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abstract. We present a new matrix characterization of validity for a fam-
ily of propositional multimodal logics with interacting modalities. Unlike
previous matrix characterizations for modal logics, which could only cope
with a few well-behaved unimodal logics, our formulation is not based on
prefixed tableaus in the style of Fitting, but has a more direct relation-
ship with the semantics of the logics and their defining frame conditions.
The resulting formalism uniformly and elegantly characterizes all 15 basic
unimodal logics, as well as a number of multimodal logics with interacting
modalities.
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1 Introduction

Reasoning in modal and multimodal logics has been formalized using all
manner of proof theoretic apparatus, from the early Hilbert-style axiom-
atizations proposed and studied by the likes of Lewis and Prior to the
plethora of natural deduction, tableau, and sequent calculus formalisms
that have since been explored. A slightly less-known formalism is the ma-

trix or connection-based characterization, pioneered for first-order logic by
Prawitz [16] and developed further by Bibel [4] and Andrews [2]. Wallen
[18, 19] subsequently generalized and extended the matrix characterization
to unimodal and intuitionistic logics, while similar extensions to multiplica-
tive linear logic and multiplicative exponential linear logic were carried out
by Kreitz et al. [12] and Kreitz and Mantel [13], respectively.

One of the motivations for developing matrix characterizations is auto-
mated theorem proving, since a matrix characterization of validity for a logic
generally induces a very compact proof space for it that theorem provers
can efficiently explore. Reasoning in most natural deduction, tableau, and
sequent calculus systems involves taking formulas apart from the outside in,
one connective at a time, resulting in nondeterminism during proof search
and redundancies in the finished proofs, arising from irrelevance and proof
permutatibility [19]. The idea behind matrix characterizations, on the other
hand, is to analyze the entire structure of a formula down to its atomic sub-
formulas, extract paths through it, and find connections that simultaneously
span the paths. As a result, the search is in some sense global, rather than
local to a particular connective or subformula. Regardless of the origins
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of matrix characterizations in proof search, they are beautiful in their own
right, as they are able to collectively express validity in a myriad of different
logics in a very uniform and modular way.

Matrix characterizations have been found for a number of logics, and
Wallen’s conjecture is that matrix methods can be developed for any logic
with the same primary properties as classical logic [19]. Wallen himself has
carried out the development for the unimodal logics K, K4, D, D4, T,
S4, and S5. The natural first step to completing his work is to extend the
characterization to the remaining 8 basic unimodal logics (see for instance
Chellas [7]), including symmetric and euclidean logics, and then to logics
with multiple interacting modalities. However, the roots of Wallen’s work
are in Fitting’s prefixed tableau systems [8, 9, 14], and because of the way
in which frame conditions such as symmetry are encoded by prefixes in
these tableau systems, it is not clear how to adapt Wallen’s formulation to
symmetric logics, for instance. The problem is compounded when dealing
with multimodal logics with modalities interacting in particular ways, where
prefixed tableaus with the flavour of Fitting’s can run into difficulties of their
own (Baldoni [3] provides some examples).

Our solution is to develop a matrix characterization of validity for modal
and multimodal logics that, rather than being based on Fitting’s prefixed
tableaus, has a basis closer to the semantics of the logic and the frame
conditions that define it. Instead of manipulating prefixes that stand for
notional worlds in a putative countermodel, with the accessibility relation
between worlds encoded by the structures of the prefixes, we will manipulate
atomic world names that represent worlds directly, separately maintaining
an accessibility relation on the world names. Although this semantic shift
costs us efficiency in proof search, we gain the ability to uniformly and
elegantly characterize validity in all 15 basic unimodal logics, as well as
a number of multimodal logics with interacting modalities, something not
easily done using Wallen’s characterization.

In this paper, we will depend largely on informal discussion and exam-
ples to describe our characterization, stating correctness results but omit-
ting their proofs. For details and complete proofs, see [11]. The rest of the
paper is structured as follows. In Section 2, we describe our matrix char-
acterization for the 15 basic unimodal logics, generalizing our approach to
multimodal logics with interacting modalities in Section 3. It is a testament
to the modularity of our approach that almost all of the technical apparatus
we develop for unimodal logics carries over to multimodal logics unchanged.
Related work is discussed in Section 4, and we conclude with future work
in Section 5.

