorems 6–10. See Ap-
pendix A.1 for the full listing of syntax, rules, schemas and context relations
involved in this benchmark and Felty et al (2014, Sect. 3.1) for the informal proofs
of the lemmas and theorems.

Lemma 6 (Context Membership)
(xaR Φx Φxa) implies that x:tm ∈ Φx iff (x:tm; u:aeq x x) ∈ Φxa.

Theorem 7 (Admissibility of Reflexivity, R Version)
Assume (xaR Φx Φxa). If [Φx |- is_tm M] then [Φxa |- aeq M M].

Theorem 8 (Admissibility of Reflexivity, G Version)
Assume (xaG Φxa). If [Φxa |- is_tm M] then [Φxa |- aeq M M].

Lemma 9 (Context Inversion)
Assume (xaG Φxa). If u:aeq M N ∈ Φxa, then M = N.

Theorem 10 (Admissibility of Symmetry and Transitivity)
Assume (xaG Φxa).

1. If [Φxa |- aeq M N] then [Φxa |- aeq N M]

2. If [Φxa |- aeq M L] and [Φxa |- aeq L N] then [Φxa |- aeq M N].

Linear Context Extensions with Alternative Declarations We extend here (Lem-
mas and Theorems 11–17) reflexivity, symmetry, and transitivity of algorithmic
equality to the polymorphic lambda-calculus. See Appendix A.2 and Felty et al
(2014, Sect. 3.2).

Theorem 11 (Admissibility of Reflexivity for Types, G Version)
Assume (atpG Φatp). If [Φatp |- is_tp A] then [Φatp |- atp A A].

Lemma 12 (G-Promotion for Type Reflexivity)
Assume (aeqG Φaeq). If [Φaeq |- is_tp A] then [Φaeq |- atp A A].

Theorem 13 (Admissibility of Reflexivity for Terms, G Version)
Assume (aeqG Φaeq). If [Φaeq |- is_tm M] then [Φaeq |- aeq M M].

Theorem 14 (Admissibility of Reflexivity for Types, R Version)
Assume (atpR Φα Φatp). If [Φα |- is_tp A] then [Φatp |- atp A A].

Lemma 15 (Relational Strengthening) Assume (aeqR Φαx Φaeq). Then there
exist contexts Φα and Φatp such that (alphxR Φαx Φα), (aeqatpR Φaeq Φatp), and
(atpR Φα Φatp).
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Lemma 16 (R-Promotion for Type Reflexivity)
Assume (aeqR Φαx Φaeq). If [Φαx |- is_tp A] then [Φaeq |- atp A A].

Theorem 17 (Admissibility of Reflexivity for Terms, R Version)
Assume (aeqR Φαx Φaeq). If [Φαx |- is_tm M] then [Φaeq |- aeq M M].

Non-Linear Context Extensions Here (Lemmas and Theorems 18–22), we go back
to the untyped lambda-calculus, introduce declarative equality, and prove the com-
pleteness of algorithmic equality with respect to it. See Appendix A.1 and Felty
et al (2014, Sect. 3.3).

Lemma 18 (G-Promotion for Reflexivity, Symmetry, and Transitivity)
Assume (daG Φda).

1. If [Φda |- is_tm M] then [Φda |- aeq M M].
2. If [Φda |- aeq M N] then [Φda |- aeq N M].
3. If [Φda |- aeq M L] and [Φda |- aeq L N] then [Φda |- aeq M N].

Theorem 19 (Completeness, G Version)
Assume (daG Φda). If [Φda |- deq M N] then [Φda |- aeq M N].

Lemma 20 (Relational Strengthening) Assume (daR Φxa Φxd). Then there
exists a context Φx such that (xaR Φx Φxa).

Lemma 21 (R-Promotion for Reflexivity)
Assume (daR Φxa Φxd). If [Φxd |- is_tm M] then [Φxa |- aeq M M].

Theorem 22 (Completeness, R Version)
Assume (daR Φxa Φxd). If [Φxd |- deq M N] then [Φxa |- aeq M N].

Order The next benchmark considers order in a context using the same OL (the
untyped lambda-calculus). See Felty et al (2014, Sect. 3.4).

Theorem 23 (Pairwise Substitution) Assume (xaG Φxa).
If [Φxa, block (x:tm; u:aeq x x) |- aeq M1 M2] and [Φxa |- aeq N1 N2],
then [Φxa |- aeq (M1 N1) (M2 N2)].

Uniqueness The next benchmark problem is type uniqueness of the simply-typed
lambda-calculus. See Appendix A.3 and Felty et al (2014, Sect. 3.5).

Theorem 24 (Type Uniqueness)
Assume (xtG Φt). If [Φt |- oft M A] and [Φt |- oft M B], then A = B.

Substitution The final benchmark addresses the interaction of the substitution
property with context reasoning. The OL is again the simply-typed lambda cal-
culus, and judgments include a parallel reduction relation, which evaluates terms
under lambda-abstractions. See Appendix A.4 and Felty et al (2014, Sect. 3.6).

Lemma 25 Assume (xtG Φt).
If [Φt, block (x:tm; v:oft x A) |- oft (M x) B] and [Φt |- oft N A], then
[Φt |- oft (M N) B].
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Theorem 26 (Type Preservation for Parallel Reduction, R Version)
Assume (xrtR Φr Φt). If [Φr |- pr M N] and [Φt |- oft M A], then
[Φt |- oft N A].

Theorem 27 (Type Preservation for Parallel Reduction, G Version)
Assume (xrtG Γ ). If [Γ |- pr M N] and [Γ |- oft M A], then
[Γ |- oft N A].

3 Mechanization in Twelf

Twelf supports specifying formal systems in the logical framework LF (Harper
et al, 1993). LF is a very compact dependent type theory supporting atomic types
a that can be indexed by terms Mi and (dependent) function types Πx:A.B.
Following recent practice, we only characterize terms in normal form, since these
are the only ones that are meaningful.

Kind K ::= type | Πx:A.K
Types A,B ::= a M1 . . .Mn | Πx:A.B
Terms M,N ::= x M1 . . .Mn | c M1 . . .Mn | λx.M

Logically, we can think of a M1 . . .Mn as a predicate. Implications correspond
to the non-dependent function space Πx:A.B where x does not occur in B. This
is commonly abbreviated as A → B. Universal quantification corresponds to the
dependent function space Πx:A.B.

The grammar of LF does not separate between the types for terms and those
for predicates. Rather, this distinction happens naturally on the level of kinds that
classify types. A type family of level 0 has kind type. The type tm from the previous
section is an example. A type family that depends on objects of level 0 such as
aeq is a type of level 1, etc. Note the uniform treatment of binding structures.
Not only are object-level binders on the level 0 modeled via a function space
and hence naturally support object-level substitution via function application, but
hypothetical and parametric derivations (i.e., objects of level 1) are characterized
by a (dependent) function. Hence, substituting into a given derivation also boils
down to function application. Since non-dependent functions are a special case of
dependent functions, both the parametric and hypothetical substitution property
collapses to the same substitution operation. As a consequence this methodology
easily scales to encoding and reasoning about intrinsically typed systems instead
of stating the well-typedness relation separately. For a general introduction on how
to encode object languages in LF, we recommend Pfenning (2001).

3.1 Basic Linear Context Extensions (G Version)

In Twelf proofs are implemented as a relation between derivations within the
logical framework LF. For a summary of the specification of algorithmic equality,
referred to below as aeq M N, we refer the kind reader to Appendix A.1. We begin
by stating reflexivity of algorithmic equality (Theorem 8) as a relation ref between
a term M and the algorithmic equality judgment aeq M M. It can be read as: For
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all M:tm there exists a derivation aeq M M. We implement the proof by analyzing
and inducting on M directly, since there is no essential distinction between terms
(type family of level 0) and predicates (type families of level 1). Moreover we note
that ref depends on tm (type family of level 0) and aeq (type family of level 1)
and hence reflG is a type family of level 2.

reflG: ΠM:tm.aeq M M → type.

r_a: reflG M2 D2 → reflG M1 D1
→ reflG (app M1 M2) (ae_a D1 D2).

r_l: (Πx:tm.Πu:aeq x x.Πr_x: reflG x u. reflG (M x) (D x u))
→ reflG (lam λx. M x) (ae_l λx.λu. D x u)

The reflexivity proof is then implemented using two constants r_a and r_l. We
can read r_a as follows: Given that reflG M2 D2 (IH on M2) and reflG M1 D1 (IH
on M1), we can obtain a proof reflG (app M1 M2) (ae_a D1 D2). The definition of
ae_a and ae_l are given in Appendix A.1.

The case for lambda-terms is slightly more tricky. In Twelf, not only specifica-
tions but also proofs are represented in the implicit-context style. As a consequence
the variable cases in a proof are treated for each variable that is introduced as we
traverse a binder. Hence our recursive call (IH) will take place under the assump-
tion that x:tm. Moreover, we cannot simply appeal to reflG (M x) (D x u). First,
we must know that u:aeq x x. Second, we must have that the reflexivity relation
holds for the variable x. The base case, which in the on paper proof is handled sepa-
rately, is folded into the case for lambda-abstraction. We can therefore read r_l as:
Assuming that for all x:tm and u:aeq x x, reflG x u implies reflG (M x) (D x u),
we can establish that reflG (lam λx.M x) (ae_l λx.λu.D x u).

LF type checking guarantees that all derivations that are manipulated and
constructed are meaningful. The context of assumptions is ambient and implicit.
However, for the relation reflG to be a proof, we also must establish that it
implements a total function; in particular, we must guarantee that all the necessary
base cases are taken care off. This cannot be achieved within the logical framework
LF. Instead, Twelf relies on external checkers. There are three distinct properties
we need to establish about the relation:

1. Well-modedness. The mode checker (Rohwedder and Pfenning, 1996) estab-
lishes that the given relation can be viewed as a non-deterministic function.
In the given example, we specify that M is an input and D is the output of the
relation using a mode declaration

%mode reflG +M -D.

Mode checking verifies that whenever the inputs are given the specified output
can be computed; it does not, however, guarantee that there is a unique output
value.

2. World satisfaction. The world checker verifies that the implemented relation
introduces dynamic assumptions according to the predefined schema.

%block xaG_r : block {x:tm}{u:aeq x x}{r_x:reflG x u}.
%worlds (xaG_r) (reflG M D).

Thus, a context schema is formalized by a %block declaration and schema
satisfaction by the %worlds check that verifies that indeed the reflexivity proof
only introduces the specified dynamic assumptions. Twelf only permits the
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generalized contexts approach, since assumptions are ambient. Note that the
schema defined differs from the schema definition xaG in the ORBI file, since in
addition to x:tm and u:aeq x x the declaration also contains reflG x u. The
defined schema of the eligible contexts is more specific and more restrictive
than our definition in the companion paper. This is tied to the fact that we
state proofs as relations using contexts implicitly. World checking is essential
in Twelf to guarantee that all base cases are handled.

3. Totality. This checks two properties: termination and coverage. The termi-
nation checker (Pientka, 2005) verifies that the given relation is terminating
according to a specified ordering, while the coverage checker verifies that a case
exists for all possible inputs.

%total M (reflG M D).

We state that the relation reflG terminates because it is defined recursively
on D and all appeals to the IH are structurally smaller.

The coverage checker (Schürmann and Pfenning, 2003) verifies that a given
relation is covering, i.e., a case for all possible inputs is provided and splitting on
an output argument does not neglect and drop possible cases.

Twelf’s meta-language to establish that a given relation constitutes a total
function is restricted to the language M2 (Schürmann and Pfenning, 1998), a
fragment of first-order logic that only admits ∀-∃ formulas and does not allow
arbitrary nesting of universal and existential quantification.

3.2 Linear Context Extensions with Alternative Declarations (G Version)

Extending the algorithmic equality case study to the polymorphic lambda-calculus
is straightforward. For the specification of types, terms, algorithmic and declar-
ative equality, we add the additional cases for handling type abstractions and
applications (see Appendix A.2). Since types can occur in terms, we need to es-
tablish additional lemmas about the admissibility of reflexivity, symmetry and
transitivity on the level of types. We only give the encoding of the reflexivity
statement that reads: For all T:tp, there exists a derivation aeq T T, together with
the meta-theoretic directives for mode, worlds, and totality. We note again that
we implement the proof by recursion over T:tp.

reflTpG: Π T:tp.atp T T → type.
%mode reflTpG +T -D.
%block atpG_r : block {a:tp}{u:atp a a}{r_a:reflTpG a u}.
%worlds (atpG_r) (reflTpG T D).
%total T (reflTpG T D).

Next, we extend the reflexivity proof reflG for terms with the additional cases
for type abstraction and type application. We call the extended proof reflTmG to
emphasize it considers terms only. There are two issues that arise: First, since
the case for lambda-abstraction introduces assumptions about term variables and
the equality of term variables, while the case for type abstraction introduces type
variables and equality of type variables, we need to specify alternating assumptions
in a world declaration. This alternation of blocks is described by the following world
declaration (xaG_r | atpG_r).
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%block xaG_r : block {x:tm}{u:aeq x x}{r_x:reflTmG x u}.
%worlds (xaG_r | atpG_r) (reflTmG T D).

The admissibility of reflexivity is then established in the world (aka con-
text) containing both blocks xaG_r and blocks atpG_r. The world checker then
verifies that our context contains blocks of declarations consisting of assump-
tions x:tm, u:aeq x x, and r_x:reflTmG x u or assumptions a:tp, u:atp a a, and
r_a:reflTpG a u.

Second, the reflexivity proof reflTmG for terms relies on the reflexivity proof
reflTpG for types. This is justified by the fact that the world for reflTpG is a strict
subset of the world specified for reflTmG, where the additional assumptions in block
xaG_r are irrelevant to the reflexivity proof reflTpG for types. This is facilitated by
Twelf’s subordination analysis, which maintains a dependency graph of all the type
families. If a type family a is not a subordinate to a type family b, then elements of
type a cannot be used to construct elements of type b; hence declarations formed
by the type family a can safely be added to (i.e., weakening) and removed from
(i.e., strengthening) the context. Therefore, one might say subordination enables
safe instances of context weakening and context strengthening (see Harper and
Licata, 2007).

A similar issue arises in the transitivity and symmetry property for terms,
which relies on the corresponding property for types.

3.3 Non-Linear Context Extensions (G Version)

We now inspect the implementation of the completeness proof of Theorem 19
given in Fig. 1 that only considers equality on terms instead of polymorphic terms.
We again define a type family ceqG describing the relation between deq M N and
aeq M N (see Appendix A.1 for their specifications). We omit quantifying over M

and N explicitly leaving them free and let Twelf infer the type of these variables.
Furthermore, we sometimes write _ at a given argument position letting Twelf’s
reconstruction engine infer the concrete instantiation (see for example the case for
c_r).

When considering each case in the proof, we need to pay attention to which
implicit assumptions are needed. We consider each case for deq T S separately: If
de_r:deq M M was used, then we appeal to the reflexivity lemma. We note that the
reflexivity lemma is proven in a context containing xaG_r, namely x:tm, u:aeq x x

and r_x:reflG x u. Therefore, we want the context for ceqG to contain at least
these assumptions described in xaG_r. We say here “at least”, since the context
in which we prove ceqG may contain more assumptions than needed by reflG,
provided that such assumptions do not contribute to the proof of reflG. This is
again enforced in Twelf by subordination analysis. If de_t was used, we have two
sub-derivations: D1:deq M L and D2:deq L N. By induction, we obtain derivations
E1:aeq M L and E2:aeq L N. To finish the proof, we appeal to the transitivity
lemma. We note that the transitivity lemma was proven in a context containing the
block x:tm, u:aeq x x, and t_x:transG u u u. The case for symmetry using de_s

is similar. The implicit context for the completeness proof must therefore contain
the union of the assumptions needed for applying the reflexivity, transitivity, and
symmetry lemmas.
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ceqG: deq M N → aeq M N → type.
c_r: reflG _ E → ceqG de_r E.

c_t: ceqG D1 E1 → ceqG D2 E2 → transG E1 E2 E → ceqG (de_t D1 D2) E.

c_s: ceqG D E1 → sym E1 E → ceqG (de_s D) E.

c_l:(Πx:tm.Πu:aeq x x.Πr_x:reflG x u.Πt_x:transG u u u.Πs_x:symG u u.
Πv:deq x x. ceqG v u → ceqG (D x v) (E x u))
→ ceqG (de_l λx.λv.D x v) (ae_l λx.λu.E x u).

c_a: ceqG D1 E1 → ceqG D2 E2 → ceqG (de_a D1 D2) (ae_a E1 E2).

%mode ceqG +D -E.
%block daG_rtsc:block {x:tm}{u:aeq x x}

{r_x:ref x u}{t_x:tr u u u}{s_x:sym u u}
{v:deq x x}
{c_x:ceqG v u}.

%worlds (daG_rtsc) (ceqG D E).
%total D (ceqG D E).

Fig. 1 Completeness of Algorithmic Equality in Twelf.

The case for application is straightforward. Finally, we consider the case for
lambda-abstractions, where we have used de_l, declarative equality for lambda-
terms, and the context is extended. Intuitively, we want to introduce a variable
x together with the assumption v:deq x x and u:aeq x x, and simply appeal to
the induction hypothesis ceqG (D x v) (E x u). However, since all the informa-
tion pertaining to variables is folded into the binder-case, we also need to add as-
sumptions r_x:reflG x u, t_x:transG u u u, s_x:symG u u and ceqG v u; in other
words, we must assume that the reflexivity, symmetry and transitivity lemmas hold
for the variable x in addition to assuming that indeed there is a proof ceqG v u

that guarantees that whenever we have deq x x we must have a proof for aeq x x.

To verify that the implemented relation constitutes a proof, we again check
well-modedness, world satisfaction, and totality. World checking will make sure
that we can safely refer to the transitivity and reflexivity lemmas, which both
are proven in a smaller context. To ensure that this check is reasonably efficient,
Twelf verifies that all blocks occurring in the context of the lemma are occurring
in the context of the main theorem; in addition, the type families in the lemma
(i.e., callee) must be subordinate to the additional type families in the theorem
(i.e., caller). This guarantees that the additional type families in the theorem are
irrelevant to the lemma.

This notion of context subsumption is a sufficient condition for weakening and
strengthening the contexts associated with a given type family and obviates in
many cases the need to prove weakening and strengthening lemmas. However, it
can also be brittle, since the order of assumptions matters. In Twelf-1.7.1 we can
weaken a block by inserting additional assumptions that are irrelevant to the callee,
but we cannot reorder assumptions. This additional flexibility alleviates some of
the issues that arise due to the fact that base cases must be included in the block
declarations.

For a more detailed explanation regarding mechanizing proofs in the Twelf
system and context subsumption, we refer the reader to Harper and Licata (2007).
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subst: (Πx:tm.aeq x x → aeq (M1 x) (M2 x)) → aeq N1 N2
→ aeq (M1 N1) (M2 N2) → type.

s_x: subst (λxλu. u) F F.

s_l: (Π y:tm.Π ae_y:aeq y y.
(ΠN1:tm.ΠN2:tm.ΠF:aeq N1 N2.subst (λx.λae_x. ae_y) F ae_y) →
subst (λx.λu. D x u y v) F (E y v))
→ subst (λxλu.ae_l λy.λv. D x u y v) F (λxλu. ae_l E x u).

s_a: subst (λx.λu. D1 x u) F E1 → subst (λx.λu. D2 x u) F E2
→ subst (λx.λu. ae_a (D1 x u) (D2 x u)) F (ae_a E1 E2).

%mode subst +D +F -E.
%block xaG_s:block {y:tm}{ae_y:aeq y y}

{s_y:ΠN1:tm.ΠN2:tm.ΠF:aeq N1 N2. subst (λx.λae_x.ae_y) F ae_y}.
%worlds (xaG_s) (subst D F E).
%total D (subst D F E).

Fig. 2 Pairwise Substitution Lemma in Twelf

3.4 Order (G Version)

To encode the pairwise substitution lemma (Lemma 23) we cannot rely simply on
LF function application. The code is reported in Fig. 2; specification of algorithmic
equality, i.e., aeq M N is given in Appendix A.1. Exchange is handled straightfor-
wardly. However, an interesting issue arises in the base cases. We have one base
case s_x, where x is the variable we want to replace and u:aeq x x describes the
derivation that x is equal to itself. In this case we simply return the input derivation
F:aeq N1 N2. The second base case arises when traversing a lambda-abstraction.
Here we encounter a variable y together with ae_y:aeq y y and we want to re-
turn aeq y y no matter what we substitute for x. We hence add the following
assumption ΠN1:is tm .ΠN2:is tm .ΠF:aeq N1 N2.subst(λx.λae_x.ae_y) F ae_y

that can be read as: For all N1,N2 where F:aeq N1 N2, the result of substituting F

for aeq x x is simply ae_y. This is an example of a higher-order assumption that
Twelf supports.

