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Abstract A variety of logical frameworks support the use of higher-order abstract
syntax (HOAS) in representing formal systems. Although these systems seem su-
perficially the same, they differ in a variety of ways; for example, how they handle
a context of assumptions and which theorems about a given formal system can
be concisely expressed and proved. Our contributions in this paper are three-fold:
1) we develop a common infrastructure for representing benchmarks for systems
supporting reasoning with binders, 2) we present several concrete benchmarks,
which highlight a variety of different aspects of reasoning within a context of as-
sumptions, and 3) we design an open repository ORBI (Open challenge problem
Repository for systems supporting reasoning with BInders). Our work sets the
stage for providing a basis for qualitative comparison of different systems. This
allows us to review and survey the state of the art, which we do in great detail for
four systems in Part 2 of this paper (Felty et al, 2014). It also allows us to outline
future fundamental research questions regarding the design and implementation
of meta-reasoning systems.

Keywords Logical Frameworks · Higher-Order Abstract Syntax · Context
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1 Introduction

In recent years the PoplMark challenge (Aydemir et al, 2005) has stimulated
considerable interest in mechanizing the meta-theory of programming languages
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and it has played a substantial role in the wide-spread use of proof assistants to
prove properties, for example, of parts of a compiler or of a language design. The
PoplMark challenge concentrated on summarizing the state of the art, identifying
best practices for (programming language) researchers embarking on formalizing
language definitions, and identifying a list of engineering improvements to make
the use of proof assistants (more) common place. While these are important ques-
tions whose answers will foster the adoption of proof assistants by non-experts, it
neglects some of the deeper fundamental questions: What should existing or future
meta-languages and meta-reasoning environments look like and what requirements
should they satisfy? What support should an ideal meta-language and proof envi-
ronment give to facilitate mechanizing meta-reasoning? How can its design reflect
and support these ideals?

We believe “good” meta-languages should free the user from dealing with te-
dious bureaucratic details, so s/he is able to concentrate on the essence of a proof
or algorithm. Ultimately, this means that users will mechanize proofs more quickly.
In addition, since effort is not wasted on cumbersome details, proofs are more likely
to capture only the essential steps of the reasoning process, and as a result, may be
easier to trust. For instance, weakening is a typical a low-level lemma that is used
pervasively (and silently) in a proof. Freeing the user of such details ultimately
may also mean that the automation of such proofs is more feasible.

One fundamental question when mechanizing formal systems and their meta-
theory is how to represent variables and variable binding structures. There is a
wide range of answers to this question from using de Bruijn indices to locally
nameless representations, and nominal encodings, etc. For a partial view of the
field see the papers collected in the Journal of Automated Reasoning ’s special issue
dedicated to PoplMark (Pierce and Weirich, 2012) and the one on “Abstraction,
Substitution and Naming” (Fernández and Urban, 2012).

Encoding object languages and logics (OLs) via higher-order abstract syntax
(HOAS), sometimes referred to as “lambda-tree syntax” (Miller and Palamidessi,
1999), where we utilize meta-level binders to model object-level binders is in our
opinion the most advanced technology. HOAS avoids implementing common al-
though notoriously tricky routines dealing with variables, such as capture-avoiding
substitution, renaming, and fresh name generation. Compared to other techniques,
HOAS leads to very concise and elegant encodings and provides significant sup-
port for such an endeavor. Concentrating on encoding binders, however, neglects
another important and fundamental aspect: the support for hypothetical and para-
metric reasoning, in other words reasoning within a context of assumptions. Con-
sidering a derivation within a context is common place in programming language
theory and leads to several natural questions: How do we model the context of
assumptions? How do we know that a derivation is sensible within the scope of a
context? Can we model the relationships between different contexts? How do we
deal with structural properties of contexts such as weakening, strengthening, and
exchange? How do we know assumptions in a context occur uniquely? How do we
take advantage of the HOAS approach to substitution?

Even in systems supporting HOAS there is not a uniform answer to these
questions. On one side of the spectrum we have systems that implement vari-
ous dependently-typed calculi. Such systems include the logical framework Twelf
(Schürmann, 2009), the dependently-typed functional language Beluga (Pientka,
2008; Pientka and Dunfield, 2010), and Delphin (Poswolsky and Schürmann, 2008).



The Next 700 Challenge Problems: A Common Infrastructure 3

All these systems also provide, in various degrees, built-in support for reasoning
modulo structural properties of a context of assumptions.

On the other side there are systems based on a proof-theoretic foundation,
which follow a two-level approach: they implement a specification logic (SL) inside
a higher-order logic or type theory. Hypothetical judgments of object languages
are modeled using implication in the SL and parametric judgments are handled
via (generic) universal quantification. Contexts are commonly represented explic-
itly as lists or sets in the SL, and structural properties are established separately
as lemmas. For example substituting for an assumption is justified by appeal-
ing to the cut-admissibility lemma of the SL. These lemmas are not directly and
intrinsically supported through the SL, but may be integrated into a system’s
automated proving procedures, usually via tactics. Systems following this philos-
ophy are for instance the two-level Hybrid system (Momigliano et al, 2008; Felty
and Momigliano, 2012) as implemented on top of Coq and Isabelle/HOL, and the
Abella system (Gacek, 2008).

This paper, together with Part 2 (Felty et al, 2014), is a major extension of an
earlier conference paper (Felty and Pientka, 2010). The contributions of the present
paper are three-fold. First, we develop a common framework and infrastructure for
representing benchmarks for systems supporting reasoning with binders; in partic-
ular, we develop notation to view contexts as “structured sequences” and classify
contexts using schemas. Moreover, we abstractly characterize in a uniform way
basic structural properties that many object languages satisfy, such as weakening,
strengthening, and exchange. This lays the foundation for describing benchmarks
and comparing different approaches to mechanizing OLs. Second, we propose sev-
eral challenge problems that are crafted to highlight the differences between the
designs of various meta-languages with respect to reasoning with and within a
context of assumptions, in view of their mechanization in a given proof assistant.
In Part 2 of this paper (Felty et al, 2014), we carry out such a comparison on
four systems: Twelf, Beluga, Hybrid, and Abella. Third, we discuss the design of
ORBI (Open challenge problem Repository for systems supporting reasoning with
BInders), an open repository for sharing benchmark problems based on the infras-
tructure that we have developed. Although ORBI ’s syntax is inspired by systems
such as Twelf and Beluga, we do not commit to using a particular system, as we
wish to retain the needed flexibility to be able to easily support translations to
both type-theoretic and proof-theoretic approaches.1 The common notation allows
us to express the syntax of object languages that we wish to reason about, as well
as the context schemas, the judgments and inference rules, and the statements of
the benchmark theorems. We hope that ORBI will foster sharing of examples in
the community and provide a common set of examples. We also see our benchmark
repository as a place to collect and propose “open” challenge problems to push
the development of meta-reasoning systems.

The challenge problems also play a role in allowing us, as designers and devel-
opers of logical frameworks, to highlight and explain how the design decisions for
each individual system lead to differences in using them in practice. This means
reviewing the state of the art, as well as outlining future fundamental research
questions regarding the design and implementation of meta-reasoning systems, as

1 A first step in this direction is the translator for Hybrid, whose first version is presented
in Habli and Felty (2013).
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we discuss further in the companion paper (Felty et al, 2014). Additionally, our
benchmarks aim to provide a better understanding of what practitioners should
be looking for, as well as help them understand what kind of problems can be
solved elegantly and easily in a given system, and more importantly, why this is
the case. Therefore the challenge problems provide guidance for users and devel-
opers in better understanding differences and limitations. Finally, they serve as an
excellent regression suite.

This paper does not, of course, present 700 challenge problems. We start with a
few and hope that others will contribute to the benchmark repository, implement
these challenge problems, and further our understanding of the trade-offs involved
in choosing one system over another for this kind of reasoning.

The paper is structured as follows: In Sect. 2 we motivate our definition of con-
texts as “structured sequences,” which refines the standard view of contexts, and
we describe generically and abstractly some context properties. Using this termi-
nology we then present the benchmarks and their proofs in Sect. 3. In Sect. 4, we
introduce ORBI and discuss how it provides HOAS encodings of the benchmarks in
a uniform manner. We discuss related work in Sect. 5, before concluding in Sect. 6.
Appendix A provides a quick reference guide to the benchmarks and Appendix B
gives a complete example of an ORBI file for a selection of the benchmark prob-
lems. Full details about the challenge problems and their mechanization can be
found at https://github.com/pientka/ORBI. The latter, as well as the present
paper, can be better appreciated by reading the companion paper (Felty et al,
2014).

2 Contexts of Assumptions: Preliminaries and Terminology

Reasoning with and within a context of assumptions is common when we prove
meta-theoretic properties about object languages such as type systems or logics.
Hence, how to represent contexts and enforce properties such as well-formedness,
weakening, strengthening, exchange, uniqueness of assumptions, and substitution
is a central issue once we mechanize such reasoning.

As mentioned, proof environments supporting higher-order abstract syntax dif-
fer in how they represent and model contexts and our comparison (Felty et al, 2014)
to a large extent focuses on this issue. Here we lay down a common framework and
notation for describing the syntax of object languages, inference rules and contexts
by using different representative examples. In particular, we refine the standard
view of contexts as sequences of assumptions and abstractly describe structural
properties such as weakening and exchange satisfied by many object languages.
Our description follows mathematical practice, in contrast to giving a fully formal
account based on, for example, type theory. In fact, all the notions that we touch
upon in this section, such as substitution, α-renaming, bindings, context schemas
to name a few, can and have been generally treated in Beluga (see e.g., Pientka,
2008). However, we deliberately choose to base our description on mathematical
practice to make our benchmarks more accessible to a wider audience and so as
not to force upon us one particular foundation. This infrastructure may be seen as
a first step towards developing a formal translation between different foundations,
i.e., a translation between Beluga’s type-theoretic foundation and the proof-theory
underlying systems such as Hybrid or Abella.
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2.1 Defining Well-formed Objects

The first question that we face when defining an OL is how to describe well-formed
objects. Consider the polymorphic lambda-calculus. Commonly the grammar of
this language is defined using Backus-Naur form (BNF) as follows.

Types A,B ::= α | arrAB | allα.A
Terms M ::= x | lamx.M | appM1 M2 | tlamα.M | tappM A

The grammar, however, does not capture properties of interest such as when a
given term or type is closed. Alternatively, we can describe well-formed types and
terms as judgments using axioms and inference rules following Martin-Löf (1996),
as popularized in programming language theory by Pfenning’s Computation and
Deduction notes (Pfenning, 2001).

We start with an implicit-context version of the rules for well-formed types
and terms that plays the part of the above BNF grammar, but is also significantly
more expressive. To describe whether a type A or term M is well-formed we use

two judgments: is tp A and is tmM , whose formation rules are depicted in

Fig. 1. The rule for function types (tpar) is unsurprising. The rule tpal states that
a type allα.A is well-formed if A is well-formed under the assumption that the
variable α is also. We say that this rule is parametric in the name of the bound
variable α—thus implicitly enforcing the usual eigenvariable condition, since bound
variables can be α-renamed at will—and hypothetical in the name of the axiom
(tpv) stating the well-formedness of this type variable. In this two-dimensional
representation, derived from Gentzen’s presentation of natural deduction, we do
not have an explicit rule for variables: instead, for each type variable introduced
by tpal we also introduce the well-formedness assumption about that variable, and
we explicitly include names for the bound variable and axiom as parameters to
the rule name.

is tp A – Type A is well-formed

is tp α
tpv

...
is tp A

is tp (allα.A)
tpα,tpv
al

is tp A is tp B

is tp (arrAB)
tpar

is tmM – Term M is well-formed

is tm x
tmv

...
is tmM

is tm (lamx.M)
tmx,tmv

l

is tp α
tpv

...
is tmM

is tm (tlamα.M)
tmα,tpv

tl

is tmM1 is tmM2

is tm (appM1 M2)
tma

is tmM is tp A

is tm (tappM A)
tmta

Fig. 1 Well-formed Types and Terms (implicit context)
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While variables might occur free in a type given via the BNF grammar, the
two-dimensional implicit-context formulation models more cleanly the scope of
variables; e.g., a type is tp (allα. arr αβ) is only meaningful in the context where
we have the assumption is tp β.