2 Unimodal Logics

2.1 Syntax and Semantics

The syntax and semantics of propositional unimodal logics are as usual (see
for instance Blackburn et al. [5] or Chellas [7]), but worth reviewing briefly.
Formulas are constructed from propositional letters p1, p2, . . . , the binary
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L L’s frame conditions Other names for L

K none
KD seriality D

KT reflexivity T

KB symmetry
K4 transitivity
K5 euclideanness

KDB seriality, symmetry
KD4 seriality, transitivity D4

KD5 seriality, euclideanness
KTB reflexivity, symmetry B

KT4 reflexivity, transitivity S4

KB4 symmetry, transitivity
K45 transitivity, euclideanness

KD45 seriality, transitivity, euclideanness
KTB4 reflexivity, symmetry, transitivity S5, KT5

Table 1. The 15 basic unimodal logics and their frame conditions.

connectives ∧, ∨, and ⊃, and the unary connectives ¬, 2, and 3. A frame

is a pair (W, R), where W is a nonempty set whose elements are called
worlds, and R is a binary relation on W , called the accessibility relation.
A model is a triple (W, R, V ), where (W, R) is a frame and V is a function
from propositional letters to subsets of W , called the valuation. The truth

relation  relates a model M = (W, R, V ) and worlds w ∈ W to formulas
as follows.

1. For every propositional letter p, M, w  p iff w ∈ V (p).

2. M, w  ¬A iff M, w 6 A.

3. M, w  A ∧ B iff M, w  A and M, w  B.

4. M, w  A ∨ B iff M, w  A or M, w  B.

5. M, w  A ⊃ B iff M, w  A implies that M, w  B.

6. M, w  2A iff for every x ∈ W such that (w, x) ∈ R, M, x  A.

7. M, w  3A iff there is some x ∈ W such that (w, x) ∈ R and M, x 

A.

A formula A is said to be valid in a frame (W, R) if it is true at every world
in every model with (W, R) as an underlying frame.

A frame (W, R) or a model (W, R, V ) is said to be serial, reflexive, sym-

metric, transitive, or euclidean if its accessibility relation R has the named
property. Recall that a relation R over W is serial if for every w ∈ W , there
is an x ∈ w such that (w, x) ∈ R, and euclidean if for every w, x, y ∈ W ,
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(w, x) ∈ R and (w, y) ∈ R together imply that (x, y) ∈ R. Different modal
logics are characterized by different frame conditions. Exactly 15 distinct
modal logics can be obtained by combining the five frame conditions men-
tioned above in various ways (see for instance Chellas [7]), and in Table 1,
we assign names to these 15 basic unimodal logics and give their frame con-
ditions. If L is the name of a logic, then a formula A is said to be L-valid

if A is valid in every frame whose accessibility relation satisfies L’s frame
conditions.

The form of question that our matrix characterization of validity for uni-
modal logics seeks to answer is, “given a logic L and a formula A, is A

L-valid?” As in most tableau and sequent calculus systems, we will answer
this question by attempting to construct a countermodel for A that satisfies
L’s frame conditions. If this construction results in a necessary contra-
diction, then A is L-valid. In tableau and sequent calculus systems, this
countermodel construction is plagued by nondeterminism throughout proof
search. One of the advantages of matrix proof methods is that some of this
nondeterminism disappears, since part of the countermodel construction in
matrix proof methods occurs in a purely deterministic initial phase in which
the query formula is analyzed down to its atomic subformulas, giving us a
rough idea of potential countermodels before we even perform any kind of
search.

The main result of this paper is the correctness of our matrix character-
ization. We state its soundness and completeness results here, and subse-
quently guide the reader through them, providing definitions, explanations,
intuition, and examples for the technical terms used below.