3.5 Uniqueness (G Version)

We consider next the implementation of the proof of type uniqueness for simply
typed lambda-terms. The specification of terms together with their typing rules
can be found in Appendix A.3. To express the relation between a term M and its
corresponding type T, we write oft M T. As Twelf has no built-in equality, we must
define it. There is a choice to define equality simply using reflexivity, e_ref:eq T T,
or recursively based on the structure of the type. This choice surprisingly matters
in Twelf. We sketch the first approach in Fig. 3, by defining a relation unique. The
implementation of the proof follows earlier ideas with one exception. We cannot
simply refer to e_ref. The reason has to do with type reconstruction, which will
consider the inputs and outputs of a given relation. Let’s for example consider
the case (denoted by u_l) where we have used the typing rule for lambda-terms.
When we write e_ref in the output position in clause u_l, we will restrict what
T and T’ can be—effectively, we are setting them to be identical. This will cause
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% Inversion lemmas about function types
arr_inv1: eq (arr T1 T2) (arr T1’ T2’) → eq T2 T2’ → type.
arr_inv1_ref: arr_inv1 e_ref e_ref.
. . .
arr_inv2: ΠT:tp. eq T2 T2’ → eq (arr T T2) (arr T T2’) → type.
arr_inv2_ref: arr_inv2 T e_ref e_ref.
%mode arr_inv2 +T +E1 -E2.
%worlds () (arr_inv2 T E1 E2).
%total E1 (arr_inv2 _ E1 _).

% Type uniqueness proof
unique: oft M T → oft M T’ → eq T T’ → type.
u_a: arr_inv1 E E’ → unique D1 F1 E

→ unique (of_a D1 D2) (of_a F1 F2) E’.

u_l: arr_inv2 T1 E E’
→ (Πx:tm.Πu:oft x T1.unique u u e_ref → unique (D x u) (F x u) E)
→ unique (of_l λx.λu. D x u) (of_l λx.λu. F x u) E’.

%mode unique +D +F -E.
%block xtG_u: some {T:tp} block {x:tm}{d:oft x T}{u:unique d d e_ref}.
%worlds (xtG_u) (unique D F E).
%total D (unique D _ _).

Fig. 3 Type Uniqueness in Twelf

coverage to fail (correctly), because there is in fact no case where the types are
different. Relations unlike functions cannot always capture the flow and refinement
of information that happen in the proof. One solution is to prove some inversion
lemmas for function types and then appeal to them, but avoid unduly restricting
arguments in the main theorem. We again rely on subordination to justify calling
the lemma arr_inv1 and arr_inv2 that are defined in the empty context (world)
within the context xtG_u. Finally, we remark that to avoid adding for each indi-
vidual variable the base case unique u u e_ref, we could omit it and add instead
a generic base case u_b:unique D D e_ref. This would allow us to define a tighter
context only consisting of x:tm and d:oft x T.

A different approach is to define equality on the structure of the type as a
judgment atp T T and then prove that reflexivity is admissible without further
ado, avoiding the previous coverage problems, but reasoning structurally about
equality.

3.6 Substitution

Twelf models hypothetical and parametric derivations as LF functions. Therefore,
substitution can be obtained for free relying on LF function application. This is
illustrated in the type preservation proof for parallel reductions. Parallel reduc-
tions, described by pr M N, together with typing rules, described by oft N A, are
specified in Appendix A.4. We define Theorem 23 that states that if pr M N and
oft M A, then oft N A, and its corresponding proof in Fig. 4.

We want to draw particular attention to the case tp_b that considers the case
for beta-reduction. The remaining cases can be found in the online files. We con-
sider the reduction of (lam λx.M x) N (rule pr_b in Appendix A.4). R1 denotes
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tps: pr M N → oft M A → oft N A → type.
tp_b: tps (pr_b R1 R2) (of_app (of_lam D1) D2) (F1 N F2)

← (Πx:is tm .Πof_v:oft x A.Πpr_v:pr x x. tps pr_v of_v of_v
→ tps (R1 x pr_v) (D1 x of_v) (F1 x of_v))

← tps R2 D2 F2.

%mode tps +R +D -F.
%block xrtG_tpv: some {t:tp} block {x:is tm }{of_v:oft x t}{pr_v:pr x x}

{tp_v:tps pr_v of_v of_v}.
%worlds (xrtG_tpv) (tps R D F).
%total R (tps R D F).

Fig. 4 Type Preservation in Twelf (only the case for lambda-abstraction)
.

a reduction sequence for pr (M x) (M’ x), given that pr x x. The reduction se-
quence for pr N N’ is described by R2. By the IH on R1, we obtain a derivation
F1:Πx:is tm .oft x A →oft (M x)B. Moreover, by the IH on R2, we obtain a deriva-
tion F2:oft N A. We now want to substitute N for x in F1 and subsequently F2 for
the assumption oft N A in F1. Since F1 denotes a function, we simply use function
application to model substitution writing (F1 N F2).

4 Mechanization in Beluga

Beluga is a proof and programming environment (Pientka, 2008; Pientka and Dun-
field, 2008, 2010) that also supports the specification of formal systems in the log-
ical framework LF. On top of LF Beluga provides a dependently typed functional
language that allows programmers to manipulate and analyze contexts and con-
textual LF objects, i.e., a LF object M in a context of assumptions Ψ (Nanevski
et al, 2008), which we write as [Ψ ` M]. The dependency on a context is also cap-
tured on the level of types via the contextual type [Ψ ` A]. We say a contextual
object [Ψ ` M] has type [Ψ ` A] if M has type A in the context Ψ . This allows us to
concisely represent and manipulate hypothetical and parametric derivations, i.e.,
a goal formula (object) together with the assumptions that we are allowed to use
to establish the goal.

Beluga’s type language takes contextual types as base types; it also supports
product types (T1* T2) and function types (T1→ T2), and we can universally quan-
tify over contextual objects and contexts ({X:U}T where U is either a contextual
type [Ψ ` A] or describes a context schema, i.e., the type of a context). Logically,
Beluga’s type language corresponds to first-order logic where we quantify over con-
textual objects and contexts and take contextual objects as our basic predicates.

Beluga’s computation language supports tuples (introduction for product types),
nameless functions (fn x⇒e) (introduction for function types), abstraction over
contextual objects and contexts (λ�X⇒e) (introduction for universal types), re-
cursion (rec f⇒e), and case-analysis over contextual objects and contexts. Unlike
Twelf’s meta-logic that prevents nesting of quantifiers and implications, Beluga’s
computation language imposes no such restrictions and supports higher-order func-
tions. In this section, we will concentrate on showing how to implement inductive
proofs from our benchmark using the generalized approach; we also briefly discuss
how to encode proofs in the relational approach.
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rec reflG: {γ:xaG}{M:[γ ` is tm ]} [γ ` aeq (M ..) (M ..)] =

λ�γ ⇒ λ�M ⇒ case [γ ` M ..] of
| [γ ` #p.1 ..] ⇒ [γ ` #p.2 ..] % Variable

| [γ ` lam λx. M .. x] ⇒ % Lambda
let [γ, b:block(y:is tm ,ae_v:aeq y y) ` D .. b.1 b.2]=

reflG [γ, b:block(y:is tm ,ae_v:aeq y y)] [γ, b ` M .. b.1]
in [γ ` ae_l λx. λw. (D .. x w)]

| [γ ` app (M1 ..) (M2 ..)] ⇒ % Application
let [γ ` D1 ..] = reflG [γ] [γ ` M1 .. ] in
let [γ ` D2 ..] = reflG [γ] [γ ` M2 .. ] in
[γ ` ae_a (D1 ..) (D2 ..)];

Fig. 5 Reflexivity of Algorithmic Equality in Beluga

Inductive proofs in Beluga are represented as recursive functions about contex-
tual LF objects using pattern matching. Each case of the proof corresponds to one
branch in the function. Most recently Cave and Pientka have shown how to ex-
tend Beluga with support for inductive definitions (i.e., recursive datatypes) (Cave
and Pientka, 2012) and first-class substitutions (Cave and Pientka, 2013) leading
to Belugaµ. This allows us to define predicates about contexts and contextual
objects, relate contexts via substitutions, and more importantly prove properties
about them inductively.

4.1 Basic Linear Context Extensions (G Version)

We consider first the proof that reflexivity is admissible for algorithmic equality
(Theorem 8). For a summary of the specification of algorithmic equality, written
as aeq M N, we refer the kind reader to Appendix A.1. Just as types classify ex-
pressions, contexts are classified by context schemas and the definition of schemas
in the ORBI specification directly translates to Beluga.1

schema xaG = block(x:is tm ,u:aeq x x);

The schema states that our context consists of a block of assumptions, contain-
ing x:is tm and aeq x x. More formally, the block-construct introduces a Σ-type
grouping the two declarations together. Schemas are closely related to the world
declarations in Twelf. However, there is a crucial difference. In Twelf a world dec-
laration also contains the base cases in a proof; for example, in the reflexivity
proof, the world declaration also contained ref x u, a proof that the statement
holds for each x we encounter. In Beluga it is sufficient to keep track of x:is tm

and u:aeq x x, as we are abstracting over the context and will be able to write
a generic variable case covering the scenario where we consider a variable from
the context. Moreover, schema checking in Beluga, unlike world checking in Twelf,
does not check that a given type family satisfies the declared schema; it merely en-
sures that contexts that are constructed and passed as arguments in computations
satisfy the declared schema.

The reflexivity theorem (Theorem 8) can be implemented as a recursive func-
tion called reflG of type: {γ:xaG}{M:[γ ` is tm ]}[γ ` aeq (M ..)(M ..)] (see Fig. 5).

1 Beluga’s syntax for schemas differs slightly from ORBI’s syntax.
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This can be read as: For all contexts γ that have schema xaG, for all terms M, we
have a proof that [γ ` aeq (M ..) (M ..)]. Quantification over contexts and contex-
tual objects in computation-level types is denoted by curly braces; the correspond-
ing abstraction on the level of expressions is written as λ�γ⇒λ�M⇒e.

Central is the idea of a contextual type. For example, M has type [γ ` is tm ],
which describes an object M that has type is tm in the context γ. Hence, M is a
term that may refer to variables in the context γ. When we use M it is associated
with a substitution that maps all the variables in γ to the correct target context.
In the example, we use M within the contextual type [γ ` aeq (M ..) (M ..)]. Hence,
M is declared in the context γ and because it is also used in the context γ, it
is associated with the identity substitution, which is written as.. in our concrete
syntax. Intuitively, it means that M can depend on all the variables that occur in
the context described by γ. The derivation γ ` aeq M M is directly captured by
the contextual type [γ ` aeq (M ..) (M ..)]. While the informal on paper definitions
often leave implicit the question in what context a term is well-formed, Beluga’s
concrete syntax forces the programmer to be more precise.

In the proof for reflG we begin by introducing γ and M followed by a case
analysis on [γ ` M ..] using pattern matching. There are three possible cases for M:

1. Variable case. If M is a variable from γ, we write [γ ` #p.1 ..] where #p de-
notes a parameter variable declared in the context γ. Operationally, #p can be
instantiated with any bound variable from the context γ. Since the context γ
has schema xaG, it contains blocks x:is tm ,ae_v:aeq x x. The first projection
of it allows us to extract the term component, while the second projection of
it denotes the proof of aeq x x.

2. Lambda case. If M is a lambda-term, then we extend the context and appeal
to the induction hypothesis by making a recursive call. Beluga supports dec-
laration weakening as described in the companion paper (Felty et al, 2014);
this allows us to use M having type [γ, x:is tm ` is tm ] in the extended con-
text [γ, b:block(x:is tm ,ae_v:aeq x x)]. To move from domain γ,x:is tm

to range γ, b:block(x:is tm ,ae_v:aeq x x) we simply construct a weakening
substitution .. b.1 that essentially renames x to b.1 in M. The recursive call
returns [γ, b:block(y:is tm ,ae_v:aeq y y) ` D ..b.1 b.2]. Using it together
with rule ae_l we build the final derivation.

3. Application case. If M is an application, we appeal twice to the induction hy-
pothesis and build [γ ` aeq (app (M1 ..) (M2 ..)) (app (M1 ..) (M2 ..))].

Beluga’s type checker verifies that the manipulated derivations are well-formed and
meaningful. For the recursive function reflG to constitute a proof, we also need
to know that it is total, i.e., all cases are covered and the function is terminating.
At the time of writing, Beluga provides a coverage checker that will automatically
verify whether all cases are covered (Dunfield and Pientka, 2009); the fact that
a given function is terminating must be verified manually by the programmer.
However, such arguments are usually direct and straightforward (see also Pientka
et al, 2014, for a foundation restricting Beluga’s language to primitive structural
recursive functions).
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4.2 Context Extensions with Alternative Declarations (G Version)

Extending the algorithmic equality case study to the polymorphic lambda-calculus
to handle alternating assumptions is straightforward. For the specification of the
algorithmic equality rules for polymorphic terms (written as aeq M N) and types
(written as atp T S), we refer the kind reader to Appendix A.2. We can now es-
tablish reflexivity, transitivity, and symmetry of type equality in a straightforward
way. These proofs are established in the context of schema atpG with

schema atpG = block (a:tp,v:atp a a);

Then, we add the additional case for type abstraction and type application to
reflexivity, transitivity and symmetry of term equality.

Similar issues as in the Twelf development arise; however the solution taken
differs slightly.

1. Since the case for lambda-abstraction deals with term assumptions while the
type abstraction introduces type assumptions, we need to specify alternating
assumptions. This alternation of blocks is described by using + in Beluga’s
concrete syntax.

schema aeqG = block (x:is tm ,u:aeq x x) + block (a:tp,v:atp a a);

2. The reflexivity, transitivity and symmetry property for terms relies on the cor-
responding property for types. As in Twelf, Beluga’s type inference engine relies
on subordination to justify instances of safe context weakening and strengthen-
ing.2 When we call a function that requires a context γ of schema atpG but we
have a context of schema aeqG, we check that every block b in schema atpG is
a prefix of a block b’ in the schema aeqG and moreover additional declarations
present in b’ are irrelevant to the declarations in b. The type checker therefore
allows us to pass a context of schema aeqG whenever a context atpG is required.

The main difference between Twelf and Beluga with respect to the handling of
contexts is which assumptions we track. Since Beluga is a functional language and
allows users to implement a general variable case, the context characterizes only
assumptions arising from the derivations we manipulate and matches our informal
description given earlier. As a consequence, context subsumption checks can be
often simpler, i.e. checking for a prefix usually suffices.

4.3 Non-Linear Context Extensions (G Version)

The completeness proof (Theorem 19) is implemented as a recursive function ceqG

in Beluga. We first define the schema of the generalized context, following our
informal development as follows:

schema daG = block (x:is tm ,u:aeq x x,v:deq x x);

Beluga verifies that every block in schema xaG = block (x:is tm ,u:aeq x x) is a
prefix of a block in the context of schema daG. The observant reader will notice that

2 However, the operational semantics is not adapted and these programs are not executable;
this would require us to add appropriate casting operations, which correspond to strengthening
and weakening functions.
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our definition of daG does not match precisely the definition given in the ORBI file
for Theorem 19, but we reordered the assumption aeq x x and deq x x to enable
context subsumption. As in Twelf, Beluga will verify whether the context required
by the lemma is a proper sub-context of the context provided by the main theorem.
In the type and implementation of the function ceqG, we indicate that the context
γ is implicit in the actual implementation of the proof and will be reconstructed
by using round brackets and writing the context declaration as (γ:daG).

rec ceqG: (γ:daG)[γ ` deq (T ..) (S ..)] → [γ ` aeq (T ..) (S ..)] =
fn e ⇒ case e of
| [γ ` #p.3 ..] ⇒ [γ ` #p.2 ..] % Assumption from context

| [γ ` de_r ] ⇒ reflG [γ] [γ ` _ ] % Reflexivity

| [γ ` de_t (D1 ..) (D2 ..)] ⇒ % Transitivity
let [γ ` F2 ..] = ceqG [γ ` D2 ..] in
let [γ ` F1 ..] = ceqG [γ ` D1 ..] in
trans [γ ` F1 ..] [γ ` F2 ..]

| [γ ` de_s (D ..)] ⇒ % Symmetry
let [γ ` F ..] = ceqG [γ ` D ..] in
sym [γ ` F ..]

| [γ ` de_l (λx.λu. D .. x u)] ⇒ % Abstraction
let [γ, b:block(x:is tm ,ae_v:aeq x x,de_v:deq x x) ` F .. b.1 b.2] =
ceqG [γ, b:block(x:is tm ,ae_v:aeq x x,de_v:deq x x) ` D .. b.1 b.3]

in
[γ ` ae_lam (λx.λv. F .. x v)]

| [γ ` de_a (D2 ..) (D1 ..)] ⇒ % Application
let [γ ` F1 ..] = ceqG [γ ` D1 ..] in
let [γ ` F2 ..] = ceqG [γ ` D2 ..] in

[γ ` ae_a (F1 ..) (F2 ..)] ;

Fig. 6 Completeness of Algorithmic Equality in Beluga

We explain here the three cases shown in the informal proof in the companion
paper (Felty et al, 2014). First, let us consider the case where we used an assump-
tion from the context. Since the context γ consists of blocks with the following
structure: block(x:is tm ,ae_v:aeq x x,de_v:deq x x), we in fact want to match
on the third element of such a block. This is written as #p.3 ... The type of #p.3
is deq (#p.1 ..) (#p.1 ..). Since our context always contains a block and the pa-
rameter variable #p .. describes such a block, we know that there exists a proof for
aeq (#p.1 ..) (#p.1 ..), which can be described by #p.2 ...

Second, we consider the case where we applied the reflexivity rule de_r as a
last step. In this case, we need to refer to the reflexivity lemma we proved about
algorithmic equality. To use the function reflG, which implements the reflexivity
lemma for algorithmic equality, we need a context of schema xaG; however, the
context used in the proof for ceqG is of schema daG and we rely on context sub-
sumption to justify passing a context daG in place of a context xaG. The cases for
transitivity and symmetry are similar.

Third, we consider the case for de_l, the case for lambda-abstractions. We
extend the context with the new variable declarations and recurse on the deriva-
tion [γ, b:block(x:is tm ,ae_v:aeq x x,de_v:deq x x)` D ..b.1 b.3]. Declaration
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weakening (d-wk) used in the informal proof (Felty et al, 2014) is built-in. In the
pattern, the derivation D has type [γ,x:is tm ,ae_v:aeq x x ` deq (M ..x)(N ..x)].
We hence construct a weakening substitution .. b.1 b.3 that allows us to move D

to the context γ, b:block(x:is tm ,ae_v:aeq x x,de_v:deq x x). The result of the
recursive call is a derivation F, where F only depends on x:is tm and u:aeq x x.
In the on-paper proof we refer to declaration strengthening (d-str) to justify that
F cannot depend on de_v assumptions. In Beluga, the programmer uses strength-
ening by stating which assumptions F can depend on. The coverage checker will
then subsequently rely on subordination to verify that the restricted case is suf-
ficient and no other cases have been forgotten. Subordination allows us to verify
that indeed assumptions of type de_v:deq x x cannot be used in establishing a
proof for aeq (M .. b.1) (N .. b.1). Finally, we use F to assemble the final result
ae_l (λx.λv. F .. x v).

We conclude this example with a few observations: The statement of the the-
orem is directly and succinctly represented in Beluga using contextual types and
contextual objects. Every case in the on-paper proof corresponds directly to a
case in the implementation of the recursive function. Type reconstruction is used
to reconstruct implicit type arguments and infer the type of free contextual vari-
ables that occur in patterns. This is crucial to achieve a palatable source language.
Weakening and strengthening are supported in Beluga through the typing rules
and on the level of context variables and context schemas using context subsump-
tion. If schema W is a prefix of a schema W ′, then we can always use a context
of schema W ′ in place of a context of schema W provided that the additional
assumptions present in W are irrelevant.

4.4 Order (G Version)

The order of assumptions in a context is important in Beluga. However, sometimes
the need to reorder assumptions arises, as is illustrated in the proof of the substi-
tution lemma for algorithmic equality. As in Twelf this kind of proof (Theorem 23)
does not come for free in Beluga (see Fig. 7).

In Beluga, exchanging the order of assumptions in the context is managed via
substitutions. In the case ae_l, we consider D .. b y ae_y where D is a derivation in
the context γ, b:block(x:is tm ,ae_x:aeq x x), y:is tm , ae_y:aeq y y). To ap-
peal to the IH, we make the recursive call on D .. d d’.1 d’.2 in the extended con-
text γ, d’:block(y:is tm ,ae_y:aeq y y), d:block(x:is tm ,ae_x:aeq x x). The
substitution .. d d’.1 d’.2 provides a mapping from the variables in the context
γ, b:block(x:is tm ,ae_x:aeq x x), y:is tm , ae_y:aeq y y to variables in con-
text γ, d’:block(y:is tm ,ae_y:aeq y y), d:block(x:is tm ,ae_x:aeq x x). It is
therefore a permuting substitution.

