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We present a sound and complete focusing calculus for the core of the logic behind the proof
assistant Beluga as well as an overview of its implementation as a tactic in Beluga’s
interactive proof environment Harpoon. The focusing calculus is designed to construct
uniform proofs over contextual LF and its meta-logic in Beluga: a dependently-typed
first-order logic with recursive definitions. The implemented tactic is intended to complete
straightforward sub-cases in proofs allowing users to focus only on the interesting aspects of
their proofs, leaving tedious simple cases to Beluga’s theorem prover. We demonstrate the
effectiveness of our work by using the tactic to simplify proving weak-head normalization for
the simply-typed lambda-calculus.

1 Introduction
To establish trust in a software system, we need to begin with establishing trust in the pro-
gramming language (PL) that is used in its implementation. To model formal systems like
PLs, we first need to specify them in a specification logic, and then prove statements about the
behaviour of the specified system within another logic, called the reasoning logic. A key chal-
lenge in specifying languages is how to model variable bindings, variable renaming, α-conversion,
substitution, and reasoning under assumptions. Higher-order abstract syntax (HOAS) offers a
solution to these issues, reducing the amount of overhead infrastructure users must construct.
On the reasoning side, proofs about these language specifications for even small languages can
still involve long and tedious proofs where many sub-cases are trivial, and the only challenging
aspect pertains to one or two interesting parts. Our goal is to ease the burden on specifying
and proving properties by providing users with automated support based on proof theoretic
foundations to discharge trivial, straightforward cases automatically.

There are several HOAS-based systems that offer varying degrees of automation. Abella
[14] allows users to develop proofs interactively using a small set of tactics which offer little
automation. Hybrid [2, 18] adds HOAS support to the general proof assistants Coq [6] and
Isabelle/HOL [20] and consequently is able to harness their automation and tooling powers, at
the cost of added work to specify systems [13, 12]. Twelf offers full automation; although users
are not able to interact with its prover which does not support backtracking. Most importantly,
Twelf and Abella do not produce proof terms and therefore offer no way to verify their proofs
independently.

We investigate proof automation within the HOAS-based proof assistant, Beluga [25]. In
Beluga, users formalize their systems within the logical framework LF [15] and subsequently
prove properties about LF objects in Beluga’s reasoning logic: a dependently typed first-
order logic. Beluga takes a functional approach; modelling inductive proofs about LF objects
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as recursive dependently-typed programs, following the Curry-Howard isomorphism. To ease
proof developments, a tactic-based prover Harpoon was recently added [11]. Users may now
construct proofs interactively using a small set of high-level actions similar to those in Abella,
and, upon completion of a proof, will be presented with a proof script which can be translated
to a Beluga program that may be independently type-checked. It is still the case however that
much human interaction is required for Harpoon proof developments.

In this paper we present a focusing calculus designed to build uniform proofs over the core
of Beluga’s two-level logic, and provide an overview of its implementation as a Harpoon
tactic. The tactic is meant to solve simple lemmas and simple cases of proofs, allowing users to
concentrate on the interesting aspects of a proof. We have proven that the focusing calculus,
presented in Section 2.3, is sound and complete with respect to the cut-free sequent calculus
for Beluga, presented in Section 2.2.2. We have used our tactic on a number of interesting
case studies in PL theory, which we summarize in Section 3.2, including type preservation and
value soundness for MiniML (without fix points), weak-head normalization for the simply-typed
lambda-calculus, and the Church-Rosser theorem for the untyped lambda-calculus. We have
seen that they allow for automatic completion of many of the simpler lemmas and subcases of
these theorems. We believe automating proof search over the core of Beluga results in simpler
proof developments, making it more appealing to users looking to verify formal systems.

2 Introduction to Beluga

In this section, we present an overview of the Beluga system. We begin with an informal,
followed by a formal, description of its logic, concluding with a presentation of the focusing
calculus that we implement.

2.1 Encoding (meta-)theories

We introduce Beluga informally by demonstrating how theories and their meta-theories are
encoded within the system. Throughout this paper we will focus on the proof development of a
key lemma that is used to prove weak-head normalization for the simply-typed lambda-calculus
using logical relations. The lemma states that reducibility is closed under expansion, i.e. if term
M steps to term N and N reduces to type A, then M does as well. A detailed description of the full
mechanization may be found at [9].

We begin by encoding the theory of the simply-typed lambda-calculus within Beluga’s spec-
ification logic, the logical framework LF [15] making use of HOAS. We choose an intrinsically-
typed representation to simplify our mechanization.