Following this judgmental view, we can also characterize well-formed terms: the
rule for term application (tma) is straightforward and the rule for type application
(tmta) simply refers to the previous judgment for well-formed types since types
are embedded in terms. The rules for term abstraction (tml) and type abstraction
(tmtl) are again the most interesting. The rule tml is parametric in the variable x
and hypothetical in the assumption is tm x; similarly the rule tmtl is parametric
in the type variable α and hypothetical in the assumption is tp α.

We emphasize that mechanizations of a given object language can use either
one of these two representations, the BNF grammar or the judgmental implicit
context formulation. However, it is important to understand how to move between
these representations and the trade-offs and consequences involved. For example,
if we choose to support the BNF-style representation of object languages in a
proof assistant, we might need to provide basic predicates that verify whether a
given object is closed; further we may need to reason explicitly about the scope of
variables. HOAS-style proof assistants typically adopt the judgmental view provid-
ing a uniform treatment for objects themselves (well-formedness rules) and other
inference rules about them.

2.2 Context Definitions

Introducing the appropriate assumption about each variable is a general method-
ology that scales to OLs accommodating much more expressive assumptions. For
example, when we specify typing rules, we introduce a typing assumption that
keeps track of the fact that a given variable has a certain type. This approach can
also result in compact and elegant proofs. Yet, it is often convenient to present
hypothetical judgments in a localized form, reducing some of the ambiguity of the
two-dimensional notation. We therefore introduce an explicit context for book-
keeping, since when establishing properties about a given system, it allows us
to consider the variable case(s) separately and to state clearly when consider-
ing closed objects, i.e., an object in the empty context. More importantly, while
structural properties of contexts are implicitly present in the above presentation
of inference rules (where assumptions are managed informally), the explicit con-
text presentation makes them more apparent and highlights their use in reasoning
about contexts.

To contrast representation using explicit contexts to implicit ones and to high-
light the differences, we re-formulate the earlier rules for well-formed types and
terms given in Fig. 1 using explicit contexts in Sect. 2.4. As another example
of using explicit contexts, we give the standard typing rules for the polymorphic
lambda-calculus (see Sect. 2.4). The reader might want to skip ahead to get an
intuition of what explicit contexts are and how they are used in practice. In the
rest of this section, we first introduce terminology for structuring such contexts,
and then describe structural properties they (might) satisfy.

Traditionally, a context of assumptions is characterized as a sequence of formu-
las A1, A2, . . . , An listing its elements separated by commas (Pierce, 2002; Girard
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et al, 1990). However, we argue that this is not expressive enough to capture the
structure present in contexts, especially when mechanizing OLs. In fact, there are
two limitations from that point of view.

First, simply stating that a context is a sequence of formulas does not charac-
terize adequately and precisely what assumptions can occur in a context and in
what order. For example, to characterize a well-formed type, we consider a type
in a context Φα of type variables. To characterize a well-formed term, we must
consider the term in a context Φαx that may contain type variables α and term
variables x.

Context Φα ::= · | Φα, is tp α
Φαx ::= · | Φαx, is tp α | Φαx, is tm x

As a consequence, we need to be able to state in our mechanization when a given
context satisfies being a well-formed context Φα or Φαx. In other words, the gram-
mar for Φα and Φαx will give rise to a schema, which describes when a context is
meaningful. Simply stating that a context is a sequence of assumptions does not
allow us necessarily to distinguish between different contexts.

Second, forming new contexts by a comma does not capture enough structure.
For example, consider the typing rule for lambda-abstraction that states that
lamx.M has type (arr C B), if assuming that x is a term variable and x has type
C, we can show that M has type B. Note that whenever we introduce assumptions
x:C (read as “term variable x has type C”), we at the same time introduce the
additional assumption that x is a new term variable. This is indeed important,
since from it we can derive the fact that every typing assumption is unique. Simply
stating that the typing context is a list of assumptions x:C, as shown below in
the first attempt, fails to capture that x is a term variable, distinct from all other
term variables. In fact, it says nothing about x.

Typing context (attempt 1) Φ ::= · | Φ, x:C

The second attempt below also fails, because the occurrences of the comma have
two different meanings.

Typing context (attempt 2) Φ ::= · | Φ, is tm x, x:C

The comma between is tm x, x:C indicates that whenever we have an assumption
is tm x, we also have an assumption x:C. These assumptions come in pairs and
form one block of assumptions. On the other hand, the comma between Φ and
is tm x, x:C indicates that the context Φ is extended by the block containing
assumptions is tm x and x:C.

Taking into account such blocks leads to the definition of contexts as structured
sequences. A context is a sequence of declarations D where a declaration is a block
of individual atomic assumptions separated by ’;’. The ’;’ binds tighter than ’,’.
We treat contexts as ordered, i.e., later assumptions in the context may depend on
earlier ones, but not vice versa—this in contrast to viewing contexts as multi-sets.

We thus introduce the following categories:

Atom A
Block of declarations D ::= A | D;A

Context Γ ::= · | Γ,D
Schema S ::= Ds | Ds +S
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Just as types classify terms, a schema will classify meaningful structured se-
quences. A schema consists of declarations Ds, where we use the subscript s to
indicate that the declaration occurring in a concrete context having schema S may
be an instance of Ds. We use + to denote the alternatives in a context schema.

We can declare the schemas corresponding to the previous contexts, seen as
structured sequences, as follows:

Sα ::= is tp α
Sαx ::= is tp α+ is tm x
Sαt ::= is tp α+ is tm x;x:C

We use the following notational convention for declarations and schemas: Lower
case letters denote bound variables (eigenvariables), obeying the Barendregt vari-
able convention; EV(D) will denote the set of eigenvariables occurring in D. Upper
case letters are used for “schematic” variables. Therefore, we can always rename
the x in the declaration is tm x;x:C and instantiate C. For example, the context
is tm y; y: nat, is tp α, is tm z; z: (arr αα) fits the schema Sαt.

2

We say that a declaration D is well-formed if for every x ∈ EV(D) there is
an atom in D (notation A ∈ D) denoting the well-formedness judgment for x,
which we generically refer to as is wf x, with the proviso that is wf x precedes
its use in D; the meta-notation is wf will be instantiated by an appropriate atom
such as is tm or is tp. A schema is well-formed if and only if all its declarations
are well-formed. For example, the schema Sαt is well-formed since the x in x:C is
declared by is tm x appearing earlier in the same declaration. We will assume in
the following that all schemas are such.

More generally, we say that a concrete context Γ has schema S (Γ has schema S),
if every declaration in Γ is an instance of some schema declaration Ds in S. By
convention, when we write Sl to denote a context schema, Γl will denote a valid
instance of Sl, namely such that Γl has schema Sl, where subscript l is used to
denote the relationship between the schema and an instance of it.

Schema Satisfaction Γ has schema S

· has schema S

Γ has schema S D ∈ S EV(D) ∩ EV(Γ ) = ∅
(Γ,D) has schema S

Block D of Declaration is valid D ∈ S

D instance of Ds
D ∈ Ds

D instance of Ds
D ∈ Ds +S

D ∈ S
D ∈ Ds +S

Note that if D ∈ S, then it is by definition well-formed. The premise EV(D) ∩
EV(Γ ) = ∅ requires eigenvariables in different blocks in a context satisfying the
schema to be distinct from each other. This constraint will always be satisfied by
contexts that appear in proofs of judgments using our inference rules—again, see

2 Although a schema does not appear to have an explicit binder, all the eigenvariables and
schematic variables occurring are considered bound. In ORBI (see Sect. 4) the block keyword
delineates the scope of eigenvariables and we use the convention that schematic variables
are written using upper case letters. Beluga’s type theory provides a formal type-theoretic
foundation for describing schemas where the scope of eigenvariables and schematic variables
in a schema is enforced using Σ and Π-types.
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for example the inference rules in Sect. 2.4. We remark that a given context can in
principle inhabit different schemas; for example the context is tp α1, is tp α2 has
schema Sα but also inhabits schemas Sαx and Sαt.

Note that according to the given grammar for schemas, contexts contain only
atomic assumptions. We could consider non-atomic assumptions; in fact, more
complex assumptions are not only possible, but sometimes yield very compact
and elegant specifications, as we touch upon in Sect. 6. However, to account for
them, we would need to introduce a language for terms and formulas that we feel
would detract from the goal at hand.

2.3 Structural Properties of Contexts

So far we have introduced terminology for describing objects in three different
ways: using a BNF grammar, defining objects and rules via a two-dimensional
implicit context, and using an explicit context containing structured sequences
of assumptions following a given context schema. For the latter, we have not yet
described the associated inference rules. Before we do (in Sect. 2.4 as mentioned),
we introduce structural properties of explicit contexts generically and abstractly.

We concentrate here on developing a common framework for describing object
languages including structural properties they might satisfy. However, we empha-
size that whether a given object language does admit structural properties such
as weakening or exchange is a property that needs to be verified on a case-by-case
basis. In the subsequent discussion and in all our benchmarks, we concentrate on
examples satisfying weakening, exchange, and strengthening, i.e., assumptions can
be used as often as needed, they can be used in any order, and certain assumptions
will be known not to be needed.

Our refined notion of context has an impact on structural properties of con-
texts: e.g., weakening can be described by adding a new declaration to a context,
as well as adding an element inside a block of declarations. We distinguish between
structural properties of a concrete context and structural properties of all contexts
of a given schema. For example, given the context schemas Sα and Sαx, we know
that all concrete contexts of schema Sαx can be strengthened to obtain a concrete
context of schema Sα. Dually, we can think of weakening a context of schema Sα
to a context of schema Sαx. We introduce the operations rm and perm, where rm
removes an element of a declaration, and perm permutes the elements within a
declaration.

Definition 1 (Operations on Declarations)

– Let rmA : S → S′ be a total function taking a (well-formed) declaration D ∈ S
and returning a (well formed) declaration D′ ∈ S′ where D′ is D with A
removed, if A ∈ D; otherwise D′ = D.

– Let permπ : S → S′ be a total function that permutes the elements of a (well-
formed) declaration D ∈ S according to π to obtain a (well formed) declaration
D′ ∈ S′.

Using these operations on declarations we state structural properties of dec-
larations, later to be extended to contexts. These make no assumptions and give
no guarantees about the schema of the context Γ,D and the resulting context
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Γ, f(D) where f ∈ {rmA, permπ}. In fact, we often want to use these properties
when Γ satisfies some schema S, but D does not yet fit S; in this case, we apply
an operation to D so that Γ, f(D) does satisfy the schema S.

Since our context schema may contain alternatives, the function rm is defined
via case-analysis covering all the possibilities, where we describe dropping all as-
sumptions of a case using a dot, e.g., is tm x 7→ ·. For example:

– rmx:A : Sαt → Sαx = λd.case d of is tp α 7→ is tp α | is tm y; y:A 7→ is tm y
– rmis tm x : Sαx → Sα = λd.case d of is tp α 7→ is tp α | is tm y 7→ ·

Property 2 (Structural Properties of Declarations)

1. Declaration Weakening:

Γ, rmA(D), Γ ′ ` J
Γ,D, Γ ′ ` J d-wk

2. Declaration Strengthening:

Γ,D, Γ ′ ` J
Γ, rmA(D), Γ ′ ` J

d-str†

with the proviso (†) that A is irrelevant to J and Γ ′.3

3. Declaration Exchange:

Γ,D, Γ ′ ` J
Γ, permπ(D), Γ ′ ` J d-exc

The special case rmA(A) drops A completely, since

rmA = λd.case d of A 7→ · | . . .