This proof also highlights another interesting aspect of Beluga: it allows recur-
sion over the context. There are two base cases in this proof. First, we consider the
derivation aeq x x where we want to replace the variable x by the term N1 in M1

and by N2 in M2. Since we have a derivation d’ describing [γ ` aeq (N1 ..) (N2 ..)]

by assumption, we simply return d’.
Second, we want to consider the case where we have a variable from the context,

but this variable is not x as in [γ, b:block(x:is tm ,ae_v:aeq x x)` #p.2 ..]. We
know that #p .. describes some assumption from γ and in particular, x cannot
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schema xaG = block x:is tm ,ae_v:aeq x x;

rec subst: (γ:xaG)
[γ, b:block(x:is tm ,ae_v:aeq x x) ` aeq (M1 .. b.1) (M2 .. b.1)]

→ [γ ` aeq (N1 ..) (N2 ..)]
→ [γ ` aeq (M1 .. (N1 ..)) (M2 .. (N2 ..)) ] =

fn d ⇒ fn d’ ⇒ case d of
| [γ, b:block(x:is tm ,ae_v:aeq x x) ` b.2] ⇒ d’

| [γ, b:block(x:is tm ,ae_v:aeq x x) ` #p.2 .. ] ⇒ [γ ` #p.2 ..]

| [γ, b:block(x:is tm ,ae_x:aeq x x) ` ae_l (λy.λae_y. D .. b y ae_y)] ⇒
let [γ ` D’ .. ] = d’ in
let [γ, d’:block(y:is tm ,ae_y:aeq y y) ` F .. d’.1 d’.2] =
subst [γ, d’:block(y:is tm ,ae_y:aeq y y),

d :block(x:is tm ,ae_x:aeq x x) ` D .. d d’.1 d’.2 ]
[γ, d’ ` D’ .. ] in

[γ ` ae_l (λy.λae_y. F .. y ae_y)]

| [γ, b:block(x:is tm ,ae_x:aeq x x) ` ae_a (D1 .. b) (D2 .. b)] ⇒
let [γ ` F1 ..] = subst [γ, b:block(x:is tm ,ae_x:aeq x x) ` D1 .. b] d’ in
let [γ ` F2 ..] = subst [γ, b:block(x:is tm ,ae_x:aeq x x) ` D2 .. b] d’ in

[γ ` ae_a (F1 ..) (F2 ..)];

Fig. 7 Pairwise Substitution Lemma in Beluga

schema xtG = some [t:tp] block (x:is tm ,u:oft x t);

rec unique: (γ:xtG)[γ ` oft (M ..) T] → [γ ` oft (M ..) S] → [ ` eq T S] =
fn d ⇒ fn f ⇒ case d of
| [γ ` of_app (D1 ..) (D2 ..)] ⇒

let [γ ` of_app (F1 ..) (F2 ..)] = f in
let [ ` e_ref] = unique [γ ` D1 ..] [γ ` F1 ..] in
[ ` e_ref]

| [γ ` of_lam (λx.λu. D .. x u)] ⇒
let [γ ` of_lam (λx.λu. F .. x u)] = f in
let [ ` e_ref] = unique [γ, b:block (x:is tm ,t:oft x _) ` D .. b.1 b.2]

[γ, b ` F .. b.1 b.2] in
[ ` e_ref]

| [γ ` #p.2 ..] ⇒ % d :oft #p.1 T
let [γ ` #q.2 ..] = f in % f :oft #p.1 S
[ ` e_ref];

Fig. 8 Type Uniqueness in Beluga

occur in it, since otherwise the context would be ill-formed. The substitution ..
associated with #p.2 is a (weakening) substitution mapping variables from context
g to variables in context γ, b:block(x:is tm ,ae_v:aeq x x). We therefore simply
return [γ ` #p.2 ..].

4.5 Uniqueness (G Version)

We discuss next the implementation of the proof of type uniqueness for simply
typed lambda-terms. The specification of terms together with their typing rules
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schema xrtG = some [t:tp] block (x:is tm ,of_x:oft x t,pr_x:pr x x);

rec tps:(γ:xrtG)[γ ` pr (M ..) (N ..)] → [γ ` oft (M ..) A] → [γ ` oft (N ..) A]
=

fn f ⇒ fn d ⇒ case f of
| [γ ` #p.3.. ] ⇒ d

| [γ ` pr_b (λx.λpr_x. R1 .. x pr_x) (R2 .. ) ] ⇒
let [γ ` of_a (of_l (λx.λof_x. D1 .. x of_x)) (D2 ..) ] = d in
let [γ, b:block(x:is tm ,of_x:oft x T,pr_v:pr x x) ` F1 .. b.1 b.2] =
tps [γ, b:block(x:is tm ,of_x:oft x _,pr_v:pr x x) ` R1 .. b.1 b.3]

[γ, b ` D1 .. b.1 b.2] in
let [γ ` F2 .. ] = tps [γ ` R2 ..] [γ ` D2 ..] in
[γ ` F1 .. _ (F2 ..)] % use substitution lemma directly

Fig. 9 Type Preservation for Parallel Reductions in Beluga

can be found in Appendix A.3. To express the relation between a term M and its
corresponding type T, we write oft M T. Since Beluga does not support equality
types, we implement equality using a LF type family eq as we did in the Twelf
section. The uniqueness proof (see Fig. 8) itself is mostly straightforward (see also
Pientka, 2010, for a longer discussion). The only interesting case arises when we
encounter a variable of type is tm from the context. Since our context consists
of blocks containing variables of type is tm and assumptions oft x T1, we pattern
match on [γ ` #p.2 ..], i.e., we project out the second argument of the block. We
hence know that [γ ` #p.2 ..] has type [γ ` oft (#p.1 ..)T], because #p has type
[γ ` block(x:is tm ,u:oft x T)]. We also know that the second input, called f, to
the function unique has type [γ ` oft (#p.1 ..)S]. By inversion on f, we know that
the only possible object that can inhabit this type is [γ ` #p.2 ..] and therefore S

must be identical to T. Moreover, #q denotes the same block as #p.
We note that some of the issues concerning the definition of equality via reflex-

ivity in Twelf do not arise in Beluga; Beluga’s proof is implemented as a function
using pattern matching instead of relations; as we pattern match we learn more
about the given derivations and information flows as expected.

4.6 Substitution (G Version)

Beluga enjoys the usual substitution property for parametric and hypothetical
derivations for free. Consider the proof of type preservation for the simply-typed
lambda-calculus with parallel reductions (Theorem 26): when M steps to N and M

has type A then N has the same type A. Since we allow reductions underneath an
abstraction, we may step through terms containing variables. We therefore allow
expressions to depend on the context γ. We only show the case for beta-reduction in
Fig. 9. Consider the clause pr_b:pr (app (lam λx.M ..x) (N ..)) (M .. (N ..)). Then
we have as assumption d:[γ ` oft (app (lam A (λx. M ..x)) (N ..)) (arr A B). By
inversion, we know that d:[γ ` of_a (of_l λx. λu. D1 .. x u) (D2 ..) ] where D1

stands for oft (M ..x) B in the extended context γ, x:is tm , u:oft x A. We also
know that D2 describes a derivation oft (N ..)A. By the IH (recursive call) on D2,
we therefore know F2:oft (N’ ..)A. By the IH (recursive call) on D1, we obtain a
derivation F1:oft (M’ ..x) B in γ, b:block(x:is tm ,of_x:oft x A). We now want to
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substitute for x the term N’, and for the derivation oft x A the derivation F2. This
is achieved by applying to F1 the substitution .. _ (F2 ..). Since in the program
above we do not have the name N available, we write an underscore and let Beluga’s
type reconstruction algorithm infer the appropriate name.

4.7 Mechanizing Properties in Belugaµ using Recursive Types and Substitutions

So far, we have concentrated on mechanizing proofs in Beluga only relying on
a fragment which contains (dependent) functions and applications, and pattern
matching on contextual objects and contexts. However, Belugaµ (Cave and Pien-
tka, 2012) also supports indexed recursive datatypes and first-class substitutions
(Cave and Pientka, 2013). This allows us to define predicates about contexts and
contextual objects, relate contexts via substitutions, and more importantly prove
properties about them inductively. The additional expressiveness gained allows
us to express explicitly promotion lemmas and proofs using context relations (R
version).

4.7.1 Promotion

In the previous sections, we have taken advantage of built-in context subsumption
in checking Beluga proofs. If schema W is a prefix of a schema W ′, then we can
always use a context of schema W ′ in place of a context of schema W . This enables
safe instances of context weakening and context strengthening and allows us to use
the reflexivity lemma (reflG) in the completeness proof for algorithmic equality
(ceqG), although the function reflG requires a context xaG while the function ceqG

provides a context daG. While such uses of context subsumption make proofs
short and compact, and are convenient for users, one might ask whether one can
avoid referring to context subsumption and make explicit the required reasoning,
namely context weakening and strengthening. In other words, we eliminate context
subsumption by referring to promotion lemmas such as Lemma 18.

The key to expressing context weakening and strengthening is the ability to
relate two contexts via a substitution. In Belugaµ, we can describe context rela-
tions using inductive datatypes as a relation between context φ, context γ and a
substitution σ that maps variables from φ to the context γ, formally γ ` σ : φ, as
follows:

datatype Ctx_R : {φ:xaG}{γ:daG}{σ:[γ ` φ]} ctype =
| Nil : Ctx_R [] [] [ ` ^ ]
| Cons: Ctx_R [φ] [γ] [γ ` σ]

→ Ctx_R [φ, b:block(x:tm,u:aeq x x)]
[γ, b:block(x:tm,u:aeq x x,v:deq x x)] [γ,b ` σ <b.1,b.2>]

;

We use first-class substitution variables σ of type [γ ` φ] (Cave and Pientka,
2013) to provide a witness on how to move from the context φ to the context
γ. We emphasize that the datatype Ctx_R is not an LF type, but instead an
indexed recursive type that lives on the reasoning level. It corresponds to inductive
definitions in other systems. This is indicated by declaring Ctx_R to be a ctype,
which is indexed by the context φ:xaG, the context γ:daG and the substitution
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σ:[γ ` φ]. In our example, the substitution σ is simply a variable substitution
that weakens terms declared in the context φ to be meaningful in γ.

The relation Ctx_R is defined inductively based on the structure of contexts φ
and γ. If φ and γ denote the empty context, the empty substitution, written as ^,
acts as a witness. If σ relates φ and γ, then φ, b:block(x:tm,u:aeq x x) is related
to γ,b:block(x:tm,u:aeq x x,v:deq x x) by the substitution3 σ <b.1 , b.2> where
we supply a tuple <b.1 , b.2> for the declaration block (x:tm,u:aeq x x).

Given a term M in the term context φ and Ctx_R [φ] [γ] [γ ` σ], where σ
is a weakening substitution from φ to γ, we can always weaken M by σ to obtain
[γ ` M σ]. This is encoded in the datatype definition below:

datatype StrTm : (γ:daG)[γ ` tm] → ctype =
| StrTm : {σ:[γ ` φ]} Ctx_R [φ] [γ] [γ ` σ]

→ {M:[φ ` tm]} StrTm [γ ` M σ];

We call the datatype StrTm, because we actually want to to show that given
a term [γ ` M ..] there always exists a StrTm [γ ` M ..], i.e., there exists a term
context γ, a weakening substitution σ and a term [φ ` N ..] s.t. N σ is equal to M.
Here N is the strengthened term. This strengthening for terms is implemented by
a recursive function of type:

str_tm : {γ:daG}{M:[γ ` tm]} StrTm [γ ` M .. ]

The proof is straightforward, but because we have defined a context relation
using a recursive data-type instead of a function that when given a context φ
of schema xaG returns a term context γ together with a weakening substitution
σ, we need two additional lemmas:4 we need to show that the context relation is
deterministic and whenever we have a context φ of schema daG, there exists a term
context γ of schema xaG. We can then implement promotion of reflexivity to the
context daG as follows:

rec promote_refl: {γ:daG}{M:[γ ` tm]} [γ ` aeq (M ..) (M ..)] =

λ�γ ⇒ λ�M ⇒
let StrTm [γ ` σ] cr [φ ` N ..] = str_tm [γ] [γ ` M ..] in
let [φ ` D ..] = reflG [φ] [φ ` N ..] in
[γ ` D σ];

Given a term M in the context γ, we first strengthen it, obtaining term N in the
strengthened context φ together with the substitution σ that maps variables in φ
to variables in γ. We now call reflG with the term context φ it requires together
with the term N and obtain a proof [φ ` D ..] standing for [φ ` aeq (N ..) (N ..)].
Context weakening, i.e., weakening D s.t. it makes sense in the original context γ,
is accomplished by simply applying the substitution σ.

The full development of the completeness of algorithmic equality with explicit
context strengthening and promotion is available online (see eq-proof-promotion.
bel). This development also highlights how convenient built-in support for context
subsumption is in Beluga; our proof development using context subsumption (115
lines of code) is approximately a third of the proof development using explicit
strengthening and promotion lemmas (318 lines of code).

3 We take here some liberty and write simply σ; in the theoretical foundation, substitution
variables do not occur by themselves; similar to meta-variables and parameter variables they
are associated with a postponed substitution.

4 Belugaµ does not support functions in types at this point.
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rec ctx_membership: {#p:[φ ` tm] } Ctx_xaR [φ] [ψ] [ψ ` σ] →
[ψ ` aeq (#p σ) (#p σ)] =

λ�#p ⇒ fn cr ⇒ let (cr : Ctx_xaR [φ] [ψ] [ψ ` σ]) = cr in
case [φ ` #p ..] of
| [φ, x:tm ` x] ⇒

let Cons_xa cr’ = cr in
let (cr’ : Ctx_xaR [φ] [ψ] [ψ ` σ]) = cr’ in
[ψ, b:block(x:tm,u:aeq x x) ` b.2]

| [φ, x:tm ` #p ..] ⇒
let Cons_xa cr’ = cr in
let [ψ ` E ..] = ctx_membership [φ ` #p ..] cr’ in

[ψ, b:block(x:tm,u:aeq x x) ` E .. ];

rec reflR: {φ:xG}{M:[φ ` tm]} Ctx_xaR [φ] [ψ] [ψ ` σ] →
[ψ ` aeq (M σ) (M σ)] =

λ�φ ⇒ λ�M ⇒ fn cr ⇒ case [φ ` M ..] of
| [φ ` #p ..] ⇒ ctx_membership [φ ` #p ..] cr
| [φ ` app (M .. ) (N ..)] ⇒

let [ψ ` D1 .. ] = reflR [φ] [φ ` M ..] cr in
let [ψ ` D2 .. ] = reflR [φ] [φ ` N ..] cr in
[ψ ` ae_a (D1 ..) (D2 ..) ]

| [φ ` lam λx.M .. x] ⇒
let [ψ, b:block(x:tm,u:aeq x x) ` D .. b.1 b.2] =

reflR [φ, x:tm] [φ,x:tm ` M .. x] (Cons_xa cr) in
[ψ ` ae_l (λx.λu. D .. x u)];

Fig. 10 Reflexivity of Algorithmic Equality in Belugaµ (R Version)

4.7.2 Proofs using Context Relations

We have seen that Beluga elegantly supports proofs using generalized contexts.
Here we exploit the ability to define context relations in Belugaµ to implement
proofs using context relations (R version). To illustrate the idea, we go back to
the reflexivity proof for algorithmic equality.

datatype Ctx_xaR : {φ:xG}{ψ:xaG}{σ:[ψ ` φ]} ctype =
| Nil_xa : Ctx_xaR [] [] [ ` ^ ]
| Cons_xa: Ctx_xaR [φ] [ψ] [ψ ` σ ]

→ Ctx_xaR [φ, x:tm] [ψ, b:block(x:tm,u:aeq x x)] [ψ,b ` σ b.1 ];

We again use first-class substitution variables σ of type [ψ ` φ] to move from
the context φ to the context ψ. If σ relates φ and ψ, then the substitution σ b.1

relates context φ, x:tm to ψ, b:block(x:tm,u:aeq x x) via constructor Cons_xa.
We show the proof reflR using context relations in Fig. 10. It is a straightfor-

ward recursive program of type

{φ:xG}{M:[φ ` tm]} Ctx_xaR [φ] [ψ] [ψ ` σ] → [ψ ` aeq (M σ) (M σ)]

which can be read as: For all contexts φ and ψ that have schema xG and xaG

respectively, if we have a substitution σ s.t. ψ ` σ : φ, then for all terms M

depending on φ, we have a proof that [ψ ` aeq (M σ)(M σ)]. We note that because
the term M depends only on the context φ, we explicitly weaken it by applying σ
to move it to the context ψ.

The proof is implemented as a recursive function over the term M. We again
consider three possible cases. If we have an application [φ` app (M1 ..) (M2 ..)],
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we appeal to the induction hypothesis on [φ ` M1 ..] and [φ ` M2 ..] by making
a recursive call. Since the context φ and the context ψ does not change, we can
simply make the recursive all on [φ ` M1 ..] and [φ ` M2 ..] respectively using the
relation cr.

When we have [φ ` lam λx.M ..x], we want to appeal to the induction hypothe-
sis on [φ,x:tm ` M ..x]. To make the recursive call, we also need a witness relating
the context [φ,x:tm ` M ..x] to the context [ψ,b:block(x:tm,u:aeq x x)]. Recall
that cr stands for Ctx_xaR [φ] [ψ] [ψ ` σ]. Therefore, by Cons_xa, we know there
exists Ctx_xaR [φ,x:tm] [ψ, b:block(x:tm,u:aeq x x)] [ψ, b ` σ b.1] and we
appeal to the IH by reflR [φ,x:tm] [φ,x:tm ` M ..x] (Cons_xa cr).

Finally, we take a close look at the variable case. For clarity, we follow the
outline of the proof from the companion paper (Felty et al, 2014) and factor out
the context membership lemma (Lemma 6, see Sect. 2.2). We distinguish two
different cases depending on the position of the variable in the context by pattern
matching on the shape of φ. If [φ,x:tm.x], then we inspect the context relation
cr. We note that pattern matching forces the original context φ to be φ,x:tm.
By pattern matching on cr’, we observe that there exists a relation cr’, such
that Ctx_xaR [φ] [ψ] [ψ ` σ]. Moreover, ψ = ψ, b:block(x:tm,u:aeq x x) and
σ = σ b.1 where the left hand side denotes the original context and substitution,
while the right hand side shows the context and substitution refinement after
pattern matching. We must show that there exists a proof for aeq x x in the
context ψ, b:block(x:tm,u:aeq x x). This is simply b.2.

If instead [φ,x:is tm` #p ..], we have a variable other than x. In this case, we
also observe that the context φ,x:tm and ψ,b:block(x:tm,u:aeq x x) are related
by the substitution σ b.1 since we have the assumption cr. By inversion on Cons_xa

we know that cr’ relates φ and ψ by the substitution σ. We now appeal to the
induction hypothesis making the recursive call ctx_membership [φ ` #p ..] cr’.
This is a valid recursive call, since the context φ is smaller than the original
context. We then rely on declaration weakening to obtain the desired result.5

Substitution variables account, in principle, for a concise representation of
proofs using context relations; they are particularly useful to express elegantly
proofs by logical relations (Cave and Pientka, 2014) where substitutions play an
essential role. In the completeness proof of algorithmic equality, they make possible
the implementation of the proof using context relations. However, the overhead of
defining context and equivalence relations and proving that the defined relations
are total functions is substantial in the R version of the completeness proof of
algorithmic equality.6

5 The Two-Level Approach

In this section we briefly review the two-level architecture that Hybrid and Abella
share, referring to (Felty and Momigliano, 2012) and (Gacek et al, 2012) for more
extensive explanations.

5 Type checking this proof requires the experimental implementation of Belugaµ supporting
substitution variables available at http://www.cs.mcgill.ca/~complogic/beluga/.

6 The completeness proof of algorithmic equality (G version) in Beluga is 115 lines of code
compared to its R version that takes 427 lines of code.
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>R
Σ;Γ −→C >

Σ;Γ −→C G1 Σ;Γ −→C G2
∧R

Σ;Γ −→C G1 ∧G2

(Σ, a);Γ −→C G[a/x]
∀R

Σ;Γ −→C ∀x. G

Σ;Γ −→C G[t/x]
∃R

Σ;Γ −→C ∃x. G

Σ; (Γ,A) −→C G
⊃R

Σ;Γ −→C A ⊃ G

init
Σ; (Γ,A) −→C A

Σ;Γ −→C [t/x]G
bc

Σ;Γ −→C A

The rule bc has the proviso that ∀x (G ⊃ A′) ∈ C, [t/x]A′ = A.

Fig. 11 A Minimal Sequent Calculus with Backchaining

In this approach we distinguish between a simple specification logic (SL), where
we specify (and execute) our judgments, and a reasoning logic (RL), endowed with
some form of induction/recursion, where we conduct our proofs. Abella and Hybrid
use different RLs, the former being the G (Gacek et al, 2011), an intuitionistic first-
order sequent calculus with a fixed-point approach to (co)induction and the nabla
quantifier ∇, the latter being the Calculus of Inductive Constructions (CIC) as
implemented by Coq. On the other hand, they basically share the same SL, defined
below. We use x to mean a vector of variables x1, . . . , xn in ∀x (G ⊃ A), where
A is an atomic formula. We extend our vector notation to substitutions writing
[t/x]G as a shorthand for [t1/x1, . . . , tn/xn]G.

