
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Appendix of
The Next 700 Challenge Problems for Reasoning with
Higher-Order Abstract Syntax Representations

Part 2—A Survey

Amy P. Felty · Alberto Momigliano ·
Brigitte Pientka

March 19, 2014

A ORBI Specifications of Challenge Problems

We give here the Syntax, Judgments, Rules, Schemas, and Definitions sections
of the ORBI specifications for all the benchmarks presented in ? and formalized in
the main paper and in Appendix B. The full ORBI files can be found at https://
github.com/pientka/ORBI, and are called EqualUntyped.orbi, EqualPoly.orbi,
TypingSimple.orbi, and ParRed.orbi, respectively.

A.1 Algorithmic and Declarative Equality for the Untyped Lambda-Calculus

%% Syntax
tm: type.
app: tm -> tm -> tm.
lam: (tm -> tm) -> tm.

%% Judgments
aeq: tm -> tm -> type.
deq: tm -> tm -> type.

%% Rules
ae_a: aeq M1 N1 -> aeq M2 N2 -> aeq (app M1 M2) (app N1 N2).
ae_l: ({x:tm} aeq x x -> aeq (M x) (N x))

-> aeq (lam (\x. M x)) (lam (\x. N x)).

de_a: deq M1 N1 -> deq M2 N2 -> deq (app M1 M2) (app N1 N2).
de_l: ({x:tm} deq x x -> deq (M x) (N x))

A. P. Felty
School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa,
Canada, E-mail: afelty@eecs.uottawa.ca

A. Momigliano
Dipartimento di Informatica, Università degli Studi di Milano, Italy, E-mail:
momigliano@di.unimi.it

B. Pientka
School of Computer Science, McGill University, Montreal, Canada, E-mail: bpien-
tka@cs.mcgill.ca



2 Amy P. Felty et al.

-> deq (lam (\x. M x)) (lam (\x. N x)).
de_r: deq M M.
de_s: deq M1 M2 -> deq M2 M1.
de_t: deq M1 M2 -> deq M2 M3 -> deq M1 M3.

%% Schemas
schema xG: block (x:tm).
schema xaG: block (x:tm; u:aeq x x).
schema xdG: block (x:tm; u:deq x x).
schema daG: block (x:tm; u:deq x x; v:aeq x x).

%% Definitions
inductive xaR: {G:xG} {H:xaG} prop =
| xa_nil: xaR nil nil
| xa_cons: xaR G H -> xaR (G, block x:tm) (H, block x:tm; u:aeq x x).

inductive daR: {G:xaG} {H:xdG} prop =
| da_nil: daR nil nil
| da_cons: daR G H -> daR (G, block x:tm; v:aeq x x)

(H, block x:tm; u:deq x x).

A.2 Algorithmic Equality for the Polymorphic Lambda Calculus

%% Syntax
tp: type.
arr: tp -> tp -> tp.
all: (tp -> tp) -> tp.

tm: type.
app: tm -> tm -> tm.
lam: (tm -> tm) -> tm.
tapp: tm -> tp -> tm.
tlam: (tp -> tm) -> tm.

%% Judgments
atp: tp -> tp -> type.
aeq: tm -> tm -> type.

%% Rules
at_al: ({a:tp} atp a a -> atp (T a) (S a))

-> atp (all (\a. T x) (all (\a. S a)).
at_a: atp T1 T2 -> atp S1 S2 -> atp (arr T1 S1) (arr T2 S2).
ae_l: ({x:tm} aeq x x -> aeq (M x) (N x))

-> aeq (lam (\x. M x)) (lam (\x. N x)).
ae_a: aeq M1 N1 -> aeq M2 N2 -> aeq (app M1 M2) (app N1 N2).
ae_tl: ({a:tp} atp a a -> aeq (M a) (N a))

-> aeq (tlam (\a. M a)) (tlam (\a. N a)).
ae_ta: aeq M N -> atp T S -> aeq (tapp M T) (tapp N S).

%% Schemas
schema aG: block (a:tp).
schema axG: block (a:tp) + block (x:tm).
schema atpG: block (a:tp; u:atp a a).
schema aeqG: block (a:tp; u:atp a a) + block (x:tm; v:aeq x x).

%% Definitions
inductive atpR: {G:aG} {H:atpG} prop =
| atp_nil: atpR nil nil
| atp_cons : atpR G H -> atpR (G, block a:tp) (H, block a:tp; u:atp a a).