We treat Γ, ·, Γ ′ as equivalent to Γ, Γ ′. Hence, in the special case where we have
Γ, rmA(A), Γ ′, we obtain the well-known weakening and strengthening laws on
contexts that are often stated as:

Γ,A, Γ ′ ` J
Γ, Γ ′ ` J

str†
Γ, Γ ′ ` J
Γ,A, Γ ′ ` J wk

In contrast to the above, the general exchange property on blocks of declarations
cannot be obtained “for free” from the above operations and we define it explicitly:

Property 3 (Exchange)

Γ,D′, D, Γ ′ ` J
Γ,D,D′, Γ ′ ` J

exc

with the proviso that the sub-context D,D′ is well-formed.

3 In practice, this may be done by maintaining a dependency call graph of all judgments.
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Further, we state structural properties of contexts generically. To “strengthen”
all declarations in a given context Γ , we simply write rm∗A(Γ ) using the ∗ super-
script. More generally, by f∗ with f ∈ {rmA, permπ}, we mean the iteration of
the operation f over a context.

Property 4 (Structural Properties of Contexts)

1. Context weakening
rm∗A(Γ ) ` J
Γ ` J c-wk

2. Context strengthening
Γ ` J

rm∗A(Γ ) ` J
c-str†

with the proviso (†) that declarations that are instances of A are irrelevant to
J .

3. Context exchange
Γ ` J

perm∗π(Γ ) ` J
c-exc

Finally, by rmD (resp. rm∗D), we mean the iteration of rmA (resp. rm∗A) for every
A ∈ D, while keeping the resulting declaration and the overall context well-formed,
e.g. rmis tm y; y:A( ) = rmis tm y(rmy:A( )). All the above properties are admissible
with respect to those extended rm functions.

The following examples illustrate some of the subtleties of this machinery:

– Γ, rmx:A(is tm y; y:A) = Γ, is tm y. Bound variables in the annotation of rm
can always be renamed so that they are consistent with the eigenvariables used
in the declaration.

– rm∗is tm x(is tm x1, is tp α, is tp β, is tm x2) = is tp α, is tp β. Here, the rm
operation drops one of the alternatives in the schema Sαx.

– rm∗y:A(is tm x1;x1:nat, is tm x2;x2:bool, is tp α) = (is tm x1, is tm x2, is tp α).
The schematic variable A occurring in the annotation of rm will be instantiated
with nat when strengthening the block is tm x1;x1:nat and similarly with bool.

– rm∗is tm y; y:A(is tp α, is tp β) = (is tp α, is tp β). A rm operation may leave a
context unchanged.

We state next the substitution properties for assumptions. The parametric
substitution property allows us to instantiate parameters, i.e., eigenvariables, in
the context. For example, given is tp α, is tp β ` J and a type bool, we can
obtain is tp bool, is tp β ` [bool/α]J by replacing α with bool. The hypothetical
substitution property allows us to eliminate an atomic formula A that is part
of a declaration D. For example, given is tp bool, is tp β ` J and evidence that
is tp bool, we can obtain is tp β ` J . In type theory the two substitution properties
collapse into one.

Property 5 (Substitution Properties)

– Hypothetical Substitution:
If Γ1, (D1;A;D2), Γ2 ` J and Γ1, D1 ` A, then Γ1, (D1;D2), Γ2 ` J provided
that D1;D2 is a well-formed declaration in Γ1.
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– Parametric Substitution:
If Γ1, (D1; is wf x;D2), Γ2 ` J , then Γ1, (D1; [t/x]D2), [t/x]Γ2 ` [t/x]J for
any term t for which Γ1, D1 ` is wf t holds.

While parametric and hypothetical substitution do not preserve schema satis-
faction by definition, we typically use them in such a way that contexts continue
to satisfy a given schema.

We close this section recalling that, although we concentrate in our benchmarks
on describing object languages that satisfy structural properties usually associated
with intuitionistic logic, we note that our terminology can be used to also charac-
terize sub-structural object languages. In the case of a linear object language, we
might choose to only use operations such as perm and omit operations such as rm
so as to faithfully and adequately characterize the allowed context operations.

2.4 The Polymorphic Lambda-Calculus Revisited

In systems supporting HOAS, inference rules are usually expressed using an implicit-
context representation as illustrated in Fig. 1. The need for explicit structured con-
texts, as discussed in Sects. 2.2 and 2.3, arises when performing meta-reasoning
about the judgments expressed by these inference rules. In order to make the link,
we revisit the example from Sect. 2.1 giving a presentation with explicit contexts,
and then we make some preliminary remarks about context schemas and meta-
reasoning. We will adopt the explicit-context representation of inference rules in
the rest of the paper with the informal understanding of how to move between the
implicit and explicit formulations.

Well-formed Types

is tp α ∈ Γ
Γ ` is tp α

tpv
Γ ` is tp A Γ ` is tp B

Γ ` is tp (arrAB)
tpar

Γ, is tp α ` is tp A

Γ ` is tp (allα.A)
tpal

Well-formed Terms

is tm x ∈ Γ
Γ ` is tm x

tmv
Γ, is tm x ` is tmM

Γ ` is tm (lamx.M)
tml

Γ, is tp α ` is tmM

Γ ` is tm (tlamα.M)
tmtl

Γ ` is tmM1 Γ ` is tmM2

Γ ` is tm (appM1 M2)
tma

Γ ` is tmM Γ ` is tp A

Γ ` is tm (tappM A)
tmta

Typing for the Polymorphic λ-Calculus

x:B ∈ Γ
of v

Γ ` x : B

Γ, is tp α `M : B
of tl

Γ ` tlamα.M : allα.B

Γ `M : allα.B Γ ` is tp B
of ta

Γ ` (tappM B) : [B/α]A

Γ, is tm x;x:A `M : B
of l

Γ ` lamx.M : arrAB

Γ `M : arrBA Γ ` N : B
of a

Γ ` (appM N) : A

In this formulation, and differently from the implicit one, we have a base case
for variables. Here, to look up an assumption in a context, we simply write A ∈ Γ ,
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meaning that there is some block D in context Γ such that A ∈ D. For example
x:B ∈ Γ holds if Γ contains block is tm x;x:B. We will also overload the notation
and write D ∈ Γ to indicate that Γ contains the entire block D. We recall the
distinction between the comma used to separate blocks, and the semi-colon used to
separate atoms within blocks, as seen in the of l rule, for example. The assumption
that all variables occurring in contexts are distinct from one another is silently
preserved by the implicit proviso in rules that extend the context, where we rename
the bound variable if already present.

Note that we use a generic Γ for the context appearing in these rules, whereas
the reader may have expected this to be, for example, Φαt having schema Sαt in
the typing rules. In fact, we take a more liberal approach, where we pass to the
rules any context that can be seen as a weakening of Φαt; in other words, any Γ
such that there exists a D for which rm∗D(Γ ) = Φαt.

Suppose now, to fix ideas, that Φαt `M : B holds. By convention, we implicitly
assume that both B and M are well-formed, which means that Φαt ` is tp B and
Φαt ` is tm M . In fact, we can define functions rm∗x:C and rm∗is tm x;x:C , use them
to define strengthened contexts Φαx and Φα, and apply the c-str rule to conclude
the following:

1. Φαx := rm∗x:C(Φαt), Φαx has schema Sαx, and Φαx ` is tmM ;
2. Φα := rm∗is tm x;x:C(Φαt), Φα has schema Sα, and Φα ` is tp B.

2.5 Generalized Contexts vs. Context Relations

As an alternative to using functions such as rm∗x:C in item (1), we may adopt
the more suggestive notation Φαx ∼ Φαt, using inference rules for the context
relation corresponding to the graph of the function λd.case d of is tp α 7→ is tp α |
is tm x;x:C 7→ is tm x:

· ∼ ·
Φαx ∼ Φαt

(Φαx, is tp α) ∼ (Φαt, is tp α)

Φαx ∼ Φαt
(Φαx, is tm x) ∼ (Φαt, is tm x;x:B)

Similarly, an alternative to rm∗is tm x;x:C in item (2) is the following context relation:

· ∼ ·
Φα ∼ Φαt

(Φα, is tp α) ∼ (Φαt, is tp α)

Φα ∼ Φαt
Φα ∼ (Φαt, is tm x;x:B)

The above two statements can now be restated using these relations. Given Φαt,
let Φαx and Φα be the unique contexts such that:

1. Φαx ∼ Φαt, Φαx has schema Sαx, and Φαx ` is tmM ;
2. Φα ∼ Φαt, Φα has schema Sα, and Φα ` is tp B.

When stating and proving properties, we often relate two judgments to each
other, where each one has its own contexts. For example, we may want to prove
statements such as “if Φαx ` J1 then Φαt ` J2.” The question is how we achieve
that. In the benchmarks in this paper, we consider two approaches:

1. We reinterpret the statement in the smallest context that collects all relevant
assumptions; we call this the generalized context approach (G). In this case,
we reinterpret the above statement about J1 in a context containing additional
assumptions about typing, which in this case is Φαt, yielding:
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“if Φαt ` J1 then Φαt ` J2.”

2. We state how two (or more) contexts are related ; we call this the context
relations approach (R). Here, we define context relations such as those above
and use them explicitly in the statements of theorems. In this case, we use
Φαx ∼ Φαt yielding:

“if Φαx ` J1 and Φαx ∼ Φαt then Φαt ` J2.”

Note that here too we “minimize” the relations, in the sense of relating the
smallest possible contexts where the relevant judgments make sense.

2.6 Context Promotion and Linear Extension of Contexts and Schemas

Another common idiom in meta-reasoning occurs when we have established a prop-
erty for a particular context and we would like to use this property subsequently
in a more general context. Assume that we have proven a lemma about types in
context Φα of the form “if Φα ` J1 then Φα ` J2.” We now want to use this lemma
in a proof about terms, that is where we have a context Φαx and Φαx ` J1. We
may need to promote this lemma, and prove: “if Φαx ` J1 then Φαx ` J2.” We
will see several examples of such promotion lemmas in Sect. 3.

Finally, to structure our subsequent discussion, it is useful to introduce some
additional terminology regarding context relationships, where we use “relation-
ship” in contrast to the more specific notion of “context relation.”

– Linear extension of a declaration: a declaration D2 is a linear extension of
a declaration D1, if every atom in the declaration D1 is a member of the
declaration D2.

– Linear extension of a schema: a schema S2 is a linear extension of a schema
S1, if every declaration in S1 is a linear extension of a declaration in S2. For
example Sαt is a linear extension of Sαx.

Given a context Φ1 of schema S1 and a context Φ2 of schema S2 where S2 is
a linear extension of S1, we say that Φ2 is a linear extension of Φ1 (i.e., linear
context extension). Of course, sometimes declarations, schemas and contexts are
not related linearly. For example, we may have a schema S2 and a schema S3 both
of which are linear extensions of S1; however, S2 is not a linear extension of S3

(or vice versa). In this case, we say S2 and S3 are non-linear extensions of each
other and they share a most specific common fragment.

3 Benchmarks

In this section, we present several case studies establishing proofs of various prop-
erties of the lambda-calculus. We have structured this section around the different
shapes and properties of contexts, namely:

1. Basic linear context extensions: We consider here contexts containing no al-
ternatives. We refer to such contexts as basic. We discuss context membership
and revisit structural properties such as weakening and strengthening.

2. Linear context extensions with alternative declarations.
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3. Non-linear context extensions: We consider more complex relationships be-
tween contexts and discuss how our proofs involving weakening and strength-
ening change.

4. Order: We consider how the ordered structure of contexts impacts proofs rely-
ing on exchange.

5. Uniqueness: We consider here a case study which highlights how the issue of
distinctness of all variable declarations in a context arises in proofs.

6. Substitution: Finally, we exhibit the fundamental properties of hypothetical
and parametric substitution.

The benchmark problems are purposefully simple; they are designed to be
easily understood so that one can quickly appreciate the capabilities and trade-
offs of the different systems in which they can be implemented. Yet we believe they
are representative of the issues and problems arising when encoding formal systems
and reasoning about them. We will subsequently discuss both the G approach and
the R approach and comment on the trade-offs and differences in proofs depending
on the chosen approach.