Clauses C ::= ∀x (G ⊃ A)
Goals G ::= > | A | G1 ∧G2 | A ⊃ G | ∀x. G | ∃x. G

Context Γ ::= · | Γ,A
Signature Σ ::= · | Σ, a

Note that this SL is less powerful than the logical framework LF, the specifi-
cation language of Twelf and Beluga, as it restricts implications to A ⊃ G, i.e., we
only make atomic assumptions. In this sense we talk about second-order heredi-
tary Harrop formulas, where by order we mean the implicational complexity of a
clause and not the domain of quantification.7

This language is simple enough that its sequent calculus is analogous to a logic
programming interpreter. In fact, we can write inference rules so that the only
left rule is similar to Prolog’s backchaining. Sequents have the form Σ;Γ −→C
G, where Σ is the current signature of eigenvariables and we distinguish clauses
belonging to a static database C, intuitively the specification, from formulas in Γ ,
the atoms introduced by the right implication rule. The rules for this logic are
given in Fig. 11.

Note that in the proof-theoretic setting, as opposed to the type-theoretic one,
a declaration block in a context such as block(x:tm;u:aeq x x) is split into two

7 The two-level architecture makes possible, indeed it encourages, to plug-in a different SL;
in fact, Abella 2.0 (Wang et al, 2013) features an n-ary version of Harrop formulas, where
assumptions can have arbitrary complexity. However, because all the benchmarks that we
study here are second-order only, we take the liberty of describing here the second order
version of the SL. Note that the scripts described in the Abella section run under Abella 2.0
and that some of the differences are explained thereby.
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s t : {Γ `n+1 >}
s and : {Γ `n G1} → {Γ `n G2} → {Γ `n+1 G1 ∧G2}
s all : Qx. {Γ `n G x} → {Γ `n+1 ∀τ (λx. G x)}
s ex : {Γ `n G M} → {Γ `n+1 ∃τ (λx. G x)}
s imp : {A :: Γ `n G} → {Γ `n+1 A ⊃ G}
s init : A ∈ Γ → {Γ `n+1 〈A〉}
s bc : prog A G→ {Γ `n G} → {Γ `n+1 〈A〉}

Fig. 12 Encoding of Specification Logic

parts: a generic part, which essentially only records that x is indeed a (fresh)
eigenvariable of sort tm and a hypothetical one, which states the relevant assump-
tion for the given eigenvariable. Hence the separation between Σ and Γ , although
Hybrid and Abella will differ on how genericity is realized. Genericity, in fact, is a
property of the quantification structure of the RL, while hypothetical judgments
are made possible by encapsulation inside the SL.

The SL and object level judgments are themselves encoded in the RL as in-
ductive definitions with the following types:

seq : atm list → nat → o → prop.
prog : atm → o → prop.

where prop is the kind of propositions in the RL, atm represents atomic predicates
of the object-language, and o is the type of SL propositions. Natural numbers
(nat) decorate sequents, in order to reason by (complete) induction on the height
of a proof. The logic connectives have sorts

> : o | 〈 〉 : atm→ o | ∧ : o→ o→ o | ⊃ : atm→ o→ o |
∀τ : (τ → o)→ o | ∃τ : (τ → o)→ o.

where 〈 〉 coerces atoms into SL propositions.8 In the definition of the SL (see
Fig. 12), we write {Γ `n G} to pretty-print the seq definition and we overload the
usual logical symbols, e.g., the clause s imp corresponds to:

seq (A::Γ) N G → seq Γ (N+1) (A ⊃ G).

Free variables in inductive definitions and also in statements of theorems are im-
plicitly universally quantified at the top-level of each clause or statement. Contexts
are represented as lists,9 the :: operator represents cons, and the ∈ operator list
membership.

The first five clauses of the definition directly encode the introduction rules of
a sequent calculus for this logic. The rule s all maps the SL universal quantifier to
the related universal in the RL (here ambiguously denoted by Q), which in the case
of Hybrid will be Coq’s dependent product and in the case of Abella the ∇ quanti-
fier. In s ex we rely on meta-logic unification to instantiate the logic variable M .10

8 The τ argument to quantifiers ranges in Abella over any sort not containing o, while in
Hybrid it is restricted to expr, the built-in sort of object-level expressions. We discuss this
issue further in Sect. 8.

9 Using lists as the data-structure underlying contexts is not written in stone. In fact, the
Isabelle/HOL version of Hybrid uses sets (Felty and Momigliano, 2012) and Abella may also
offer multi-sets in the near future.
10 Abella does not support existentials goals, and, to overcome this, the user needs to resort

to some indirect encoding, as exemplified in (Momigliano, 2012).
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In the last two rules, atoms are provable either by assumption or via backchain-
ing over Prolog-like rules, the prog predicate, which encode the properties of the
object-language. If we look at the SL as a variant (with embedded implications) of
the standard Prolog vanilla meta-interpreter, prog would correspond to Prolog’s
built-in predicate clause/2. The sequent calculus/meta-interpreter is parametric
in those clauses and uses the RL underlying unification to do the matching required
by the s bc rule.

For example, clause ae_l in Appendix A is encoded as the following prog clause,
where we do not explicitly encode the outermost SL universal quantifier, but we
short-circuit it with the one of the meta-logic, hence omitted:

prog (aeq (lam (λx. M x)) (lam (λx. N x)))
(∀tm (λx. aeq x x ⊃ <aeq (M x) (N x)>)).

In the rest of this section we will use the more readable “prog-less” syntax of
ORBI, but we refer to Fig. 13 in the following Hybrid section for the prog clauses
encoding benchmark A.1.

As explained in the companion paper, ORBI specifications need to be mas-
saged to fit the proof-theoretic view at the level of inference rules, schemas, and
context relations. This is mostly due to the asymmetry between declarations that
give typing (sorting) information, e.g., tm:type, and those expressing judgments,
e.g., aeq:tm -> tm -> type. The logic typically does not know that M:tm entails
is tmM holding at the level of judgments, because the language of sorts tends not
to be reflected in the proof-theory. Therefore, for the type tm, we introduce the
predicate is_tm with the following clauses:

tm_a: is_tm M → is_tm N → is_tm (app M N).
tm_l: ({x} is_tm x → is_tm (M x)) → is_tm (lam (λx. M x)).

These well-formedness rules have two important applications:

1. to provide induction principles at the level of the syntax as for example re-
quired in the proof of admissibility of reflexivity (Theorem 7); see e.g., H-
Theorem 2 and A-Theorem 2, where we prefix theorems with A (resp. H) writ-
ing A-Theorem (resp. H-Theorem) if we are referring to Abella’s or Hybrid’s
encoding;

2. to prove preservation of well-formedness results such as H-Theorem 30 and
A-Theorem 12.11

In fact, with respect to the latter, we assumed in our presentation in the
companion paper that whenever a judgment was provable, the terms in it were well-
formed. In the two-level approach, such statements need to be proved explicitly,
and to do so, annotations are added to inference rule encodings. In Hybrid and
Abella, for instance, clauses de_l and de_r will have the form :

de_l: ({x} is_tm x → deq x x → deq (M x) (N x))
→ deq (lam (λx. M x)) (lam (λx. N x)).

de_r: is_tm M → deq M M.

11 We refer to these properties as “internal adequacy”, as opposed to “external adequacy”;
the latter refers to the bijection that should hold between the mathematical presentation of
a OL and its encoding in a logical framework. See the discussion in (Pfenning, 2001), (Gacek
et al, 2012) and (Felty and Momigliano, 2012) for Twelf, Abella and Hybrid respectively.
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In order to avoid clutter, annotations that are not needed for adequacy are left
out; this is the case for the ae_l rule above. We will take the same approach when
specifying context relations.

A small set of structural rules of the SL is proved once and for all, and then
used to reason about object-languages:

SL-Theorem 1 (Structural Properties)
(a) Height weakening: {Γ `n G} → n < m→ {Γ `m G}.
(b) Antecedent weakening: {Γ `n G} → Γ ⊆ Γ ′ → {Γ ′ `n G}.
(c) Atomic cut: {A :: Γ `n G} → {Γ `m 〈A〉} → {Γ `n+m G}.
(d) Specialization: {Γ `n ∀τ (λx. G x)} → {Γ `n G t}.

Antecedent weakening is defined “set-theoretically”, i.e., Γ ⊆ Γ ′ iff ∀A. A ∈ Γ →
A ∈ Γ ′, and, as such, it subsumes contraction and in particular:

Exchange: Γ ⊆ Γ ′ ∧ Γ ′ ⊆ Γ → {Γ `n G} iff {Γ ′ `n G}.

Declaration strengthening d-str is currently unsupported, and thus it is established
on a case-by-case basis, typically with inductive proofs, although it is conceivable
that it could be proven once and for all by enriching the prog clause with a depen-
dency analysis, akin to Twelf and Beluga’s subordination. Context strengthening
c-str also requires separate proofs and its automation seems more complex.

As a consequence of the proof-theoretic separation between generic and hypo-
thetical judgments, the substitution property is realized by a combination of cut
and specialization. See for example the proof of A-Theorem 22, viz. the pr_b case.
Specialization is just function application in Coq, while it is a rather deep property
of the nabla quantifier and SL-derivability (Gacek et al, 2012) in Abella.

Finally, context schemas/relations are realized by inductive definitions of cer-
tain predicates/relations in the RL and will follow the syntax of the ambient logic,
as we will see for example at pages 32 and 45.

6 Mechanization in Hybrid

As mentioned, in the version of Hybrid used in this paper, the RL is Coq’s Cal-
culus of Inductive Constructions. Hybrid is implemented as a Coq library. We use
a pretty-printed version of Coq concrete syntax, which includes some notation
already presented. For example, Prop is the type of propositions of the RL, corre-
sponding to prop in the previous section. The type o from the previous section is
defined here as the following Coq inductive type:

Inductive o := tt : o | 〈 〉 : atm→ o | and : o→ o→ o | imp : atm→ o→ o

| all : (expr→ o)→ o | ex : (expr→ o)→ o.

where, although we overloaded the logical connectives of the RL and SL in Sect. 5,
this definition introduces new symbols for the SL connectives so that we may more
clearly distinguish them in this section. Hybrid is untyped in the sense that all
object-level data have type expr. It provides a set of operators on this type that
is built definitionally on the foundation of the meta-language of the underlying
theorem prover using a form of de Bruijn indices to represent binding operators;
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no axioms are introduced (see Felty and Momigliano, 2012). We omit most details
and just present the operators and some predicates about them used in this paper.
The operators with their types are:

CON : con→ expr APP : expr→ expr→ expr

VAR : var→ expr LAM : (expr→ expr)→ expr

where the first three come directly from the inductive definition of expr. The
type var is defined to be the natural numbers and can be used to represent free
variables, and con will be defined later to represent the constants of an OL.

The inductive definition is completed by two operators for de Bruijn represen-
tation, BND similar to VAR used for bound variables, and ABS : expr → expr. The
Hybrid library includes a series of definitions used to define LAM from the prim-
itive operators (see Sect. 2.1 of Felty and Momigliano, 2012). LAM provides the
capability to express OL syntax using HOAS. Expanding its definition fully down
to primitives gives the low-level de Bruijn representation, which is hidden from
the user when reasoning about meta-theory. In fact, BND, ABS, and the definition
of LAM will not appear subsequently in this paper. Only the constants (type con)
together with APP and LAM will be used to define operators for OL syntax, such as
app and lam of the untyped lambda-calculus. Once defined, such definitions never
need to be expanded by the user. Thus, even APP and LAM will appear only in the
definitions and never in proofs.

Two other predicates from the Hybrid library will appear in the proof devel-
opment, proper : expr → Prop and abstr : (expr → expr) → Prop. The proper

predicate rules out terms that have occurrences of bound variables that do not
have a corresponding binder (dangling indices).12 The abstr predicate is applied
to arguments of LAM and rules out meta-level functions that do not encode object-
level syntax.

Fig. 12 is mapped fairly directly to a Coq inductive definition of type list atm→
nat→ o→ Prop, in most cases by simply replacing the connectives shown in the
figure with those in the definition of type o. The only clause that differs is the one
for generic judgments, which in Hybrid is:

s all : (∀x. properx→ {Γ `n G x})→ {Γ `n+1 all (λx.G x)}.

Note the use of the universal quantifier of the RL. By using the quantifier, we do
not distinguish variables occurring in a context from terms. The consequences of
this choice will be discussed later. Note also the proper annotation that is required
here. In addition, explicit proof heights are included in sequents and many proofs
will be by complete induction on the height of a proof. In this section {Γ ` G} is
an abbreviation for ∃n. {Γ `n G}. We distinguish sequents of the SL from those
of the RL by writing the latter as:

h1 : A1 h2 : A2 · · · hn : An
A

where A1, . . . , An, A are Coq formulas (of type Prop) and h1, . . . , hn are hypothesis
names. (The latter are sometimes omitted.) Such sequents appear in the descrip-
tion of formal proofs, which are often described in a goal-directed manner. When

12 Hybrid 0.2 described in Momigliano et al (2008), which is implemented in Isabelle/HOL,
includes an improvement that doesn’t require the proper predicate, but this improvement has
not yet been ported to the Coq version used in this paper.
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Inductive prog : atm→ o→ Prop :=
tm a : prog (is tm (appM N)) (〈is tmM〉 and 〈is tm N〉)
tm l : abstrM → prog (is tm (lam M))

all λx. (is tm x) imp 〈is tm (Mx)〉
ae a : prog (aeq (appM1 M2) (app N1 N2))

〈aeqM1 N1〉 and 〈aeqM2 N2〉
ae l : abstrM → abstrN → prog (aeq (lam M) (lam N))

all λx. (aeq x x) imp 〈aeq (Mx) (Nx)〉.

Fig. 13 Object-Language Inference Rules in Hybrid

there is more than one subgoal with the same set of hypotheses, we write more
than one conclusion below the line and number them.

To illustrate the Coq encoding of OL inference rules, we present the syntax of
the untyped lambda-calculus and prog clauses for algorithmic equality (ae e and
ae l) as presented in Sect. 2.1. We fill in the definition of con, define operators
app and lam using the operators defined earlier for expr, and fill in the definition
of atm, which includes aeq as well as the is tm predicate for well-formedness of
terms.

Inductive con := cAPP : con | cLAM : con.
Definition app := λM,N. APP (APP (CON cAPP) M) N.
Definition lam := λM. APP (CON cLAM) (LAM λx.M x).
Inductive atm := is tm : expr→ atm | aeq : expr→ expr→ atm.

The inference rules are defined as the inductive definition of prog in Fig. 13. Both
the definition of prog and the definitions above are automatically generated by
the tool described in Habli and Felty (2013), which translates ORBI files to Coq
script. This script imports the Hybrid libraries and sets up the basic definitions
needed to reason about a particular OL, including definitions for context schemas
and relations.

Two reasons for including the prog clauses tm l and tm a were discussed in
the previous section. First, they provide induction on well-formedness derivations,
which is often useful, especially since induction directly on terms is not currently
available.13 Second, they are important for proving internal adequacy. The latter is
especially important in Hybrid, since as mentioned above, Hybrid expressions are
untyped. The abstr conditions are also important for this purpose. An example is
discussed in Sect. 6.3.3; more details on both external and internal adequacy can
be found in Felty and Momigliano (2012).

The prog clauses for all other judgments considered here are encoded via
translation from the specifications in the Rules sections of the ORBI files (see
Appendix A) in a systematic manner. The only non-systematic aspect of the en-
coding of inference rules is the insertion of well-formedness annotations, such as
those in the de_l and de_r clauses on page 28. (The same ones are used in both
Hybrid and Abella.) We add special directives to the ORBI files (which are not
shown in the appendix, but are discussed in the companion paper) that indicate
which annotations to include.

13 Please see Ambler et al (2003) and Capretta and Felty (2007) for work in this direction.
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For all benchmark problems that we are able to formalize in Hybrid, we do
both the R and G versions.

6.1 Basic Linear Context Extension

6.1.1 R Version

We begin by defining the context relation xaR (see the Definitions section of
Appendix A.1) in Coq:

Inductive xaR : list atm→ list atm→ Prop :=
xaR nil nil

xaR Φx Φa → properx → xaR (is tm x :: Φx) (aeq x x :: Φa).

Recall our convention of leaving out explicit quantifiers at the top-level, which
here includes universal quantification over x as well as Φx and Φa in the second
clause of the definition. Here x is an arbitrary term, since as mentioned, we do
not distinguish variables occurring in a context from terms. Note that whenever
the typing declaration x:tm appears in a context in an ORBI specification, the
corresponding Hybrid definition contains the atomic formula is tm x. (Similarly,
in the next subsection, declarations of the form a:tp in ORBI will appear as
formulas in Hybrid.) Also note that aeq x x appears by itself instead of in a block
with is tm x. As stated in the previous section, we leave out well-formedness
annotations from prog clauses and context relations whenever possible. Finally,
note also the presence of the required proper annotation.

We start with the Hybrid version of membership Lemma 6 from Sect. 2.2.

H-Lemma 1 (Context Membership)
∀M,Φx, Φa. xaR Φx Φa → is tmM ∈ Φx → aeqM M ∈ Φa.

The proof is by induction on the first premise, and is simple and follows the same
pattern as all other context membership lemmas. Current work on Hybrid includes
writing a Coq tactic to automate these proofs, which will be straightforward. Note
that the second implication in the statement of this lemma could be replaced
by equivalence, since it certainly holds in both directions. We only state such
lemmas using implication in the direction(s) that are needed, so that they can be
used in automating proofs via eauto. The eauto tactic is parametrized by a set of
lemmas marked as hints and we generally add context membership, strengthening,
and weakening lemmas as hints, which together provide significant automation of
proofs.

We give the proof of the first benchmark in some detail.

H-Theorem 2 (Admissibility of Reflexivity, R Version)
xaR Φx Φa → {Φx `n 〈is tmM〉} → {Φa `n 〈aeqM M〉}.

Proof The proof is by complete induction on n with induction hypothesis IH :=
∀i,M,Φx, Φa. i < n→ xaR Φx Φa → {Φx `i 〈is tmM〉} → {Φa `i 〈aeqM M〉}.

A derivation of {Φx `n 〈is tmM〉} must end in an application of the last two
clauses of the definition of the SL (s init or s bc in Fig. 12 on page 27). In general,
the s init case in Hybrid proofs corresponds to the variable case in the informal
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proof. Here, we know that (is tmM) ∈ Φx. By H-Lemma 1, (aeqM M) ∈ Φa. We
use this fact and simply apply s init to obtain {Φa `n 〈aeqM M〉}, as desired.

All other cases in the informal proofs are covered by the s bc case in Hybrid
proofs. Here, when the derivation ends in s bc, it must be the case that one of the
two clauses defining the is tm judgment (tm a or tm l in Fig. 13 on page 31) was
used.

Case tm a: We know that M has the form (appM1 M2), and we must show:

h1 : IH h2 : xaR Φx Φa h3 : {Φx `n 〈is tm (appM1 M2)〉}
{Φa `n 〈aeq (appM1 M2) (appM1 M2)〉}

By repeated inversion of the SL rules on h3, and repeated backward application of
these rules to the conclusion, the above goal reduces to the following 2 subgoals:

IH xaR Φx Φa {Φx `n−2 〈is tmM1〉} {Φx `n−2 〈is tmM2〉}
1. {Φa `n−2 〈aeqM1 M1〉}
2. {Φa `n−2 〈aeqM2 M2〉}

which are both provable by the induction hypothesis.
Case tm l: We know that M has the form (lam M ′) and we must show:

h1 : IH h2 : xaR Φx Φa h3 : {Φx `n 〈is tm (lam M ′)〉}

{Φa `n 〈aeq (lam M ′) (lam M ′)〉}

Again, by repeated inversion of the SL rules on h3, and repeated backward ap-
plication of these rules to the conclusion, the above goal reduces to the following
subgoal:

IH xaR Φx Φa properx {is tm x :: Φx `n−3 〈is tm (M ′x)〉}

{aeq x x :: Φa `n−3 〈aeq (M ′x) (M ′x)〉}

By definition of xaR, we can conclude xaR (is tm x :: Φx) (aeq x x :: Φa), and then
apply the induction hypothesis to complete the proof.

6.1.2 G Version

We begin by defining the generalized context inductively.

Inductive xaG : list atm→ Prop := xaG nil

xaG Φxa → properx → xaG (is tm x :: aeq x x :: Φxa).

We take this opportunity to remark that the block structure of a context as intro-
duced in Sect. 2 is enforced by pattern matching on the cons notation, which in
this case requires the list to either be empty or to always contain the declaration
is_tm x followed by aeq x x.14

14 We omit the Coq inductive definitions for contexts in the rest of this section. G versions
like this one are obtained directly from the corresponding definition in the Schemas section of
the ORBI files in the appendix. Similarly, inductive definitions of context relations such as xaR
are obtained from the corresponding Definitions sections.
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In order to formalize the lambda case of Theorem 8 we need a d-str lemma.
Here, we state it as a corollary (H-Corollary 4 below) of the more general H-
Lemma 3. (Although strengthening was not needed in the informal proof, it is
required here because of the fact that we leave out assumptions of the form is tm x
when defining the inference rules for aeq. See Fig. 13 on page 31).

H-Lemma 3 (∀x, y.aeq x y ∈ Γ1 ←→ aeq x y ∈ Γ2) → {Γ1 `n 〈aeqM N〉} →
{Γ2 `n 〈aeqM N〉}.

