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Proofs with logical relations play a key role to establish rich properties such as

normalization or contextual equivalence. They are also challenging to mechanize. In this

paper, we describe two case studies using the proof environment Beluga: first, we explain

the mechanization of the weak normalization proof for the simply-typed lambda-calculus;

second, we outline how to mechanize the completeness proof of algorithmic equality for

simply typed lambda-terms where we reason about logically equivalent terms. The

development of these proofs in Beluga relies on three key ingredients: 1) we encode

lambda-terms together with their typing rules, operational semantics, algorithmic and

declarative equality using higher-order abstract syntax thereby avoiding the need to

manipulate and deal with binders, renaming and substitution ourselves. 2) we take

advantage of Beluga’s support for representing derivations that depend on assumptions

and first-class contexts to directly state inductive properties such as logical relations and

inductive proofs 3) we exploit Beluga’s rich equational theory for simultaneous

substitutions; as a consequence users do not need to establish and subsequently use

substitution properties, and proofs are not cluttered with references to them. We believe

these examples demonstrate that Beluga provides the right level of abstractions and

primitives to mechanize challenging proofs using higher-order abstract syntax encodings.

They also demonstrate how engaging and following Beluga’s framework of thinking about

contextual objects, contexts, and context extensions sharpens our mathematical thought

processes providing a uniform, Kripke-style perspective of logical relations proofs.

1. Introduction

Proofs by logical relations play a fundamental role to establish rich properties such as

contextual equivalence or normalization. This proof technique goes back to Tait [Tai67]

and was later refined by Girard [GLT90]. The central idea of logical relations is to specify

relations on well-typed terms via structural induction on the syntax of types instead of

directly on the syntax of terms themselves. Thus, for instance, logically related functions

take logically related arguments to related results, while logically related pairs consist of

components that are related pairwise.

Mechanizing logical relations proofs is challenging: first, specifying logical relations

themselves typically requires a logic which allows arbitrary nesting of quantification and

implications; second, to establish soundness of a logical relation, one must prove the
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Fundamental Property which says that any well-typed term under a closing simultaneous

substitution is in the relation. This latter part requires some notion of simultaneous

substitution together with the appropriate equational theory of composing substitutions.

As Altenkirch [Alt93] remarked,

“I discovered that the core part of the proof (here proving lemmas about CR) is fairly straight-

forward and only requires a good understanding of the paper version. However, in completing

the proof I observed that in certain places I had to invest much more work than expected, e.g.

proving lemmas about substitution and weakening.”

While logical normalization proofs often are not large, they are conceptually intricate

and mechanizing them has become a challenging benchmark for proof environments.

There are several key questions that are highlighted when we attempt to formalize such

proofs: Are the terms we are reasoning about closed? If they are not closed, how can we

characterize their free variables and reason about them? How should we represent the

abstract syntax tree for lambda-terms and enforce the scope of bound variables? How

should we represent well-typed terms or typing derivations? How should we deal with

substitution? How can we define logical relations on open terms?

Early work [Ber90, Coq92, Alt93] represented lambda-terms using (well-scoped) de

Bruijn indices which leads to a substantial amount of overhead to prove properties

about substitutions such as substitution lemmas and composition of substitution. To

improve readability and generally better support such meta-theoretic reasoning, nominal

approaches support α-renaming but substitution and properties about them are specified

separately; the Isabelle Nominal package has been used in a variety of logical relations

proofs from proving strong normalization for Moggi’s modal lambda-calculus [DS09] to

mechanically verifying the meta-theory of LF itself including the completeness of equiv-

alence checking [NU08,UCB11].

Approaches representing lambda-terms using higher-order abstract syntax (HOAS)

model binders in the object language (i.e. in our case the simply typed lambda-calculus)

as binders in the meta language (i.e. in our case the logical framework LF [HHP93]). Such

encodings inherit not only α-renaming and substitution from the meta-language, but also

weakening and substitution lemmas. However, direct encodings of logical relations proofs

are beyond the logical strength supported in systems such as Twelf [PS99]. In this paper,

we demonstrate the elegance of logical relations proofs within the proof environment

Beluga [PD10] which is built on top of the contextual logical framework LF. In contrast

to LF where the assumptions are implicit, the contextual logical framework LF extends

LF with first-class contexts and first-class simultaneous substitutions supporting a rich

equational theory about them [CP13,PC15]. Moreover, it allows the direct representation

of derivations that depend on assumptions by pairing LF objects together with their

surrounding context and this notion is internalized as a contextual type [Ψ ` A] which

is inhabited by term M of type A in the context Ψ [NPP08].

Properties about contexts, substitutions, and contextual objects such as for example

logical relations can be encoded in Beluga using indexed inductive types [CP12]. In-

ductive proofs about contexts and contextual LF objects are implemented in Beluga as

dependently-typed recursive functions via pattern matching [Pie08,PD08].

In this paper, we describe two case-studies, both of which concentrate on the simply-
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typed lambda-calculus and require reasoning about open terms: first, we explain the

mechanization of the weak normalization proof for the simply-typed lambda-calculus us-

ing logical relations. As we reduce under lambda-abstractions, we must define reducibility

on open terms. This is an example of a unary logical relation. Second, we outline how to

mechanize the completeness proof of algorithmic equality for simply typed lambda-terms

by Crary [Cra05]. Algorithmic equality is defined in a type-directed way and two terms

M and N of type A→ B are equal, if for any term x, M x is equal to N x. To prove com-

pleteness we reason about logically equivalent open terms using a binary logical relation.

In these case-studies, we rely upon three key aspects:

1 We encode lambda-terms together with their typing rules, operational semantics,

algorithmic and declarative equality using higher-order abstract syntax in the logi-

cal framework LF. This allows us to model binders in our object language (i.e. the

simply-typed lambda-calculus) using the binders in the logical framework LF. As

a consequence, we do not need to build up our own infrastructure for representing

binders, renaming and substitution. We showcase two techniques of how to represent

and reason with well-typed terms: in our first case study of weak normalization we

will work with intrinsically typed terms, while in our second case study of proving

completeness of algorithmic equality we reason about well-typed terms using typing

derivations explicitly.

2 We give a Kripke-style definition of logical relations about terms. Kripke logical re-

lations are indexed by possible worlds and reason about arbitrary future extensions

of worlds. In our setting we define the logical relation on terms M in a context Ψ

in which it is defined. The context hence plays the role of the world in which the

term is meaningful. Possible context extensions are characterized by simultaneous

substitutions. This allows us to argue that logically related terms in a context Ψ and

are also logically related in extensions of the context Ψ. Letting ourselves be guided

by the underlying philosophy of the contextual logical framework LF sharpens our

mathematical thought processes leading to a generalized and uniform Kripke-style

formulation of logical relations on open terms.

3 We take advantage of Beluga’s support for representing derivations that depend on

assumptions using contextual objects, first-class contexts, and first-class simultane-

ous substitutions to directly state and encode inductive properties such as logical

relations and proofs about well-typed terms. In particular, we exploit these features

to give a Kripke-style definition of reducibility candidates for terms together with the

context in which they are meaningful using inductive types and higher-order func-

tions. In mechanizing the proofs we benefit from Beluga’s rich equational theory of

simultaneous substitutions which obliterates the need to establish various properties

about simultaneous substitution and avoids cluttering our proofs with them. This

leads to a direct, elegant, and compact mechanization and allows us to demonstrate

Beluga’s strength at formalizing logical relations proofs.

All case studies described in this paper, in addition to various variations, are accessible

at https://github.com/Beluga-lang/Beluga/tree/master/examples/logrel.

https://github.com/Beluga-lang/Beluga/tree/master/examples/logrel
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2. Example: Weak Normalization

We begin discussing the weak normalization proof for the simply typed lambda-terms

with reduction under binders.

2.1. The Basics: Well-typed Lambda-Terms

The grammar for our lambda-calculus is straightforward: it includes lambda abstractions,

variables, and application in addition to simple types formed by the base type i and

function types.

Types A,B ::= i | A→ B

Terms M,N ::= x | lam x.M |M N

Typing Context Γ,Ψ ::= · | Γ, x : A

We choose to describe the typing rules, the operational semantics, and normal forms in

a two-dimensional way. Following Gentzen’s natural deduction style we keep the context

of assumptions implicit. There are two main reasons for this kind of presentation: first,

it can be directly translated into specifications in the logical framework LF and hence

it foreshadows our mechanization; second, letting us be guided by LF highlights clearly

what assumptions are made and will naturally lead us to a concrete characterization of

contexts which we postpone until needed in the next section. We begin stating the rules

for well-typed terms.