3.1 Basic Linear Context Extension

We concentrate in this section on contexts with simple schemas consisting of a
single declaration. We aim to show the basic building blocks of reasoning over open
terms: namely what a context looks like and the structure of an inductive proof.
For the latter, we focus on the case analysis and, at the risk of being pedantic, the
precise way in which the induction hypothesis is applied.

We start with a very simple judgment: algorithmic equality for the untyped
lambda-calculus, written (aeqM N), also known as copy clauses (see Miller, 1991).
We say that two terms are algorithmically equal provided they have the same
structure with respect to the constructors.

Algorithmic Equality

aeq x x ∈ Γ
Γ ` aeq x x

aev
Γ, is tm x; aeq x x ` aeqM N

Γ ` aeq (lamx.M) (lamx.N)
ael

Γ ` aeqM1 N1 Γ ` aeqM2 N2

Γ ` aeq (appM1 M2) (app N1 N2)
aea

The context schemas needed for reasoning about this judgment are the following:

Context Schemas Sx := is tm x
Sxa := is tm x; aeq x x

where a context Φxa satisfying Sxa is the smallest possible context in which such
an equality judgment can hold. Thus, as discussed in the previous section, when
writing judgment Φxa ` aeq M N , we assume that Φxa ` is tm M and Φxa `
is tm N hold, and thus also Φx ` is tmM and Φx ` is tm N hold by employing an
implicit c-str (using rm∗aeq x x). We note that both contexts Φx and Φxa are simple
contexts consisting of one declaration block. Moreover, Sx is a sub-schema of Sxa
and therefore the context Φxa is a linear extension of the context Φx.
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In view of the pedagogical nature of this subsection and also of the content
of Sect. 3.3, which will build on this example, we start with a straightforward
property: algorithmic equality is reflexive. This property should follow by induction
onM (via the well-formed term judgment, which is not shown, but uses the obvious
subset of the rules in Sect. 2.4). However, the question of which contexts the two
judgments should be stated in arises immediately; recall that we want to prove “if
Γ1 ` is tmM then Γ2 ` aeqM M .” Γ2 should be a context satisfying Sxa since the
definition of this schema came directly from the inference rules of this judgment.
The form that Γ1 should take is less clear. The main requirement comes from the
base case, where we must know that for every assumption is tm x in Γ1 there
exists a corresponding assumption aeq x x in Γ2. The answer differs depending on
whether we choose the R approach or the G approach. We discuss each in turn
below.

3.1.1 Context Relations, R Version

The relation needed here is Φx ∼ Φxa, defined as follows:

Context Relation

. ∼ . crele
Φx ∼ Φxa

Φx, is tm x ∼ Φxa, is tm x; aeq x x
crelxa

Note that is tm x will occur in Φx in sync with an assumption block containing
is tm x; aeq x x in Φxa. This is a property which needs to be established separately,
so at the risk of redundancy, we state it as a “member” lemma.

Lemma 6 (Context Membership) Φx ∼ Φxa implies that is tm x ∈ Φx iff
is tm x; aeq x x ∈ Φxa.

Proof By induction on Φx ∼ Φxa.

Theorem 7 (Admissibility of Reflexivity, R Version) Assume Φx ∼ Φxa.
If Φx ` is tmM then Φxa ` aeqM M .

Proof By induction on the derivation D :: Φx ` is tmM .
Case:

D =
is tm x ∈ Φx

tmv
Φx ` is tm x

is tm x ∈ Φx by rule premise
is tm x; aeq x x ∈ Φxa by Lemma 6
Φxa ` aeq x x by rule aev

Case:

D =

D1

Φx ` is tmM1

D2

Φx ` is tmM2

tma
Φx ` is tm (appM1 M2)

Φx ` is tmM1 sub-derivation D1

Φxa ` aeqM1 M1 by IH
Φx ` is tmM2 sub-derivation D2
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Φxa ` aeqM2 M2 by IH
Φxa ` aeq (appM1 M2) (appM1 M2) by rule aea

Case:

D =

D′
Φx, is tm x ` is tmM

tml
Φx ` is tm (lamx.M)

Φx, is tm x ` is tmM sub-derivation D′
Φx ∼ Φxa by assumption
(Φx, is tm x) ∼ (Φxa, is tm x; aeq x x) by rule crelxa
Φxa, is tm x; aeq x x ` aeqM M by IH
Φxa ` aeq (lamx.M) (lamx.M) by rule ael.

3.1.2 Generalized Contexts, G Version

In this example, since Sxa includes all assumptions in Sx, Sxa will serve as the
schema of our generalized context.

Theorem 8 (Admissibility of Reflexivity, G Version) If Φxa ` is tm M
then Φxa ` aeqM M .

Proof By induction on the derivation D :: Φxa ` is tmM .

Case:

D =
is tm x ∈ Φxa

tmv
Φxa ` is tm x

is tm x ∈ Φxa by rule premise
Φxa contains block (is tm x; aeq x x) by definition of Sxa
Φxa ` aeq x x by rule aev

Case:

D =

D1

Φxa ` is tmM1

D2

Φxa ` is tmM2

tma
Φxa ` is tm (appM1 M2)

Φxa ` aeqM1 M1 by IH on D1

Φxa ` aeqM2 M2 by IH on D2

Φxa ` aeq (appM1 M2) (appM1 M2) by rule aea

Case:

D =

D′
Φxa, is tm x ` is tmM

tml
Φxa ` is tm (lamx.M)

Φxa, is tm x; aeq x x ` is tmM by d-wk on D′
Φxa, is tm x; aeq x x ` aeqM M by IH
Φxa ` aeq (lamx.M) (lamx.M) by rule ael
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Note that the application cases of Theorems 7 and 8 are the same except for the
context used for the well-formed term judgment. The lambda case here, on the
other hand, requires an additional weakening step. In particular, d-wk is used to
add an atom to form the declaration needed for schema Sxa. The context before
applying weakening does not satisfy this schema, and the induction hypothesis
cannot be applied until it does.

We end this subsection, stating the remaining properties needed to establish
that algorithmic equality is indeed a congruence, which we will prove in Sect. 3.3.
Since the proof involves only Φxa, the two approaches (R & G) collapse.

Lemma 9 (Context Inversion) If aeqM N ∈ Φxa then M = N .

Proof Induction on aeqM N ∈ Φxa.

Theorem 10 (Admissibility of Symmetry and Transitivity)

1. If Φxa ` aeqM N then Φxa ` aeq N M .
2. If Φxa ` aeqM L and Φxa ` aeq L N then Φxa ` aeqM N .

Proof Induction on the given derivation using Lemma 9 in the variable case.

3.2 Linear Context Extensions with Alternative Declarations

We extend our algorithmic equality case study to the polymorphic lambda-calculus,
highlighting the situation where judgments induce context schemas with alterna-
tives. We accordingly add the judgment for type equality, atp A B, noting that
the latter can be defined independently of term equality. In other words aeqM N
depends on atp A B, but not vice-versa. In addition to Sα and Sαx introduced in
Sect. 2, the following new context schemas are also used here:

Satp := is tp α; atp α α
Saeq := is tp α; atp α α + is tm x; aeq x x

The rules for the two equality judgments extend those given in Sect. 3.1. The
additional rules are stated below.

Algorithmic Equality for the Polymorphic Lambda-Calculus

. . .

Γ, is tp α; atp α α ` aeqM N

Γ ` aeq (tlamα.M) (tlamα.N)
aetl

Γ ` aeqM N Γ ` atp A B

Γ ` aeq (tappM A) (tapp N B)
aeta

atp α α ∈ Γ
Γ ` atp α α

atα

Γ, is tp α; atp α α ` atp A B

Γ ` atp (allα.A) (allα.B)
atal

Γ ` atp A1 B1 Γ ` atp A2 B2

Γ ` atp (arrA1A2) (arrB1B2)
ata

We show again the admissibility of reflexivity. We start with the G version this
time.
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3.2.1 G Version

We first state and prove the admissibility of reflexivity for types, which we then use
in the proof of admissibility of reflexivity for terms. The schema for the generalized
context for the former is Satp since the statement and proof do not depend on terms.
The schema for the latter is Saeq.

Theorem 11 (Admissibility of Reflexivity for Types, G Version)
If Φatp ` is tp A then Φatp ` atp A A.

The proof is exactly the same as the proof of Theorem 8, modulo replacing app
and lam with arr and all, respectively, and using the corresponding rules.

As we have already mentioned in Sect. 2, it is often the case that we need
to appeal to a lemma in a context that is different from the context where it
was proved. A concrete example is the above lemma, which is stated in context
Φatp, but is needed in the proof of the next theorem in the larger context Φaeq. To
illustrate, we state and prove the necessary promotion lemma here.

Lemma 12 (G-Promotion for Type Reflexivity)
If Φaeq ` is tp A then Φaeq ` atp A A.

Proof
Φaeq ` is tp A by assumption
Φatp ` is tp A by c-str
Φatp ` atp A A by Theorem 11
Φaeq ` atp A A by c-wk

In general, proofs of promotion lemmas require applications of c-str and c-wk
which perform a uniform modification to an entire context. In contrast, the ab-
straction cases in proofs such as the lambda case of Theorem 8 require d-wk to add
atoms to a single declaration. The particular function used here is rm∗is tm x;aeq x x,
which drops an entire alternative from Φaeq to obtain Φatp and leaves the other
alternative unchanged. The combination of c-str and c-wk in proofs of promotion
lemmas is related to subsumption (see Harper and Licata, 2007).

Note that we could omit Theorem 11 and instead prove Lemma 12 directly,
removing the need for a promotion lemma. For modularity purposes, we adopt
the approach that we state each theorem in the smallest possible context in which
it is valid. This particular lemma, for example, will be needed in an even bigger
context than Φaeq in Sect. 3.3. In general, we do not want the choice of context in
the statement of a lemma to depend on later theorems whose proofs require this
lemma. Instead, we choose the smallest context and state and prove promotion
lemmas where needed.

Theorem 13 (Admissibility of Reflexivity for Terms, G Version)
If Φaeq ` is tmM then Φaeq ` aeqM M .

Proof Again, the proof is by induction on the given well-formed term derivation,
in this case D :: Φaeq ` is tmM , and is similar to the proof of Theorem 8. We show
the case for application of terms to types.
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Case:

D =

D1

Φaeq ` is tmM
D2

Φaeq ` is tp A

Φaeq ` is tm (tappM A)

Φaeq ` aeqM M by IH on D1

Φaeq ` atp A A by Lemma 12 on conclusion of D2

Φaeq ` aeq (tappM A) (tappM A) by rule aeta

3.2.2 R Version

We introduce four context relations Φα ∼ Φatp, Φαx ∼ Φaeq, Φαx ∼ Φα, and
Φaeq ∼ Φatp. We define the first two as follows (where we omit the inference rules
for the base cases).

Context Relations

Φα ∼ Φatp
Φα, is tp α ∼ Φatp, is tp α; atp α α

Φαx ∼ Φaeq
Φαx, is tm x ∼ Φaeq, is tm x; aeq x x

Φαx ∼ Φaeq
Φαx, is tp α ∼ Φaeq, is tp α; atp α α

Note that Φαx ∼ Φaeq is the extension of Φx ∼ Φxa with one additional case for
equality for types.4 We also omit the (obvious) inference rules defining Φαx ∼ Φα
and Φaeq ∼ Φatp, and instead note that they correspond to the graphs of the
following two functions, respectively, which simply remove one of the two schema
alternatives:

rm∗is tm x = λd.case d of is tp α 7→ is tp α | is tm x 7→ ·
rm∗is tm x;aeq x x = λd.case d of is tp α; atp α α 7→ is tp α; atp α α | is tm x; aeq x x 7→ ·

We start with the theorem for types again, whose proof is similar to the R
version of the previous example (Theorem 7) and is therefore omitted.