Note that this lemma preserves the height n. It is proved by a straightforward
induction on proof height n. We state it in this general form because other instances
of both d-str and c-str required later also follow directly from it.

H-Corollary 4 (D-Strengthening)
{is tm x :: aeq x x :: Γ `n 〈aeqM N〉} → {aeq x x :: Γ `n 〈aeqM N〉}.

We also need the standard membership lemma (omitted). With these in place,
the proof of the admissibility of reflexivity is straightforward. We show it in some
detail for comparison.

H-Theorem 5 (Admissibility of Reflexivity, G Version)
xaG Φxa → {Φxa `n 〈is tmM〉} → {Φxa `n 〈aeqM M〉}.

Proof Again, the proof is by complete induction on n. The context and application
cases are similar to H-Theorem 2, just like these two cases were similar in the
informal proofs of Theorems 7 and 8 presented in the companion paper (Felty et al,
2014). In the abstraction case (tm l), we know that M has the form (lam M ′) and
we must show:

h1 : IH h2 : xaG Φxa h3 : {Φxa `n 〈is tm (lam M ′)〉}

{Φxa `n 〈aeq (lam M ′) (lam M ′)〉}

By repeated inversion of the SL rules on h3, and repeated backward application
of these rules to the conclusion, the above goal reduces to the following subgoal:

IH xaG Φxa h4 : properx h5 : {is tm x :: Φxa `n−3 〈is tm (M ′x)〉}

{aeq x x :: Φxa `n−3 〈aeq (M ′x) (M ′x)〉}

We apply d-wk to h5 via SL-Theorem 1 (b) to obtain:

{is tm x :: aeq x x :: Φxa `n−3 〈is tm (M ′x)〉}

By definition of xaG, we can conclude xaG (is tm x :: aeq x x :: Φxa), and then ap-
ply IH to obtain {is tm x :: aeq x x :: Φxa `n−3 〈aeq (M ′x) (M ′x)〉}. Finally, we
apply d-str via H-Corollary 4 to obtain {aeq x x :: Φxa `n−3 〈aeq (M ′x) (M ′x)〉}
as desired.

For admissibility of reflexivity, which is our simplest benchmark, there is very
little difference between the R and G versions in Hybrid. As we get to more com-
plicated examples, the G versions require more (sometimes many more) strength-
ening, weakening, and promotion lemmas as compared to the R versions, but other
than that, present no further complications.

The proofs of admissibility of symmetry and transitivity for algorithmic equal-
ity use the following membership lemma.
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H-Lemma 6 (Context Inversion) aG Φa → aeqM N ∈ Φa → M = N .

Here the inductive definition of aG is obtained from the definition of schema xaG

in Appendix A.1, in this case omitting the well-formed term annotations, i.e., in
(aG Φa), the context Φa contains only atoms of the form (aeq x x). Like reflexivity,
the proofs of symmetry and transitivity are straightforward and are stated as
follows in Hybrid.

H-Theorem 7 (Symmetry and Transitivity)
1. aG Φa → {Φa `n 〈aeqM N〉} → {Φa `n 〈aeq N M〉}.
2. aG Φa → {Φa `n 〈aeqM L〉} → {Φa `n 〈aeq L N〉} → {Φa `n 〈aeqM N〉}.

We note here that the abstraction cases of some formal proofs require explicit
reasoning about Hybrid’s extensional equality (Felty and Momigliano, 2012). The
only two examples in this paper where such details appear are the lam cases of
H-Theorem 7 (2) above and the failed proof of H-Attempt 35 in Sect. 6.6.

6.2 Linear Context Extensions with Alternative Declarations

The next benchmark extends reflexivity of equality to the polymorphic lambda-
calculus. We first extend the definitions on page 31 to include new constants and
operators tapp and tlam and replace the definition of atm with one that includes
four predicates: is tp, is tm, atp, and aeq, thus implementing the Syntax and
Judgments sections of the ORBI file in Appendix A.2. The definition of prog in
Fig. 13 is extended to include all the declarations in the Rules section, plus clauses
for well-formedness of tp.

6.2.1 G Version

The inductive definitions for context schemas atpG and aeqG implement directly
the block structure in the corresponding schema declarations in Appendix A.2,
where the former includes blocks of the form (is tp α :: atp α α) and the latter
includes, in addition, blocks of the form (is tm x :: aeq x x). The statement and
proof of admissibility of reflexivity for types is similar to the case for terms in
the untyped lambda-calculus. We simply state the required lemmas and theorem.
The lemmas include the usual membership lemma as well as a d-str lemma and
corollary (similar to H-Lemma 3 and H-Corollary 4).

H-Lemma 8 (Context Membership)
atpG Φatp → is tp A ∈ Φatp → atp A A ∈ Φatp.

H-Lemma 9 (∀α, α′.atp α α′ ∈ Γ1 ←→ atp α α′ ∈ Γ2)→ {Γ1 `n 〈atp A B〉} →
{Γ2 `n 〈atp A B〉}.

H-Corollary 10 (D-Strengthening)
{is tp α :: atp α α :: Γ `n 〈atp A B〉} → {atp α α :: Γ `n 〈atp A B〉}.

H-Theorem 11 (Admissibility of Reflexivity for Types, G Version)
atpG Φatp → {Φatp `n 〈is tp A〉} → {Φatp `n 〈atp A A〉}.
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Proving reflexivity of equality for terms of the polymorphic lambda-calculus
requires promotion of the corresponding lemma for types (Lemma 12), whose proof
requires c-str and c-wk. These rules are expressed in Felty et al (2014, Section 2.3)
using explicit strengthening functions (see Property 4). The particular function
used here is rm∗is tm x;aeq x x, and in Hybrid, we define it directly as a Coq recursive
function.

Fixpoint rm aeq2atp : atm list → atm list :=
rm aeq2atp (is tp α :: atp α′ α′′ :: Φaeq) =

(is tp α :: atp α′ α′′ :: rm aeq2atp Φaeq)
rm aeq2atp (is tm :: aeq :: Φaeq) = (rm aeq2atp Φaeq)
rm aeq2atp = nil.

Note that this strengthening function transforms a context having schema aeqG

(see Appendix A.2) to one having schema atpG by removing an entire alternative
and leaving the other intact. The third clause of this definition is required since
this function can be called with any (atm list), though this clause is never used
since the function is only called on contexts having schema aeqG. This restriction
is satisfied, for example, in the statement of the following lemma, which directly
relates contexts satisfying these two schemas.

H-Lemma 12 aeqG Φaeq → atpG (rm aeq2atp Φaeq).

This result was left implicit in the informal proof. It is proved by a simple induction
on the definition of aeqG. We then prove the required c-str and c-wk lemmas.

H-Lemma 13
1. (∀α.is tp α ∈ Γ1 ←→ is tp α ∈ Γ2)→ {Γ1 `n 〈is tp A〉} → {Γ2 `n 〈is tp A〉}.
2. aeqG Φaeq → (∀α.is tp α ∈ Φaeq ←→ is tp α ∈ (rm aeq2atp Φaeq)).
3. aeqG Φaeq → (∀α, α′.atp α α′ ∈ Φaeq ←→ atp α α′ ∈ (rm aeq2atp Φaeq)).

Proof Note that (1) is similar to H-Lemma 9. (2) and (3) follow from a simple
induction and the definition of rm aeq2atp.

H-Corollary 14 (C-Strengthening/Weakening)
1. aeqG Φaeq → {Φaeq `n 〈is tp A〉} → {rm aeq2atp Φaeq `n 〈is tp A〉}
2. aeqG Φaeq → {rm aeq2atp Φaeq `n 〈atp A B〉} → {Φaeq `n 〈atp A B〉}

Proof (1) is a corollary of H-Lemma 13 (1) and (2), and (2) is a corollary of
H-Lemma 9 and H-Lemma 13 (3).

Now, we can state and prove the required promotion lemma. We give the proof
explicitly, though the formalized proof is fully automatic once the above lemmas
are added to the hint database.

H-Lemma 15 (Promotion)
aeqG Φaeq → {Φaeq `n 〈is tp A〉} → {Φaeq `n 〈atp A A〉}.

Proof
atpG (rm aeq2atp Φaeq) by H-Lemma 12
{rm aeq2atp Φaeq `n 〈is tp A〉} by c-str: H-Corollary 14 (1)
{rm aeq2atp Φaeq `n 〈atp A A〉} H-Theorem 11
{Φaeq `n 〈atp A A〉} by c-wk: H-Corollary 14 (2)
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Now, turning to the proof of admissibility of reflexivity for terms, in addition
to promotion, we also need 2 membership lemmas and 2 d-str lemmas. We omit
them here. The latter are needed in the ael and aetl cases, and are similar to
H-Corollary 4 and H-Corollary 10.

H-Theorem 16 (Admissibility of Reflexivity for Terms, G Version)
aeqG Φaeq → {Φaeq `n 〈is tmM〉} → {Φaeq `n 〈aeqM M〉}.

Proof As in the informal proof in the companion paper of Theorem 13, we show
only the case for application of terms to types.
Case ae ta: We know that M has the form (tapp M ′A) and we must show:

h1 : IH h2 : aeqG Φaeq h3 : {Φaeq `n 〈is tm (tapp M ′ A)〉}

{Φaeq `n 〈aeq (tapp M ′ A) (tapp M ′ A)〉}

By repeated inversion of the SL rules on h3, and repeated backward application of
these rules to the conclusion, the above goal reduces to the following 2 subgoals:

IH aeqG Φaeq {Φaeq `n−2 〈is tmM ′〉} {Φaeq `n−2 〈is tp A〉}

1. {Φaeq `n−2 〈aeqM ′ M ′〉}
2. {Φaeq `n−2 〈atp A A〉}

The first is provable by IH and the second by promotion (H-Lemma 15).

6.2.2 R Version

The context relations (atpR Φα Φatp) and (aeqR Φαx Φaeq) are defined as Coq
inductive predicates implementing atpR and aeqR from the Definitions section
of Appendix A.2, similar to the inductive definition in Sect. 6.1.1 implementing xaR

from Appendix A.1. Just as in the Hybrid definition of xaR, we remove the term
and type well-formedness annotations from the second argument to the relations.

As before, d-str lemmas are not needed in the R version of admissibility of
reflexivity, and membership lemmas are similar to H-Lemma 1. Admissibility for
types is stated below with proof omitted; it is similar to those already shown.

H-Theorem 17 (Admissibility of Reflexivity for Types, R Version)
atpR Φα Φatp → {Φα `n 〈is tp A〉} → {Φatp `n 〈atp A A〉}.

In order to implement relational strengthening Lemma 15 (see Sect. 2.2) in
Hybrid, we witness Φα and Φatp directly by applying strengthening functions to Φαx
and Φaeq, respectively. These functions are implemented similarly to rm aeq2atp

in the G version (Sect. 6.2.1). We only show the main clauses of the definitions.

rm alphx2alph (is tp α :: Φαx) = (is tp α :: rm alphx2alph Φαx)
rm alphx2alph (is tm :: Φαx) = (rm alphx2alph Φαx)
rm aeq2atp (atp α′ α′′ :: Φaeq) = (atp α′ α′′ :: rm aeq2atp Φaeq)
rm aeq2atp (aeq :: Φaeq) = (rm aeq2atp Φaeq)

The former transforms a context having schema axG to one having schema aG, and
the latter transforms a context having schema aeqG to one having schema atpG.
Using these functions, relational strengthening is stated as follows.
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H-Lemma 18 (Relational Strengthening)
aeqR Φαx Φaeq → atpR (rm alphx2alph Φαx) (rm aeq2atp Φaeq).

Note that this lemma is similar to H-Lemma 12 of the G version. We next state
the required c-str and c-wk lemmas.

H-Corollary 19 (C-Strengthening/Weakening)
1. aeqR Φαx Φaeq → {Φαx `n 〈is tp A〉} → {rm alphx2alph Φαx `n 〈is tp A〉}.
2. aeqR Φαx Φaeq → {rm aeq2atp Φaeq `n 〈atp A B〉} → {Φaeq `n 〈atp A B〉}.

This result is stated as a corollary since it follows from the same kinds of lemmas
(omitted here) as H-Corollary 14. The following promotion lemma follows from
the above lemmas in a similar series of steps to the proof of Lemma 15.

H-Lemma 20 (Promotion)
aeqR Φαx Φaeq → {Φαx `n 〈is tp A〉} → {Φaeq `n 〈atp A A〉}.

Unlike H-Lemma 15, this proof cannot be fully automated in Coq using eauto

because there are too many existential variables to fill in. In general, there are
fewer when a single generalized context is used.

We now state the final result, admissibility of reflexivity for terms, whose proof
is similar to the proof of H-Theorem 16, except there is no need for d-str.

H-Theorem 21 (Admissibility of Reflexivity for Terms, R Version)
aeqR Φαx Φaeq → {Φαx `n 〈is tmM〉} → {Φaeq `n 〈aeqM M〉}.

In this subsection, we have shown both the G and R versions in detail, to make
explicit all the required lemmas (e.g., c- and d-strengthening and weakening, and
promotion) and to illustrate that Hybrid is flexible enough to do different versions
of this proof. In doing so, we follow the informal proofs very closely. If the goal
were to just complete any proof and move on, we would have chosen the R version,
since it is slightly simpler. In fact, an even simpler R version is done in Abella in
Sect. 7.2, and that proof is also possible, and perhaps preferable in Hybrid.15

6.3 Non-linear Context Extensions

For the completeness of equality benchmark, the definitions of the Hybrid con-
stants include app and lam and the definition of atm includes predicates is tm,
aeq, and deq. (See page 31 and Appendix A.1.) As mentioned in Sect. 5, the en-
coding of the inference rules for deq require some well-formedness annotations in
order to prove adequacy. We briefly discuss the statements and proofs of internal
adequacy at the end of this subsection (Sect. 6.3.3) after illustrating the R version
(Sect. 6.3.1) and the G version (Sect. 6.3.2) of the completeness theorem. As usual,
the G version of the proof is more complicated than the R version.

15 The version presented there (A-Theorem 11) illustrates the trade-off between choosing
the smallest context relation possible for each lemma (as is done here), and choosing one that
leads to a simpler but less modular proof development. There are also other proof developments
described in Sect. 7 that diverge from the informal versions in the companion paper, which
would also present no problems in Hybrid (e.g., A-Theorem 18).
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6.3.1 R Version

The Hybrid definition of (adR Φa Φxd) implements adR in Appendix A.1. The
first argument Φa does not contain the term well-formedness annotation, but Φxd
does. We once again formalize relational strengthening (see H-Lemma 18) using a
strengthening function rm xd2x , whose main clause is:

rm xd2x (is tm x :: deq :: Φxd) = (is tm x :: rm xd2x Φxd)

Unlike in Sect. 6.2 where all the strengthening functions removed an alternative
from a context schema, this one relates two schemas each with just one alternative
and modifies every block by removing one of the two atoms.

H-Lemma 22 (Relational Strengthening)
1. adR Φa Φxd → xaR (rm xd2x Φxd) Φa.
2. adR Φa Φxd → aG Φa.

In the above lemma, the first statement is the Hybrid version of Lemma 20 in
Sect. 2.2, needed to prove promotion for reflexivity (Lemma 21). The promotion
lemmas for symmetry and transitivity have much simpler statements and proofs,
and were omitted from the informal proof. Here we make them explicit. Their
proofs require the second statement above, but other than that are simple.

Promotion for reflexivity requires one c-str lemma, as follows.

H-Lemma 23 (C-Strengthening)
adR Φa Φxd → {Φxd `n 〈is tm A〉} → {rm xd2x Φxd `n 〈is tm A〉}.

H-Lemma 24 (Promotion)
1. adR Φa Φxd → {Φxd `n 〈is tmM〉} → {Φa `n 〈aeqM M〉}.
2. adR Φa Φxd → {Φa `n 〈aeqM N〉} → {Φa `n 〈aeq N M〉}.
3. adR Φa Φxd → {Φa `n 〈aeqM L〉} → {Φa `n 〈aeq L N〉} → {Φa `n 〈aeqM N〉}.

(In contrast, the G version of the above lemma in the next subsection requires
several more strengthening and weakening lemmas.)

H-Theorem 25 (Completeness, R Version)
adR Φa Φxd → {Φxd `n 〈deqM N〉} → {Φa `n 〈aeqM M〉}.

Proof The proof is by induction on n as usual. We discuss the same cases as in
the informal proof of Theorem 22.

Case de r: In the case when the last rule in the proof of {Φxd `n 〈deqM N〉}
is reflexivity, we know that M = N and {Φxd `n−1 〈is tmM〉}. From height
weakening (part (a) of SL-Theorem 1), we also have {Φxd `n 〈is tmM〉}. We can
then apply H-Lemma 24 (1) to obtain the desired result.

Case de t: We know that there is an L such that {Φxd `n−1 〈deqM L〉} and
{Φxd `n−1 〈deq L N〉}. By the induction hypothesis, followed by height weaken-
ing, we can conclude {Φa `n 〈aeqM L〉} and {Φa `n 〈aeq L N〉}. We can then
apply H-Lemma 24 (3) to obtain the desired result.

Case de l: This case is similar to other abstraction cases, such as the tm l case
of H-Theorem 2 except that height weakening is needed. We know that M and N
have the form (lamx.M ′x) and (lamx.N ′x), respectively, and we must show:

h1 : IH h2 : adR Φa Φd h3 : {Φd `n 〈deq (lamx.M ′x) (lamx.N ′x)〉}

{Φa `n 〈aeq (lamx.M ′x) (lamx.N ′x)〉}
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By repeated inversion of the SL rules on h3, and repeated backward application
of these rules to the conclusion, the above goal reduces to the following subgoal:

IH adR Φa Φd h4 : properx

h5 : {is tm x :: deq x x :: Φda `n−4 〈deq (M ′x) (N ′x)〉}

{aeq x x :: Φda `n−3 〈aeq (M ′x) (N ′x)〉}

The heights of h5 and the conclusion differ because the de l rule has the additional
well-formedness premise and the ae l does not. We simply apply SL-Theorem 1
(a) to obtain n− 3 as the height for both and apply IH .

6.3.2 G Version

The definition of (daG Φda) implements as usual the block structure of the corre-
sponding schema declaration in Appendix A.1, which here includes blocks of the
form (is tm x :: deq x x :: aeq x x). The contexts xaG and aG defined in Sect. 6.1.2
are also used here.

Note that H-Theorem 5 is stated using context Φxa and that H-Theorem 7
is stated using context Φa. Since we will need both theorems here, we need to
promote them to Φda. As in Sect. 6.2.1, we need strengthening functions and a
series of lemmas analogous to H-Lemmas 12-15. The strengthening functions must
strengthen Φda to Φxa and Φa. The main clauses of these function definitions are:

rm da2xa (is tm z :: deq :: aeq x y :: Φda) = (is tm z :: aeq x y :: rm da2xa Φda)
rm da2a (is tm :: deq :: aeq x y :: Φda) = (aeq x y :: rm da2a Φda)

Unlike in Sect. 6.2 where all the strengthening functions removed an alternative
from a context schema, all those in this subsection involve schemas with just one
alternative and modify every block by removing one or more atoms. The lemmas
required to prove promotion are as follows. (The strengthening and weakening
lemmas are again stated as a corollary without the lemmas they depend on.)

H-Lemma 26
1. daG Φda → xaG (rm da2xa Φda).
2. daG Φda → aG (rm da2a Φda).

H-Corollary 27 (C-Strengthening/Weakening)
1. daG Φda → {Φda `n 〈is tm T 〉} → {rm da2xa Φda `n 〈is tm T 〉}.
2. daG Φda → {rm da2xa Φda `n 〈aeq T T ′〉} → {Φda `n 〈aeq T T ′〉}.
3. daG Φda → {rm da2a Φda `n 〈aeq T T ′〉} ←→ {Φda `n 〈aeq T T ′〉}.

With the above lemmas, we can now promote H-Theorems 5 and 7.

H-Lemma 28 (Promotion)
1. daG Φda → {Φda `n 〈is tmM〉} → {Φda `n 〈aeqM M〉}.
2. daG Φda → {Φda `n 〈aeqM N〉} → {Φda `n 〈aeq N M〉}.
3. daG Φda → {Φda `n 〈aeqM L〉} → {Φda `n 〈aeq L N〉} → {Φda `n 〈aeqM N〉}.

H-Theorem 29 (Completeness, G Version)
daG Φda → {Φda `n 〈deqM N〉} → {Φda `n 〈aeqM N〉} .
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Proof The steps of the de r and de t cases are the same as in the R version, using
promotion, height weakening, and in the latter case also the induction hypothesis.
The de l case also uses height weakening, and in addition requires both d-wk and
d-str.16

6.3.3 Internal Adequacy

Although internal adequacy results were not needed to complete the above proofs,
they are important, as already discussed. Here, we state the R version of adequacy
for the aeq judgment.

H-Theorem 30 (Internal Adequacy of Algorithmic Equality)
xaR Φx Φa → {Φa `n 〈aeqM N〉} → {Φx `n 〈is tmM〉} ∧ {Φx `n 〈is tm N〉}.