LF tp : type =
| b : tp
| arr : tp → tp → tp ;

LF term : tp → type =
| app : term (arr A B) → term A → term B
| abs : tp → (term A → term B) → term (arr A B)
| c : term b ;

Next, we define the operational semantics of our lambda terms. For simplicity we do not
reduce under abstractions. We observe that object-level substitution is modelled by LF appli-
cation, as in the type of beta.
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LF step : term A → term A → type =
| beta : step (app (abs A M) N) (M N)
| stepapp : step M M’

→ step (app M N) (app M’ N) ;

LF steps : term A → term A → type =
| id : steps M M
| sstep : step M M’

→ steps M’ M’’ → steps M M’’ ;

To complete the theory’s encoding, we also define what it means for a term to halt, i.e. it
steps to a value.

LF val : term A → type =
| val/c : val c
| val/abs : val (abs A M) ;

LF halts : term A → type =
| halts/m : steps M M’ → val M’ → halts M ;

To reason about LF objects, we embed them within the computation logic using a modal
box (necessity) operator [23]. Users also have the ability to reason about “open” LF objects
in Beluga. To do this, we pair each LF object together with the LF context in which it
is meaningful [23, 24]. This concept is internalized as a contextual type ⌈Ψ ⊢ P ⌉ [19]. This
contextual type describes a computation-level expression box (Ψ̂ ⊢ R) where R is an LF object
of type P in the context Ψ. In other words, Ψ̂ describes the free variables in R and corresponds
to the erased typing context Ψ.

We present a trivial result about our specified theory to demonstrate how meta-theorems
are expressed in Beluga.

rec halts_step : [ ⊢ step M M’] → [ ⊢ halts M’] → [ ⊢ halts M] =
fn s, h =>

let [ ⊢ halts/m MS V] = h in let [ ⊢ S] = s in [ ⊢ halts/m (sstep S MS) V] ;

We leave the contextual variables M, M’, and M’’ implicitly universally quantified as Beluga
is able to reconstruct their type. We use Beluga’s simple function space to formalize our
implication statement. Recall proofs are programs in Beluga, therefore proof development
proceeds in a functional manner.

We begin by giving the theorem name and statement, prefixed with the keyword rec. The
proof starts by peeling off the implication antecedents (fn s, h =>). Working backwards, we
know we must use halts/m to construct our desired term as it is currently the only constructor
for terms of type halts, therefore we must solve its subgoals, namely that there is a value that M

steps to. We first invert h as it has only one possible constructor. This reveals that it is actually
the contextual object [ ⊢ halts/m MS V] where MS and V are LF terms of type steps M’ N

and val N (for some implicit meta-variable N) respectively. It may appear we have every piece
of the puzzle required to solve our goal: we have a value that our term M steps too. However
once we transition to the LF level to build our LF proof term, we do not have access to our
computation-level context, in which s resides. Therefore, we must first unbox said assumption.

The free variables appearing in all the specifications above are treated as implicitly quantified.
Beluga infers their types during type reconstruction. As such, users do not supply arguments
for such parameters.

2.2 Theoretical foundation

We give a formal presentation of the core of Beluga’s two-level logic beginning with its grammar
followed by its two-level proof system described using two cut-free sequent calculi. For a full
description of the logic, readers may refer to past works [8, 23].
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2.2.1 Grammar

Beluga’s two-level logic is based on dependent contextual modal type theory (CMTT) [19].
At the core of the specification logic is the logical framework LF [15] which supports encodings
using HOAS. We give here a definition that characterizes only canonical (normal) objects as
these are the only ones that are meaningful in our setting.

We separate terms into two categories, neutral and normal. We characterize neutral terms to
be those that do not cause beta-redexes when they are applied in function application. Terms are
classified by types, which are either type constants a that may be indexed by terms M1, . . . ,Mn,
or dependent types.

Atomic Types P,Q ::= a−→
M Substitutions σ ::= · | wkψ | σ,M

Types A,B ::= P | Πx:A.B Contexts Ψ,Φ ::= · | Ψ,x :A | ψ
Neutral Terms R ::= x | c |R N | u[σ] Contextual Variables X ::= u[σ] | ψ
Normal Terms M,N ::= R | λx.M

To support pattern matching on LF objects, we further extend LF with two kinds of con-
textual variables: meta-variables, written as u[σ] and context variables, written as ψ. Context
variables allow for abstraction over contexts which is required for recursion over HOAS specifica-
tions. Meta-variables allow us to describe “holes” in an LF object. They describe possibly open
objects that are paired with a postponed simultaneous substitution σ (by convention written to
the right of a term) that is applied as soon as we know what u stands for.