Theorem 14 (Admissibility of Reflexivity for Types, R Version)
Let Φα ∼ Φatp. If Φα ` is tp A then Φatp ` atp A A.

Lemma 15 (Relational Strengthening) Let Φαx ∼ Φaeq. Then there exist con-
texts Φα and Φatp such that Φαx ∼ Φα, Φaeq ∼ Φatp, and Φα ∼ Φatp.

Proof By induction on the given derivation of Φαx ∼ Φaeq.

We again need a promotion lemma, this time involving the context relation.

Lemma 16 (R-Promotion for Type Reflexivity)
Let Φαx ∼ Φaeq. If Φαx ` is tp A then Φaeq ` atp A A.

4 Again, we remark on our policy to use the smallest contexts possible for modularity reasons.
Otherwise, we could have omitted the Φα ∼ Φatp relation, and stated the next theorem using
Φαx ∼ Φaeq .
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Proof
Φαx ` is tp A by assumption
Φα ` is tp A by c-str
Φαx ∼ Φaeq by assumption
Φα ∼ Φatp by relational strengthening (Lemma 15)
Φatp ` atp A A by Theorem 14
Φaeq ` atp A A by c-wk

Theorem 17 (Admissibility of Reflexivity for Terms, R Version)
Let Φαx ∼ Φaeq. If Φαx ` is tmM then Φaeq ` aeqM M .

Proof Again, the proof is by induction on the given derivation. Most cases are sim-
ilar to the analogous cases in the proof of the R version for the monomorphic case
(Theorem 7) and the G version for types in the polymorphic case (Theorem 11).
We show again the case for application of terms to types to compare with the G
version.

Case:

D =

D1

Φαx ` is tmM
D2

Φαx ` is tp A

Φαx ` is tm (tappM A)

Φαx ∼ Φaeq by assumption
Φαx ` is tmM sub-derivation D1

Φaeq ` aeqM M by IH
Φαx ` is tp A sub-derivation D2

Φaeq ` is tp A by Lemma 16
Φaeq ` aeq (tappM A) (tappM A) by rule aeta

3.3 Non-Linear Context Extensions

We return to the untyped lambda-calculus of Sect. 3.1 and establish the equiva-
lence between the algorithmic definition of equality defined previously, and declara-
tive equality Φxd ` deqM N , which includes reflexivity, symmetry and transitivity
in addition to the congruence rules.5

5 We acknowledge that this definition of declarative equality has a degree of redundancy: the
assumption deq x x in rule del is not needed, since rule der plays the variable role. However,
it yields an interesting generalized context schema, which exhibits issues that would otherwise
require more complex case studies.
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Declarative Equality

deq x x ∈ Γ
Γ ` deq x x

dev
Γ, is tm x; deq x x ` deqM N

Γ ` deq (lamx.M) (lamx.N)
del

Γ ` deqM1 N1 Γ ` deqM2 N2

Γ ` deq (appM1 M2) (app N1 N2)
dea

Γ ` deqM M
der

Γ ` deqM L Γ ` deq L N

Γ ` deqM N
det

Γ ` deq N M

Γ ` deqM N
des

Context Schema Sxd ::= is tm x; deq x x

We now investigate the interesting part of the equivalence, namely that when
we have a proof of (deq M N) then we also have a proof of (aeq M N). We show
the G version first.

3.3.1 G Version

Here, a generalized context must combine the atoms of Φxa and Φxd into one
declaration:

Generalized Context Schema Sda := is tm x; deq x x; aeq x x

The following lemma promotes Theorems 8 and 10 to the “bigger” generalized
context.

Lemma 18 (G-Promotion for Reflexivity, Symmetry, and Transitivity)

1. If Φda ` is tmM , then Φda ` aeqM M .
2. If Φda ` aeqM N , then Φda ` aeq N M .
3. If Φda ` aeqM L and Φda ` aeq L N , then Φda ` aeqM N .

Proof Similar to the proof of Theorem 12 where the application of c-str transforms
a context Φda to Φxa by considering each block of the form (is tm x; deq x x; aeq x x)
and removing (deq x x).

Theorem 19 (Completeness, G Version)
If Φda ` deqM N then Φda ` aeqM N .

Proof By induction on the derivation D :: Φda ` deq M N . We only show some
cases.

Case:

D = der
Φda ` deqM M

Φda ` is tmM by (implicit) assumption
Φda ` aeqM M by Lemma 18 (1)
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Case:

D =

D1

Φda ` deqM L
D2

Φda ` deq L N
det

Φda ` deqM N

Φda ` aeqM L and Φda ` aeq L N by IH on D1 and D2

Φda ` aeqM N by Lemma 18 (3)

Case:

D =

D′
Φda, is tm x; deq x x ` deqM N

del
Φda ` deq (lamx.M) (lamx.N)

Φda, is tm x; deq x x; aeq x x ` deqM N by d-wk on D′
Φda, is tm x; deq x x; aeq x x ` aeqM N by IH
Φda, is tm x; aeq x x ` aeqM N by d-str
Φda ` aeq (lamx.M) (lamx.N) by rule ael

The symmetry case is not shown, but also requires promotion, via Lemma 18 (2).
Note that the del case requires both d-str and d-wk. In contrast, the binder cases
for the G versions of the previous examples (Theorems 8, 11, and 13) required
only d-wk. The need for both arises from the fact that the generalized context is
a non-linear extension of two contexts, i.e., it is not the same as either one of the
two contexts it combines.

3.3.2 R Version

The context relation required here is Φxa ∼ Φxd:

Context Relation

Φxa ∼ Φxd
Φxa, is tm x; aeq x x ∼ Φxd, is tm x; deq x x

crelad

As in Sect. 3.2, we need the appropriate promotion lemma, which again requires
a relation strengthening lemma:

Lemma 20 (Relational Strengthening) Let Φxa ∼ Φxd. Then there exists a
context Φx such that Φx ∼ Φxa.

Lemma 21 (R-Promotion for Reflexivity) Let Φxa ∼ Φxd. If Φxd ` is tmM
then Φxa ` aeqM M .

The proofs are analogous to Lemmas 15 and 16, with the proof of Lemma 21
requiring Lemma 20.

Theorem 22 (Completeness, R Version) Let Φxa ∼ Φxd. If Φxd ` deq M N
then Φxa ` aeqM N .
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Proof By induction on the derivation D :: Φxd ` deqM N .

Case:

D = der
Φxd ` deqM M

Φxd ` is tmM by (implicit) assumption
Φxa ` aeqM M by Theorem 21

Case:

D =

D1

Φxd ` deqM L
D2

Φxd ` deq L N
det

Φxd ` deqM N

Φxa ` aeqM L and Φxa ` aeq L N by IH on D1 and D2

Φxa ` aeqM N by Theorem 10 (2)

Case:

D =

D′
Φxd, is tm x; deq x x ` deqM N

del
Φxd ` deq (lamx.M) (lamx.N)

Φxa ∼ Φxd by assumption
Φxa, is tm x; aeq x x ∼ Φxd, is tm x; deq x x by rule crelad
Φxa, is tm x; aeq x x ` aeqM N by IH on D′
Φxa ` aeq (lamx.M) (lamx.N) by rule ael

Only one promotion lemma is required in this proof, for the reflexivity case (which
requires one occurrence each of c-str and c-wk), and no strengthening or weakening
is needed in the lambda case (thus no occurrences of d-str/wk in this proof). In
contrast, the proof of the G version of this theorem (Theorem 19) uses 3 occur-
rences of each of c-str and c-wk via promotion Lemma 18 and one occurrence each
of d-str and d-wk in the lambda case.

3.4 Order

A consequence of viewing contexts as sequences is that order comes into play, and
therefore the need to consider exchanging the elements of a context. This happens
when, for example, a judgment singles out a particular occurrence of an assumption
in head position. We exemplify this with a “parallel” substitution property for
algorithmic equality, stated below. The proof also involves some slightly more
sophisticated reasoning about names in the variable case than previously observed.
Furthermore, note that this substitution property does not “come for free” in a
HOAS encoding in the way, for example, that type substitution (Lemma 25) does.

Theorem 23 (Pairwise Substitution) If Φxa, is tm x; aeq x x ` aeq M1 M2

and Φxa ` aeq N1 N2, then Φxa ` aeq ([N1/x]M1) ([N2/x]M2).
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Proof By induction on the derivation D :: Φxa, is tm x; aeq x x ` aeq M1 M2 and
inversion on Φxa ` aeq N1 N2. We show two cases.
Case:

D =
aeq y y ∈ Φxa, is tm x; aeq x x

aev
Φxa, is tm x; aeq x x ` aeq y y

We need to establish Φxa ` aeq ([N1/x]y) ([N2/x]y).
Sub-case: y = x: Applying the substitution to the above judgment, we need to
show Φxa ` aeq N1 N2, which we have.
Sub-case: aeq y y ∈ Φxa, for y 6= x. Applying the substitution in this case gives us
Φxa ` aeq y y, which we have by assumption.
Case:

D =

D′
Φxa, is tm x; aeq x x, is tm y; aeq y y ` aeqM1 M2

del
Φxa, is tm x; aeq x x ` aeq (lam y.M1) (lam y.M2)

Φxa, is tm y; aeq y y, is tm x; aeq x x ` aeqM1 M2 by exc on D′
Φxa ` aeq N1 N2, by assumption
Φxa, is tm y; aeq y y ` aeq N1 N2 by d-wk
Φxa, is tm y; aeq y y ` aeq ([N1/x]M1) ([N2/x]M2) by IH
Φxa ` aeq [N1/x](lam y.M1) [N2/x](lam y.M2) by rule ael and possible renaming.

We remark that there are more general ways to formulate properties such as
Theorem 23 that do not require (on paper) exchange; for example,

If Φxa, is tm x; aeq x x, Φ′xa ` aeq M1 M2 and Φxa ` aeq N1 N2, then
Φxa, Φ

′
xa ` aeq ([N1/x]M1) ([N2/x]M2).

The proof of the latter statement has a similar structure to the previous one,
except that it uses d-wk in the first variable sub-case, while the binding case does
not employ any structural property to apply the induction hypothesis, by taking
(Φ′′xa, is tm y; aeq y y) as Φ′xa. While this works well in a paper and pencil style,
it is much harder to mechanize, since it brings in reasoning about appending and
splitting lists that are foreign to the matter at hand.

We conclude by noting that there are examples where exchange cannot be ap-
plied, since the dependency proviso is not satisfied. Cases in point are substitution
lemmas for dependent types. Here, other encoding techniques must be used, as
explored in Crary (2009).

3.5 Uniqueness

Uniqueness of context variables plays an unsurprisingly important role in prov-
ing type uniqueness, i.e. every lambda-term has a unique type. For the sake of
this discussion it is enough to consider the monomorphic case, where abstractions
include type annotations on bound variables, and types consist only of a ground
type and a function arrow.

Terms M ::= y | lamxA.M | appM1 M2

Types A ::= i | arrAB
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The typing rules are the obvious subset of the ones presented in Sect. 2, yielding:

Context Schema St := is tm x;x:A

The statement of the theorem requires only a single context and thus there is no
distinction to be made between the R and G versions.

Theorem 24 (Type Uniqueness) If Φt `M : A and Φt `M : B then A = B.

Proof The proof is by induction on the first derivation and inversion on the second.
We show only the variable case where uniqueness plays a central role.
Case:

D =
x:A ∈ Φt

of v
Φt ` x : A

We know that x:A ∈ Φt by rule of v. By definition, Φt contains block (is tm x;x:A).
Moreover, we know Φt ` x : B by assumption. By inversion using rule of v, we
know that x:B ∈ Φt, which means that Φt contains block (is tm x;x:B). Since all
assumptions about x occur uniquely, these must be the same block. Thus A must
be identical to B.