THEOREM 1 (Soundness). If there is a multiplicity µ for a signed formula

X = (0, A) and an L-admissible world realization σ for the indexed signed

formula Xµ such that all atomic paths through Xµ are σ-complementary,

then A is L-valid.

THEOREM 2 (Completeness). If a formula A is L-valid, then there is a

multiplicity µ for the signed formula X = (0, A) and an L-admissible world

realization σ for the indexed signed formula Xµ such that all atomic paths

through Xµ are σ-complementary.

For brevity, we omit the full proofs here (see [11] for details), but it is
worth emphasizing that the matrix characterization is closely related to
tableau systems, and correctness is consequently proved in much the same
way as it conventionally is for tableaus. Namely, soundness follows from a
contrapositive argument, using a lemma of preservation of L-satisfiability,
while completeness follows from a systematic construction and a notion of
L-Hintikka sets (see [8] for outlines of the corresponding proofs for Fitting’s
tableau system).

2.2 Formula Trees

An important proof theoretic extension of a formula is a signed formula,
a pair (s, A), where s, called the sign of the signed formula, is either 0
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α α1 α2

(1, A ∧ B) (1, A) (1, B)
(0, A ∨ B) (0, A) (0, B)
(0, A ⊃ B) (1, A) (0, B)

(0,¬A) (1, A) (1, A)
(1,¬A) (0, A) (0, A)

β β1 β2

(u, 0, A ∧ B) (u, 0, A) (u, 0, B)
(u, 1, A ∨ B) (u, 1, A) (u, 1, B)
(u, 1, A ⊃ B) (u, 0, A) (u, 1, B)

ν ν1

(1, 2A) (1, A)
(0, 3A) (0, A)

π π1

(0, 2A) (0, A)
(1, 3A) (1, A)

Figure 1. Types and components of signed formulas.

or 1, and A is a formula. Every nonatomic signed formula has a type of
either α, β, ν, or π, determined by its sign and its top-level connective, as
well as one or more components. The types and components of nonatomic
signed formulas are defined as shown in Figure 1. For instance, the signed
formula (0, p1 ∧ (p2 ∨ p3)) has type β, and its two components are (0, p1)
and (0, p2 ∨ p3). Intuitively, a signed formula denotes the truth (if its sign
is 1) or falsehood (if its sign is 0) of a formula, and a signed formula of
type α “holds” (i.e. is true or false, depending on its sign) if both of its
components hold, while one of type β holds if either one of its components
holds. Within some modal context (i.e. at some world), a signed formula of
type ν or π holds if its component holds at all accessible worlds or at some
accessible world, respectively. Note that in practice, signed formulas of the
form (s,¬A) would be treated as having only a single component, say α1,
but in the theory, they can be uniformly handled in the same way as any
other signed formula of type α.

A formula tree for a signed formula (s, A) is a representation of A as a
tree of names, called positions, each position corresponding to a distinct
subformula occurrence of A. The subformula corresponding to a position
x is called its label—denoted lab(x)—and a position is called atomic or
nonatomic when its label is atomic or nonatomic, respectively. Each posi-
tion x of a formula tree for a signed formula (s, A) is also associated with a
sign—denoted sgn(x)—of s if the subformula occurrence corresponding to
x occurs positively in A, and s+1 mod 2 otherwise. The tree ordering ≪ is
the partial ordering induced by the formula tree, that is, xi ≪ xj if position
xi strictly dominates position xj . As an example, the formula tree for the
signed formula X = (0, 3(p1 ⊃ p2) ⊃ (2p1 ⊃ 3p2)) is shown in Figure 2.