Appendix of “The Next 700 Challenge Problems: A Survey” 3

inductive aeqR: {G:axG} {H:aeqG} prop =
| aeq_nil: aeqR nil nil
| aeq_cons1 : aeqR G H -> aeqR (G, block a:tp) (H, block a:tp; u:atp a a)
| aeq_cons2 : aeqR G H -> aeqR (G, block x:tm) (H, block s:tm; u:aeq x x).

A.3 Static Semantics of the Simply-Typed Lambda-Calculus

%% Syntax
tp: type.
i: tp.
arr: tp -> tp -> tp.

tm: type.
app: tm -> tm -> tm.
lam: tp -> (tm -> tm) -> tm.

%% Judgments
oft: tm -> tp -> type.

%% Rules
oft_l: ({x:tm} oft x A -> oft (M x) B) ->

oft (lam A (\x. M x)) (arr A B).
oft_a: oft M (arr A B) -> oft N A -> oft (app M N) B.

%% Schemas
schema xtG: block (x:tp; u:oft x A).

A.4 Parallel Reduction for the Simply-Typed Lambda-Calculus

%% Syntax
tp: type.
i: tp.
arr: tp -> tp -> tp.

tm : type.
app : tm -> tm -> tm.
lam : tp -> (tm -> tm) -> tm.

%% Judgments
oft : tm -> tp -> type.
pr : tm -> tm -> type.

%% Rules
oft_l: ({x:tm} oft x T -> oft (M x) S)

-> oft (lam T (\x. M x)) (arr T S).
oft_a: oft M1 (arr T2 T) -> oft M2 T2 -> oft (app M1 M2) T.

pr_l: ({x:tm} pr x x -> pr (M1 x) (M2 x))
-> pr (lam T (\x. M1 x)) (lam T (\x. M2 x)).

pr_b: ({x:tm} pr x x -> pr (M1 x) (M2 x)) ->
{T:tp} pr N1 N2 -> pr (app (lam T (\x. M1 x)) N1) (M2 N2).

pr_a: pr M1 M2 -> pr N1 N2 -> pr (app M1 N1) (app M2 N2).

%% Schemas
schema xtG: block (x:tm; v:oft x T).
schema xrG: block (x:tm; u:pr x x).



4 Amy P. Felty et al.

schema xrtG: block (x:tm; u:pr x x; v:oft x T).

%% Definitions
inductive xrtR: {G:xrG} {H:xtG} prop =
| xrt_nil : xrtR nil nil
| xrt_cons: xrtR G H ->

xrtR (G, block x:tm; u:pr x x) (H, block x:tm; v:oft x A).

B Mechanization in Hybrid: Additional Proofs and Discussion

This appendix provides additional information that extends Section 6 of the main
paper. Section B.1 includes the G version of the proof in Section 6.3 while Sec-
tion B.2 provides details omitted from Section 6.6.

B.1 G Version of Completeness of Equality

The definition of (daG Φda) is implemented as usual by the corresponding schema
declaration in Appendix A.1, which here includes blocks of the form (is tm x ::
deq x x :: aeq x x). The contexts xaG and aG defined in Section 6.1.2 are also used
here.

Note that H-Theorem 5 is stated using context Φxa and that H-Theorem 7
is stated using context Φa. Since we will need both theorems here, we need to
promote them to Φda. As in Section 6.2.1, we need strengthening functions and a
series of lemmas analogous to H-Lemmas 12-15. The strengthening functions must
strengthen Φda to Φxa and Φa. The main clauses of these function definitions are:

rm da2xa (is tm z :: deq :: aeq x y :: Φda) = (is tm z :: aeq x y :: rm da2xa Φda)
rm da2a (is tm :: deq :: aeq x y :: Φda) = (aeq x y :: rm da2a Φda)

Unlike in Section 6.2 where all the strengthening functions removed an alternative
from a context schema, all those in this subsection involve schemas with just one
alternative and modify every block by removing one or more atoms. The lemmas
required to prove promotion are as follows. (The strengthening and weakening
lemmas are again stated as a corollary without the lemmas they depend on.)

H-Lemma 31
1. daG Φda → xaG (rm da2xa Φda).
2. daG Φda → aG (rm da2a Φda).