3.6 Substitution

In this section we address the interaction of the substitution property with con-
text reasoning. It is well known and rightly advertised that substitution lemmas
come “for free” in HOAS encodings, since substitutivity is just a by-product of
hypothetical-parametric judgments. We refer to Pfenning (2001) for more details.
A classic example is the proof of type preservation for a functional programming
language, where a lemma stating that substitution preserves typing is required
in every case that involves a β-reduction. However, this example theorem is un-
duly restrictive since functional programs are closed expressions; in fact, the proof
proceeds by induction on (closed) evaluation and inversion on typing, hence only
addressing contexts in a marginal way. We thus discuss a similar proof for an
evaluation relation that “goes under a lambda” and we choose parallel reduction,
as it is a standard relation also used in other important case studies such as the
Church-Rosser theorem. The context schema and relevant rules are below.

Parallel Reduction

x; x ∈ Γ
prv

Γ ` x; x

Γ, is tm x;x; x `M ; N
prl

Γ ` lamx.M ; lamx.N

Γ, is tm x;x; x `M ;M ′ Γ ` N ; N ′
prβ

Γ ` (app (lamx.M) N) ; [N ′/x]M ′

Γ `M ;M ′ Γ ` N ; N ′
pra

Γ ` (appM N) ; (appM ′ N ′)

Context Schema Sr := is tm x;x; x

The relevant substitution lemma is:
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Lemma 25 If Φt, is tm x;x:A `M : B and Φt ` N : A, then Φt ` [N/x]M : B.

Proof While this is usually proved by induction on the first derivation, we show
it as a corollary of the substitution principles.
Φt, is tm x;x:A `M : B by assumption
Φt, is tm N ;N :A ` [N/x]M : B by parametric substitution
Φt, is tm N ` [N/x]M : B by hypothetical substitution
Φt ` is tm N by (implicit) assumption
Φt ` [N/x]M : B by hypothetical substitution

We show only the R version of type preservation. For the G version, the context
schema is obtained by combining the schemas Sr and St similarly to how Sda was
defined to combine Sxa and Sxd in Sect. 3.3.1. We leave it to the reader to complete
such a proof. For the R version, we introduce the customary context relation, which
in this case is:

Φr ∼ Φt
Φr, is tm x;x; x ∼ Φt, is tm x;x:A

crelrt

Theorem 26 (Type Preservation for Parallel Reduction) Assume Φr ∼ Φt.
If Φr `M ; N and Φt `M : A, then Φt ` N : A.

Proof The proof is by induction on the derivation D :: Φr `M ; N and inversion
on Φt `M : A. We show only two cases:

Case:

D =
x; x ∈ Φr

prv
Φr ` x; x

We know that in this case M = x = N . Then the result follows trivially.

Case:

D =

D1

Φr, is tm x;x; x `M ;M ′
D2

Φr ` N ; N ′

prβ
Φr ` (app (lamx.M) N) ; [N ′/x]M ′

Φt ` (app (lamx.M) N) : A by assumption
Φt ` (lamx.M) : arrBA and Φt ` N : B by inversion on rule of a
Φt ` N ′ : B by IH on D2 and the latter
Φt, is tm x;x:B `M : A by inversion on rule of l
Φr ∼ Φt by assumption
(Φr, is tm x;x; x) ∼ (Φt, is tm x;x:B) by rule crelrt
Φt, is tm x;x:B `M ′ : A by IH
Φt ` [N ′/x]M ′ : A by Lemma 25 (substitution)

If we were to prove a similar result for the polymorphic λ-calculus, we would
need another substitution lemma, namely:

Lemma 27 If Φαt, is tp α ` M : B and Φαt ` is tp A, then
Φαt ` [A/α]M : [A/α]B.

Again, this follows immediately from parametric and hypothetical substitution,
whereas a direct inductive proof may not be completely trivial to mechanize.
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4 The ORBI Specification Language

ORBI (Open challenge problem Repository for systems supporting reasoning with
BInders) is an open repository for sharing benchmark problems based on the nota-
tion we have developed. ORBI is designed to be a human-readable, easily machine-
parsable, uniform, yet flexible and extensible language for writing specifications
of formal systems including grammar, inference rules, contexts and theorems. The
language directly upholds HOAS representations and is oriented to support the
mechanization of the benchmark problems in Twelf, Beluga, Abella, and Hybrid,
without hopefully precluding other existing or future HOAS systems. At the same
time, we hope it also is amenable to translations to systems using other represen-
tation techniques such as nominal systems.

The desire for ORBI to cater to both type and proof theoretic frameworks
requires an almost impossible balancing act between the two views. While all the
systems we plan to target are essentially two-level, they differ substantially, as
we will see in much more detail in the companion paper (Felty et al, 2014). For
example, contexts are first-class and part of the specification language in Beluga;
in Twelf, schemas for contexts are part of the specification language, which is an
extension of LF, but users cannot explicitly quantify over contexts and manipulate
them as first-class objects; in Abella and Hybrid, contexts are (pre)defined using
inductive definitions on the reasoning level.

We structure the language in two parts:

1. the problem description, which includes the grammar of the object language
syntax, inference rules, context schemas and context relations;

2. the logic language, which includes syntax for expressing theorems and directives
to ORBI2X6 tools.

We consider the notation that we present here as a first attempt at defining
ORBI (Version 0.1), where the goal is to cover the benchmarks considered in this
paper. As new benchmarks are added, we are well aware that we will need to
improve the syntax and increase the expressive power—we discuss limitations and
some possible extensions in Sect. 6.

4.1 Problem Description

ORBI’s language for defining the grammar of an object language together with in-
ference rules is based on the logical framework LF; pragmatically, we have adopted
the concrete syntax of LF specifications in Beluga which is almost identical to
Twelf’s. The advantage is that specifications can be directly type checked by Bel-
uga thereby eliminating many syntactically correct but meaningless expressions.

Object languages are written according to the EBNF (Extended Backus-Naur
Form) grammar in Fig. 2, which uses certain conventions: {a} means repeat a
production zero or more times, and comments in the grammar are enclosed between
(* and *). The token id refers to identifiers starting with a lower or upper case
letter. These grammar rules are basically the standard ones used both in Twelf

6 Following TPTP’s nomenclature (Sutcliffe, 2009), we call “ORBI2X” any tool taking an
ORBI specification as input; for example, the translator for Hybrid mentioned earlier translates
syntax, inference rules, and context definitions of ORBI into input to the Coq version of Hybrid,
and is designed so that it can be adapted fairly directly to output Abella scripts.
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sig ::= {decl (* declaration *)
| s_decl} (* schema declaration *)

decl ::= id ":" tp "." (* constant declaration *)
| id ":" kind "." (* type declaration *)

op_arrow ::= "->" | "<-" (* A <- B same as B -> A *)

kind ::= type
| tp op_arrow kind (* A -> K *)
| "{" id ":" tp "}" kind (* Pi x:A.K *)

tp ::= id {term} (* a M1 ... M2 *)
| tp op_arrow tp
| "{" id ":" tp "}" tp (* Pi x:A.B *)

term ::= id (* constants, variables *)
| "\" id "." term (* lambda x. M *)
| term term (* M N *)

s_decl ::= schema s_id ":" alt_blk "."

s_id ::= id

alt_blk ::= blk {"+" blk}

blk ::= block id ":" tp {";" id ":" tp}

Fig. 2 ORBI Grammar for Syntax, Judgments, Inference Rules, and Context Schemas

and Beluga and we do not discuss them in detail here. We only note that while
the presented grammar permits general dependent types up to level n, ORBI
specifications will only use level 0 and level 1. Intuitively, specifications at level
0 define the syntax of a given object language, while specifications at level 1
(i.e. type families which are indexed by terms of level 0) describe the judgments
and rules for a given OL. We exemplify the grammar relative to the example
of algorithmic vs. declarative equality used in Subsections 3.1, 3.3, and 3.4. The
full ORBI specification is given in Appendix B, and all examples described in this
section are taken from that specification. For the remaining example specifications,
we refer the reader to the the companion paper (Felty et al, 2014) or to https:

//github.com/pientka/ORBI.

To assist compact translations to systems that do not include the LF lan-
guage, we also support directives written as comments of a special form, i.e., they
are prefixed by % and ignored by the LF type checker. For example, we provide
directives that allow us to distinguish between the syntax definition of an object
language and the definition of its judgments and inference rules. (See Appendix B.)
Directives, including their grammar, are detailed in Sect. 4.2.

Syntax An ORBI file starts in the Syntax section with the declaration of the
constants used to encode the syntax of the OL in question, here untyped lambda-
terms, which are introduced with the declaration tm:type. This declaration along
with those of the constructors app and lam in the Syntax section fully specify
the syntax of OL terms. We represent binders in the OL using binders in the
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HOAS meta-language. Hence the constructor lam takes in a function of type
tm -> tm. For example, the OL term (lamx. lam y. app x y) is represented as
lam (\x. lam (\y. app x y)), where “\” is the binder of the metalanguage.
Bound variables found in the object language are not explicitly represented in
the meta-language.

Judgments and Rules These are introduced as LF type families (predicates) in
the Judgments section followed by object-level inference rules for these judgments
in the Rules section.7 In our running example, we have two judgments, aeq and
deq of type tm -> tm -> type. Consider first the inference rule for algorithmic
equality for application, where the ORBI text is a straightforward encoding of the
rule:

ae_a: aeq M1 N1 -> aeq M2 N2
-> aeq (app M1 M2) (app N1 N2).

aeqM1 N1 aeqM2 N2

aeq (appM1 M2) (app N1 N2)
aea

Uppercase letters such as M1 denote schematic variables, which are implicitly quan-
tified at the outermost level, namely {M1:tm}, as commonly done for readability
purposes in Twelf and Beluga.

The binder case is more interesting:

ae_l: ({x:tm} aeq x x -> aeq (M x) (N x))
-> aeq (lam (\x. M x)) (lam (\x. N x)).

is tm x
x

aeq x x aev

...
aeqM N

aeq (lamx.M) (lamx.N)
aex,aevl

We view the is tm x assumption as the parametric assumption x:tm, while the
hypothesis aeq x x (and its scoping) is encoded within the embedded implication
aeq x x → aeq (M x) (N x) in the current (informal) signature augmented with
the dynamic declaration for x.8 Recall that the “variable” case of an implicit-
context presentation, namely aev, is folded inside the binder case.

Schemas A schema declaration s_decl is introduced using the keyword schema.
A blk consists of one or more declarations and alt_blk describes alternating
schemas. For example, schema Sxa in Sect. 3.1.2 appears in the Schemas section
of Appendix B as:

schema xaG: block (x:tm; u:aeq x x).

As another example, in this case illustrating a schema sporting alternatives, we
encode the schema Saeq from polymorphic equality as:

schema aeqG: block (a:tp; u:atp a a) + block (x:tm; v:aeq x x).

While we can type-check the schema definitions using an extension of the LF
type checker (as implemented in Beluga), we do not verify that the given schema
definition is meaningful with respect to the specification of the syntax and inference
rules; in other words, we do not perform “world checking” in Twelf lingo.

7 There are several excellent tutorials (Pfenning, 2001; Harper and Licata, 2007) on how to
encode OLs in LF, and hence we keep it brief.

8 As is well known, parametric assumptions and embedded implication are unified in the
type-theoretic view.
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Definitions So far we have considered the specification language for encoding for-
mal systems. ORBI also supports declaring inductive definitions for specifying
context relations and theorems. We start with the grammar for inductive defini-
tion (Fig. 3). An inductive predicate is given a r_kind by the production def_dec.
Although we plan to provide syntax for specifying more general inductive defini-
tions, in this version of ORBI we only define context relations inductively, that is
n-ary predicates between contexts of a given schema. Hence the base predicate is
of the form id {ctx} relating different contexts.

def_dec ::= "inductive" id ":" r_kind "=" def_body "."

r_kind ::= "prop"
| "{" id ":" s_id "}" r_kind

def_body ::= "|" id ":" def_prp {def_body}

def_prp ::= id {ctx}
| def_prp "->" def_prp

ctx ::= nil | id | ctx "," blk

Fig. 3 ORBI Grammar for Inductive Definitions describing Context Relations

For example, the relation Φx ∼ Φxa is encoded in the Definitions section of
Appendix B as:

inductive xaR : {G:xG} {H:xaG} prop =

| xa_nil: xaR nil nil

| xa_cons: xaR G H -> xaR (G, block x:tm) (H, block x:tm; u:aeq x x).