Although such results often require their own versions of helper lemmas such as
membership and c-str, their proofs present no further complications. G versions of
adequacy can also be stated and proved, again presenting no further complications.
Similar internal adequacy statements have been proved for all other benchmarks
formalized in Hybrid.

6.4 Order

As mentioned in Sect. 5, exchange is covered by SL-Theorem 1 (b), which expresses
weakening, contraction, and exchange. Theorem 23 in Sect. 2.2, however, cannot
be formalized in Hybrid, not because of any problem with handling exchange, but
because specialized substitution lemmas of this particular form cannot be proved
in Hybrid. The proof shares some similarities with the proof of type preservation
for parallel reduction, which also cannot be formalized in the current version of
Hybrid. We illustrate the problem in Sect. 6.6.

6.5 Uniqueness

For the Hybrid proof of type uniqueness (Theorem 24 in Sect. 2.2), we adapt the
one from Felty and Momigliano (2009). The definitions of the Hybrid constants
used in this subsection include app and lam, where the latter now takes two argu-
ments with the first representing the type of the bound variable. (See the Syntax

section in Appendix A.3.) The definition of atm includes predicates is tm and oft.
The types are those of the simply-typed lambda-calculus, and thus there are no
operators with binders. We take advantage of the underlying RL, and define types
inductively in Coq, and redefine the cLAM constant and lam constructor to take
into account the type of the bound variable.

Inductive tp := i : tp | arr : tp→ tp→ tp.
Inductive con := cAPP : con | cLAM : tp→ con.
Definition lam := λM,A. APP (CON (cLAM A)) (LAM λx.M x).

16 Also in this proof and a few others (e.g., H-Theorem 30 and H-Attempt 35), the inversion
step uses specialized inversion lemmas, whose proofs follow from Coq’s standard inversion.
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Uniqueness of variables in a context does not hold if we consider the speci-
fication of the SL alone. In particular, recall the specification of the sl all rule
introduced on page 30. In this rule x represents an arbitrary term of type expr,
and we cannot assume that it is a variable. For the special case of the type unique-
ness benchmark, we showed in Felty and Momigliano (2009) that we can achieve
uniqueness of context variables with only a surprisingly minimal amount of ad-
ditional formal infrastructure. In particular, we used Hybrid’s VAR constructor to
encode free variables, and added a definition (nvC) that provided the capability
of creating a new variable that is fresh with respect to a context. In particular
(VAR v) represents a variable, where v is a natural number, and (nvC Φ) returns
the number that is one greater than the maximum of all the numbers represent-
ing free variables in Φ. Very little overhead is required, namely a small library
of simple lemmas about nvC (see Felty and Momigliano, 2009). With this extra
infrastructure, we cannot use the definition of the xtG schema in Appendix A.3 as
directly as in the other benchmarks. In particular, the main clause of the inductive
definition of xtG is:

xtG Φt → xtG ((oft (VAR (nvC Φt)) A) :: Φt)

Note that definition omits well-formedness annotations from the context as in
several other benchmarks. We also need 3 membership lemmas. The first two rule
out non-variables from the context, and the third expresses the required uniqueness
constraints for the context.

H-Lemma 31 (Context Membership)
1. xtG Φt → (oft (lam B M) A) /∈ Φt
2. xtG Φt → (oft (app M N) A) /∈ Φt
3. xtG Φt → (oftM A ∈ Φt)→ (oftM B ∈ Φt)→ ∃i.(M = (VAR i) ∧A = B).

H-Theorem 32 (Type Uniqueness)
xtG Φt → {Φt `n 〈oftM A〉} → {Φt `m 〈oftM B〉} → A = B.

Proof By complete induction on n as usual. Inversion on {Φt `n 〈oftM A〉}
breaks the proof into cases as usual. In the variable case, we know (oftM A) ∈ Φt,
and by Lemma 31 (3) that M has the form (VAR v). We can then apply inversion
to the second sequent {Φt `m 〈oft (VAR v) B〉}. Since there are no prog clauses
for the variable case, by inversion we also conclude (oft (VAR v) B) ∈ Φt, and thus
by Lemma 31 (3), that A = B.

Case of a: After several inversions on the first sequent, we get:

h1 : IH h2 : xtG Φt h3 : {Φx `n−2 〈oftM1 (arr A′ A)〉}
h4 : {Φx `n−2 〈oftM2 A

′〉} h5 : {Φx `m 〈oft (appM1 M2) B〉}
A = B

At this point, inversion on the h5 results in two subcases. One is similar to the
application cases of other proofs and can be completed by the induction hypothesis.
The other introduces the new hypothesis (oft (app M1 M2) B) ∈ Φt, which we
rule out by Lemma 31 (2). The of l case makes a similar use of Lemma 31 (1).
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6.6 Substitution

The substitution lemma used in the type preservation for parallel reduction bench-
mark (Theorem 25 in Sect. 2.2) can be proven directly in Hybrid where parametric
substitution is β-reduction and hypothetical substitution corresponds to an appli-
cation of SL-Theorem 1 (c). Since we do not need uniqueness of variables, we
redefine (the main clause of the definition of) context xtG:

xtG Φt → xtG ((oft x A) :: Φt)

and prove a simple but necessary lemma:

H-Lemma 33 xtG Φt → {Φt ` 〈oftM A〉} → properM .

H-Lemma 34 (Substitution)
xtG Φt → (∀x.properx→ {oft x A :: Φt `n 〈oft (M x) B〉})→
{Φt `m 〈oft N A〉} → {Φt `n+m 〈oft (M N) B〉}.

The proof follows closely the informal proof of Lemma 25 in the companion paper.
As mentioned earlier, type preservation for parallel reduction as we have de-

fined it here cannot be proved in the current version of Hybrid. This is an example
where uniqueness of variables in the context is required, but the use of nvC as in
the previous example is not enough. We illustrate the problem by showing one
case where the proof gets stuck. As usual, a Coq inductive definition implements
context relation (xrtR Φr Φt) from the Definitions section of Appendix A.4,
omitting the well-formedness annotations for terms. Since proof heights are not
important in illustrating the problem, we elide them except in the judgment that
we induct over.

H-Attempt 35 (Type Preservation for Parallel Reduction)
xrtR Φr Φt → {Φr `m 〈pr1M N〉} → {Φt ` 〈oftM A〉} → {Φt ` 〈oft N A〉}.

Proof We attempt to follow the informal proof of Theorem 26 in Felty et al (2014),
here by using a complete induction on m, where we assume i < m in the proof
sketch below.
Case pr l: We must show:

h1 : IH h2 : xrtR Φr Φt h3 : {Φr `i 〈pr1 (lam M ′) (lam N ′)〉}
h4 : {Φt ` 〈oft (lam M ′) A〉}

{Φt ` 〈oft (lam N ′) A〉}

Inversion on h4 results in two subcases corresponding to the s bc and s init rules
in Fig. 12 on page 27 as usual.

Subcase s bc: This case is similar to the lam case of other proofs (such as the
tm l case of H-Theorem 2). We show some detail to help illustrate the problem.
We first apply a few more inversion steps to h3 and h4. We also apply SL rules s bc

and s all in a backward direction to the conclusion, obtaining the new subgoal:

IH xrtR Φr Φt h5 : ∀x.properx→ {pr1 x x :: Φr `i−3 〈pr1 (M ′ x) (N ′ x)〉}
h6 : ∀x.properx→ {oft x A′ :: Φt ` 〈oft (M ′ x)) B′〉}

∀x.properx→ {Φt ` (oft x A′) imp 〈oft (N ′ x) B′〉}
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Applying Coq’s ∀-introduction at this point introduces a new x, which we use to
instantiate h5 and h6 and complete this case.

Subcase s init: We have the following subgoal:

IH xrtR Φr Φt h5 : {Φr `i 〈pr1 (lam M ′) (lam N ′)〉}
h6 : (oft (lam M ′) A) ∈ Φt
{Φt ` 〈oft (lam N ′) A〉}

which is not provable. In order to prove it, we would need a lemma similar to H-
Lemma 31, which requires restricting variables in contexts to be of the form (VAR i).
Here, from such a lemma and h6, we could derive a contradiction as desired. This
kind of variable restriction would have to be built into the definition of xrtR. Then
this subcase becomes provable, but the previous one can no longer be proved. This
is because the variable x introduced by ∀-introduction in that proof is an arbitrary
term of type expr. Since it doesn’t necessarily have the form (VAR i), the context
relation would not hold, and thus it would not be possible to apply the induction
hypothesis.

Fixing this problem is the subject of current work in Hybrid. One approach
is to use a form of “weak” HOAS that replaces the s all rule (see page 30) with
one that explicitly adds variables (using the VAR constructor) to the context. A
better approach, which would not require sacrificing the benefits of full HOAS, is
to implement the ∇-quantifier in Hybrid. Possible solutions are further discussed
in Sect. 8.2.

7 Abella

Abella’s RL (G) is an intuitionistic first-order sequent calculus endowed with a
fixed-point approach to (co)induction and with the nabla quantifier ∇ to support
reasoning over λ-term syntax. We refer to Gacek et al (2012, 2011) for a detailed
account of Abella and its meta-theory and stick to the bare minimum.

Differently from Hybrid, the Abella system implements the two-level approach
in a way that limits syntactic overhead. The system accepts prog clauses in the
form of (executable) λ-Prolog files (Miller and Nadathur, 2012), analogously to
how Beluga interacts with LF signatures. For example, the concrete syntax for the
specification of algorithmic equality is:

aeq (app M1 M2) (app N1 N2) :- aeq M1 N1, aeq M2 N2.

aeq (lam M) (lam N) :- pi x\ aeq x x ⇒ aeq (M x) (N x).

Abella hides details such as the height of derivations by the displaying seq

predicates with syntactic sugar and using an annotation-based treatment of in-
duction. Abella also embeds meta-theoretic properties of the specification logic
into tactics named monotone, cut, inst, which correspond respectively to weaken-
ing (including exchange and contraction), cut and specialization in SL-Theorem 1.
Generic judgments are handled by the nabla quantifier, i.e., the SL rule s all for
universal quantification depicted in Fig. 12 is realized as:

∇x. {Γ ` G x} → {Γ ` ∀τ (λx. G x)}
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As shown in (Gacek et al, 2012), the nabla quantifier ensures freshness and cor-
rect scoping both at the left and right of the sequent, while recovering the usual
instantiation properties of universal quantification at the SL level typical of the
specialization rule.

As we have mentioned before, Abella 2.0 offers a n-ary SL, which generalizes the
one described in Sect. 5 by replacing backchaining with focusing. In other words,
Abella 2.0 now handles as prog clauses any hereditary Harrop formula (as before,
without predicate quantification). More precisely we add to the goal reduction
sequent Σ;Γ ` G a left focusing judgment Σ;Γ, [F ] −→C A, where F is the
formula under (left) focus; accordingly, we substitute the single left backchaining
rule (bc) in Fig. 11 with the standard focused left rules for universal quantification,
implication and conjunction, omitted here—see (Wang et al, 2013). We only record
the different shape of the axiom rule (match) and the one replacing backchaining
(focus), as they have a different look w.r.t. proof scripts’ variable cases and related
member lemmas:

match
Σ;Γ, [A] −→C A

F ∈ Γ ∪ C Σ;Γ, [F ] −→C A
focus

Σ;Γ −→C A

Note that for the set of benchmarks that we consider in this paper, which are all
second-order, the n-ary SL essentially collapses to the previous one.

7.1 Basic Linear Context Extensions

7.1.1 R Version

We encode our first context relation (xaR Φx Φxa) with an Abella inductive defi-
nition (keywords Define and :=) for the binary predicate xaR over the built-in sort
of (atomic) assumptions olist:

Define xaR : olist → olist → prop by
xaR nil nil;

nabla x, xaR (is_tm x :: Ts) (aeq x x :: As) := xaR Ts As.

Recall that the encoding of aeq and hence of Φxa does not contain the atom
is_tm x, but the latter is needed to mimic induction over individuals, namely for
the proof of A-Theorem 2 below.

We start our development with a prototypical member lemma, namely the
formalization of Lemma 6, where member is Abella’s built-in predicate for “∈”.

A-Lemma 1 (Context Membership)

member_is_tm: forall Ts As F,
xaR Ts As → member F Ts → exists M, F = is_tm M ∧ member (aeq M M) As.

Proof By induction on the second premise.

The proof of such lemmas is completely routine; unfortunately, the user has to
state and reprove this kind of result every time, as no tactical language is avail-
able in Abella per se.17 Note also the difference with the statement of the same

17 But see (Bélanger and Chaudhuri, 2014) for progress on this topic, as we touch upon in
the conclusion.
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result in Hybrid (H-Lemma 1): while in Hybrid’s atomic contexts the predicate is
immediately visible, in Abella 2.0 it needs to be singled out for focusing.

We are now ready for our first proof, which we will report in Abella’s original
notation (inspired by Coq). From the next proof on, we will somewhat stream-
line it. We will also omit outermost universal quantifiers, unless there is some
interesting quantifier alternation.

A-Theorem 2 (Admissibility of Reflexivity, R Version)
xaR Ts As → {Ts ` is_tm M} → {As ` aeq M M}.

Proof By induction on the derivation of the second premise. The predicate on
which we are carrying our induction over, here {Ts ` is_tm M}*, is annotated
with a star that is used to track the size of inductive arguments—we will see it in
action in the tm_a case.

After fixing variables and assuming the antecedents, a call to the case tactic,
which implements inversion, on {Ts ` is_tm M} yields three cases:

Case “variable”:

Variables: As, Ts, M
IH : forall As Ts, xaR Ts As → {Ts ` is_tm M}* → {As ` aeq M M}
H1 : xaR Ts As
H2 : {Ts, [F] ` is_tm M}*
H3 : member F Ts
------------------------

{As ` aeq M M}

Here we appeal to A-Lemma 1 (concrete syntax apply member_is_tm to H1 H3.):

Variables: As, Ts, M, M’
IH : forall As Ts T, xaR Ts As → {Ts ` is_tm T}* → {As ` aeq M T}
H1 : xaR Ts As
H2 : {Ts, [is_tm M’] ` is_tm M}*
H3 : member (is_tm M’) Ts
H4 : member (aeq M’ M’) As
------------------------

{As ` aeq M M}

A further inversion on H2 unifies M with M’, in particular in assumption H4. Then
we use the search tactic, which coincides with Prolog search, to finish the proof.
This implicitly uses first the focus and then the match rule in the SL.

Case tm a:

Variables: As, Ts, M, N
IH : forall As Ts M, xaR Ts As → {Ts ` is_tm M}* → {As ` aeq M M}
H1 : xaR Ts As
H3 : {Ts ` is_tm N}*
H4 : {Ts ` is_tm M}*
--------------------------------------------------------------------

{As ` aeq (app M N) (app M N)}

Although Abella’s proofs by induction are carried out over the height of the deriva-
tion, the system does not show the numbers, as Hybrid does; rather it employs
a form of abstract interpretation, whereby the annotation (*) indicates that the
height has indeed decreased and that the IH can be safely applied. Let us do that
to H1 H3 (apply IH to H1 H3) and to H1 H4 and conclude the case by search,
which in this case will entail selecting for focus (SL rule prog) clause ae_a.

Case tm l:
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Variables: As, Ts, T, M
IH : forall As Ts T, xaR Ts As → {Ts ` is_tm T}* → {As ` aeq M T}
H1 : xaR Ts As
H3 : {Ts, is_tm x ` is_tm (M x)}*
-----------------------------------

{As ` aeq (lam M) (lam M)}

First, note that x is a fresh name, globally bound in the proof, generated by inter-
preting the object-level universal quantifier pi by ∇. Now, we would like to apply
the inductive hypothesis as before. This is however allowed only if the contexts
in H1 and H3 match, i.e., if xaR (is_tm x :: Ts) (aeq x x :: As)) holds, see the
appeal to rule crelxa in the proof of Theorem 7 in the companion paper. We can
direct Abella to acknowledge this by the tactic assert or by using the under-
score notation apply IH to _ H3, by which the system “guesses” the right context
extension. Then we conclude by search.

What about symmetry (the same holds for transitivity, which we omit here)?
We state and prove it in the context predicate aG, which contains only assumptions
of the form aeq x x. We first need the encoding of the inversion Lemma 9.

A-Lemma 3 (Context Inversion)
member_aeq_inv: aG As → member F As → exists M N, F = aeq M N ∧ M = N.

A-Theorem 4 (Admissibility of Symmetry)
aG As → {As ` aeq M N} → {As ` aeq N M}.

Proof By now standard induction on the second derivation, using A-Lemma 3 in
the variable case.

If we want to “package up” the fact that algorithmic equality is an equivalence
relation, we need to lift the above result(s) to the “world” where reflexivity is
stated, namely xaR Ts As. In this case this is easy, since we can prove by a trivial
induction (similar to lemmas needed in Hybrid such as H-Lemma 22 (2)):

A-Lemma 5 aG_xaR_proj: xaR Ts As → aG As

This lemma just makes explicit the fact that if two contexts (instances) are related,
then they satisfy their respective schema. This is internalized in Beluga’s type
theory, while it is a proof obligation in the much weaker-typed two-level approach.

Thanks to this lemma we can lift the relevant property to the larger world.

A-Corollary 6 (Promotion of Symmetry)
xaR Ts As → {As ` aeq M N} → {As ` aeq N M}.

7.1.2 G Version

We start by defining the generalized context

Define xaG : olist → prop by
nabla x, xaG (is_tm x :: aeq x x :: Ga) := xaG Ga.

and prove the standard “member” lemma, which now has to take into account
disjunctions of declarations:
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A-Lemma 7 member_is_tm: xaG Ga → member E Ga →
exists X, (E = is_tm X ∧ member (aeq X X) G) ∨ E = aeq X X.

Recall that the informal proof of reflexivity of Theorem 8 in the companion
paper required a d-strengthening lemma, beyond d-weakening, stating that we
can safely drop any is_tm assumption from a derivation of aeq, since the former
judgment is irrelevant to the latter. See, for example, H-Corollary 4 in the Hybrid
development, which follows from H-Lemma 3. Note that those results are stated for
any context, without any associated schema. And therein lies the rub: in Abella 2.0
we do have to state theorems over open terms under a context schema or relation,
so that the shape of the context can be delineated in the member lemma. However,
if we state strengthening under xaG Ga, the statement will not be provable, as the
context schema is not preserved in the proof. In particular, in the binder case, the
context in the schema will not match the one passed to the is_tm judgment.

There is nevertheless a way out, as it has been pointed out by Todd Wilson
(personal communication), whose solution we now follow. The trick is to define a
“weaker” context predicate that will logically follow from xaG, while being flexible
enough to match the context passed in the binder case. Basically, we turn the
declarations in the generalized context into alternatives:

Define xaG’ : olist → prop by
xaG’ nil;
nabla x, xaG’ (is_tm x :: Ga x) := nabla x, xaG’ (Ga x);
nabla x, xaG’ (aeq x x :: Ga x) := nabla x, xaG’ (Ga x).

The fact that xaG’ depends on x is crucial to make provable statements such as
xaG’ (is_tm x :: aeq x x :: nil) as well as xaG’ (is_tm x :: nil).

Armed with that we can state d-str in the weaker context predicate xaG’:

A-Lemma 8 (D-Strengthening)

forall Ga M N, nabla x, xaG’ (Ga x) →
{Ga x, is_tm x ` aeq (M x) (N x)} → {Ga x ` aeq (M x) (N x)}.

Proof Standard induction on the second derivation using for the variable case a
member lemma identical to A-Lemma 7, but for xaG’. In the binder case the IH
is applicable with the instantiation Ga = x1\ aeq x2 x2 ::(Ga x1).

To use our strengthening, we will need to promote it to the “right” context and
in fact we can immediately show by a straightforward induction

A-Lemma 9 xaG_is_xaG’: xaG Ga → xaG’ Ga.

We are now ready to prove:

A-Theorem 10 (Admissibility of Reflexivity, G Version)
xaG Ga → {Ga ` is_tm M} → {Ga ` aeq M M}.

Proof By induction on the second derivation. The only interesting case is the
binder’s:

Case tml:
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IH : forall Ga M, xaG Ga → {Ga ` is_tm M}* → {Ga ` aeq M M}
H1 : xaG Ga
H3 : {Ga, is_tm x1 ` is_tm (M1 x1)}*
============================
{Ga ` aeq (lam M1) (lam M1)}

We help Abella to apply the IH by providing the correct instantiation by apply

IH to _ H3 with Ga = aeq x1 x1 :: is_tm x1 :: Ga, yielding:

. . .
H1 : xaG Ga
H4 : {Ga, is_tm x1, aeq x1 x1 ` aeq (M1 x1) (M1 x1)}
============================
{Ga ` aeq (lam M1) (lam M1)}

Now we “demote” xaG to xaG’ with A-Lemma 9, apply D-strengthening and search.