M : A Term M has type A

M : A→ B N : A
M N : B

app

x : A
u

...

M : B

lam x.M : A→ B
lamx,u

Note that in the typing rule for lambda-abstractions, we must show that M has type B

assuming that x has type A and x is a fresh variable. We then define a form of reduction,

written as M −→ N , which supports reductions in the body of a lambda-abstraction.

On top of single step reduction, we build a multi-step relation, written as M −→∗ N ,

which includes transitivity and reflexivity.

M −→∗ N M steps to N in multiple steps

M −→∗ M s refl
M −→M ′ M ′ −→∗ N

M −→∗ N s trans

M −→ N M steps to N in one step

M −→M ′

M N −→M ′ N
s app1 N −→ N ′

M N −→M N ′
s app2 M −→M ′

lam x.M −→ lam x.M ′
s lamx

(lam x.M) N −→ [N/x]M
s beta

We halt when we reach a normal form, i.e. the term does not contain a redex. We define

below when a term is in normal form in a judgmental way using two mutual judgments.
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M norm M is normal M neut M is neutral

M neut
M norm

n neut
M neut N norm

M N neut
n app

x neut
n

...

M norm

lam x.M norm
n lamx,n

2.2. Hand-written Proof Outline: Weak Normalization

We revisit here the proof that the evaluation of well-typed terms halts using reducibility

candidates which is typical for logical relations proofs. However, often we simply de-

fine reducibility on closed terms. As we allow reductions under binders, we must state

reducibility on open terms. This naturally leads to the question: what are the free vari-

ables in a term? How can we characterize them and reason about them? – Here we

propose to think of a term within a context of assumptions and state reducibility of a

term at type A using Kripke-style possible worlds where the context in which a term is

meaningful corresponds to a world.

As is standard, reducibility is defined inductively on the type. A well-typed term is

reducible at base type precisely when it halts. Recall that a well-typed term M halts,

if M is in normal form; however, our judgment M norm requires that for each variable

occurring in M , we have an assumption stating that it is neutral. When we state prop-

erties about well-typed terms such as reducibility, it is often more convenient and more

precise to make the context of assumptions explicit. This is in contrast to our previous

two-dimensional representation which left the context of assumptions implicit. Obviously,

the two formulations are equivalent and it is easy to convert between them and we choose

here the representation that is most convenient and most precise at a given point.

This leads us to defining the context in which a term M is meaningful as a typed

neutral variable context below where we keep track of typing assumptions as well as the

fact that all variables are neutral .

Typed Neutral Variable Context Ψ,Φ ::= · | Ψ, x : A, x neut

Hence, we define more precisely that a term M in the context Ψ (written as Ψ ` M)

is reducible at base type, when it halts, i.e. there exists a term V it steps to and V norm

in the context Ψ.

How can we now define reducibility for a term M at function type A → B? – In

the course of evaluating a term M , we may extend the initial world (i.e. the context Ψ

in which M is meaningful) as we traverse lambda-abstractions. We hence must be able

to reason about future extensions of a world (i.e. contexts Φ) and more importantly,

we must be able to use the term M in the future world. The notion of accessibility of

worlds in Kripke-style semantics corresponds in our setting to moving from one context

Ψ to its extension via a simultaneous substitution that weakens Ψ and guarantees that

normal forms are preserved, i.e. we only replace variables with neutral terms. In practice,

we in fact simply rename variables. We can then define reducibility of a term M in a

context Ψ at function type A → B, if for all future contexts Φ, neutral substitutions ρ,
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where Φ ` ρ : Ψ, and for every reducible term N at type A in the future context Φ, the

application [ρ]M N is reducible at type B in the future context Φ.

We define first the abbreviation Φ ≥ρ Ψ to mean Φ ` ρ : Ψ. The substitution ρ is

neutral, i.e. it only allows variables in Ψ to be replaced by neutral terms of the expected

type.

Φ ≥ρ Ψ ρ is a neutral substitution from the context Ψ to Φ

Φ ≥· ·
Φ ≥ρ Ψ Φ `M : A Φ `M neut

Φ ≥ρ,M/x Ψ, x : A, x neut

This leads to the following definition of reducibility on open terms.

Ri = {Ψ `M | Ψ `M halts}
RA→B = {Ψ `M | Ψ `M halts and ∀Φ ≥ρ Ψ, N where Φ ` N : A,

if (Φ ` N) ∈ RA then (Φ ` [ρ]M N) ∈ RB}

Standard definitions of reducibility often omit keeping and maintaining typing infor-

mation. We choose to make it explicit. Our mechanization will implicitly keep track of

typing information using intrinsically typed terms.

The proof for showing that all well-typed terms halt, falls into two main parts. The

first part, the main lemma (sometimes called the escape lemma), states that if a term

is reducible at type A then it halts. The fundamental theorem states that all well-typed

terms are indeed reducible. Both theorems together then allow us to show that well-typed

terms halt. In stating the theorems we make for clarity the context explicit in our typing

judgments and when referring to our judgmental definition of normal and neutral terms.

Theorem 2.1 (Main lemma).

1 If (Ψ `M) ∈ RA then Ψ `M halts.

2 If Ψ `M : A and Ψ `M neut then (Ψ `M) ∈ RA.

Proof. The first part follows directly from the definition of reducibility. The second

part is proven by induction on the type A.

One can then easily prove that RA is closed under expansion.

Lemma 2.2 (Closure under expansion).

1 If (Ψ `M ′) ∈ RA and M −→M ′ then (Ψ `M) ∈ RA.

2 If (Ψ `M ′) ∈ RA and M −→∗ M ′ then (Ψ `M) ∈ RA.

Proof. Both statements are proven by induction on A. We show here the proof of the

first statement.

Case: A = i

(Ψ `M ′) ∈ Ri by assumption

Ψ `M ′ halts by definition of Ri
∃V. M ′ −→∗ V and Ψ ` V norm by definition of halts

M −→∗ V by rule s trans
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Ψ `M halts by definition of halts

(Ψ `M) ∈ Ri by definition of Ri

Case: A = B → C

(Ψ `M ′) ∈ RB→C by assumption

(Ψ `M ′) halts, i.e. ∃V.M ′ −→∗ V and Ψ ` V norm

for all Φ ≥ρ Ψ, if Φ ` N : B and (Φ ` N) ∈ RB then (Φ ` [ρ]M ′ N) ∈ RC by red. def.

Assume Φ ≥ρ Ψ, Φ ` N : B and (Φ ` N) ∈ RB
M −→M ′ by assumption

M −→∗ V by s trans

Ψ `M halts by def. of halts

[ρ]M −→ [ρ]M ′ by subst. property

[ρ]M N −→ [ρ]M ′ N by rule s app1

(Φ ` [ρ]M ′ N) ∈ RC by previous lines

(Φ ` [ρ]M N) ∈ RC by i.h.

(Ψ `M) ∈ RB→C by definition of R

Our aim is to show that all well-typed terms are reducible. As usual we must gen-

eralize this statement to well-typed open terms: If M is a well-typed term of type A

under the typing assumptions x1:A1, . . . , xn:An and σ is a substitution of the form

M1/x1, M2/x2, . . . , Mn/xn s.t. for all Mi we have Mi:Ai in the context Φ, Mi is

reducible (i.e. (Φ ` Mi) ∈ RAi
) and (Φ ` [σ]M) ∈ RA. Key to this generalization is

the notion of a simultaneous substitution σ which provides well-typed reducible terms

Mi for all the variables xi of the term M . We call such a substitution a reducible substi-

tution. It is worthwhile considering the domain and range of the reducible substitution

carefully. What is the domain of such a reducible substitution? - It should be the typing

context Γ = x1:A1, . . . , xn:An. What should be the range of the reducible substitution? -

It should be the typed neutral variable context Φ = y1:B1, y1 neut, . . . , yk:Bk, yk neut,

as σ provides reducible terms Mi for each variable xi and reducible terms are only mean-

ingful in the typed neutral variable context. This highlights the subtle issues due to

variables. Thinking of terms within a context of assumptions forces us to understand

precisely what assumptions are necessary. We can now define reducible substitutions

more precisely inductively on the structure of the typing context Γ.