This kind of relation can be translated fairly directly to inductive n-ary predicates
in systems supporting the proof-theoretic view. In the type-theoretic framework
underlying Beluga, inductive predicates relating contexts correspond to recursive
data types indexed by contexts; this also allows for a straightforward translation.
Twelf’s type theoretic framework, however, is not rich enough to support inductive
definitions.

4.2 Language for Theorems and Directives

While the elements of an ORBI specification detailed in the previous subsection
were relatively easy to define in a manner that is well understood by all the differ-
ent systems we are targeting, we illustrate in this subsection those elements that
are harder to describe uniformly due to the different treatment and meaning of
contexts in the different systems.

Theorems We list the grammar for theorems in Fig. 4. Our reasoning language in-
cludes a category prp that specifies the logical formulas we support. The base pred-
icates include false,true, term equality, atomic predicates of the form id {ctx},
which are used to express context relations, and predicates of the form [ctx |- J],
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which represent judgments of an object language within a given context. Connec-
tives and quantifiers include implication, conjunction, disjunction, universal and
existential quantification over terms, and universal quantification over context vari-
ables.

thm ::= "theorem" id ":" prp "."

prp ::= id {ctx} (* Context relation *)
| "[" ctx "|-" id {term} "]" (* Judgment in a context *)
| term "=" term (* Term equality *)
| false (* Falsehood *)
| true (* Truth *)
| prp "&" prp (* Conjunction *)
| prp "||" prp (* Disjunction *)
| prp "->" prp (* Implication *)
| quantif prp (* Quantification *)

quantif ::= "{" id ":" s_id "}" (* universal over contexts *)
| "{" id ":" tp "}" (* universal over terms *)
| "<" id ":" tp ">" (* existential over terms *)

Fig. 4 ORBI Grammar for Theorems

The specification of the G and R versions of the completeness theorem is as
follows:

theorem ceqG: {G:daG} [G |- deq M N] -> [G |- aeq M N].

theorem ceqR: {G:xdG}{H:xaG} daR G H -> [G |- deq M N] -> [H |- aeq M N].

This and all the others theorems pertaining to the development of the meta-
theory of algorithmic and declarative equality are listed in the Theorems section
of Appendix B. The theorems stated are a straightforward encoding of the main
theorems in Subsections 3.1, 3.3, and 3.4.

As mentioned, we do not type-check theorems; in particular, we do not define
the meaning of [ctx |- J], since several interpretations are possible. In Beluga,
every judgment J must be meaningful within the given context ctx; in particular,
terms occurring in the judgment J must be meaningful in ctx. As a consequence,
both parametric and hypothetical assumptions relevant for establishing the proof
of J must be contained in ctx. Instead of the local context view adopted in Beluga,
Twelf has one global ambient context containing all relevant parametric and hy-
pothetical assumptions. Systems based on proof-theory such as Hybrid and Abella
distinguish between assumptions denoting eigenvariables (i.e. parametric assump-
tions), which live in a global ambient context and proof assumptions (i.e. hypthet-
ical assumptions), which live in the context ctx. While users of different systems
understand how to interpret [ctx |- J], reconciling these different perspectives
in ORBI is beyond the scope of this paper. Thus for the time being, we view the-
orem statements in ORBI as a kind of comment, where it is up to the user of a
particular system to determine how to translate them.

Directives As we have mentioned before, directives are comments that help the
ORBI2X tools to generate target representations of the ORBI specifications. The
idea is reminiscent of what Ott (Sewell et al, 2010) does to customize certain
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declarations, e.g. the representation of variables, to the different programming
languages/proof assistants it supports. The grammar for directives is listed in
Fig. 5.

dir ::= ’%’ sy_id what decl {dest} ’.’
| ’%%’ sepr ’.’

sy_id ::= hy | ab | bel | tw

sy_set ::= ’[’ sy_id {’,’ sy_id} ’]’

what ::= wf | explicit | implicit

dest ::= ’in’ ctx | ’in’ s_id | ’in’ id

sepr ::= Syntax | Judgments | Rules | Schemas | Definitions
| Directives | Theorems

Fig. 5 ORBI Grammar for Directives

Most of the directives that we consider in this version of ORBI are dedicated
to help the translations into proof-theoretical systems, although we include also
some to facilitate the translation of theorems to Beluga. The set of directives is not
intended to be complete and the meaning of directives is system-specific. Beyond
directives (sepr) meant to structure ORBI specs, the instructions wf and explicit

are concerned with the asymmetry in the proof-theoretic view between declarations
that give typing information, e.g. tm:type, and those expressing judgments, e.g.
aeq:tm -> tm -> type. In Abella and Hybrid, the former may need to be reified
in a judgment, in order to show that judgments preserve the well-formedness of
their constituents, as well as to provide induction on the structure of terms; yet,
in order to keep proofs compact and modular, we want to minimize this reification
and only include them where necessary.

The first line in the Directives section of Appendix B states the directive
“% [hy,ab] wf tm” that refers to the first line of the Syntax section where tm is
introduced, and indicates that we need a predicate (e.g., is_tm) to express well-
formedness of terms of type tm. Formulas expressing the definition of this predicate
are automatically generated from the declarations of the constructors app and lam

with their types.
The keyword explicit indicates when such well-formedness predicates should

be included in the translation of the declarations in the Rules section. For example,
the following formulas both represent possible translations of the ae_l rule to
Abella and Hybrid:

∀M,N. (∀x. is tm x→ aeq x x→ aeqMx Nx)→ aeq (lam M) (lam N)
∀M,N. (∀x. aeq x x→ aeqMx Nx)→ aeq (lam M) (lam N)

where the typing information is explicit in the first and implicit in the second.
By default, we choose the latter, that is well-formed judgments are assumed to be
implicit, and require a directive if the former is desired. In fact, in the previous
section, we assumed that whenever a judgment is provable, the terms in it are
well-formed, e.g., if aeq M N is provable, then so are is_tm M and is_tm N. Such
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a lemma is indeed provable in Abella and Hybrid from the implicit translation
of the rules for aeq. Proving a similar lemma for the deq judgment, on the other
hand, requires some strategically placed explicit well-formedness information. In
particular, the two directives

% [hy,ab] explicit x in de_l.

% [hy,ab] explicit M in de_r.

require the clauses de_l and de_r to be translated to the following formulas:

∀M,N. (∀x. is tm x→ deq x x→ deqMx Nx)→ deq (lam M) (lam N)
∀M. is tm M → aeqM M

The case for schemas is analogous: in the proof-theoretic view, schemas are
translated to unary inductive predicates. Again, typing information is left implicit
in the translation unless a directive is included. For example, the xaG schema
with no associated directive will be translated to a definition that expresses that
whenever context G has schema xaG, then so does G,aeq x x. For the daG schema,
with directive

% [hy,ab] explicit x in daG.

the translation will express that whenever G has schema daG, then so does
G, (is_tm x;deq x x;aeq x x).

Similarly, directives in context relations, such as:

% [hy,ab] explicit x in G in xaR.

also state which well-formedness annotations to make explicit in the translated
version. In this case, when translating the definition of xaR in the Definitions

section, they are to be kept in G, but skipped in H.
Keeping in mind that we consider the notion of directive open to cover other

benchmarks and different systems, we offer some speculation about directives that
we may need to translate theorems for the examples and systems that we are
considering. (Speculative directives are omitted from Appendix B). For example,
theorems reflG is proven by induction over M. As a consequence, M must be explicit.

% [hy,ab,bel] explicit M in H in reflG.

Hybrid and Abella interpret the directive by adding an explicit assumption
[H ` is tm M ], as illustrated by the result of the translation:

∀H,M. [H ` is tm M ]→ [H ` aeqM M ]

In Beluga, the directive is interpreted as

{H:xaG} {M:[H.tm]} [H.aeq (M ..) (M ..)].

where M will have type tm in the context H. Moreover, since the term M is used in
the judgment aeq within the context H, we associate M with an identity substitution
(denoted by ..). In short, the directive allows us to lift the type specified in ORBI
to a contextual type which is meaningful in Beluga. In fact, Beluga always needs
additional information on how to interpret terms—are they closed or can they
depend on a given context? For translating symG for example, we use the following
directive to indicate the dependence on the context:

% [bel] implicit M in H in symG.

% [bel] implicit N in H in symG.
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4.3 Guidelines

In addition, we introduce a set of guidelines for ORBI specification writers, with
the goal of helping translators generate output that is more likely to be accepted
by a specific system. ORBI 0.1 includes four such guidelines, which are motivated
by the desire not to put too many constraints in the grammar rules. First, as we
have seen in our examples, we use as a convention that free variables which denote
schematic variables in rules are written using upper case identifiers; we use lower
case identifiers for eigenvariables in rules. Second, while the grammar does not
restrict what types we can quantify over, the intention is that we quantify over
types of level-0, i.e. objects of the syntax level, only. Third, in order to more
easily accommodate systems without dependent types, Pi should not be used
when writing non-dependent types. An arrow should be used instead. (In LF,
for example, A -> B is an abbreviation for Pi x:A.B for the case when x does not
occur in B. Following this guideline means favoring this abbreviation whenever it
applies.) Fourth, when writing a context (grammar ctx), distinct variable names
should be used in different blocks.

5 Related Work

Our approach to structuring contexts of assumptions takes its inspiration from
Martin-Löf’s theory of judgments (Martin-Löf, 1996), especially in the way it has
been realized in Edinburgh LF (Harper et al, 1993). However, our formulation owes
more to Beluga’s type theory, where contexts are first-class citizens, than to the
notion of regular world in Twelf. The latter was introduced in Schürmann (2000),
and used in Schürmann and Pfenning (2003) for the meta-theory of Twelf and
in Momigliano (2000) for different purposes. It was further explicated in Harper
and Licata (2007)’s review of Twelf’s methodology, but its treatment remained
unsatisfactory since the notion of worlds is extra-logical. Recent work (Wang and
Nadathur, 2013) on a logical rendering of Twelf’s totality checking has so far been
limited to closed objects.

The creation and sharing of a library of benchmarks has proven to be very
beneficial to the field it represents. The brightest example is TPTP (Sutcliffe,
2009), whose influence on the development, testing and evaluation of automated
theorem provers cannot be underestimated. Clearly our ambitions are much more
limited. We have also taken some inspiration from its higher-order extension THF0
(Benzmüller et al, 2008), in particular in its construction in stages.

The success of TPTP has spurned other benchmark suites in related subjects,
see for example SATLIB (Hoos and Stützle, 2000); however, the only one concerned
with induction is the Induction Challenge Problems (http://www.cs.nott.ac.
uk/~lad/research/challenges), a collection of examples geared to the automa-
tion of inductive proof. The benchmarks are taken from arithmetic, puzzles, func-
tional programming specifications etc. and as such have little connection with our
endeavor. On the other hand both Twelf’s wiki (http://twelf.org/wiki/Case_
studies), Abella’s library (http://abella-prover.org/examples) and Beluga’s
distribution contain a set of context-intensive examples, some of which coincide
with the ones presented here. As such they are prime candidates to be included in
ORBI.
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Other projects have put forward LF as a common ground: Logosphere’s goal
(http://www.logosphere.org) was the design of a representation language for log-
ical formalisms, individual theories, and proofs, with an interface to other theorem
proving systems that were somewhat connected, but the project never material-
ized. SASyLF (Aldrich et al, 2008) originated as a tool to teach programming
language theory: the user specifies the syntax, judgments, theorems and proofs
thereof (albeit limited to closed objects) in a paper-and-pencil HOAS-friendly way
and the system converts them to totality-checked Twelf code. The capability to
express and share proofs is of obvious interest to us, although such proofs, being a
literal proof verbalization of the corresponding Twelf type family, are irremediably
verbose.