In addition to labels and signs, each position x of a formula tree has
a primary type—denoted ptp(x)—and a secondary type—denoted stp(x).
The primary type of a nonatomic position x is simply the type of the signed
formula (sgn(x), lab(x)). Atomic positions consequently have no primary
type. The secondary type of a position x is determined by the primary type
of its parent in the formula tree, if it has one, and its relationship with its
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x lab(x) sgn(x) ptp(x) stp(x)
x1 3(p1 ⊃ p2) ⊃ (2p1 ⊃ 3p2) 0 α π1

x2 3(p1 ⊃ p2) 1 π α1

x3 p1 ⊃ p2 1 β π1

x4 p1 0 β1

x5 p2 1 β2

x6 2p1 ⊃ 3p2 0 α α2

x7 2p1 1 ν α1

x8 p1 1 ν1

x9 3p2 0 ν α2

x10 p2 0 ν1

Figure 2. The formula tree for the signed formula X .

parent. If x’s parent has primary type α (resp. β), then x has secondary
type α1 or α2 (resp. β1 or β2), depending on whether it is the first or second
child of its parent. If x’s parent has primary type ν (resp. π), then x has
secondary type ν1 (resp. π1). The secondary type of the root position is
defined to be π1 for technical reasons. Figure 2 also shows the types of the
positions of our example.

Notice that all of the pieces of information associated with positions are
obtained deterministically. Given a signed formula, there is a unique for-
mula tree for it (modulo renaming of positions), with corresponding label,
sign, and type functions. The intuition is that every position of a formula
tree corresponds to a subformula occurrence of the query formula, and in
constructing a putative countermodel for it, the signed subformulas cor-
responding to positions are required to hold for the query formula to be
falsifiable. The types of positions determine, for instance, whether their
corresponding signed subformula occurrences are conjunctively or disjunc-

tively related, where conjunctively related signed subformula occurrences
must all hold at once, while of a set of disjunctively related signed subfor-
mula occurrences, only one must hold. Formally, two positions x and x′

of a formula tree are said to be conjunctively related, or α-related, if their
≪-greatest common ancestor has primary type other than β. Otherwise,
they are said to be disjunctively related, or β-related.

Modally, positions of secondary type ν1 have necessary force, meaning
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y lab(y) sgn(y) ptp(y) stp(y) wn(y)
x1 3(p1 ⊃ p2) ⊃ (2p1 ⊃ 3p2) 0 α π1 u1

x2 3(p1 ⊃ p2) 1 π α1 u1

x3 p1 ⊃ p2 1 β π1 u2

x4 p1 0 β1 u2

x5 p2 1 β2 u2

x6 2p1 ⊃ 3p2 0 α α2 u1

x7 2p1 1 ν α1 u1

x1
8 p1 1 ν1 u1

x2
8 p1 1 ν1 u2

x9 3p2 0 ν α2 u1

x10 p2 0 ν1 u3

Figure 3. The indexed formula tree and formula frame for the indexed
signed formula Xµ.

that they can be instantiated at multiple worlds of a purported counter-
model. They can be forced to hold at any world, in fact, accessible from
the world at which their parents of primary type ν hold. This is encoded
by a multiplicity for a signed formula X = (s, A), a function from the set
of positions of secondary type ν1 in X to the natural numbers. The in-
tuition is that µ(x) stipulates the number of different ways in which the
signed subformula occurrence corresponding to position x can be used (i.e.
at how many different worlds). An indexed signed formula is an expression
Xµ, where X is a signed formula and µ is a multiplicity for X . An indexed

formula tree for an indexed signed formula Xµ is an extension of the for-
mula tree for X whose nodes are indexed positions. The indexed formula
tree for Xµ is simply the formula tree for X , with every subtree rooted at
a position of secondary type ν1 replicated as many times as its multiplic-
ity requires. Indexed positions differ from regular positions only in that
they feature superscript indices to differentiate between several instances
derived from the same position. They inherit the signs, labels, and types
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of the positions from which they are derived. As an example, the indexed
formula tree for the indexed signed formula Xµ is shown in Figure 3, where
X = (0, 3(p1 ⊃ p2) ⊃ (2p1 ⊃ 3p2)), µ(x8) = 2, and µ(x10) = 1. (x8 and
x10 are the only positions of X of secondary type ν1.)

Finally, each indexed position y of an indexed formula tree is also as-
sociated with a world name—denoted wn(y). World names come in two
disjoint classes, constant world names u1, u2, . . . and variable world names

u1, u2, . . . . A function from indexed positions to world names is a valid
world name assignment if

1. every indexed position of secondary type ν1 is mapped to a unique
variable world name,

2. every indexed position of secondary type π1 is mapped to a unique
constant world name, and

3. every indexed position of secondary type other than ν1 and π1 is
mapped to the same world name as its parent.