Simultaneous substitutions σ provide a mapping from one context of variables Φ to another
Ψ. We do not always make the domain of the substitution explicit, but one can think of the
i-th element of σ corresponding to the i-th declaration in Φ. We assume all substitutions are
hereditary substitutions [33].

Variables in a contextual LF expression may be bound by one of two contexts. There
is the LF context Ψ that holds typings for ordinary variables, and there is the meta-context
∆ (introduced below) which holds typings for contextual variables, uniformly denoted by X.
Contextual variables include meta-variables and context variables ψ.

In order to uniformly abstract over meta-objects in the computation logic, we lift contextual
LF objects to meta-types U and meta-terms C.

Meta Terms C ::= (Ψ̂ ⊢R) | Ψ Context Schemas G ::= ∃
−−−−→
(x:Ao). A |G+∃

−−−−→
(x:Ao). A

Meta Types U ::= (Ψ ⊢ P ) |G Meta Contexts ∆ ::= · | ∆,X : U
Meta Substitutions θ ::= · | θ,C/X

The core of our meta language’s terms include contextual terms as well as LF contexts. The
meta-type (Ψ ⊢ P ) denotes the type of a meta-variable u and stands for a contextual term. For
simplicity, we restrict context schemas G to be constructed from schema elements ∃

−−−−→
(x:Ao).A

using +, where A is an LF type.
We write the single meta-substitution as [[C/X]]. In most cases X stands for a meta-variable

u and C stands for a contextual object (Ψ̂ ⊢ R). In this case the substitution gets pushed
through λ-expressions until we reach a meta-variable u[σ]. We then apply the meta-substitution
to its associated substitution to obtain σ′ before eagerly applying σ′ to R. The full definition of
meta-substitutions may be found at [8, 23].

On top of contextual LF we have the computational layer, which is used to describe programs
that operate on data. The computation types include atomic box-types ⌈Ψ ⊢ P ⌉, computation
level function abstraction, as well as abstraction over contextual objects.
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Types τ ::= ⌈Ψ ⊢ P ⌉ | τ1 → τ2 | Π2X:U. τ
Expressions E ::= y | box (Ψ̂ ⊢R) | let box X = E1 in E2

| fn y.E | E1 E2 | λ□X.E | E (C)
Computation-level Contexts Γ ::= · | Γ,y : τ

Ordinary functions are created using fn y.E, while we write λ□X.E for dependent functions
that abstract over meta-objects. We overload the application operation. We write E1 E2 for
applying the expression E1 of function type τ1 → τ2 to an expression E2. We also write E (C)
for applying the expression E of type Π2X:U. τ to a contextual object C.

2.2.2 Sequent calculi

We now present the sequent calculus for contextual LF, which is based on the sequent calculus
for intuitionistic contextual modal logic presented in [19]. Following the logic programming
interpretation of LF, a proof of a proposition encoded as an LF type is an LF term which inhabits
said type. We exploit the fact that if B does not depend on x in Πx:A.B, we interpret it as
an implication A→B. If x does occur in B, then we treat Πx:A.B as universal quantification,
written as Πx̂:A.B.

All sequents have access to the global signature Σ which we keep implicit. The sequent
∆;Ψ =⇒M :A states that M is a proof of the proposition A, or M has type A, using assumptions
from the meta-context ∆ and the LF context Ψ. As a consequence, we keep in the LF context
Ψ not only proof-relevant assumptions that arise from implications (in particular → R), but
we also add parameter assumptions that come from ΠR. We distinguish between these two
assumptions by writing x:A for the former, and x̂ : A for the latter. This is emphasized in the
initΨ rule, where only proof-relevant assumptions are used to finish proofs.

In addition to the sequent ∆;Ψ =⇒ M : A, we also have ∆;Ψ =⇒ σ : Φ which states that
the substitution σ witnesses a proof of the propositions in Φ using assumptions from ∆ and Ψ.
Intuitively, Φ is an LF context containing assumptions xi:Ai and x̂j :Aj . Note that we need to
construct a proof for the former, but for the latter we are able to determine the witness via
unification in practice.