R· = {Φ ` · }
RΓ,x:A = {Φ ` σ,M/x | Φ `M : A, (Φ `M) ∈ RA and (Φ ` σ) ∈ RΓ }

It is easy to see that if (Φ ` σ) ∈ RΨ then the substitution σ is well-typed i.e. Φ ` σ : Ψ.

Before we prove the main lemma, we state two monotonicity properties about reducible

terms and reducible substitutions.

Lemma 2.3 (Monotonicity Lemma).

1 If (Ψ `M) ∈ RA and Φ ≥ρ Ψ then (Φ ` [ρ]M) ∈ RA.

2 If (Ψ ` σ) ∈ RΨ0
and Φ ≥ρ Ψ then (Φ ` [ρ]σ) ∈ RΨ0

.
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Intuitively the monotonicity properties hold because the substitution ρ can only replace

variables with neutral terms. This is guaranteed by the fact that ρ is a mapping between

typed neutral variable contexts. As a consequence, proving that the term (or substitution)

continues to be reducible is straightforward. We are now ready to state and prove the

fundamental lemma.

Theorem 2.4 (Fundamental theorem). If Γ ` M : A and (Ψ ` σ) ∈ RΓ then

(Ψ ` [σ]M) ∈ RA.

Proof. By induction on the typing derivation. We show only the interesting case:

Case
Γ `M : A→ B Γ ` N : A

Γ `M N : B

Ψ ` [σ]N : A by substitution lemma

Ψ ` [σ]M ∈ RA→B and Ψ ` [σ]N ∈ RA by i.h.

∀Φ ≥ρ Ψ, N ′ where Φ ` N ′ : A

if (Φ ` N ′) ∈ RA, then (Φ ` ([ρ][σ]M) N ′) ∈ RB by reducibility def.

([idΨ][σ]M) ([σ]N) ∈ RB by previous line choosing idΨ for ρ and Ψ for Φ

([idΨ][σ]M) ([σ]N) = ([σ]M) ([σ]N) = [σ](M N) by subst. properties

[σ](M N) ∈ RB by previous lines

Case
Γ, x:A `M : B

Γ ` lam x.M : A→ B

(Ψ ` σ) ∈ RΓ by assumption

Ψ, x:A, x neut ` idΨ : Ψ by weakening

(Ψ ` [idΨ]σ) ∈ RΓ by monotonicity lemma

Ψ, x:A, x neut ` x : A by typing rule

Ψ, x:A, x neut ` x neut by def. of neutral/normal terms

(Ψ, x:A, x neut ` x) ∈ RA by Main Lemma (2)

(Ψ, x:A, x neut ` [idΨ]σ, x) ∈ RΓ,x:A by def. of reducibility of substitutions

(Ψ, x:A, x neut ` [[idΨ]σ, x]M) ∈ RB by i.h.

Ψ, x:A, x neut ` [[idΨ]σ, x]M halts by Main Lemma (1)

∃V.[[idΨ]σ, x]M −→∗ V and Ψ, x:A, x neut ` V norm by def. of halts

lam x.[[idΨ]σ, x]M −→∗ lam x.V by multi-step red. for lambda-abstractions

[σ](lam x.M) −→∗ lam x.V by subst. property

Ψ ` lam x.V norm by n lam

Ψ ` [σ](lam x.M) halts by def. of halts

Given an extension Φ ≥ρ Ψ and a term N , s.t. Φ ` N : A and (Φ ` N) ∈ RA.

(Φ ` [ρ]σ) ∈ RΓ by monotonicity lemma

(Φ ` ([ρ]σ, N/x)) ∈ RΓ,x:A by def. of reducibility for substitutions

(Φ ` [ [ρ]σ, N/x ]M) ∈ RB by i.h.

(Φ ` [N/x][[ρ]σ, x/x]M) ∈ RB by subst. property

(Φ ` (lam x.[[ρ]σ, x/x]M) N) ∈ RB by backwards closed lemma

(Φ ` [[ρ]σ](lam x.M) N) ∈ RB by subst. properties
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(Φ ` [ρ]([σ](lam x.M)) N) ∈ RB by subst. properties

(Ψ ` [σ](lam x.M)) ∈ RA→B by def. of reducibility

We made in the proof the use of weakening and strengthening explicit. Foreshadowing

our mechanization, Beluga silently deals with the uses of weakening and strengthening. It

also silently applies substitution properties to justify steps in the proof. As a consequence,

the user can concentrate on the main aspects of the proof. We draw here in particular

attention to the use of the substitution property to justify that lam x.[[idΨ]σ, x]M is

equivalent to [σ](lam x.M) which seems non-trivial at first.

Corollary 2.5 (Weak normalization). If Γ `M : A then M halts.

Proof. Let Γ be a context x1:A1, . . . , xn:An. Then there exists a substitution id =

x1/x1, . . . , xn/xn and a context Φ = x1:A1, x1 neut, . . . , xn:An, xn neut s.t. Φ ` id : Γ.

Moreover, by the main lemma, we have that (Φ ` [id]M) ∈ RA and hence by reification

Φ ` [id]M halts. By subst. property, we have [id]M = M and therefore Φ `M halts.

In the proofs, we are drawing attention to the use of properties of simultaneous sub-

stitutions marking their use with italics. These properties are typically the source of

the most overhead when formalizing results using various low level representations of

variables and variable binding. In developing our definitions for well-typed terms, nor-

mal forms, and reducibility we have been guided by the contextual logical framework

LF. Thinking about terms in the context they are meaningful in put into sharp focus

the scope of terms and honed our mathematical thought processes providing a fresh

perspective on the weak normalization proof using Kripke-style logical relations.

2.3. Encoding of Lambda-Terms, Types, and Reductions in LF

Next we demonstrate how the definitions of well-typed terms, normal forms, and re-

ducibility translate directly and elegantly into Beluga. By hand we defined grammar and

typing separately, but here it is actually more convenient to define intrinsically typed

terms directly, as it obliterates the need to carry typing derivations separately and leads

to a more compact mechanization. Below, tm defines our family of simply-typed lambda

terms indexed by their type as an LF signature. In typical higher-order abstract syntax

fashion, lambda abstraction takes a function representing the abstraction of a term over

a variable. There is no case for variables, as they are treated implicitly. We remind the

reader that this is a weak, representational function space – there is no case analysis or

recursion, and hence only genuine lambda terms can be represented.

LF tp : type =

| i : tp

| arr: tp → tp → tp;

LF tm : tp → type =

| app : tm (arr T S) → tm T → tm S

| lam : (tm T → tm S) → tm (arr T S);

We then encode our step relation in a similar type-preserving fashion. Note in particular

the use of LF application to encode the object-level substitution in the s_beta case.

LF step : tm A → tm A → type =

| s_beta : step (app (lam λx.M x) N) (M N)
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| s_lam : ({x:tm A} step (M x) (M’ x)) → step (lam λx.M x) (lam λx.M’ x)

| s_app1 : step M M’ → step (app M N) (app M’ N)

| s_app2 : step N N’ → step (app M N) (app M N’)

;

LF mstep : tm A → tm A → type =

| s_refl : mstep M M

| s_trans: step M M’ → mstep M’ M’’ → mstep M M’’

;

Finally, we encode the judgments M norm and M neut as type families normal and

neutral in LF in the standard fashion. The most interesting case is the encoding for

normal (lam λx.M x). A term lam λx.M x is normal, if we can show that for all x:tm and

neutral x, normal (M x). It directly translates the parametric and hypothetical rule using

the LF function space.

LF normal : tm A → type =

| n_lam : ({x:tm A} neutral x → normal (M x)) → normal (lam λx.M x)

| n_neut : neutral M → normal M

and neutral : tm A → type =

| n_app : neutral M → normal N → neutral (app M N);

2.4. Encoding Logical Relations as Inductive Definitions

The reducibility predicate cannot be directly encoded as a type family in LF, since it

involves a strong, computational function space. Moreover, our earlier definition of re-

ducibility for open terms relied on reasoning about context extensions. In the logical

framework LF, the context of assumptions is ambient and implicit. This makes encod-

ing of logical relations in LF challenging. Luckily, Beluga does not only supports LF

specifications, but provides a first-order logic with inductive definitions [CP12] to ex-

press properties about contexts, contextual objects, and substitutions. This is key to

stating properties about well-typed terms that depend on typing assumptions. This is

accomplished by pairing the well-typed term together with its context using contextual

types [NPP08]. For example, lam y.x y where x has type i → i is represented as the

contextual LF term [x:tm (arr i i) ` lam λy.app x y]. If a term is closed, for example

[ ` lam λx. x], we simply write [lam λx.x] omitting the turnstyle to improve readability.