H-Corollary 32 (C-Strengthening/Weakening)
1. daG Φda → {Φda `n 〈is tm T 〉} → {(rm da2xa Φda) `n 〈is tm T 〉}.
2. daG Φda → {(rm da2xa Φda) `n 〈aeq T T ′〉} → {Φda `n 〈aeq T T ′〉}.
3. daG Φda → {(rm da2a Φda) `n 〈aeq T T ′〉} ←→ {Φda `n 〈aeq T T ′〉}.

With the above lemmas, we can now promote H-Theorems 5 and 7.

H-Lemma 33 (Promotion)
1. daG Φda → {Φda `n 〈is tmM〉} → {Φda `n 〈aeqM M〉}.
2. daG Φda → {Φda `n 〈aeqM N〉} → {Φda `n 〈aeq N M〉}.
3. daG Φda → {Φda `n 〈aeqM L〉} → {Φda `n 〈aeq L N〉} → {Φda `n 〈aeqM N〉}.



Appendix of “The Next 700 Challenge Problems: A Survey” 5

H-Theorem 34 (Completeness, G Version)
daG Φda → {Φda `n 〈deqM N〉} → {Φda `n 〈aeqM N〉}.

Proof The steps of the de r and de t cases are the same as in the R version, using
promotion, height weakening, and in the latter case also the induction hypothesis.
The de l case also uses height weakening, and in addition requires both d-wk and
d-str.1

B.2 Type Preservation for Parallel Reduction

We illustrate the problem mentioned in Section 6.6 of the proof of type preservation
for parallel reduction in Hybrid by showing one case where the proof gets stuck. As
usual, a Coq inductive definition implements context relation (xrtR Φr Φt) from
the Definitions section of Appendix A.4, omitting the well-formedness annota-
tions for terms. Since proof heights are not important in illustrating the problem,
we elide them except for in the judgment that we induct over.

H-Attempt 35 (Type Preservation for Parallel Reduction)
xrtR Φr Φt → {Φr `m 〈pr1M N〉} → {Φt ` 〈oftM A〉} → {Φt ` 〈oft N A〉}.

Proof We attempt to follow the informal proof of Theorem 26 in ?, here by using
a complete induction on m, where we assume i < m in the proof sketch below.
Case pr l: We must show:

h1 : IH h2 : xrtR Φr Φt h3 : {Φr `i 〈pr1 (lam M ′) (lam N ′)〉}
h4 : {Φt ` 〈oft (lam M ′) A〉}

{Φt ` 〈oft (lam N ′) A〉}

Inversion on h4 results in two subcases corresponding to the s bc and s init rules
in Figure 11 on page 27 of the main paper, as usual.

Subcase s bc: This case is similar to the lam case of other proofs (such as the
tm l case of H-Theorem 2). We show some detail to help illustrate the problem.
We first apply a few more inversion steps to h3 and h4. We also apply SL rules s bc

and s all in a backward direction to the conclusion, obtaining the new subgoal:

IH xrtR Φr Φt h5 : ∀x.properx→ {(pr1 x x :: Φr) `i−3 〈pr1 (M ′ x) (N ′ x)〉}
h6 : ∀x.properx→ {(oft x A′ :: Φt) ` 〈oft (M ′ x)) B′〉}

∀x.properx→ {Φt ` ((oft x A′) imp 〈oft (N ′ x) B′〉)}

Applying Coq’s ∀-introduction at this point introduces a new x, which we use to
instantiate h5 and h6 and complete this case.

Subcase s init: We have the following subgoal:

IH xrtR Φr Φt h5 : {Φr `i 〈pr1 (lam M ′) (lam N ′)〉}
h6 : (oft (lam M ′) A) ∈ Φt

{Φt ` 〈oft (lam N ′) A〉}

1 Also in this proof and a few others (e.g., H-Theorem 26 and H-Attempt 35), the inversion
step uses specialized inversion lemmas, whose proofs follow from Coq’s standard inversion.



6 Amy P. Felty et al.

which is not provable. In order to prove it, we would need a lemma similar to H-
Lemma 27, which requires restricting variables in contexts to be of the form (VAR i).
Here, from such a lemma and h6, we could derive a contradiction as desired. This
kind of variable restriction would have to be built into the definition of xrtR. Then
this subcase becomes provable, but the previous one can no longer be proved. This
is because the variable x introduced by ∀-introduction in that proof is an arbitrary
term of type expr. Since it doesn’t necessarily have the form (VAR i), the context
relation would not hold, and thus it would not be possible to apply the induction
hypothesis.

Fixing the above problem is discussed in Sections 6.6 and 8.2 in the main
paper.