How well does this approach scale? We have carried out all the G versions of
the benchmarks—they can be found in the ORBI repository with a G suffix—and
we can anticipate these further observations, which are better appreciated after
reading through the R versions. In general, member lemmas are somewhat more
verbose to state, due to the presence of disjunctions; their proofs are still standard.
However, they need to be duplicated for the weaker context. The type preservation
case study is completely analogous to the present one. The polymorphic lambda
calculus benchmark requires four strengthening lemmas, in a specific order, and
the member lemmas get more and more unwieldy. For completeness, we need to lift
the equivalence relation property of aeq from the schema aG and xaG to daG (and
similarly for pairwise substitution). Since there is no built-in support for context
subsumption, that is c-wk/str, in Abella, one option is to do-it-ourselves with
explicit strengthening functions, as in the Hybrid section; there is the additional
complication that we have to encode these functions as relations and then prove
that they are indeed total—functionality does not seem to play a role here. Another
option is to just reprove them, as we did, in the “larger” context, meaning in the
weakened version daG’, for them to be finally lifted to daG by means of a lemma
analogous to A-Lemma 9.

For all these reasons, while we readily acknowledge that this may not be the
final word on G-style proofs in Abella 2.0, we favor the R approach, as it yields
more concise and modular proofs.

There is a more general and important lesson to learn: context predicates do
not adequately encode schemas, since we have just exhibited a context predicate,
namely xaG’ validating run-time contexts that do not belong to the given schema,
according to the rules of schema satisfaction given in Sect. 2.2 of the companion
paper. We comment on this further in Sect. 8.2.

7.2 Linear Contexts Extensions with Alternative Declaration (R Version)

Here we depart from the methodological position we took in the companion paper
and followed in the previous sections, where we stated theorems in the smallest
context predicate (relation) possible—we called that “the fine-grained approach”.
We instead use here what could be seen as the least upper bound of the relevant
schemas, here atpG and aeqG, in this case the latter. This makes the development



50 Amy P. Felty et al.

much smoother, since it does not require promotion lemmas (Lemma 16), for
which, as we have mentioned, Abella provides no intrinsic support. Note that the
projection trick that we used before (A-Lemma 5) here does not apply. However,
the “fine-grained” approach has been pursued in the Hybrid section and could be
duplicated here, albeit more painfully. In any case, one can argue that eventually
algorithmic type equality will have to be packaged up with term equality and we
may as well formulate all statements in the smallest common context to begin
with.

Having gone this way, the development is completely uneventful. Once we state
the expected context relation:

Define aeqR : olist → olist → prop by
nabla x, aeqR (is_tm x :: Ts) (aeq x x :: As) := aeqR Ts As;
nabla a, aeqR (is_tp a :: Ts) (atp a a :: As) := aeqR Ts As.

it is just a matter of proving the two standard member lemmas and moving di-
rectly to our version, which subsumes Theorem 14, Lemmas 15 and 16, and finally
Theorem 17:

A-Theorem 11 (Admissibility of Reflexivity for Types and Terms)

1. aeqR Ts As → {Ts ` is_tp A} → {As ` atp A A}.

2. aeqR Ts As → {Ts ` is_tm M} → {As ` aeq M M}.

Proof

1. By induction on the second derivation.
2. By induction on the second derivation, using point (1) in the tapp case.

7.3 Non-Linear Context Extensions (R Version)

The formalization of the completeness proof in Abella turns out to be slightly more
challenging. As we have seen in Sect. 4.2 of the companion paper, the encoding
of declarative equality “suffers” from the need to reflect at the judgmental level
the sorting statement M : tm. Recall in fact that in the reflexivity case of the
mathematical proof of Theorem 22 from the assumption Φxd ` deqM M we were
able to infer Φxd ` is tm M by construction. In some cases, for example w.r.t.
algorithmic equality, this invariant can be inductively established without further
ado—note that this result is not needed in any of the following developments.

A-Theorem 12 (Internal Adequacy of Algorithmic Equality)
xaR Ts As → {As ` aeq M1 M2} → {Ts ` is_tm M1} ∧ {Ts ` is_tm M2}.

Proof Usual induction on {As ` aeq M1 M2}

An analogous result holds for declarative equality only due to the fact that we have
strategically added is_tm annotations, as discussed in Sect. 5, page 28. In these
proofs two relations are at work: (daR Φxa Φxd) and (xaR Φx Φxa), the former
in the main statement, the latter in the relational strengthening Lemma 20. It
significantly simplifies the implementation if we join them together in a ternary
relation, which works as a “bridge” between the two—see the Hybrid section for
a strictly fine-grained version more closely connected to the analysis in Sect. 3.2.2
of the companion paper:
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Define xadR : olist → olist → olist → prop by
nabla x, xadR (is_tm x :: Ts) (aeq x x :: As) (deq x x :: is_tm x :: Ds)

:= xadR Ts As Ds.

Let us now consider the statement of our theorem

completeness: xadR Ts As Ds → {Ds ` deq M1 M2} → {As ` aeq M1 M2}.

First, we have to lift the equivalence properties of aeq to the current world xadR,
easily accomplished analogously to what we have done in A-Lemma 5:

A-Lemma 13 xaR_xadR_proj: xadR Ts As Ds → xaR Ts As

A-Lemma 14 (Promotion of Symmetry and Transitivity)

1. xadR Ts As Ds → {As ` aeq M N} → {As ` aeq N M}.

2. xadR Is As Ds → {As ` aeq M1 M2} → {As ` aeq M2 M3} → {As ` aeq M1 M3

}.

This is not quite enough: consider the case de r of the completeness proof:

xadR Ts As Ds {Ds ` is_tm M2}*
--------------------------------
{As ` aeq M2 M2}

Here, in order to apply our reflexivity A-Theorem 2, we need to c-strengthen
the assumption {Ds ` is_tm M2} to {Ts ` is_tm M2}. First we state a by now
familiar member lemma:

A-Lemma 15 member_deq: xadR Is As Ds → member F Ds →
exists M, (F = is_tm M ∨ F = deq M M) ∧

member (aeq M M) As ∧ member (is_tm M) Is.

Although the statement is somewhat more involved, the proof is still elementary.
The proof of c-strengthening is actually not difficult thanks to the way Abella

implements SL-weakening:

A-Lemma 16 is_tm_cstr: xadR Ts As Ds → {Ds ` is_tm M} →{Ts ` is_tm M}.

Proof By induction on the second derivation. The interesting case is the binder:

. . . H3 : {Ds, is_tm x ` is_tm (M x)}*
----------------------------------------
{Is ` is_tm (lam M)}

Here we need to weaken H3 so as to apply the IH. The key insight is not to
do it manually with assert {Ds, is_tm x, deq x x ` is_tm (M x)}, because this
would loose the * annotation and the IH would not be applicable anymore. Rather
we directly use SL weakening with the tactic monotone H3 with (deq x x ::

is_tm x :: Ds) yielding

. . . H4 : {Ds, is_tm x, deq x x ` is_tm (M x)}*
----------------------------------------------
{Is ` is_tm (lam M)}

Now the IH is applicable and the rest of the proof is routine.
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A-Corollary 17 (Promotion of Reflexivity)
xadR Ts As Ds → {Ds ` is_tm M} → {As ` aeq M M}.

Proof By A-Theorem 2 and A-Lemma 16.

A-Theorem 18 (Completeness)
xadR Ts As Ds → {Ds ` deq M1 M2} → {As ` aeq M1 M2}.

Proof By induction on the second premise. We show a couple of cases:

Case de r: By A-Corollary 17.

Case de t:

xadR Ts As Ds {Ds ` deq M1 M’}* {Ds ` deq M’ M2}*
-----------------------------------------------------
{As ` aeq M1 M2}

Here we simply apply the IH twice and then appeal to our promoted version
of transitivity, A-Lemma 14. Symmetry is analogous, while the lambda case is
uneventful.

7.4 Order (R Version)

This case study brings in some more sophisticated reasoning about variable iden-
tities; it is therefore convenient here and in the sequel to introduce the following
definition, which recognizes when a term is in fact a (unique) name:

Define name : tm → prop by
nabla x, name x.

Doing so this late in the game shows that the examples so far did not use in any
essential way the “uniqueness” assumption in context schemas. But this is going to
change from now on. Hence we restate A-Lemma 3 with the additional conclusion
that M and hence M are indeed names:

A-Lemma 19 member_aeq_inv_name: aG As → member F As →
exists M N, F = aeq M N ∧ M = N ∧ name N.

The next statement uses nabla to bind the spot where substitution will occur.

A-Theorem 20 (Pairwise Substitution)

forall As M1 M2 N1 N2, nabla x, aG As →
{As, aeq x x ` aeq (M1 x) (M2 x)} → {As ` aeq N1 N2} →

{As ` aeq (M1 N1) (M2 N2)}.

Proof By induction on the second derivation. Remarkably, the only interesting
case is the variable one:

{As ` aeq N1 N2}
H2: member (F x) (aeq x x :: As)
{As, aeq x x, [F x] ` aeq (M1 x) (M2 x)}*
----------------------------------------------------

{As ` aeq (M1 N1) (M2 N2)}
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Case analysis on H2 yields two sub-cases: aeq (M1 x) (M2 x) = (aeq x x), hence
M1, M2 are the identity functions and the goal reduces to {As ` aeq N1 N2}. The
second sub-case is when member (F x) As. By A-Lemma 19 we know M1 = M2 and
(M2 n) is a name. This entails two additional possibilities. First, it could be a
different name y, leading to the goal {As y ` aeq y y}, which follows immediately
since we have member (aeq y y) (As y). Alternatively, as before, M1 could be the
identity function and again the goal is {As ` aeq N1 N2}, which we have.

The binder case follows straightforwardly by induction, since the SL treats
object level contexts modulo SL-weakening.

Were we, for whatever reason (see Momigliano, 2012, for a particular perspic-
uous instance), to treat contexts explicitly at the meta-level, that is, had aeq type
olist → tm → tm → prop, we would have to formalize exchange as an inductive
relation, in a “structural” enough way to work well with Abella’s reasoning style;
this is not completely trivial, as exhibited in the cited Momigliano (2012).

7.5 Uniqueness (R Version)

This benchmark is explained in full detail in Gacek et al (2012), so we keep it
short. The schema definition

Define xtG : olist → prop by
nabla x, xtG (oft x A :: Os) := xtG Os.

says that xtG Os holds if and only if Os is a list of atoms oft x A in which x is a
nominal constant that does not appear elsewhere in the list; thus its typing must
be unique, a condition enforced by means of the correct alternation between nabla
and the outermost universal quantification. Compare it to a nabla-less version:18

Define xtG’ : olist → prop by
xtG’ (oft X A :: Os) :=

(forall M N, X = app M N → false ) ∧
(forall A M, X = abs A M → false ) ∧
(forall A’, member (oft X A’) Os → false ) ∧ xtG’ Os.

Here we must explicitly restrict structure and occurrences of X, as we have no way
to internalize the fact that this is indeed a name.

Two member lemmas are required, one to prove the desired property for the
variable case:

xtG_uq: xtG Os → member (oft M A) Os → member (oft M A) Os → A = B.

the other to rule out impossible cases when inverting on the typing relation:

member_of_name: xtG Os → member E Os → exists M A, E = oft M A ∧ name M

In fact, inversion on a judgment such as {Os ` oft (lam A1 M) A2} not only
yields, by backchaining, the expected premise {Os, oft x A1 ` oft (M x) A2},
but also, by the SL match/init rule, the premise member (oft (lam A1 M) N) Os.
However, the above lemma gives us the absurd hypothesis name (lam A1 M) and
hence this case is immediately discharged.

18 Recall that Hybrid uses the nvC function for new variables, requiring H-Lemma 31.
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A-Theorem 21 (Type Uniqueness)
xtG Os → {Os ` oft M A1} → {Os ` oft M A2} → A1 = A2.

Proof By induction on {Os ` oft M A1} and inversion on {Os ` oft M A2}, using
xtG_uq in the variable case and member_of_name in the case analysis on {Os ` oft

M A2}.

7.6 Substitution (R Version)

The context relation is unsurprising:

Define xrtR : olist → olist → prop by
nabla x, xrtR (pr x x :: Ps) (oft x A :: Os) := xrtR Ps Os.

We need two familiar member lemmas, the above member_of_name to clean up
inversion plus a version of the inversion A-Lemma 3 for pr after which we can
state the Abella version of Theorem 23:

A-Theorem 22 (Type Preservation for Parallel Reduction)
xrtR Ps Os → {Ps ` pr M1 M2} → {Os ` oft M1 A} → {Os ` oft M2 A}.

Proof By induction on the derivation of {Ps ` pr M1 M2} and inversion on {Os `
oft M1 A}. We show only two cases:

Case “variable”:

xrtR Ps Os {Os ` oft M1 A} . . . member F Ps
--------------------------------------------------
{Os ` oft M2 A}

Here we use the inversion lemma to enforce that M1 = M2—note that we do not
need the fact that they are indeed names in this case, although that is actually
required to rule out impossible typing premises in the pr l and pr a cases, as
explained in Sect. 7.5.

Case pr b:

{Os ` oft (app (lam A1) N1) T} {Ps, pr x x ` pr (M1 x) (M2 x)}*
{Ps ` pr N1 N2}*

-----------------------------------------------------------------------
{Os ` oft (M2 N2) T}

The non trivial inversion on the first premise yields the two assumptions H’: {

Os ` oft (lam M1) (arr B A)} and {Os ` oft N1 B}. By IH we have {Os ` oft

N2 B}. We invert further on H’ and get:

. . . H: {Ps, pr x x ` pr (M1 x) (M2 x)}* {Os, oft x B ` oft (M1 x) A}
-------------------------------------------------------------------------

{Os ` oft (M2 N2) A}

We apply the IH and have {Os, oft x B ` oft (M2 x) A}. The informal proof here
applies the substitution lemma to get the desired conclusion. So we instantiate n in
H with the appropriate term, namely N2 (tactic inst). Here we see that the nabla
quantifier not only provides the correct scoping mechanism but also the required
substitution behavior.
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{Os ` oft N2 B} {Os, oft N2 B ` oft (M2 N2) A}
----------------------------------------------------------

{Os ` oft (M2 N2) A}

Now apply cut and it is all over.

8 Summary and Discussion

Systems supporting HOAS fall into two categories. On one side of the spectrum,
we have systems built on a type-theoretic foundation such as Twelf and Beluga.
On the other side there are systems such as Abella and Hybrid that are based on
a proof-theoretic foundation and follow the two-level approach, implementing a
specification logic inside a logic or type theory.

8.1 Systems Based on Type Theory

Both Twelf and Beluga encode formal systems in the logical framework LF. In both
systems d-weakening and d-exchange are built into the underlying type theory of
LF, while d-strengthening is supported via subordination. Applying substitution
lemmas (parametric and hypothetical) is simply β-reduction.

However, the two systems differ in the encoding of proofs. While Beluga pro-
vides a separate reasoning language where we are able to abstract over contexts of
assumptions, in Twelf we remain within the logical framework LF and represent
proofs as relations. This has several consequences. In Twelf, there is no simple
way of inspecting a context and writing a generic variable case. All assumptions
are implicit. Instead of a generic base case that applies to all variables in a given
context, the proof for the base case is introduced whenever we encounter a vari-
able or assumption. As a consequence, we are assuming that a given property that
we want to prove holds for variables, instead of proving it for all variables. For
example, we assume in the type uniqueness proof that every variable we introduce
has a unique type instead of proving in general that whenever we introduce a
variable to the context together with its type, it must be unique. World checking
then ensures that for all variables an appropriate base case has been introduced.
Therefore, specifying worlds and checking that a given LF specification is consis-
tent with it requires going outside of LF. In other words, while we write proofs as
relations in LF, verifying that the relation constitutes a valid proof is accomplished
by a variety of checkers (mode, coverage, termination, and world checkers) whose
foundations lie outside of LF. Moreover, there is a conceptual gap between the on-
paper proof, the relational representation of the proof in LF, and its interpretation
as a total function, as established by the totality checker.

Proofs written as relations in Twelf live in an ambient context of assumptions
and proving context membership lemmas such as Lemma 6 and Lemma 9 is unnec-
essary. The ambient context is the smallest general context containing all necessary
hypothetical and parametric assumptions. World checking takes into account con-
text subsumption and validates referring to a relation defined in a “smaller” world
(for example reflG) while defining a relation in a “bigger” world (for example
ceqG). Hence, promotion lemmas such as Lemma 12 and Lemma 18 are redun-
dant. However, contexts are not first-class in Twelf; as such, we cannot abstractly
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reason about their properties. Twelf also lacks inductive definitions, and for good
reasons; thus it cannot express context relations directly. As a consequence, proofs
via context relations would require a substantial overhead of reifying assumptions
explicitly (see for example Crary, 2009); it is unclear how to make the reasoning
behind context subsumption (i.e., context strengthening combined with context
weakening) explicit.

Beluga takes a different approach, providing a separate language for implement-
ing proofs. The proof language supports abstractions over contexts of assumptions
and schemas classifying contexts. Moreover, we encapsulate a LF object together
with its context to form a contextual object. Unlike Twelf’s global ambient context,
every object in Beluga carries its own context in which it is meaningful. Beluga’s
reasoning language also supports splitting on contextual objects and contexts and
even defining relations about them.

This has three consequences. First, we are able to write a generic base case
by pattern matching on elements in the contexts and abstracting over objects
denoting variables; in particular, coverage checking (Dunfield and Pientka, 2009;
Pientka et al, 2014) guarantees that given an object [γ ` M] of type [γ ` tm], we
know that either M is a variable from γ or an element constructed by the constants
lam and app. Hence, proving context membership lemmas explicitly is unnecessary
when proving the G version of properties.

Second, we inherit properties about abstract contexts such as uniqueness of
declarations; we can also state properties about contexts using recursive types and
move between contexts via substitutions; this gives the programmer considerable
flexibility in how to implement proofs. Both the G version and the R version are
possible, although the R version comes with a considerable overhead.

Third, there is no conceptual gap between the on-paper proof and its implemen-
tation as a function. In Beluga splitting an argument of a given type into different
cases is done simply by looking at all possible constructors defining the given type
and considering all possible assumptions that can be used to construct elements of
this type. In fact, we can compile Beluga’s case-expressions using standard pattern
matching compilation strategies (Ferreira et al, 2013). As such it is conceptually
very similar to case analysis in Abella or Hybrid and much simpler than Twelf’s
coverage checking, which must guarantee both input and output coverage for a
given relation and reason via worlds about the ambient context to ensure that all
base cases are covered. Moreover termination of a Beluga function can be veri-
fied directly during type checking. The situation in Twelf is again quite different.
The termination checker in Twelf guarantees that the logic programming engine
will terminate when running the relations (Rohwedder and Pfenning, 1996)—it
makes no direct claims about the total function (i.e. the proof) the relation corre-
sponds to. As Beluga allows us to directly encode the proof as a function the flow
of information in the proof corresponds directly to the sequence of steps in the
program and establishing correctness of the mechanization is conceptually sim-
pler and more direct. Finally, we remark that world checking in Twelf establishes
a property about the ambient context in which a given higher-order logic pro-
gram is executed, while schema checking in Beluga guarantees that the contexts
a given function manipulates are satisfying a given declared schema, i.e. they are
well-typed. Contexts are first-class and Beluga’s type theoretic foundation guar-
antees that we are manipulating well-formed contexts and well-formed derivations
described using contextual objects and contexts. As in Twelf, Beluga’s typing
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rules have d-weakening built-in and d-strengthening is supported in practice via
subordination. Similarly, Beluga supports context subsumption, i.e., it uses sub-
ordination to justify safe context weakening and strengthening. Hence, promotion
lemmas such as Lemma 12 and Lemma 18 are redundant. To reduce the trusted
base, one may wish to prove these lemmas explicitly. (See our earlier discussion
in Sec. 4.7.1.) Beluga’s language allows us to express context relations as indexed
recursive datatypes (similar to inductive definitions) and hence the programmer
can choose to make context strengthening and promotion explicit; this however
significantly increases the amount of proofs one needs to write.

8.2 Systems Based on Proof Theory

Hybrid and Abella model hypothetical judgments of object logics using implication
in the SL and parametric judgments via (generic) universal quantification. Hypo-
thetical substitution is justified by appealing to the cut-admissibility lemma of the
SL, i.e., via SL-Theorem 1 (c). Parametric substitution corresponds to the spe-
cialization rule of the corresponding meta-level universal quantifier, SL-Theorem 1
(d). Weakening is obtained directly from the specification logic, and so is exchange,
via SL-Theorem 1 (b). Strengthening in these systems is proved on a case-by-case
basis. There is so far no analogue to the subordination dependency analysis im-
plemented in Twelf and Beluga, although it is conceivable to do so. Note that
all weakening and strengthening lemmas are applied explicitly via either an SL
theorem or a specialized strengthening theorem. In Hybrid, some of these lemma
applications can be automated via hints to the prover.

In both Abella and Hybrid contexts are represented inductively as lists of
assumptions. The choice of this data structure is somewhat arbitrary and other
notions such as (multi)sets have been used (Hybrid) or are scheduled to be used
(Abella). Since these systems are untyped as far as contexts and schemas are con-
cerned, the inductive specification of a context relation can play to a certain extent
the role of the specification of a schema. More precisely, if a context belongs to a
schema, then there is a simple Prolog-like proof in the RL that the corresponding
context predicate holds for the list encoding that context. However, this encoding
is not complete, since, as we have shown in Sect. 7.1.2, there are lists of declarations
that happen to be provable for certain context predicates, but that do not satisfy
the schema to which those predicates would map to. This is because the “cons”
notation blurs the difference between the elements of a block (“;”) and sequences
of blocks (“,”). If we want to enforce adequacy, in Abella we could refine the cod-
ing of contexts using λProlog’s conjunction operator & to stand for “;”. However,
this is not fully supported in Abella yet, and using a do-it-yourself approach intro-
ducing say a constructor block: olist → o would significantly complicate context
handling and go against Abella’s and Hybrid’s consolidated style.