When stating reducibility candidates we rely on the typed neutral variable context

which in addition to typing assumptions for variables also carries an assumption stat-

ing that variables are neutral. As we have seen, it is often convenient to abstract over

the concrete context of assumptions to express meaningful properties. In Beluga, we

can classify contexts using context schemas which resemble world declarations in Twelf.

Schema declarations in Beluga express an invariant we want to hold when stating in-

ductive properties about LF objects. The schema declaration ctx states that a context

of schema ctx contains assumptions that are instances of tm t. For example, the context

x:tm i, y:tm (arr i i) is a valid typing context of schema ctx. On the other hand the

context a:tp, x:tm a does not fit the schema ctx. The schema declaration nctx states that

a context must consist of a block of two assumptions, namely x:tm t and n_x: neut x. It

encodes our definition of a neutral variable context from page 5 forcing the fact that the
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typing assumption x:tm t is introduced together with the assumption neut x which states

that the variable x is neutral. Formally, a block is a Σ-type.

schema ctx = some [t:tp] tm t;

schema nctx = some [t:tp] block x:tm t, n_x:neut x;

In our previous reducibility definition, we stated that a term M in a typed neutral

variable context Ψ is reducible at type A → B if for all extensions Φ ≥ρ Ψ where

ρ is a neutral substitution and well-typed terms N where (Φ ` N) ∈ RA, we have

(Φ ` [ρ]M N) ∈ RB . We now can translate directly the reducibility definition given

earlier on page 6 into an indexed recursive type.

In contrast to LF type families which have kind type, we define recursive types using

either keyword inductive or the keyword stratified and declare its kind using the kind

ctype. We first state the inductive predicate Halts which is indexed by the context ψ of

schema nctx, the closed type A and a term M of type A in the context ψ.

inductive Halts : (ψ:nctx) {A:[tp]}{M:[ψ ` tm A[]]} ctype =

| Halts : {V:[ψ ` tm _]} [ψ ` mstep M V] → [ψ ` normal V] → Halts [A] [ψ ` M];

stratified Reduce : (ψ:nctx) {A:[tp]}{M:[ψ ` tm A[]]} ctype =

| Base : Halts [ ` i] [ψ ` M] → Reduce [i] [ψ ` M]

| Arr : {M:[ψ ` tm (arr A[] B[])]}

Halts [ ` arr A B] [ψ ` M] →
({φ:nctx} {ρ:[φ ` ψ]} {N:[φ ` tm A[]]}

Reduce [A] [φ ` N] → Reduce [ ` B ] [φ ` app M[ρ] N])

→ Reduce [arr A B] [ψ ` M];

By wrapping the context declaration in round parenthesis (in contrast to curly paren-

thesis) when we declare the kind of an inductive type, we express that ψ remains implicit

in the use of this type family and may be omitted, where curly brackets would denote an

explicit dependent argument. In other words, (ψ:nctx) is simply a type annotation stating

the schema the context ψ must have, but we do not need to pass an instantiation for ψ

explicitly. We refer to variables occurring inside a contextual object (i.e. inside [ ]) as

meta-variables to distinguish them from bound variables. In general, all meta-variables

such as A, M, V, N, etc. are associated with a postponed substitution which may be omitted,

if it is the identity substitution. As A is closed, we must weaken it by applying the empty

substitution [] when we state the type of M as ψ ` tm A[].

We can then read the inductive definition of Halts as follows: Halts [` A] [ψ ` M] if the

term M steps to a normal term V (i.e. [ψ ` mstep M V]) of the same type A.

Second, we encode the reducibility predicate using the stratified type Reduce. Stratified

types are defined inductively over one of its indices - in our case we define Reduce induc-

tively on the type A. Stratified types do not give directly rise to an induction principle –

instead, we typically reason on the inductive argument directly.

For base types, we simply state that [ψ ` M] is reducible at base type i, if [ψ ` M]

halts. For function types, we state that [ψ ` M] is reducible at type arr A B, if it halts

and for all contexts φ, substitutions ρ from ψ to φ, and terms N of type A in the context

φ that are reducible, we have that φ ` app M[ρ] N is reducible at type B.

As both ψ and φ must satisfy the context schema nctx, we are guaranteed that ρ is a

substitution providing neutral terms for all the variables in ψ.
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In declaring LF types and type families as well as inductive type families, we left

some variables free. As in Twelf [PS99], Beluga’s type reconstruction infers types for

any free variable in a given type or kind declaration and implicitly quantifies over them

[Pie13,FP14]. Programmers subsequently do not need to supply arguments for implicitly

quantified variables.

2.5. Encoding Inductive Proofs as Total Functions in Beluga

Inductive proofs can be encoded as total functions using pattern matching in Beluga. We

begin with encoding the lemma showing that halts is closed under expansion (Lemma

2.2). The lemma was proven by induction on the type of the term and hence our corre-

sponding function closed is written by case-analysis and pattern matching on the type.

We specify informally the theorem as a type in Beluga which can then be easily trans-

lated into the actual type of function closed:

For all closed types A, terms M and M’ of type A in the context ψ,

for all reductions S:[ψ ` step M M’], if Reduce [`A] [ψ ` M’] then Reduce [`A] [ψ ` M]

Recall that we explicitly quantify over objects using curly braces. Beluga’s reconstruc-

tion algorithm can often infer the type of free variables, and abstracts over these variables

at the outside. As however, terms depend on types we cannot leave Beluga’s reconstruc-

tion algorithm to infer their types and we must specify them explicitly.

rec closed : {A:[` tp]}{M:[ψ ` tm A[]]}{M’:[ψ ` tm A[]]}

{S:[ψ ` step M M’]} Reduce [A] [ψ ` M’] → Reduce [A] [ψ ` M] =

/ total a (closed _ a) /

Λ A,M,M’,S ⇒ fn r ⇒ case [A] of

| [` i] ⇒
let Base (Halts [ψ ` V] [ψ ` S’] v) = r in

Base (Halts [ψ ` V] [ψ ` s_trans S S’] v)

| [` arr _ C] ⇒
let Arr [ψ ` M’] (Halts [ψ ` V] [ψ ` S’] v) f = r in
Arr [ψ ` M] (Halts [ψ ` V] [ψ ` s_trans S S’] v)

(Λ φ, ρ, N ⇒ fn rn ⇒ closed [C] [φ ` app M[ρ] N] [φ ` app M’[ρ] N]

[φ ` s_app1 S[ρ]] (f [φ] [φ ` ρ] [φ ` N] rn))

;

The proof itself then proceeds by pattern matching on the type A. In the base case where

A=i, we model inversion in the actual proof using pattern matching on the definition of

Reduce and Halt obtaining a derivation S’ for [ψ ` step M’ V] and a proof v that V is

normal. We then use the assumption S which stands for [ψ ` step M M’] and S’, and

build a derivation for [ψ ` step M V] using transitivity (i.e. the rule s_trans). From this,

it is now trivial to provide a witness that Reduce [` i] [ψ ` M].

If A = arr B C, we pattern match on Reduce [ ` arr B C] [ψ `M’] obtaining a function

f which says “for all φ, ρ, N , if Reduce [` B] [φ ` N] then Reduce [` C] [φ ` app M’[ρ] N].

This models the inversion step in the proof.

We now build a witness for Reduce [` C] [φ ` app M[ρ] N] by building a function that

assumes φ, ρ, and well-typed term N as well as rn which stands for Reduce [` B] [φ ` N]

and returns Reduce [` C] [φ ` app M[ρ] N] following our earlier proof arguing by induction
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(recursion). Beluga checks that the function is total and hence represents a proof. In

specifying the proof we explicitly passed instantiations when making our recursive call.

We could have left these with an underscore leaving reconstruction to figure out the

appropriate instantiation. However, we feel the proof becomes clearer when specifying

them explicitly.