The rules for the sequent calculus for contextual LF are presented in Figure 1, on the
next page. The right rules introduce variable declarations into the local context Ψ. However,
those introduced via the ΠR rule are simply parameters that are not used during proof search,
unlike those introduced via →R. To use a universally quantified assumption (i.e. a dependent
function type) as in ΠL we require that M checks against type A, written ∆;Ψ ⊢M ⇐A, in the
appropriate contexts. In practice, we do not search for the term M but introduce meta-variables
for such universally quantified variables which are later instantiated via unification. In contrast,
using an assumption of ordinary function type, as in → L, involves searching for a proof term
of type A. Note that in the left rules we replace a neutral term by a neutral term, thus still
constructing normal proofs.

In the reflect rule we may use the contextual assumption (Φ ⊢ P ) to deduce P in the context
Ψ if we can verify Φ. In order to verify Φ we need to find a substitution which maps all the
variables in Φ to terms that make sense in Ψ. There are several ways to construct such a
substitution, depending on the shape of Φ. If it is empty, we simply use an empty substitution
(as P is closed). If it is a context variable ψ and we simply want to use (ψ ⊢ P ) in a weaker
context, we apply the weakening substitution. Otherwise, Φ contains two different kinds of
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∆;Ψ =⇒M :A Object M is a proof term for the proof of A in the sequent calculus

c :A ∈ Σ
∆;Ψ =⇒ c :A initΣ

∆;Ψ,x :A=⇒ x :A initΨ ∆;Ψ, x̂ :A=⇒M :B
∆;Ψ =⇒ λx.M : Πx̂:A.B ΠR

∆;Ψ,x1 : Πx̂:A. B ⊢M ⇐A ∆;Ψ,x1 : Πx̂:A.B,x2 : [M/x̂]B =⇒N :A′

∆;Ψ,x1 : Πx̂:A.B =⇒ [x1M/x2]N :A′ ΠL

∆;Ψ,x :A=⇒M :B
∆;Ψ =⇒ λx.M :A→B

→R
∆;Ψ,x1 :A→B =⇒M :A ∆;Ψ,x1 :A→B,x2 :B =⇒N :A′

∆;Ψ,x1 :A→B =⇒ [x1M/x2]N :A′ → L

∆,u : (Φ ⊢ P );Ψ =⇒ σ : Φ ∆,u : (Φ ⊢ P );Ψ,x : [σ]P =⇒M :A
∆,u : (Φ ⊢ P );Ψ =⇒ [u[σ]/x]M :A reflect

∆;Ψ =⇒ σ : Φ Object σ is a substitution that witnesses the proof of Φ in the sequent calculus

∆;Ψ =⇒ · : ·
subempty ∆;ψ,Ψ =⇒ wkψ : ψ subwk

∆;Ψ =⇒ σ : Φ ∆;Ψ =⇒N : [σ]B
∆;Ψ =⇒ (σ,N) : (Φ,x:B)

subp
∆;Ψ =⇒ σ : Φ ∆;Ψ ⊢M ⇐ [σ]B

∆;Ψ =⇒ (σ,M) : (Φ, x̂:B) subu

Figure 1: Sequent calculus for contextual LF.

variable declarations: a declaration x:B requires proof search in order to find a term N in Ψ of
type [σ]B to replace x in P ; a declaration x̂:A stands for a universally quantified variable and
does not require proof search. In practice, we can determine it via unification. This different
treatment of assumptions reflects their different roles.

We turn our attention to proof search over computations (see Figure 2). Our inference rules
are mostly standard for a first-order logic. The 2R rule is the transition rule between contextual
LF and computation-level proofs. In 2L we unbox a boxed assumption, adding it to ∆. Using
computation assumptions as in Π2L and → L is similar to how contextual LF assumptions are
used. To use a universally quantified assumption, as in Π2L, we require that C checks against
U . Again, this term C is not explicitly constructed but found instead through unification. We
note that meta-objects may only depend on the meta-context, hence we only require that C
check against type U in ∆.