With regard to the property of uniqueness of assumptions, Abella uses the
∇-quantifier to abstract over variables, unlike the standard universal quantifier
that abstracts over terms. In Hybrid there is an unresolved tension between the
loose “forall” interpretation of terms in contexts and the use of the nvC function
explained in Sect. 6. In the former case, we encounter another source of incom-
pleteness in the adequacy of schema satisfaction, since a Hybrid context (relation)
definition will validate contexts with non-variable terms or with terms not occur-
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ring uniquely. With the latter, uniqueness holds, as seen in H-Lemma 31. However,
we cannot always use this function, and even when we can, we lose the substitution
property, see H-Attempt 35. In this regard, Abella’s support for the ∇-quantifier is
a real asset, as it provides both scoping and specialization in the SL. Implementing
the ∇-quantifier in Hybrid (possibly following Gacek et al, 2011; Baelde, 2009) is
a subject of current work, which we expect will solve this problem.

In both Hybrid and Abella, splitting and induction on inductive predicates is
supported as part of the proof-theoretical foundation, but splitting and inducting
directly on terms is not. As mentioned in Sect. 5, one of the main reasons for
introducing in Hybrid and Abella the is_tm predicate is to provide induction at
the level of syntax.

Historically Hybrid was the first “mainstream” implementation of the two-
level architecture (Felty, 2002; Momigliano and Ambler, 2003), as compared to
the tool used in McDowell and Miller (2002). Hybrid can be seen as an “opened-
up” Abella, explicit, easy to experiment with, and to trust. The system permits
very flexible proof development; both the generalized and the relational approach
can be accommodated, although typically the relational approach will lead to more
compact proofs, since fewer infrastructural lemmas need to be established.

Another difference between these two systems is the way that induction is used.
In Hybrid proofs are by complete induction on the explicit height of derivations in
the SL; this is quite time consuming for the user, who needs to provide the correct
instantiation of heights of sub-derivations. At worst, the correct height can be a
non trivial function of the given derivations. For example, in Sect. 2.2 of Felty
and Pientka (2010), a shape judgment is defined that is weaker than aeq. In the
electronic appendix to that paper, it was proved that, for a given a context relation
on Φ1 and Φ2, if {Φ1 `n 〈aeqM N〉} then {Φ2 `2n+2 〈shapeM N〉}. On the other
hand, a proof by complete induction is just an application of Coq’s lt_wf_ind

theorem and therefore easy to check and trust. In Abella the induction tactic is
a very clever piece of code that hides all the possibly complex details of height
manipulation from the user, but at the same time is completely opaque. This may
become problematic when we have to manipulate an assumption before applying
the (co)inductive hypothesis; for example, if we apply a user-proven lemma, say
strengthening, even one that preserves the proof height, there is no way to convince
the system that applying the hypothesis afterward does not violate the inductive
restrictions. In those cases we have to change the specification so as to introduce
another OL judgment to induct on, one which is not affected by said lemma.

From a theoretic point of view, Gacek sketches in his dissertation (Gacek, 2009)
how to convert proofs following the annotation-based schema for induction into
ones using G’s original invariant-based induction rule. The consistency of the logic
is shown by cut-elimination extending to G the cut-elimination proof, which was
eventually published in Tiu and Momigliano (2012).

Abella’s RL is quite weak, in the De Bruijn sense (de Bruijn, 1991), while
Coq is among the strongest logical frameworks in existence. Beyond the obvious
difference between simple and dependent types, which Hybrid does not really use
that much, Hybrid inherits Coq’s full recursive function space, and that is a mixed
blessing. It allows us to define functions (as opposed to the relational-only approach
of Abella), which is quite handy, as exemplified with respect to promotion lemmas;
at the same time, it brings back all the (external) adequacy issues that have been
studied in the last twenty years; hence the abstr annotations as explained in Felty
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and Momigliano (2012). A related issue is the different equality relations of the two
systems. In Abella, it is essentially αβη-conversion, while Hybrid again inherits
Coq’s more complicated notion. This complication emerges, for example, in proofs
by inversion, which in Hybrid sometimes require appeal to special equality and
inversion lemmas.

Abella 2.0 is clearly more powerful than Hybrid as far as the SL is concerned,
because it implements a n-ary logic instead of a second-order one, although the
former is not conservative w.r.t the latter. It would be relatively easy to extend
Hybrid’s SL to the same one used by Abella; in fact, this could be done conserva-
tively, as there would be no problem in having both SLs coexist, for the user to
choose according to the nature of the benchmark. However, we feel, and we realize
this is a judgment call, that n-ary benchmarks do not occur so frequently in the
“wild” to make this change a priority. Besides, most of the time those benchmarks
can be brought back in a standard way to the second-order case with a moderate
increase in proof complexity. For an example, compare the third-order version of
the path case study in (Wang and Nadathur, 2013) and its second-order rendering
in (Gacek et al, 2012).

There is also an additional Hybrid-specific issue: Hybrid’s abstraction operator
LAM is intrinsically second-order, and so is the abstr annotation. While a theory of
n-ary abstractions is feasible, it has not been developed yet. Therefore, even with
a n-ary SL, there would be some benchmarks, e.g., extending algorithmic equality
to a third-order construct such as callcc, that Hybrid cannot currently handle.

8.3 Further Discussion and Summary

Based on the proof developments and the discussion so far, we can see that both
Beluga and Abella provide support beyond what we typically achieve with HOAS.
By extending LF with first-class contexts and contextual types, Beluga provides
intrinsic support for abstracting over variables and contexts, and relating them
via first-class substitutions and inductive definitions. The proof theory underly-
ing Beluga is simple and requires only first-order logic with induction principles
over a specific domain (i.e. contextual LF) and establishing normalization follows
standard well-understood proof methods (Pientka et al, 2014). In Abella, we ex-
tend first-order logic with iterative inductive definitions and the ∇-quantifier to
abstract over objects denoting variables, but not contexts and, unless they carry
no information such as in the case study reported by Accattoli (2012), contexts
still need to be handled explicitly.

Although Hybrid’s lack of intrinsic support for abstracting over variables in-
creases the burden on the users compared to the other systems, it is the system
with the richest type theory, since it is implemented as a Coq library. As a conse-
quence, we can immediately take advantage of writing recursive functions in Coq
instead of relations, avoiding infrastructural lemmas about determinacy and to-
tality of relations, as would be needed in Abella. We cannot yet, however, write
functions over Hybrid terms (expr). Hybrid also can readily take advantage of
Coq’s tactics, libraries, and decision procedures. Although the benchmarks we
have considered in this paper do not showcase the need for libraries, they are of
utmost importance in any real-life specifications. We however also acknowledge
that choosing Coq as a system for implementing the Hybrid library means users
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work within a very rich type theory that, for example, also supports impredicative
definitions, an extension often found to be controversial.

All systems but Twelf can accommodate both the generalized and the relational
approach. In Hybrid proofs following the relational approach will be more compact,
since fewer infrastructural lemmas need to be established. A similar remark applies
to Abella, although c-str is handled differently. In Hybrid, the use of recursive
functions to encode context strengthening leads to more compact proofs for both
the G and R versions. In Beluga, proofs following the generalized approach will
be even more compact due to the support for weakening and context subsumption
provided by the underlying type theory.

Hybrid is arguably the most trustworthy system with respect to the form of
proof certificates that it constructs. Coq builds proofs in the form of CIC lambda-
terms, and these terms include every primitive inference, which in the case of
Hybrid includes splitting, inductive reasoning, including reasoning about proof
heights, and all applications of context lemmas, including weakening, strengthen-
ing, membership, etc. This Coq term can be independently checked by Coq’s type
checker, which simply verifies the correctness of each primitive inference. No extra
external checkers are required. Note that this notion of trust concerns tool support
for checking proofs, and does not include foundational strength and expressiveness,
which is discussed above.

A Beluga proof is a program that can be checked independently by a small type
checker, guaranteeing that contexts and contextual objects are well-formed. Bel-
uga’s type checker also verifies that all cases are covered exploiting subordination,
while termination is validated by the programmer. Compared to Hybrid, Beluga
programs are not compiled to a low-level core language in which all context rea-
soning including weakening and strengthening is explicit, nested pattern matches
are translated into a series of single splits, and the termination measure is explicit.
Although various steps have been taken into this direction—for example Ferreira
et al (2013) describes how to compile pattern matching on contextual objects and
Pientka et al (2014) have recently proposed a core calculus for primitive recursive
functions and proven that it is normalizing—presently Beluga programs are not
compiled to this core foundation.

Twelf provides a compact type checker to verify that relations manipulate well-
formed derivations taking into account weakening. However, to validate that the
relation describes a total function, we rely on mode, world and totality checkers,
which are outside of the LF framework and no direct certification exists.

Abella does not fit the LCF-style of proof assistants, nor does it provide a
notion of proof certificate at this point; moreover, the annotation-based approach
to (co)induction, as convenient as it is, introduces another level of indirection w.r.t.
possible external checkers.

We end this section summing up some of the above discussion points in Table 1.
The rows of the table summarize the following properties:

– The first two rows consider the representation of contexts both in OL specifi-
cations (OL ctx) and in the reasoning logic (RL ctx).

– The next two rows indicate how schemas are encoded (schemas) and how
schema satisfaction is provided (schema sat).

– The following 4 rows indicate how we enforce structural properties (wk, str,
exc) of contexts at the level of declarations (d-) and of whole contexts (c-).
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Twelf Beluga Abella 2.0 Hybrid
OL ctx implicit implicit implicit implicit
RL ctx implicit explicit list of formulas list of atoms
schemas block decl Σ-type inductive predicate inductive type
sch. sat world checking type checking Φ : Sx proof of (xC Φ)‡ proof of (xC Φ)‡
d-wk LF weakening CMTT weakening SL weakening SL weakening
d-str subordination† subordination‡ case by case case by case
c-wk/str subsumption† subsumption† case by case case by case
d/c-exc LF exc † CMTT exc† admissible in SL admissible in SL
uniq Assumed† Parameter var. nabla in the head nvC function†
p subst β-red β-red spec of ∇ in SL spec of ∀ in SL
h subst β-red β-red cut in SL atomic cut in SL†
G version X X X X
R version × X X X

†: may not always work, ‡: sound but not complete

Table 1 At-a-Glance Features

– The next three row describes how we ensure uniqueness of the elements in a
context (uniq), and the substitution properties, both parametric (p subst) and
hypothetical (h subst).

– Finally, the last two rows state the feasibility of the G and R versions.

In the table, LF stands for “Logical Framework” and CMTT stands for “Contex-
tual Modal Type Theory,” the foundations of Twelf and Beluga, respectively. In
both of these theories, Σ-types tie different declarations together.

9 Conclusion and Future Work

In this paper, we have formalized the benchmarks of the companion paper (Felty
et al, 2014) in four systems: Twelf, Beluga, Hybrid, and Abella, and we have
compared their general approach and solutions in some detail. In general, carrying
out a qualitative comparison of a collection of very different systems is a daunting
task, and this work represents a first step in this direction. This step involved
focusing on one aspect, reasoning about contexts, and finding enough common
ground to be able to present proofs of the benchmarks in a way that highlights
some of the similarities and differences of the various systems. This common ground
included first identifying the difference between the R and G versions, whose initial
idea can be seen in our early work (Felty and Pientka, 2010), as well as developing
a theory of context of assumptions, identifying the detailed structure of contexts
along with their associated structural properties. This paper and the companion
paper are very much intertwined. For example, our initial attempts at formalizing
these benchmarks and comparing their proofs influenced the design of the theory
of contexts, and vice versa, and the present paper is the result of several such
cycles of evolution.

As mentioned, our initial benchmarks focus on contexts, and thus expanding
this set of benchmarks is an important direction for future work. A variety of
ideas in this direction are discussed in the conclusion of the companion paper,
and so we do not repeat it further here. Another direction of future work involves
formalizing these benchmarks in other systems, both those that support HOAS,
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as well as those that take other approaches. We hope that others will implement
these benchmarks and further our understanding of the similarities and differences,
strengths and weaknesses of different systems and approaches. The future evolution
of the ORBI specification language to better support this task is also discussed in
the companion paper.

In addition to providing a means for comparison, benchmark problems also
prescribe a kind of standard to which systems should adhere. In continuing the
development of the systems considered here (as well as other systems that adopt
these benchmarks), it will be important to ensure that proofs of these problems
can still be done; if they cannot or if the proofs become more difficult, it will be
important to explain and understand why.

With regard to the systems discussed in this paper, our survey has already
sparked a number of developments to address the shortcomings in the various
approaches and systems. For example, implementing the ∇-quantifier is a cur-
rent priority for Hybrid, and initial work on implementing a n-ary specification
logic is underway. One of Abella’s development branch offers a plug-in (Bélanger
and Chaudhuri, 2014) that extends the system with a mechanism for declaring
schemas and contexts relations in a way reminiscent of Beluga; the plug-in auto-
matically derives standard context results, such as member lemma stating inver-
sion and uniqueness properties. Thanks to that, member lemmas can be in-lined
and solved by calls to the plug-in tacticals, in mane cases significantly simplifying
proof scripts.19

Beluga is a system under active development and will continue to evolve. In
the short term, we plan to support first-class substitutions also in the main release
and improve upon source level syntax and reconstruction. Building on Pientka
et al (2014), we plan to support interactive development of proofs in Beluga to
facilitate writing proofs. This is an important step to improve and ease writing
Beluga code. The recent support of first-class substitutions and context relations
via indexed recursive datatypes and their use in mechanizing the completeness
proof of algorithmic equality discussed in this paper also provides new insights
into how proofs in proof-theoretic systems relate to Beluga programs; we see this
as a first step towards not only comparing systems by examples, but starting to
translate proofs done in one system to proofs in another.
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A ORBI Specifications of Challenge Problems

We give here the Syntax, Judgments, Rules, Schemas, and Definitions sections
of the ORBI specifications for all the benchmarks presented in Felty et al (2014)
and formalized in the main paper. The full ORBI files can be found at https://

github.com/pientka/ORBI, and are called EqualUntyped.orbi, EqualPoly.orbi,
TypingSimple.orbi, and ParRed.orbi, respectively. We include some context re-
lations here (e.g., alphaxR and aeqatpR) that are not in the ORBI files because
this paper discusses lemmas common to Hybrid and Abella R versions of proofs.
Users carrying out these benchmarks in other systems might want the flexibility
to structure proofs differently and possibly use different lemmas.

A.1 Algorithmic and Declarative Equality for the Untyped Lambda-Calculus

%% Syntax
tm: type.
app: tm -> tm -> tm.
lam: (tm -> tm) -> tm.

%% Judgments
aeq: tm -> tm -> type.
deq: tm -> tm -> type.
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%% Rules
ae_a: aeq M1 N1 -> aeq M2 N2 -> aeq (app M1 M2) (app N1 N2).
ae_l: ({x:tm} aeq x x -> aeq (M x) (N x))

-> aeq (lam (\x. M x)) (lam (\x. N x)).

de_a: deq M1 N1 -> deq M2 N2 -> deq (app M1 M2) (app N1 N2).
de_l: ({x:tm} deq x x -> deq (M x) (N x))

-> deq (lam (\x. M x)) (lam (\x. N x)).
de_r: deq M M.
de_s: deq M1 M2 -> deq M2 M1.
de_t: deq M1 M2 -> deq M2 M3 -> deq M1 M3.

%% Schemas
schema xG: block (x:tm).
schema xaG: block (x:tm; u:aeq x x).
schema xdG: block (x:tm; u:deq x x).
schema daG: block (x:tm; u:deq x x; v:aeq x x).

%% Definitions
inductive xaR: {G:xG} {H:xaG} prop =
| xa_nil: xaR nil nil
| xa_cons: xaR G H -> xaR (G, block x:tm) (H, block x:tm; u:aeq x x).

inductive daR: {G:xaG} {H:xdG} prop =
| da_nil: daR nil nil
| da_cons: daR G H -> daR (G, block x:tm; v:aeq x x)

(H, block x:tm; u:deq x x).

A.2 Algorithmic Equality for the Polymorphic Lambda Calculus

%% Syntax
tp: type.
arr: tp -> tp -> tp.
all: (tp -> tp) -> tp.

tm: type.
app: tm -> tm -> tm.
lam: (tm -> tm) -> tm.
tapp: tm -> tp -> tm.
tlam: (tp -> tm) -> tm.

%% Judgments
atp: tp -> tp -> type.
aeq: tm -> tm -> type.

%% Rules
at_al: ({a:tp} atp a a -> atp (T a) (S a))

-> atp (all (\a. T a) (all (\a. S a)).
at_a: atp T1 T2 -> atp S1 S2 -> atp (arr T1 S1) (arr T2 S2).
ae_l: ({x:tm} aeq x x -> aeq (M x) (N x))

-> aeq (lam (\x. M x)) (lam (\x. N x)).
ae_a: aeq M1 N1 -> aeq M2 N2 -> aeq (app M1 M2) (app N1 N2).
ae_tl: ({a:tp} atp a a -> aeq (M a) (N a))

-> aeq (tlam (\a. M a)) (tlam (\a. N a)).
ae_ta: aeq M N -> atp T S -> aeq (tapp M T) (tapp N S).

%% Schemas
schema aG: block (a:tp).
schema axG: block (a:tp) + block (x:tm).
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schema atpG: block (a:tp; u:atp a a).
schema aeqG: block (a:tp; u:atp a a) + block (x:tm; v:aeq x x).

%% Definitions
inductive alphxR: {G:aG} {H:axG} prop =
| ax_nil: alphxR nil nil
| ax_cons1 : alphxR G H -> alphxR (G, block a:tp) (H, block a:tp).
| ax_cons2 : alphxR G H -> alphxR G (H, block x:tm).

inductive atpR: {G:aG} {H:atpG} prop =
| atp_nil: atpR nil nil
| atp_cons : atpR G H -> atpR (G, block a:tp) (H, block a:tp; u:atp a a).

inductive aeqR: {G:axG} {H:aeqG} prop =
| aeq_nil: aeqR nil nil
| aeq_cons1 : aeqR G H -> aeqR (G, block a:tp) (H, block a:tp; u:atp a a)
| aeq_cons2 : aeqR G H -> aeqR (G, block x:tm) (H, block x:tm; v:aeq x x).

inductive aeqatpR: {G:atpG} {H:aeqG} prop =
| aa_nil: aeqatpR nil nil
| aa_cons1 : aeqatpR G H -> aeqatpR (G, block a:tp; u:atp a a) (H, block a:tp; u:atp a a)
| aa_cons2 : aeqatpR G H -> aeqatpR G (H, block x:tm; v:aeq x x).

A.3 Static Semantics of the Simply-Typed Lambda-Calculus

%% Syntax
tp: type.
i: tp.
arr: tp -> tp -> tp.

tm: type.
app: tm -> tm -> tm.
lam: tp ->(tm -> tm) -> tm.

%% Judgments
oft: tm -> tp -> type.

%% Rules
oft_l: ({x:tm} oft x A -> oft (M x) B) ->

oft (lam A (\x. M x)) (arr A B).
oft_a: oft M (arr A B) -> oft N A -> oft (app M N) B.

%% Schemas
schema xtG: block (x:tp; u:oft x A).

A.4 Parallel Reduction for the Simply-Typed Lambda-Calculus

%% Syntax
tp: type.
i: tp.
arr: tp -> tp -> tp.

tm : type.
app : tm -> tm -> tm.
lam : (tm -> tm) -> tm.

%% Judgments
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oft : tm -> tp -> type.
pr : tm -> tm -> type.

%% Rules
oft_l: ({x:tm} oft x A -> oft (M x) B)

-> oft (lam (\x. M x)) (arr A B).
oft_a: oft M1 (arr A2 A) -> oft M2 A2 -> oft (app M1 M2) A.

pr_l: ({x:tm} pr x x -> pr (M1 x) (M2 x))
-> pr (lam (\x. M1 x)) (lam (\x. M2 x)).

pr_b: ({x:tm} pr x x -> pr (M1 x) (M2 x)) ->
pr N1 N2 -> pr (app (lam (\x. M1 x)) N1) (M2 N2).

pr_a: pr M1 M2 -> pr N1 N2 -> pr (app M1 N1) (app M2 N2).

%% Schemas
schema xtG: block (x:tm; v:oft x T).
schema xrG: block (x:tm; u:pr x x).
schema xrtG: block (x:tm; u:pr x x; v:oft x T).

%% Definitions
inductive xrtR: {G:xrG} {H:xtG} prop =
| xrt_nil : xrtR nil nil
| xrt_cons: xrtR G H ->

xrtR (G, block x:tm; u:pr x x) (H, block x:tm; v:oft x A).