A world name function for a formula tree induces a formula frame (also
a tree) whose worlds are the world names of the indexed positions in the
indexed formula tree. The formula frame for the indexed signed formula
Xµ of our running example and the corresponding world name function are
also shown in Figure 3.

2.3 World Realizations

Indexed signed formula trees encode all the structural properties of a query
formula, while formula frames encode the minimal accessibility relations re-
quired for putative countermodels to actually be permissible as countermod-
els, that is, for the forced holding of the signed subformulas corresponding
to indexed positions to be coherent. However, variable world names in for-
mula frames are merely placeholders for concrete worlds, as they are world
names introduced by indexed positions of necessary force, standing in lieu
of any world accessible from the world of the parent position. To obtain
a concrete countermodel, variable world names must either themselves be
made concrete or mapped to other concrete world names.

This mapping is formalized as a world realization, a function σ from the
set of world names of an indexed signed formula to itself, with the property
that every constant world name and every variable world name that is the
image, under σ, of another world name is mapped to itself. For instance,
using our running example, σ1 such that σ1(u1) = σ1(u2) = σ1(u3) =
σ1(u2) = u2 is a world realization. So is σ2 such that σ2(u1) = σ2(u2) =
u2 and σ2(u3) = σ2(u2) = u2. A world realization is called strict if it
maps every variable world name to a constant world name, so σ1 is a strict
world realization, while σ2 is not. We will use σ1 and σ2 as concrete world
realizations with our running example.

If σ is a world realization for an indexed signed formula Xµ, then the
modal ordering < is a partial ordering on the indexed positions of Xµ such
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that y < y′ if σ(wn(y′)) = wn(y) and wn(y′) 6= wn(y). For a world real-
ization to be semantically sound, letting a variable world name represent
some other concrete world name is only meaningful if the concrete world
name is known to exist. In other words, the modal ordering imposes an
order in which indexed positions must be taken apart during countermodel
construction for a world realization to be meaningful.

2.4 Paths and Matrices

A central concept in Theorems 1 and 2 is the idea of atomic paths. In
general, a path through an indexed signed formula Xµ is a subset of its po-
sitions, and an atomic path is a particular kind of path. While the technical
definitions of paths and atomic paths are slightly cumbersome, the matrix
characterization gets its name from an intuitive and appealing method of
displaying indexed signed formulas in such a way as to visually reveal their
atomic paths. Formally, the matrix of an indexed position y of an indexed
signed formula Xµ is defined inductively as follows.

1. If y is atomic, then the matrix of y is y itself.

2. If y has primary type α, then the matrix of y is a 1× 2 array with the
matrices of the two components of y as the entries in the two columns.

3. If y has primary type β, then the matrix of y is a 2× 1 array with the
matrices of the two components of y as the entries in the two rows.

4. Otherwise, the matrix of y is a 1 × n array with the matrices of the
components of y as the entries in the columns.

The matrix of an indexed signed formula Xµ is the matrix of the root
indexed position of Xµ, and the atomic paths through Xµ are then the
horizontal paths through the matrix of Xµ. As an example, the matrix for
Xµ from our running example is

[ [

x4

x5

]

[ [

x1
8 x2

8

]

x10

]

]

For clarity, we have omitted brackets around 1× 1 arrays. In this case, the
atomic paths through Xµ are {x4, x

1
8, x

2
8, x10} and {x5, x

1
8, x

2
8, x10}. It is

worth emphasizing at this point that matrices encode only the conjunctiv-
ity or disjunctivity between indexed positions, they say nothing about modal
relationships amongst their world names. Modal information is always sep-
arately maintained by the formula frame and the world name mapping.