The encoding of the the main lemma follows directly the on-paper proof. The state-

ment of the lemmas is encoded as a type in Beluga making explicit the quantification

over the context ψ, the type A, and the term R. We again proceed by induction on the

type A. We only show the representation of the statement and omit the implementation

of the proof here, but it can be found in the electronic appendix. The appeal to weak-

ening and strengthen which we highlighted in the on paper proof are unnecessary in the

mechanization as Beluga silently takes this into consideration.

rec main1 :{ψ:nctx}{A:[tp]}{M:[ψ ` tm A[]]} Reduce [A] [ψ ` M] → Halts [A] [ψ ` M]

and main2:{ψ:nctx}{A:[tp]}{R:[ψ ` tm A[]]}{NR:[ψ ` neut R]} Reduce [A] [ψ ` R]

We now must state precisely what it means for a substitution to be reducible. We do

this by employing another indexed recursive type: a predicate expressing that the substi-

tution was built up as a list of reducible terms. The notation σ stands for a substitution

variable. Its type is written [φ ` γ], meaning that it has domain γ and range φ, i.e. it

takes variables in γ to terms of the same type in the context φ. In the base case, the

empty substitution is reducible. In the Cons case, we read this as saying: if σ is a reducible

substitution (implicitly at type [φ ` γ]) and M is a reducible term at type A, then σ with

M appended is a reducible substitution (implicitly at type [φ ` γ,x:tm A[]] – the domain

has been extended with a variable of type A).

datatype LogSub : {γ:ctx}(φ:nctx){σ:[φ ` γ]} ctype =

| Nil : LogSub [] [φ ` ^ ]

| Dot : LogSub [γ] [φ ` σ] → Reduce [A] [φ ` M]

→ LogSub [φ ` σ, M ];

We explicitly quantify over γ, the domain of the substitution, and leave the range

of the substitution implicit by using round parenthesis writing (φ:nctx); we explicitly

quantify over substitution variables using curly braces writing {σ:[φ ` γ]}. There are

two monotonicity lemmas we rely on in our proof of the fundamental lemma. These

lemmas correspond exactly to those we used in the on-paper proof.

1 Given a neutral substitution σ with domain ψ and range φ, if Reduce [` A] [ψ ` M]

then Reduce [A] [φ ` M[σ] ]

reduce_monotone: (φ:nctx){σ:[φ ` ψ]} Reduce [A] [ψ ` M] → Reduce [A] [φ ` M[σ]]

2 Given a neutral substitution ρ with domain ψ and range φ and a reducible substitution

σ from γ to ψ, we know that the composition σ[ρ] is a reducible substitution from γ

to φ.

redsub_monotone: {ρ:[φ ` ψ]} LogSub [γ] [ψ ` σ] → LogSub [γ] [φ ` σ[ρ]]
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Finally, our main lemma is standard and takes the form we would expect from the

handwritten proof: if M is a well-typed term in the typing context γ, and σ is a reducible

substitution with domain γ and range ψ which provides neutral terms as instantiations

for each of the free variables of M, then M[σ] (that is, the application of σ to M) is reducible.

We proceed by induction on the term. When it is a variable, we appeal to redvar_monotone

which is a special case of monotonicity lemma reduce_monotone where M is a variable. When

it is an application, we straightforwardly apply the functional argument we obtain from

the induction hypothesis for M1 to the induction hypothesis for M2. The application case

is straightforward thanks to the equational theory of substitutions supported in Beluga.

The lam case is the most interesting, however it follows directly the on paper proof.

Revisiting the on-paper proof, we note that we did not have to concern ourselves with

the property of substitutions that we wrote explicitly in the paper proofs. In Beluga,

normalizing LF objects incorporates the equational theory of simultaneous substitutions

and applies the necessary substitution properties automatically.

rec fund : {M:[γ ` tm A[]]} LogSub [γ] [ψ ` σ] → Reduce [A] [ψ ` M[σ]] =

/ total m (fund γ ψ a σ m) /

Λ M ⇒ fn rs ⇒ let (rs : LogSub [γ] [ψ ` σ] ) = rs in

case [γ ` M] of
| [γ ` #p] ⇒ redvar_monotone [γ] [γ ` #p] rs

| [γ ` app M1 M2] ⇒
let Arr [ψ ` _ ] h f = fund [γ ` M1] rs in
f [ψ] [ψ ` ...] [ψ ` M2[σ]] (fund [γ ` M2] rs)

| [γ ` lam λx. M1] ⇒
let rx = reflect [φ,b:block x:tm _,y:neutral x] [` _] [φ,b ` b.1] [φ,b ` b.2] in

let q0 = eval [γ,x:tm _ ` M1]

(Dot (monotoneSub [φ,b:block x:tm _,y:neutral x ` ...] rs) rx) in
let Halts [φ,b:block x:tm A1[],y:neutral x ` _]

[φ,b:block x:tm A1[],y:neutral x ` MS]

[φ,b:block x:tm A1[],y:neutral x ` NV]

= reify [φ,b:block x:tm _,y:neutral x] [` _] [φ,b ` M1[σ[...],b.1]] q0 in

Arr [φ ` lam (λx. M1[σ[...], x])]

(Halts [_ ` _]

(m_lam [φ, x:tm A1[] ` M1[σ[...],x]] [φ, b:block (x:tm A1[], y:neutral x) ` MS])

[φ ` n_lam (λx.λy. NV[...,<x;y>])])

(Λ ψ,ρ,N ⇒ fn rN ⇒
closed [` _ ] [ψ ` app (lam λx.M1[σ[ρ[...]],x]) N ] [ψ ` M1[σ[ρ[...]], N] ]

[ψ ` s_beta] (eval [γ,x:tm _ ` M1] (Dot (monotoneSub [ψ ` ρ] rs) rN)))

Weak normalization is now a trivial corollary. We only need to show that given a term

the context γ there always exist a neutral identity substitution.

Our development is ≈180 lines, and it follows the handwritten proof very closely, with

essentially no extra overhead. Compared to low-level techniques for variable binding,

it is a huge win to not be burdened with proving properties of simultaneous substitu-

tion. The approach scales naturally when we also consider not only β-reduction, but

also η-expansion. Even in other systems employing higher-order abstract syntax, such

as Abella [Gac08], simultaneous substitution is not a first-class notion, and must be

defined explicitly. This means that one must still prove properties of simultaneous sub-

stitution, although it is somewhat easier in Abella than with a low-level representation

because simultaneous substitution can be built out of the provided individual substitu-
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M ≡ N : A Terms M and N are declaratively equivalent at type A

M1 ≡ N1 : B → B M2 ≡ N2 : B

M1 M2 ≡ N1 N2 : A
d app

x : A
u

...
M x ≡ N x : B

lam x.M ≡ lam x.N : A→ B
d lamx,u

x : A
u

...
M1 x ≡ N1 x : B M2 ≡ N2 : A

(lam x.M1) M2 ≡ [N2/x]N1 : B
d betax,u

x : A
u

...
M x ≡ N x : B

M ≡ N : A→ B
d extx,u

M : A
M ≡M : A

d refl
N ≡M : A
M ≡ N : A

d sym M ≡ L : A M ≡ N : A
M ≡ N : A

d trans

Fig. 1. Declarative Equivalence

tion. However, one must still explicitly prove that the defined simultaneous substitution

is a congruence in Abella, i.e. ([σ]M) ([σ]N) = [σ](M N) and similarly for the more

complex λ-abstraction case. In our system, this burden is lifted completely.

For systems such as Twelf [PS99] and Delphin [PS08] a direct formulation of normal-

ization proofs is out of reach, since they lack first-class contexts and recursive types.

Instead [SS08] proposed to represent and reason about an auxiliary logic to overcome

the limited meta-logical strength of systems such as Twelf. However, to our knowledge

this technique has not been employed to prove properties about open terms which are

significantly more complicated.

More generally, our approach should prove useful for many (Kripke) logical relations

proofs, such as parametricity, full abstraction, or various kinds of completeness proofs.

This is especially so for larger languages (e.g. with case expressions) where one must use

such properties of substitution repeatedly.

3. Example: Completeness of Algorithmic Equality

In this section we consider the completeness proof of algorithmic equality for simply-typed

lambda-terms. Extensions of this proof are important for the metatheory of dependently

typed systems such as LF and varieties of Martin-Löf Type Theory, where they are used

to establish decidability of typechecking.

3.1. The Basics: Declarative and Algorithmic Equality

We revisit again the simply typed lambda-calculus from the previous section. However

here we only only perform weak head reduction. This makes algorithmic equality more

efficient, and also simplifies many aspects of the proof. We concentrate here on giving the



A. Cave and B. Pientka 16

motivation and high level structure of the completeness proof for algorithmic equality.

For more detail, we refer the reader to [Cra05] and [HP05].