We show in [31] that cut and contextual cut are admissible in the computation logic. These
results are shown for contextual LF in [19]. Using the admissibility of cut results, we can deduce
invertibility of some of the rules in our calculi. Interestingly, the box constructor 2 has an
invertible left rule, which will have implications in the focusing calculus. We omit the proof
terms for readability here.
Lemma 1 (Invertibility in the sequent calculi).
a) (ΠR) If ∆;Ψ =⇒ Πx̂:A.B then ∆;Ψ, x̂ :A=⇒B
b) (→R) If ∆;Ψ =⇒A→B then ∆;Ψ,x :A=⇒B
c) (Π2R) If ∆;Γ =⇒ Π2X:U.τ then ∆,X : U ;Γ =⇒ τ
d) (→R) If ∆;Γ =⇒ τ1 → τ2 then ∆;Γ,y : τ1 =⇒ τ2
e) (2L) If ∆;Γ,y : ⌈Ψ ⊢ P ⌉ =⇒ τ then ∆,X : (Ψ ⊢ P );Γ,y : ⌈Ψ ⊢ P ⌉ =⇒ τ
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∆;Γ =⇒ E : τ Object E is a proof term for the proof of τ in the sequent calculus

∆,X : U ;Γ =⇒ E : τ
∆;Γ =⇒ λ□X.E : Π2X:U. τ

Π2R
∆ ⊩ C ⇐ U ∆;Γ,y1 : Π2X:U. τ ′,y2 : [[C/X]]τ ′ =⇒ E : τ

∆;Γ,y1 : Π2X:U. τ ′ =⇒ [y1 (C)/y2]E : τ Π2L

∆;Γ,y1 : τ1 → τ2 =⇒ E′ : τ1 ∆;Γ,y1 : τ1 → τ2,y2 : τ2 =⇒ E : τ
∆;Γ,y1 : τ1 → τ2 =⇒ [y1 E

′/y2]E : τ → L

∆;Γ,y : τ1 =⇒ E : τ2
∆;Γ =⇒ fn y. E : τ1 → τ2

→R ∆;Γ,y : τ =⇒ y : τ init
∆;Ψ =⇒R : P

∆;Γ =⇒ box (Ψ̂ ⊢R) : ⌈Ψ ⊢ P ⌉
2R

∆,X:(Ψ ⊢ P );Γ,y:⌈Ψ ⊢ P ⌉ =⇒ E : τ
∆;Γ,y:⌈Ψ ⊢ P ⌉ =⇒ let box X = y in E : τ 2L

Figure 2: Sequent calculus for the computation logic.

2.3 Focused proof system

As a foundation for automating proof search in Beluga we develop a focused sequent calculus
over Beluga’s two-level logic. For the description of this focused proof system, we omit proof
terms when permitted to ease readability. This logic formalizes the proof search procedure
that we implement. The loop is fully automatic and therefore requires that non-determinism be
handled with ease. The sequent calculus previously presented does not suffice as the rules do not
provide any inherent direction for proof search. The rules of the following calculi guide better
proof development. The calculus builds uniform proofs [17] by applying all invertible rules first.
We then handle non-invertible rules systematically through focusing [3].

The focusing calculus for contextual LF consists of two main phases: a uniform and focus-
ing phase, and is mostly straightforward (see Figure 3). The uniform proof phase consists of
applying the invertible rules until we reach an atomic goal (P ). During this phase, parameters
and assumptions are collected and placed in the LF context. We then try to find a solution by
focusing on assumptions from the different contexts. In particular, we iterate through assump-
tions (in the meta and LF contexts), decomposing each one into the atoms it defines without
utilizing any other assumption.

In the transition∆ rule, using an assumption (Φ ⊢Q) from ∆ to complete a proof requires a
simultaneous substitution (σ) to be constructed so that Q makes sense in the current LF context
Ψ. We find such a substitution through proof search. When focusing on assumptions from Ψ
of function type, we search for a proof of A if our assumption is of non-dependent function
type. Otherwise the assumption is of dependent function type, in which case M is found via
unification.

Proof search over the reasoning layer proceeds similarly to LF (see Figure 4). We first
perform all invertible rules, then we must make a choice on what to focus on. Unlike in LF
proof search, proof search over computations requires two separate phases of inversions since
the box connective has an invertible left rule. Further, in addition to focusing on the left, we
also focus on the right, which corresponds to proof search in LF.