If σ is a world realization for an indexed signed formula Xµ, then an
atomic path φ through Xµ is said to be σ-complementary if φ contains
two indexed positions y and y′ such that σ(wn(y)) = σ(wn(y′)), sgn(y) 6=
sgn(y′), and lab(y) = lab(y′). In our running example, with σ1 and σ2

defined as previously, {x4, x
1
8, x

2
8, x10} is σ1-complementary by virtue of

the indexed positions x4 and either x1
8 or x2

8, while {x5, x
1
8, x

2
8, x10} is σ1-

complementary by virtue of the indexed positions x5 and x10. On the other
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hand, {x4, x
1
8, x

2
8, x10} is not σ2-complementary. Pairs of positions that are

complementary are sometimes called connections, and a set of connections
is said to span an indexed signed formula Xµ if every atomic path through
Xµ contains at least one connection.

In our example, our attempt to build a countermodel for 3(p1 ⊃ p2) ⊃
(2p1 ⊃ 3p2) involves reasoning that for this formula to be false at some
world named by u1, 3(p1 ⊃ p2) must be true and 2p1 ⊃ 3p2 must be false
at u1. For 3(p1 ⊃ p2) to be true at u1, there must be some world named by
u2 and accessible from u1 at which p1 ⊃ p2 is true, which in turn requires
p1 to be false or p2 to be true at u2. In either case, for 2p1 ⊃ 3p2 to be
false at u1, 2p1 must be true and 3p2 must be false at u1, so at any worlds
named by u1 and u2 and accessible from u1, p1 must be true, and at any
world named by u3 and accessible from u1, p2 must be false. According
to the world realization σ, we will choose to let p1 be true at σ(u1) = u2

and σ(u2) = u2, and we will let p2 be false at σ(u3) = u2. So regardless of
whether p1 is false or p2 is true at u2, we obtain a contradiction, as either p1

is both true and false or p2 is both true and false at the world named by u2.
Observe that this argument remains valid if we let µ(x8) = 1, eliminating
position x2

8 and world name u2.
Notice how this reasoning is partially encoded in the indexed formula

tree and the matrix for Xµ. The disjunctive relationship between positions
x4 and x5 stipulates that only one of the corresponding signed subformulas
needs to hold. By requiring that all paths through Xµ be σ-complementary,
we ensure that regardless of which disjunctive set of positions holds, a con-
tradiction is derived, from which the validity of the root position’s label
might follow. Notice also, however, that the required accessibilities between
worlds have not yet been verified. The “accessibility template” described by
the formula frame must be used to validate a potential spanning set of con-
nections, which brings us to the final and most complex technical definition
in Theorems 1 and 2, namely, the L-admissiblity of world realizations.

2.5 L-Admissibility

Up to now, we have not made any mention of individual logics, and the
reader will be wondering how a formula such as 33p1 ⊃ 3p1 can be char-
acterized as K4-valid but K-invalid if, in both cases, the indexed formula
trees and formula frames are identical. The key is that the world realiza-
tion that makes all paths through the query formula complementary must
be admissible for the logic at hand, and the conditions of admissibility dif-
fer for each logic. In particular, a world realization σ for an indexed signed
formula Xµ with formula frame (V, Q) is said to be L-admissible if it has
the following properties.

1. If L is not serial, then σ is strict. Recall that a world realization is
strict if it maps all variable world names to constant world names.

2. The reduction ordering ⊳ = (≪ ∪ <)+, that is, the transitive closure
of the tree and modal orderings, is irreflexive.
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3. For all indexed positions y and y′ of Xµ, σ(wn(y′)) = wn(y) implies
that

(a) y and y′ are α-related, and

(b) (σ(par(wn(y′))), σ(wn(y))) ∈ clo(L, Q∗), where par(wn(y′)) is
the parent of wn(y′) in the formula frame,

Q∗ = {(σ(wn(z)), σ(wn(z′))) :

(wn(z), wn(z′)) ∈ Q,

z, z ⊳ y′, and z and z′ are α-related to y′.}

and clo(L, Q∗) is the L-closure of the binary relation Q∗. This
is the smallest binary relation containing Q∗ and satisfying L’s
frame conditions, with the exception of seriality.