Declarative equivalence (see Fig. 1) includes convenient but non-syntax directed rules

such as transitivity and symmetry, among rules for congruence, extensionality and β-

contraction. In particular, it declares a term M equal to itself at type A, provided it is

well-typed. It may also include type-directed rules such as extensionality at unit type:

M : Unit N : Unit
M ≡ N : Unit

This rule relies crucially on type information, so the common untyped rewriting strat-

egy for deciding equivalence no longer applies. Instead, one can define an algorithmic

notion of equivalence which is directed by the syntax of types. This is the path we follow

here. We define algorithmic term equivalence mutually with path equivalence, which is

the syntactic equivalence of terms headed by variables, i.e. terms of the form xM1 ...Mn

(see Fig. 3.1).

M ⇔ N : A Terms M and N are algorithmically equivalent at type A

M ↔ N : A Paths M and N are algorithmically equivalent at type A

M −→∗ M ′ N −→∗ N ′ M ′ ↔ N ′ : i
M ⇔ N : i

alg base

x↔ x : A
ax

...

M x⇔ N x : B

M ⇔ N : A→ B
alg arrx,ax

M1 ↔M2 : A→ B N1 ⇔ N2 : A

M1 N1 ↔M2 N2 : B
alg app

Fig. 2. Algorithmic Equivalence

3.2. Hand-written Proof Outline: Completeness of Algorithmic Equality

In what follows, we sketch the proof of completeness of algorithmic equivalence for declar-

ative equivalence. A direct proof by induction over derivations fails unfortunately in the

application case where we need to show that applying equivalent terms to equivalent

arguments yields equivalent results. Instead, one can proceed by proving a more general

statement that declaratively equivalent terms are logically equivalent, and so in turn algo-

rithmically equivalent. Logical equivalence is a relation defined directly on the structure

of the types. It relates well-typed terms, as declarative equality is in fact only defined on

well-typed terms. In the base case two terms M and N are logically related at base type,

if they are algorithmically equal. As algorithmic equality relies on assumptions x↔ x : A,

we define logically equivalent terms in a well-typed neutral algorithmic equality context

where we keep the typing assumptions, i.e. x : A, and the fact that every variable is

algorithmically equal to itself, i.e. x↔ x : A.
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Well-Typed Algorithmic Equality Context Ψ ::= · | Ψ, x : A, nx : x↔ x : A

It might seem redundant to keep typing assumptions, however the completeness proof

of algorithmic equality relies on this information in subtle ways. We therefore define

(Ψ `M ≈ N) ∈ RA Terms M and N are logically equivalent at type A

The key case is at function type, which directly defines logically equivalent terms

at function type as taking logically equivalent arguments to logically equivalent results.

Algorithmic equality for terms M and N of type A→ B states that it suffices to compare

their application to fresh variables: Assuming that x ↔ x : A, we show that M x ⇔
N x : B. We hence must be able to reason about future extensions of the initial context.

This Kripke-style monotonicity condition hence naturally arises and is one of the reasons

that this proof is challenging. While in the previous weak normalization proof for simply

typed lambda-terms this quantification over context extensions can often be avoided

using other technical tricks, it is hard to avoid in the completeness proof of algorithmic

equality.

Following the footprint of our previous reducibility definition, we use the simultane-

ous substitution π as a witness to move between two algorithmic equality contexts. This

again ensures that we only replace variables with neutral terms thereby guaranteeing

monotonicity. In the course of the completeness proof, π will actually only ever be in-

stantiated by substitutions which simply perform weakening, i.e. replacing variables by

variables. We call such a substitution π a path substitution. Our definition of logically

equivalent terms generalizes Crary’s definition by witnessing the context extension by

path substitutions.

Ri = {Ψ `M1 ≈M2 | Ψ `M1 ⇔M2 : i}
RA→B = {Ψ `M1 ≈M2 | ∀Φ ≥π Ψ, N1, N2 such that Φ ` N1 : A and Φ ` N2 : A,

if (Φ ` N1 ≈ N2) ∈ RA then (Φ ` [π]M1 N1 ≈ [π]M2 N2) ∈ RB}

The high level goal is to establish that declaratively equivalent terms are logically

equivalent, and that logically equivalent terms are algorithmically equivalent. The proof

requires establishing a few key properties of logical equivalence. The first is monotonicity,

which is crucially used for weakening logical equivalence. This is used when applying

terms to fresh variables.

Lemma 3.1 (Monotonicity).

If (Ψ `M ≈ N) ∈ RA and Φ ` π : Ψ, then (Φ ` [π]M ≈ [π]N) ∈ RA

The second key property is (backward) closure of logical equivalence under weak head

reduction. This is proved by induction on the type A.

Lemma 3.2 (Weak Head Closure under Expansion).

If (Ψ ` N1 ≈ N2) ∈ RA and M1 −→∗ N1 and M2 −→∗ N2 then (Ψ `M1 ≈M2) ∈ RA

In order to escape logical equivalence to obtain algorithmic equivalence in the end, we
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need the main lemma, which is a mutually inductive proof showing that path equiva-

lence is included in logical equivalence, and logical equivalence is included in algorithmic

equivalence:

Lemma 3.3 (Main lemma).

1 If Ψ `M ↔ N : A then (Ψ `M ≈ N) ∈ RA
2 If (Ψ `M ≈ N) ∈ RA then Ψ `M ⇔ N : A

Also required are symmetry and transitivity of logical equivalence, which in turn re-

quire symmetry and transitivity of algorithmic equivalence, determinacy of weak head

reduction, and uniqueness of types for path equivalence. We will not go into detail about

these lemmas, as they are relatively mundane, but refer the reader to the discussion

in [Cra05].

What remains is to show that declarative equivalence implies logical equivalence. This

requires a generalization of the statement to all instantiations of open terms by related

substitutions. If σ1 is of the formM1/x1, ...,Mn/xn and σ2 is of the formN1/x1, ..., Nn/xn
and Γ is of the form x1:A1, ..., xn:An, and each Mi (and Ni resp.) has type Ai, we write

∆ ` σ1 ≈ σ2 : Γ to mean that ∆ ` Mi ≈ Ni : Ai for all i. Note that σ1 ≈ σ2 relates the

typing context Γ to the well-typed neutral algorithmic equality context ∆.

R· = {Φ ` · ≈ · }
RΓ,x:A = {Φ ` (σ1,M1/x) ≈ (σ2,M2/x) | Φ `M1 : A, Φ `M2 : A, and

(Φ ` σ1 ≈ σ2) ∈ RΓ }

Theorem 3.4 (Fundamental theorem).

If Γ `M ≡ N : A and (∆ ` σ1 ≈ σ2) ∈ RΓ then (∆ `M [σ1] ≈ N [σ2]) ∈ RA

Proof. The proof goes by induction on the derivation of Γ `M ≡ N : A. We show one

interesting case in order to demonstrate some sources of complexity.

Case:

Γ, x : A `M1 ≡M2 : B

Γ ` λx.M1 ≡ λx.M2 : A⇒ B

(∆ ` σ1 ≈ σ2) ∈ RΓ by assumption

Given an extension ∆′ ≥π ∆ and terms N1, N2 s.t.

∆′ ` N1 : A and ∆′ ` N2 : A and (∆′ ` N1 ≈ N2) ∈ RA
(∆′ ` σ1[π] ≈ σ2[π]) ∈ RΓ by monotonicity

(∆′ ` (σ1[π], N1/x) ≈ (σ2[π], N2/x)) ∈ RΓ,x:A by definition

(∆′ `M1[σ1[π], N1/x] ≈M2[σ2[π], N2/x]) ∈ RB by induction hypothesis

(∆′ `M1[σ1[π], x/x][N1/x] ≈M2[σ2[π], x/x][N2/x]) ∈ RB by substitution properties

(∆′ ` (λx.M1[σ1[π], x/x]) N1 ≈ (λx.M2[σ2[π], x/x]) N2) ∈ RB by weak head closure

(∆′ ` ((λx.M1)[σ1])[π] N1 ≈ ((λx.M2)[σ2])[π] N2) ∈ RB by substitution properties

(∆ ` (λx.M1)[σ1] ≈ (λx.M2)[σ2]) ∈ RA→B by definition of logical equivalence

We observe that this proof relies heavily on equational properties of substitutions.

Some of this complexity appears to be due to our choice of quantifying over substitutions
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∆ ` π : Γ instead of extensions ∆ ≥ Γ. However, we would argue that reasoning instead

about extensions ∆ ≥ Γ does not remove this complexity, but only rephrases it.