We begin with a uniform right phase which ends with an atomic goal formula, ⌈Ψ ⊢P ⌉. From
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∆;Ψ u=⇒A There is a uniform proof of A in the focusing calculus

∆;Ψ, x̂:A u=⇒B

∆;Ψ u=⇒ Πx̂:A. B
ΠR

∆;Ψ,x :A u=⇒B

∆;Ψ u=⇒A→B
→R

∆(X) = (Φ ⊢Q) ∆;Ψ u=⇒ σ : Φ [σ]Q= P

∆;Ψ u=⇒ P
transition∆

Ψ(x) =A ∆;Ψ> x :A⇒ P

∆;Ψ u=⇒ P
transitionΨ

∆;Ψ u=⇒ σ : Φ Object σ is a substitution that witnesses a uniform proof of Φ in the focusing calculus

∆;Ψ u=⇒ · : ·
empty

∆;ψ,Ψ u=⇒ wkψ : ψ
subwk

∆;Ψ u=⇒ σ : Φ ∆;Ψ u=⇒N : [σ]B

∆;Ψ u=⇒ (σ,N) : (Φ,x:B)
subp

∆;Ψ u=⇒ σ : Φ ∆;Ψ ⊢M ⇐ [σ]B

∆;Ψ u=⇒ (σ,M) : (Φ, x̂:B)
subu

∆;Ψ> x :A⇒ P There is a focused proof of P with focus on x in the focusing calculus

∆;Ψ> x : P ⇒ P initΨ
∆;Ψ u=⇒A ∆;Ψ> x′ :B⇒ P

∆;Ψ> x :A→B⇒ P
→ L

∆;Ψ ⊢M ⇐A ∆;Ψ> x′ : [M/x̂]B⇒ P

∆;Ψ> x : Πx̂:A. B⇒ P
ΠL

Figure 3: Focusing calculus for contextual LF.

there we transition to the uniform left phase where we unbox all box-type assumptions in Γ,
moving them to ∆. This is done because when we shift levels to LF proof search we only bring
with us assumptions that are true across all levels (those in ∆) and computation assumptions
do not make sense on the LF level. The sequent for the uniform left phase is novel. We use the
symbol ≫ as a way to distinguish assumptions that may be of box-type (to the right of ≫) from
ones that are not (to the left of ≫). Recall that the order of assumptions in Γ does not matter,
therefore it is acceptable that the order reverses each time we complete a uniform left phase.

Similarly to focusing in LF proof search, if we focus on a universally quantified assumption
then we find C through unification. Focusing on the right, i.e. LF proof search, can only be
applied if the goal is of box-type. Focusing on the left is standard and commences once we have
decomposed the focused formula into its atoms as in the blur rule. At this point, we add the
atomic formula to Γ and restart the process from the uniform left stage (to unbox the atomic
formula if necessary). In practice, we implement backtracking when focusing. If for example,
we cannot find a proof while focusing on the right, we backtrack and try focusing on the left.
In practice we also support recursive types, which we treat as atomic computation-level types.
These goal types may only be solved by focusing on the left.

We show in [31] that the focusing calculi in Figures 3 and 4 are sound and complete with
respect to the sequent calculi presented in Section 2.2.2. The completeness result in particular is
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∆;Γ R=⇒ τ There is a uniform right proof of τ in the focusing calculus

∆;Γ,y : τ1
R=⇒ τ2

∆;Γ R=⇒ τ1 → τ2
→R

∆,X : U ;Γ R=⇒ τ

∆;Γ R=⇒ Π2X:U. τ
Π2R

∆; · ≫ Γ L=⇒ ⌈Ψ ⊢ P ⌉

∆;Γ R=⇒ ⌈Ψ ⊢ P ⌉
left to right

∆;Γ ≫ Γ′ L=⇒ ⌈Ψ ⊢ P ⌉ There is a uniform left proof of ⌈Ψ ⊢ P ⌉ in the focusing calculus

∆,X : (Φ ⊢Q);Γ ≫ Γ′ L=⇒ ⌈Ψ ⊢ P ⌉

∆;Γ ≫ Γ′,y : ⌈Φ ⊢Q⌉ L=⇒ ⌈Ψ ⊢ P ⌉
2L

τ ̸= ⌈Φ ⊢Q⌉ ∆;Γ,y : τ ≫ Γ′ L=⇒ ⌈Ψ ⊢ P ⌉

∆;Γ ≫ Γ′,y : τ L=⇒ ⌈Ψ ⊢ P ⌉
shift

∆;Ψ u=⇒ P

∆;Γ ≫ · L=⇒ ⌈Ψ ⊢ P ⌉
level

Γ(y) = τ ∆;Γ> y : τ ⇒ ⌈Ψ ⊢ P ⌉

∆;Γ ≫ · L=⇒ ⌈Ψ ⊢ P ⌉
focus to uniform

∆;Γ> y : τ ⇒ ⌈Ψ ⊢ P ⌉ There is a focused proof of ⌈Ψ ⊢ P ⌉ with focus on y in the focusing calculus