The first condition states that a world realization may only be non-strict if
L is serial. A non-strict world realization can effectively instantiate variable
world names to be new concrete world names. Intuitively, this corresponds
to postulating the existence of some successor to a world containing a signed
formula of necessary force, then requiring its component to hold in the world
just assumed to exist. The second condition states that it must be possible
to order the indexed positions of Xµ in such a way that they respect both
the structure of the formula and the modal requirement that every concrete
world is known to exist when it is used. The third definition looks daunting,
but simply states that when a signed formula corresponding to a position
is forced to hold at some world, then that world is an L-successor of the
parent position in the countermodel constructed so far. In other words,
when a concrete world is used, it is used in a way that respects L’s frame
conditions.

3 Multimodal Logics

Multimodal formulas are a generalization of unimodal formulas in which
the modal connectives 2 and 3 are replaced by any number n of pairs
of connectives 21, 31, 22, 32, . . . , and 2n, 3n. A multimodal frame is
a tuple (W, R1, R2, . . . , Rn), where W is a nonempty set of worlds, and
every Ri is a binary accessibility relation on W . A multimodal model is a
tuple (W, R1, R2, . . . , Rn, V ), where (W, R1, R2, . . . , Rn) is a frame and V

is, as before, a valuation from propositional letters to subsets of W . The
multimodal truth relation is the usual extension of the unimodal one, with
the modal cases defined as follows.

1. M, w  2iA iff for every x ∈ W such that (w, x) ∈ Ri, M, x  A.

2. M, w  3iA iff there is some x ∈ W such that (w, x) ∈ Ri and
M, x  A.

Every accessibility relation Ri can be individually serial, reflexive, symmet-
ric, transitive, or euclidean, but multimodal logics are most interesting when
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their modalities interact. We consider the following interactions between re-
lations.

1. Ri and Rj are said to be mutually symmetric if for every w, x ∈ W ,
(w, x) ∈ Ri implies that (x, w) ∈ Rj ,

2. Ri, Rj , and Rk are said to be mutually transitive if for every w, x, y ∈
W , (w, x) ∈ Ri and (x, y) ∈ Rj together imply that (w, y) ∈ Rk, and

3. Ri, Rj , and Rk are said to be mutually euclidean if for every w, x, y ∈
W , (w, x) ∈ Ri and (w, y) ∈ Rj together imply that (x, y) ∈ Rk.

A wide family of multimodal logics can be defined in this way. For in-
stance, the basic temporal language [5] has two modalities R1 and R2. In
a particular interpretation of temporal logic, both relations are mutually
symmetric in both directions, i.e. for every w, x ∈ W , (w, x) ∈ R1 implies
that (x, w) ∈ R2 and vice versa. In addition, both R1 and R2 are serial
and transitive. Rather than assigning names to multimodal logics, we will
simply associate logics with their frame conditions. A multimodal formula
A is again said to be L-valid if it is true at all worlds in all models whose
underlying frames satisfy L’s frame conditions. (Here, L simply represents
any collection of frame conditions.)

Thanks to the modularity of our approach, very few modifications need
to be made to the definitions presented in the previous section to make
them applicable to multimodal logics. Indeed, the multimodal soundness
and completeness results should look very familiar:

THEOREM 3 (Soundness). If there is a multiplicity µ for a signed formula

X = (0, A) and an L-admissible world realization σ for the indexed signed

formula Xµ such that all atomic paths through Xµ are σ-complementary,

then A is L-valid.

THEOREM 4 (Completeness). If a formula A is L-valid, then there is a

multiplicity µ for the signed formula X = (0, A) and an L-admissible world

realization σ for the indexed signed formula Xµ such that all atomic paths

through Xµ are σ-complementary.

In fact, the results are identical. The only differences are in the mean-
ings of L-validity, which we have already mentioned, and L-admissibility for
world realizations. Even in the latter case, the definition of L-admissibility
does not change from the unimodal case, since the properties of the logic are
encoded in world realizations by means of closures. We will demonstrate the
uniformity of our approach by working through a small example, namely,
showing the validity of the temporal formula 31p1 ⊃ 223131p1. In tempo-
ral terms, this formula states that if p1 was true in the past, then at every
point in the future, there will have been a point in the past at which p1 was
true in the past. Since we are now dealing with multiple modalities, we will
decorate types ν, ν1, π, and π1 with indices to differentiate which modality
they refer to, viz. νi, νi,1, πi, and πi,1.
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Figure 4. The indexed formula tree and formula frame for the indexed
signed formula Xµ.