Why3 (http://why3.lri.fr) is a software verification platform that intends
to provide a front-end to third-party theorem provers, from proof assistants such
as Coq to SMT-solvers. To this end Why3 provides a first-order logic with rank-1
polymorphism, recursive definitions, algebraic data types and inductive predicates
(Filliâtre, 2013), whose specifications are then translated in the several systems
that Why3 supports. Typically, those translations are forgetful, but sometimes,
e.g., with respect to Coq, they add some annotations, for example to ensure non-
emptiness of types. Although we are really not in the same business as Why3,
there are several ideas that are relevant, such as the notion of a driver, that
is, a configuration file to drive transformations specific to a system. Moreover,
Why3 provides an API for users to write and implement their own drivers and
transformations.

Ott (Sewell et al, 2010) is a highly engineered tool for “working semanticists,”
allowing them to write programming language definitions in a style very close to
paper-and-pen specifications; then those are compiled into LATEX and, more inter-
estingly, into proof assistant code, currently supporting Coq, Isabelle/HOL and
HOL. Ott’s metalanguage is endowed with a rich theory of binders, but at the mo-
ment it favors the “concrete” (non α-quotiented) representation, while providing
support for the nameless representation for a single binder. Conceptually, it would
be natural to extend Ott to generate ORBI code, as a bridge for Ott to support
HOAS-based systems. Conversely, an ORBI user would benefit from having Ott as
a front-end, since the latter notion of grammar and judgment seems at first sight
general enough to support the notion of schema and context relation.

In the category of environments for programming language descriptions, we
mention PLT-Redex (Felleisen et al, 2009) and also the K framework (Roşu and
Şerbănuţă, 2010). In both, several large-scale language descriptions have been
specified and tested. However, none of those systems has any support for binders,
let alone context specifications, nor can any meta-theory be carried out.

Finally, there is a whole research area dedicated to the handling and sharing
of mathematical content (MMK http://www.mkm-ig.org) and its representation
(OMDoc https://trac.omdoc.org/OMDoc), which is only very loosely connected
to our project.

6 Conclusion and Future Work

We have presented an initial set of benchmarks that highlight a variety of differ-
ent aspects of reasoning within a context of assumptions. We have also provided
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an infrastructure for formalizing these benchmarks in a variety of HOAS-based
systems, and for facilitating their comparison. We have developed a framework
for expressing contexts of assumptions as structured sequences, which provides
additional structure to contexts via schemas and characterizes their basic proper-
ties. Finally, we have designed (the initial version of) the ORBI (Open challenge
problem Repository for systems supporting reasoning with BInders) specification
language, and created an open repository of specifications, which initially contains
the benchmarks introduced in this paper.

Selecting a small set of benchmarks has an inherent element of arbitrariness.
The reader may complain that there are many other features and issues not covered
in Sect. 3. We agree and we mention some additional categories, which we could
not discuss in the present paper for the sake of space, but which will (eventually)
make it into the ORBI repository:

– One of the weak spots of most current HOAS-based systems is the lack of li-
braries, built-in data-types and related decision procedures: for example, case
studies involving calculi of explicit substitutions require a small corpus of arith-
metic facts, that, albeit trivial, still need to be (re)proven, while they could be
automatically discharged by decision procedures such as Coq’s omega.9

– There are also specifications that are functional in nature, such as those that
descend through the structure of a lambda term, say counting its depth, the
number of bound occurrences of a given variable etc.; most HOAS systems
would encode those functions relationally, but this entails again the additional
proof obligations of proving those relations total and deterministic.

– In the benchmarks that we have presented all blocks are composed of atoms, but
there are natural specifications, to wit the solution to the PoplMark challenge
in Pientka (2007), where contexts have more structure, as they are induced
by third-order specifications. For example, the rule for subtyping universally
quantified types introduces a non-atomic assumption about transitivity, of the
form:

{a:tp}({U:tp} {V:tp} sub a U → sub U V → sub a V).

– Proofs by logical relations typically require, in order to define reducibility can-
didates, inductive definitions and strong function spaces, i.e., a function space
that does not only model binding. A direct encodings of those proofs is out of
reach for systems such as Twelf, although indirect encodings exist (Schürmann
and Sarnat, 2008). Other systems, such as Beluga and Abella, are well capable
of encoding such proofs, but differ in how this is accomplished, see Cave and
Pientka (2014) and Gacek et al (2012).

– Finally, a subject that is gaining importance is the encoding of infinite be-
havior, typically realized via some form of co-induction. Context-intensive case
studies have been explored for example in Momigliano (2012).

One of the outcomes of our framework for expressing contexts of assumptions is
the unified treatment of all weakening/strengthening/exchange re-arrangements,
via the rm and perm operations. This opens the road to a lattice-theoretic view of
declarations and contexts, where, roughly, x � y holds iff x can be reached from y

9 Case in point, the strong normalization proof for the λσ calculus in Abella, see http:
//abella-prover.org/examples/lambda-calculus/exsub-sn/, 15% of which consists of basic
facts about addition.
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by some rm operation: a generalized context will be the join of two contexts and
context relations can be identified by navigating the lattice starting from the join
of the to-be-related contexts. We plan to develop this view and use it to convert
G proofs into R and vice versa, as a crucial step towards breaking the proof/type
theory barrier.

The description of ORBI given in Sect. 4 is best thought of as a stepping stone
towards a more comprehensive specification language, much as THF0 (Benzmüller
et al, 2008) has been extended to the more expressive formalism THFi, adding
for instance, rank 1 polymorphism. Many are the features that we plan to provide
in the near future, starting from general (monotone) (co)inductive definitions;
currently we only relate contexts, while it is clearly desirable to relate arbitrary
well-typed terms, as shown for example in Cave and Pientka (2012) and Gacek et al
(2012) with respect to normalization proofs. Further, it is only natural to support
infinite objects and behavior. However, full support for (co)induction is a complex
matter, as it essentially entails fully understanding the relationship between the
proof-theory behind Abella and Hybrid and the type theory of Beluga. Once this
is in place, we can “rescue” ORBI theorems from their current status as comments
and even include a notion of proof in ORBI.

Clearly, there is a significant amount of implementation work ahead, mainly
on the ORBI2X tools side, but also on the practicalities of the benchmark suite.
Finally, we would like to open up the repository to other styles of specification
such nominal, locally nameless etc.
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A Overview of Benchmarks

In this appendix, we provide a quick reference guide to some of the key elements of the
benchmark problems discussed in Section 3. In the tables below, ULC (STLC) stands for
the untyped (simply-typed) lambda-calculus, and POLY stands for the polymorphic lambda
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calculus. The entry “same” means that there is no difference between the R and G version of
the theorem because there is only one context involved.

A.1 A Recap of Benchmark Theorems

Theorem Thm No. Version Page
aeq-reflexivity for ULC 7 R 16
aeq-reflexivity for ULC 8 G 17
aeq-symmetry and transitivity for ULC 10 same 18
atp-reflexivity for POLY 11 G 19
aeq-reflexivity for POLY 13 G 19
atp-reflexivity for POLY 14 R 20
aeq-reflexivity for POLY 17 R 21
aeq/deq-completeness for ULC 19 G 22
aeq/deq-completeness for ULC 22 R 23
type uniqueness for STLC 24 same 26
type preservation for parallel reduction for STLC 26 R 27
aeq-parallel substitution for ULC 23 same 24

A.2 A Recap of Schemas and Their Usage

Context Schema Block Description/Used in:
Φα Sα is tp α type variables
Φx Sx is tm x term variables
Φαx Sαx is tp α+ is tm x type/term variables
Φαt Sαt is tp α+ is tm x;x:T type-checking for POLY
Φxa Sxa is tm x; aeq x x Thm 8, 10, and 23
Φatp Satp is tp α; atp α α Thm 11
Φaeq Saeq is tp α; atp α α + is tm x; aeq x x Thm 13
Γda Sda is tm x; deq x x; aeq x x Thm 19
Φxd Sxd is tm x; deq x x Thm 22
Φt St is tm x; oft x A Thm 24
Φr Sr is tm x;x; x Thm 26

A.3 A Recap of the Main Context Relations and Their Usage

Relation Related Blocks Used in:
Φx ∼ Φxa is tm x ∼ (is tm x; aeq x x) Thm 7
Φα ∼ Φatp is tp α ∼ (is tp α; atp α α) Thm 14
Φαx ∼ Φaeq Φx ∼ Φxa plus Φα ∼ Φatp Thm 17
Φxa ∼ Φxd (is tm x; aeq x x) ∼ (is tm x; deq x x) Thm 22
Φr ∼ Φt (is tm x;x; x) ∼ (is tm x;x:A) Thm 26

B ORBI Specification of Algorithmic and Declarative Equality

The following ORBI specification provides a complete encoding of the example of algorithmic
vs. declarative equality used in Subsections 3.1, 3.3, and 3.4.

%% Syntax
tm: type.

app: tm -> tm -> tm.
lam: (tm -> tm) -> tm.
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%% Judgments
aeq: tm -> tm -> type.
deq: tm -> tm -> type.

%% Rules
ae_a: aeq M1 N1 -> aeq M2 N2 -> aeq (app M1 M2) (app N1 N2).
ae_l: ({x:tm} aeq x x -> aeq (M x) (N x))

-> aeq (lam (\x. M x)) (lam (\x. N x)).

de_a: deq M1 N1 -> deq M2 N2 -> deq (app M1 M2) (app N1 N2).
de_l: ({x:tm} deq x x -> deq (M x) (N x))

-> deq (lam (\x. M x)) (lam (\x. N x)).
de_r: deq M M.
de_s: deq M1 M2 -> deq M2 M1.
de_t: deq M1 M2 -> deq M2 M3 -> deq M1 M3.

%% Schemas
schema xG: block (x:tm).
schema xaG: block (x:tm; u:aeq x x).
schema xdG: block (x:tm; u:deq x x).
schema daG: block (x:tm; u:deq x x; v:aeq x x).

%% Definitions
inductive xaR : {G:xG} {H:xaG} prop =
| xa_nil: xaR nil nil
| xa_cons: xaR G H -> xaR (G, block x:tm) (H, block x:tm; u:aeq x x).

inductive daR : {G:xdG} {H:xaG} prop =
| da_nil: daR nil nil
| da_cons: daR G H -> daR (G, block x:tm; v:deq x x)

(H, block x:tm; u:aeq x x).

%% Theorems
theorem reflG: {H:xaG} {M:tm} [H |- aeq M M].
theorem symG: {H:xaG}{M:tm}{N:tm} [H |- aeq M N] -> [H |- aeq N M].
theorem transG: {H:xaG}{M:tm}{N:tm}{L:tm}

[H |- aeq M N] & [H |- aeq N L] -> [H |- aeq M L].
theorem ceqG: {G:daG} [G |- deq M N] -> [G |- aeq M N].
theorem substG: {H:xaG}{M1:tm->tm}{M2:tm}{N1:tm}{N2:tm}

[H, block x:tm; aeq x x |- aeq (M1 x) (M2 x)] & [H |- aeq N1 N2] ->
[H |- aeq (M1 N1) (M2 N2)].

theorem reflR : {G:xG}{H:xaG}{M:tm} xaR G H -> [H |- aeq M M].
theorem ceqR: {G:xdG}{H:xaG} daR G H -> [G |- deq M N] -> [H |- aeq M N].

%% Directives
% [hy,ab] wf tm.
% [hy,ab] explicit x in de_l.
% [hy,ab] explicit M in de_r.
% [hy,ab] explicit x in xG.
% [hy,ab] explicit x in xdG.
% [hy,ab] explicit x in daG.
% [hy,ab] explicit x in G in xaR.
% [hy,ab] explicit x in G in daR.