∆ ⊩ C ⇐ U ∆;Γ> y′ : [[C/X]]τ ⇒ ⌈Ψ ⊢ P ⌉
∆;Γ> y : Π2X:U. τ ⇒ ⌈Ψ ⊢ P ⌉ Π2L

∆;Γ R=⇒ τ1 ∆;Γ> y′ : τ2 ⇒ ⌈Ψ ⊢ P ⌉

∆;Γ> y : τ1 → τ2 ⇒ ⌈Ψ ⊢ P ⌉ → L

∆; · ≫ Γ,y′ : ⌈Φ ⊢Q⌉ L=⇒ ⌈Ψ ⊢ P ⌉

∆;Γ> y′ : ⌈Φ ⊢Q⌉ ⇒ ⌈Ψ ⊢ P ⌉ blur

Figure 4: Focusing calculus for the computation logic.

interesting as it requires an intermediate result stating that it does not matter in which context
box-type assumptions appear. That is, if there is a proof in our sequent calculus of ⌈Ψ ⊢ P ⌉
(possibly) using some assumption y : ⌈Φ ⊢Q⌉ in Γ then there is also a proof of ⌈Ψ ⊢ P ⌉ where y
is omitted but under the added assumption X : (Φ ⊢Q) in ∆. Given a ∆ and Γ, Γ−

∆,Γ denotes Γ
without any assumptions of box-type, and ∆+

∆,Γ denotes ∆ extended with the (unboxed) boxed
assumptions from Γ.
Theorem 1 (Soundness).
a) If ∆;Ψ u=⇒A then ∆;Ψ =⇒A

b) If ∆;Ψ u=⇒ σ : Φ then ∆;Ψ =⇒ σ : Φ
c) If ∆;Ψ> x :A⇒ P then ∆;Ψ,x :A=⇒ P
d) If ∆>X : U ;Ψ ⇒ P then ∆,X : U ;Ψ =⇒ P

e) If ∆;Γ R=⇒ τ then ∆;Γ =⇒ τ

f) If ∆;Γ ≫ Γ′ L=⇒ ⌈Ψ ⊢ P ⌉ then ∆;Γ,Γ′ =⇒ ⌈Ψ ⊢ P ⌉
g) If ∆;Γ> y : τ ⇒ ⌈Ψ ⊢ P ⌉ then ∆;Γ,y : τ =⇒ ⌈Ψ ⊢ P ⌉
Theorem 2 (Completeness).
a) If ∆;Ψ =⇒A then ∆;Ψ u=⇒A

b) If ∆;Ψ =⇒ σ : Φ then ∆;Ψ u=⇒ σ : Φ
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c) If ∆;Ψ =⇒ P then ∆;Ψ> x :A⇒ P for some A ∈ Ψ or ∆>X : U ;Ψ ⇒ P for some U ∈ ∆
d) If ∆;Γ =⇒ τ then ∆+

∆,Γ;Γ−
∆,Γ

R=⇒ τ

e) If ∆;Γ =⇒ ⌈Ψ ⊢ P ⌉ then ∆+
∆,Γ;Γ−

∆,Γ ≫ · L=⇒ ⌈Ψ ⊢ P ⌉
f) If ∆;Γ =⇒ ⌈Ψ ⊢ P ⌉ then ∆+

∆,Γ;Ψ u=⇒ P or ∆+
∆,Γ;Γ−

∆,Γ > y : τ ⇒ ⌈Ψ ⊢ P ⌉ for some y : τ ∈ Γ−
∆,Γ

The soundness proofs proceed by mutual structural induction on the given derivations and
are straightforward. Proving completeness however is more involved and depends on several
minor lemmas, consisting mostly of postponement results and a variation of the reflect rule for
computation-level focusing, all proven with straightforward induction. The completeness proof
proceeds again by mutual structural induction on the given derivations. In part a) the base case
(i.e. the derivation is initΨ) is simplified by showing that the initΨ rule is admissible under the
addition of the rule ∆;Ψ,x : P =⇒ P . The remaining cases are then straightforward. Part b)
is trivial. Part c) must be done by case analysis on the induction hypothesis but is otherwise
straightforward. The base case in part d) is also made simpler by showing that the initΓ rule is
admissible under the added assumption ∆;Γ,y : ⌈Ψ ⊢P ⌉ =⇒ ⌈Ψ ⊢P ⌉. The cases in part d) where
the derivation is either → R, → L, or Π2L must be done by case analysis on whether or not
τ1, τ2, or [[C/X]]τ ′ (respectively) are atomic box-types. This is because the result of ∆+

∆,Γ and
Γ−

∆,Γ in the induction hypotheses depends on whether or not these assumptions are boxed. If
they are boxed they will appear unboxed in ∆+

∆,Γ and omitted from Γ−
∆,Γ, otherwise they remain

in Γ−
∆,Γ. Part e) also involves case analysis on some subgoals, depending on if the assumptions

in Γ are boxed or not. Some cases in part f) involve multiple case analyses- once on the result
of the induction hypothesis, and once on the shape of the assumptions in Γ. The entire proof is
given in [31].