Finally, by establishing the relatedness of the identity substitution to itself, i.e. Γ `
id ≈ id : Γ we can combine the fundamental theorem with the main lemma to obtain

completeness.

Corollary 3.5 (Completeness). If Γ `M ≡ N : A then Γ `M ⇔ N : A

3.3. Encoding Lambda-terms, Typing and Reduction in the Logical Framework LF

Unlike the previous case study where we defined intrinsically terms, we define here un-

typed lambda-terms and weak-head reduction on untyped terms in LF employing HOAS

for the representation of lambda abstraction and defining typing rules for terms using an

LF type family oft.

LF tm : type =

| app : tm → tm → tm

| lam : (tm → tm) → tm;

LF oft : tm → tp → type =

| t_app : oft M (arr A B) → oft N A → oft (app M N) B

| t_lam : ({x:tm} oft x A → oft (M x) B)

→ oft (lam λx. M x) (arr A B);

Weak head reduction adopts a call-by-name strategy (i.e. we drop the rule s app2)

and multi-step reductions remains unchanged.

3.4. Encoding Declarative and Algorithmic Equivalence

We now encode declarative and algorithmic equivalence of terms in LF using higher-

order abstract syntax. Parametric and hypothetical derivations are again mapped to LF

function spaces, but are straightforward.

LF deq : tm → tm → tp → type =

| d_beta : ({x:tm} oft x T → deq (M2 x) (N2 x) S) → deq M1 N1 T

→ deq (app (lam λx. M2 x) M1) (N2 N1) S

| d_lam : ({x:tm} oft x T → deq (M x) (N x) S)

→ deq (lam λx. M x) (lam λx. N x) (arr T S)

| d_ext : ({x:tm} oft x T → deq (app M x) (app N x) S)

→ deq M N (arr T S)

| d_app : deq M1 M2 (arr T S) → deq N1 N2 T → deq (app M1 N1) (app M2 N2) S

| d_refl : oft M T → deq M M T

| d_sym : deq M N T → deq N M T

| d_trans: deq M N T → deq N O T → deq M O T;

Algorithmic equality of terms is defined as two mutually recursive LF specifications.

We write algeq M N T for algorithmic equivalence of normal terms M and N at type T and

algeqNeu P Q T for algorithmic path equivalence at type T – these are terms whose head

is a variable, not a lambda abstraction. Following the previous on-paper definition term

equality is directed by the type, while path equality is directed by the syntax. Two terms

M and N at base type i are equivalent if they weak head reduce to weak head normal

terms P and Q which are path equivalent. Two terms M and N are equivalent at type T ⇒ S

if applying them to a fresh variable x of type T yields equivalent terms. Variables are
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only path equivalent to themselves, and applications are path equivalent if the terms

at function position are path equivalent, and the terms at argument positions are term

equivalent.

LF algeq: tm → tm → tp → type =

| alg_base: mstep M P → mstep N Q → algeqNeu P Q i

→ algeq M N i.

| alg_arr : ({x:tm} algeqNeu x x T → algeq (app M x) (app N x) S)

→ algeq M N (arr T S)

and algeqNeu : tm → tm → tp → type
| alg_app : algeqNeu M1 M2 (arr T S) → algeq N1 N2 T

→ algeqNeu (app M1 N1) (app M2 N2) S;

By describing algorithmic and declarative equality in LF, we gain structural properties

and substitution for free. For this particular proof, only weakening is important.

Two different forms of contexts are relevant for this proof. We describe these with

schema definitions in Beluga. Below, we define the schema actx, which enforces that

term variables come paired with a typing assumption oft x T and an algorithmic equality

assumption algeqNeu x x t for some type t. In addition, we define the schema ctx of typing

contexts.

schema actx = some [t:tp] block x:tm, t_x: oft x t, a_x:algeqNeu x x t;

schema ctx = some [t:tp] block x:tm, t_x: oft x t;

3.5. Encoding Logical Equivalence as Inductive Definition

To define logical equivalence, we need the notion of path substitution mentioned in Sec.

3.2. For this purpose, we use again Beluga’s built-in notion of simultaneous substitutions.

We write [φ ` ψ] for the built-in type of simultaneous substitutions which provide for each

variable in the context ψ a corresponding term in the context φ. When ψ is of schema actx

, such a substitution consists of blocks of the form <M;D;P> where M is a term, D stands for a

typing derivation that M is well-typed, and P is a proof showing that M is algorithmically

equal to itself and is in fact a neutral term.

To achieve nice notation, we define an LF type of pairs of terms, where the infix

operator ≈ simply constructs a pair of terms:

LF tmpair : type =

| ≈ : tm → tm → tmpair % infix;

Logical equivalence, written Log [ψ ` M ≈ N] [A], expresses that M and N are logically

related in context ψ at type A and is again defined as a stratified type. Beluga verifies

that this stratification condition is satisfied. In this case, the definition is structurally

recursive on the type A.

stratified Log : (ψ:actx) [ψ ` tmpair] → [tp] → ctype =

| LogBase : [ψ ` algeq M N i] → Log [ψ ` M ≈ N] i]

| LogArr : {M1:[ψ ` tm]}{M2:[ψ ` tm]}

({φ:actx}{π:[φ ` ψ]}
{N1:[φ ` tm]}{D1:[φ ` oft N1 T[]]}{N2:[φ ` tm]}{D2:[φ ` oft N2 T[]]}

Log [φ ` N1 ≈ N2] [T] → Log [φ ` app M1[π] N1 ≈ app M2[π] N2] [S])

→ Log [ψ ` M1 ≈ M2] [arr T S];
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At base type, two terms are logically equivalent if they are algorithmically equivalent.

At arrow type we employ the monotonicity condition mentioned in Sec. 3: M1 is related

to M2 in Ψ if, for any extension Φ ≥π Ψ, and terms N1, N2 that are well-typed in Φ,

and logically related in Φ, we have that app M1[π] N1 is related to app M2[π] N2 in Φ. In

the kind of Log, we quantify (ψ:actx) in round parentheses, which indicates that it is

implicit and recovered during reconstruction. Variables quantified in curly braces such as

{φ:actx} are passed explicitly. For convenience, we quantify explicitly over the terms M1

and M2 in the definition of LogArr. As in LF specifications, all free variables occurring in

constructor definitions are reconstructed and bound implicitly at the outside. They are

passed implicitly and recovered during reconstruction.

Crucially, logical equality is monotonic under path substitutions.

monotone: {φ:actx}{π:[φ ` ψ]} Log [ψ ` M1 ≈ M2] [A] → Log [φ ` M1[π] ≈ M2[π]] [A]

We show below the mechanized proof of this lemma. The proof is simply by case

analysis on the logical equivalence. In the base case, we obtain a proof P of ψ ` algeq M N

i, which we can weaken for free by simply applying π to P . Here we benefit significantly

from Beluga’s built-in support for simultaneous substitutions; we gain not just weakening

by a single variable for free as we would in Twelf, but arbitrary simultaneous weakening.

The proof proceeds in the arrow case by simply composing the two substitutions. We use

Λ as the introduction form for universal quantifications over metavariables (contextual

objects), for which we use uppercase and Greek letters, and fn with lowercase letters for

computation-level function types (implications).

rec monotone:{φ:actx}{π:[φ ` ψ]} Log [ψ ` M1 ≈ M2] [A] → Log [φ ` M1[π] ≈ M2[π]] [A] =

Λ φ,π ⇒ fn e ⇒ case e of

| LogBase [ψ ` P] ⇒ LogBase [φ ` P[π]]

| LogArr [ψ ` M1] [ψ ` M2] f ⇒
LogArr (Λ φ’,π’, N1, D1, N2, D2 ⇒ fn rn ⇒

f [φ’] [φ’ ` π[π’]] [φ’ ` N1] [φ’ ` D1] [φ’ ` N2] [φ’` D2] rn)

The main lemma is mutually recursive, expressing that path equivalence is included in

logical equivalence, and logical equivalence is included in algorithmic term equivalence.