Let X = (0, 31p1 ⊃ 223131p1) and let µ(x) = 1 for each position x of
X of secondary type νi,1. Then the indexed formula tree and formula frame
for Xµ are shown in Figure 4, and the matrix for Xµ is

[

x3 x7

]

Notice that the formula frame shown in Figure 4 is now also multimodal,
and we have decorated its edges to indicate which modality each one repre-
sents. Let σ be a world realization such that σ(u1) = u1 and σ(u2) = u2.
The modal ordering < induced by σ on the indexed positions of Xµ is
shown as dotted arcs in the indexed formula tree in Figure 4. Now the
single path {x3, x7} through Xµ is σ-complementary, since σ(wn(x3)) =
u2 = σ(wn(x7)), and since σ is L-admissible (the three conditions of L-
admissibility are easy to verify), 31p1 ⊃ 223131p1 is L-valid.

4 Related Work

Wallen’s work [18], based on the prefixed modal tableaus of Fitting [8, 9],
is the only matrix characterization for modal logics we are aware of. Repre-
senting worlds using prefixes is convenient for proof search, since the struc-
tures of prefixes automatically encode the required accessibility relation
amongst the worlds they represent. Since prefixes are nothing more than
sequences of positive integers, world realizations become string substitu-
tions, while proof search becomes a string unification problem, where each
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logic allows different kinds of string substitutions. Our characterization is
far more semantically motivated, since our world names are simply identi-
fiers for worlds, and a separate formula frame is required to represent the
required accessibility relation amongst the named worlds. In a way, we have
traded efficiency during proof search for uniformity and semantic clarity.

Although matrix characterizations for modal logics have not been widely
studied, they are closely related to tableau systems, which have (see [10] for
an overview). The connection is that paths correpond naturally to tableau
branches, complementary paths to closed branches, and matrices to compact
representations of the atomic formulas on all potential complete branches.
So far, matrix characterizations have been based on explicit tableau systems
that refer to concrete worlds in their rules, either in the form of integer pre-
fixes [8, 14] or atomic world symbols similar to our world names [15, 3].
Implicit tableau systems, on the other hand, do not refer to worlds. In-
stead, a tableau node is understood to be bound to a single world in the
countermodel, and the semantic properties of each logic are built directly
into the tableau rules [17, 10]. In translating a tableau system into a corre-
sponding matrix characterization, the nondeterminism arising from tableau
rule orderings disappears, and the incremental search for a closed tableau
becomes a simultaneous search to make all paths complementary (i.e. make
all potential branches closed). We have seen how to abstract world assign-
ments from explicit tableau systems, but it remains to be seen if implicit
tableau systems can give rise to equivalent matrix characterizations.

5 Conclusions and Future Work

We have presented a uniform and modular matrix characterization of valid-
ity for propositional multimodal logics. However, we have not touched on
proof search, other than conceding that we have ostensibly traded suitability
for automated theorem proving for expressivity, uniformity, and thereotical
clarity. Like Baldoni [3], we can use our formulation to show the decid-
ability of the multimodal logics we have considered, but it is not intended
as an efficient proof search mechanism. Investigating possible proof search
techniques for our characterization remains to be done.

Natural extensions to our work include matrix characterizations for a
wider class of multimodal logics, such as the incestual multimodal logics
of Catach [6]. A different extension would be to first-order multimodal
logics, something that would conceivably follow much the same route as
Wallen’s generalization of his system from propositional unimodal to first-
order unimodal logics [19]. Finally, the idea that certain intuitionistic modal
logics may be expressible as classical bimodal logics [20, 1] opens up the
interesting possibility of matrix characterizations for intuitionistic modal
and multimodal logics, an area which is still largely unexplored.
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