This enables “escaping” from the logical relation to obtain an algorithmic equality in

the end. They are structurally recursive on the type. Crucially, in the arrow case, main2

instantiates the path substitution π with a weakening substitution in order to create a

fresh variable.

rec main1 : {A:[tp]} [ψ ` algeqNeu M1 M2 A] → Log [ψ ` M1 ≈ M2] [A]

and main2 : {A:[tp]} Log [ψ ` M1 ≈ M2] [A] → [ψ ` algeq M1 M2 A]

We can state weak head closure directly as follows. The proof is structurally recursive

on the type, which is implicit.

rec closed : [ψ ` mstep N1 M1] → [ψ ` mstep N2 M2] → Log [ψ ` M1 ≈ M2] [T]

→ Log [ψ ` N1 ≈ N2] [T]
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3.6. Encoding the Fundamental Theorem as a Total Function in Beluga

The fundamental theorem requires us to speak of all instantiations of open terms by

related substitutions. We express here the notion of related substitutions using inductive

types.

inductive LogSub : {ψ:ctx}(φ:actx){σ1:[φ ` ψ]}{σ2:[φ ` ψ]} ctype =

| Nil : LogSub [] [φ ` ·] [φ ` ·]
| Dot : LogSub [ψ] [φ ` σ1] [φ ` σ2] → Log [φ ` M1 ≈ M2] [T]

→ {D1:[φ ` oft M1 R[]]}{D2:[φ ` oft M2 R[]]}

LogSub [ψ, b:block x:tm, t_x: oft x R[]] [φ ` σ1, <M1;D1>] [φ ` σ2, <M2;D2>]

We have a monotonicity lemma for logically equivalent substitutions which is similar

to the monotonicity lemma for logically equivalent terms:

rec logsub_monotone : {φ:actx}{φ’:actx}{π:[φ’ ` φ]}
LogSub [ψ] [φ ` σ1] [φ ` σ2]

→ LogSub [ψ] [φ’ ` σ1[π]] [φ’ ` σ2[π]]

The fundamental theorem requires a proof that M1 and M2 are declaratively equal,

together with logically related substitutions σ1 and σ2, and produces a proof that M1[σ1]

and M2[σ2] are logically related. In the transitivity and symmetry cases, we appeal to

transitivity and symmetry of logical equivalence, the proofs of which can be found in the

accompanying Beluga code.

rec thm : [ψ ` deq M1 M2 T[]] → LogSub [ψ] [φ ` σ1] [φ ` σ2]

→ Log [φ ` M1[σ1] ≈ M2[σ2]] [T] =

We show the lam case of the proof term only to make a high-level comparison to

the hand-written proof in Sec. 3. Below, one can see that we appeal to monotonic-

ity (logsub_monotone), weak head closure (closed), and the induction hypothesis on the

subderivation d1. However, remarkably, there is no explicit equational reasoning about

substitutions, since applications of substitutions are automatically simplified. We refer

the reader to [CP13] for the technical details of this simplification.

fn d, s ⇒ case d of

| [ψ ` d_lam λx.λy. E1] ⇒
let ([ψ ` _ ] : [ψ ` deq (lam λx.M1) (lam λx.M2) (arr P[] Q[])]) = d in

LogArr [φ ` lam (λx. M1[σ1[...],x])] [φ ` lam (λx. M2[σ2[...],x])]
(Λ φ’,π,N1,D1,N2,D2 ⇒ fn rn ⇒
let q0 = Dot (logsub_monotone [φ’] [φ] [φ’ ` π] s) rn [φ’ ` D1] [φ’ ` D2] in

let q2 = thm [ψ,b:block x:tm,y:oft x _ ` E1[...,b.1,b.2]] q0 in
closed [` Q] [φ’ ` trans1 beta refl] [φ’ ` trans1 beta refl] q2

)

| ...

Completeness is a corollary of the fundamental theorem.

3.7. Remarks

The proof passes Beluga’s typechecking and totality checking. As part of the totality

checker, Beluga performs a strict positivity check for inductive types [PA15,PC15], and

a stratification check for logical relation-style definitions.
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Beluga’s built-in support for simultaneous substitutions is a big win for this proof.

The proof of the monotonicity lemma is very simple, since the (simultaneous) weakening

of algorithmic equality comes for free, and there is no need for explicit reasoning about

substitution equations in the fundamental theorem or elsewhere. We also found that

the technique of quantifying over path substitutions as opposed to quantifying over all

extensions of a context to work surprisingly well.

We remark that the completeness theorem can in fact be executed, viewing it as an algo-

rithm for normalizing derivations in the declarative system to derivations in the algorith-

mic system. The extension to a proof of decidability would be a correct-by-construction

functional algorithm for the decision problem. This is a unique feature of carrying out

the proof in a type-theoretic setting like Beluga, where the proof language also serves as

a computation language.

Furthermore, one might argue that having to explicitly apply the path substitutions

π to terms like M [π] is somewhat unsatisfactory, so one might wish for the ability to

directly perform the bounded quantification ∀Φ ≥ Ψ and a notion of subtyping which

permits for example [Ψ ` tm] ≤ [Φ ` tm]. This is also a possibility we are exploring.

Overall, we found that that the tools provided by Beluga, especially its support for

simultaneous substitutions, worked remarkably well to express this proof and to obviate

the need for bureaucratic lemmas about substitutions and contexts, and we are optimistic

that these techniques can scale to many other varieties of logical relations proofs.

4. Related Work

Mechanizing proofs by logical relations is an excellent benchmark to evaluate the power

and elegance of a given proof development. Because it requires nested quantification

and recursive definitions, encoding logical relations has been particularly challenging for

systems supporting HOAS encodings.

There are two main approaches to support reasoning about HOAS encodings: 1) In

the proof-theoretic approaches, we adopt a two-level system where we implement a spec-

ification logic (similar to LF) inside a higher-order logic supporting (co)inductive def-

initions, the approach taken in Abella [Gac08], or type theory, the approach taken in

Hybrid [FM12]. To distinguish in the proof theory between quantification over vari-

ables and quantification over terms, [GMN08] introduce a new quantifier, ∇, to describe

nominal abstraction logically. To encode logical relations one uses recursive definitions

which are part of the reasoning logic [GMN09]. Induction in these systems is typically

supported by reasoning about the height of a proof tree; this reduces reasoning to induc-

tion over natural numbers, although much of this complexity can be hidden in Abella.

Compared to our development in Beluga, Abella lacks support for modelling a context

of assumptions and simultaneous substitutions. As a consequence, some of the tedious

basic infrastructure to reason about open and closed terms and substitutions still needs

to be built and maintained. Moreover, Abella’s inductive proofs cannot be executed and

do not yield a program for normalizing derivations. It is also not clear what is the most

effective way to perform the quantification over all extensions of a context in Abella.

2) The type-theoretic approaches fall into two categories: we either remain within
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the logical framework and encode proofs as relations as advocated in Twelf [PS99] or

we build a dependently typed functional language on top of LF to support reasoning

about LF specifications as done in Beluga. The former approach lacks logical strength;

the function space in LF is “weak” and only represents binding structures instead of

computations. To circumvent these limitations, [SS08] proposes to implement a reasoning

logic within LF and then use it to encode logical relation arguments. This approach

scales to richer calculi [RF13] and avoids reasoning about contexts, open terms and

simultaneous substitutions explicitly. Exploiting the same idea of an assertion logic, [?]

outline a normalization proof implemented in an extension of Twelf that allows users to

define morphisms between different signatures therby obtaining the the basic lemma “for

free”. However, one might argue that it not only requires additional work to build up

a reasoning logic within LF and prove its consistency, but is also conceptually different

from what one is used to from on-paper proofs. It is also less clear whether the approach

scales easily to proving completeness of algorithmic equality due to the need to talk about

context extensions in the definition of logical equivalence of terms of function type.

Outside the world of HOAS, [NU08] have carried out essentially the same proof in

Nominal Isabelle, and later [UCB11] tackle the extension from the simply-typed lambda

calculus to LF. Relative to their approach, Beluga gains substitution for free, but more

importantly, equations on substitutions are silently discharged by Beluga’s built-in sup-

port for their equational theory, so they do not even appear in proofs. In contrast, proving

these equations manually requires roughly a dozen intricate lemmas.

5. Conclusion

Both our case studies of Kripke-style logical relations proofs take advantage of key in-

frastructure provided by Beluga: it takes advantage of specifying lambda-terms together

with their relevant theory in the logical framework LF, and more importantly it utilizes

first-class simultaneous substitutions, contexts, contextual objects and the power of re-

cursive types. This yields a direct and compact implementation of all the necessary proofs

which directly correspond to their on-paper developments and yields an executable pro-

gram. We believe these case studies demonstrate that Beluga provides the right level of

abstractions and primitives to mechanize directly challenging problems such as proofs by

logical relations using higher-order abstract syntax encodings. The programmer is able

to concentrate on implementing the essential aspects of the proof spending his effort in

the right place.
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