3 Automation tactic

We present an overview of our automation tactic which implements the focusing calculi from
Section 2.3. We begin with a walk-through of the theorem prover followed by a summary of its
performance on various case studies from PL theory.

3.1 Example

To demonstrate the capabilities of the (meta-)theorem provers we examine how Beluga auto-
matically proves that reduction is closed under expansion, a key lemma needed to show weak-
head normalization for the simply-typed lambda-calculus. Specifically, we prove that if term M

steps to term N and N reduces to type A, then M does as well.
Building upon the theory presented in Section 2.1, we encode the notion of reducibility using

a logical relation by categorizing terms by the type they reduce to. We formalize the predicate in
Beluga’s reasoning logic, as it requires a strong, computational function space unlike the weak
function space of LF. Inductive properties about contextual objects are defined using indexed
recursive types [8]. We encode the set of reducible terms using the recursive type Reduce, which
is stratified by its index tp [16].
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stratified Reduce : {A:[ ⊢ tp]}{M:[ ⊢ term A]} ctype =
| I : [ ⊢ halts M] → Reduce [ ⊢ b ] [ ⊢ M]
| Arr : [ ⊢ halts M]

→ ({N:[ ⊢ term A]} Reduce [ ⊢ A] [ ⊢ N] → Reduce [ ⊢ B ] [ ⊢ app M N])
→ Reduce [ ⊢ arr A B ] [ ⊢ M]

;

To begin our theorem, we load the Beluga file containing our LF and computation-level
signatures into Harpoon. Harpoon then takes as input a theorem name and statement, and
index of induction variable specified by its position in the overall goal, counted from left-to-right:
Name of theorem: bwd_closed
Statement of theorem: {A:[ ⊢ tp]} {M: [ ⊢ term A]} {M’: [ ⊢ term A]} [ ⊢ step M M’]

→ Reduce [ ⊢ A] [ ⊢ M’] → Reduce [ ⊢ A] [ ⊢ M]
Induction order (empty for none): 1

Once loaded, users may simply invoke the tactic auto1 to prove the lemma. Behind the
scenes, Beluga gives the specified induction variable to our solver which then performs induc-
tion on said variable and generates the respective induction hypotheses for each subgoal. It then
performs a round of inversions and bounded depth-first proof search on each produced subgoal.
Users have the option of choosing their own depth bound by providing an argument to auto,
otherwise it is set to 3. The proof search algorithm closely implements the focusing calculus
presented in Section 2.3. As it searches for a proof, the solver also constructs proof terms in
the form of LF and computation-level terms, and LF substitutions. If the solver can prove each
case, the constructed proof term is presented to the user. If it cannot prove all subgoals, users
will have to manually split on the specified variable (with the split tactic) and then call auto
on each applicable case. In these instances, since no induction variable is specified, the solver
will only perform inversions and bounded search. We show below the proof script that is being
generated by invoking only the auto tactic.

1 proof bwd_closed : {A : ( ⊢ tp)} {M : ( ⊢ term A)}{M’ : ( ⊢ term A)}
2 [ ⊢ step M M’] → Reduce [ ⊢ A] [ ⊢ M’] → Reduce [ ⊢ A] [ ⊢ M] =
3 / total 1 /
4 intros
5 { A : ( ⊢ tp), M : ( ⊢ term A), M’ : ( ⊢ term A)
6 | x : [ ⊢ step M M’], x1 : Reduce [ ⊢ A] [ ⊢ M’]
7 ; solve
8 let [ ⊢ Y] = x in
9 case [ ⊢ A] of

10 | [ ⊢ b] =>
11 let (I x2 : Reduce [ ⊢ b] [ ⊢ M’]) = x1 in
12 let ([ ⊢ halts/m X3 X4] : [ ⊢ halts M’]) = x2 in
13 let [ ⊢ val/c] = [ ⊢ X4] in I [ ⊢ halts/m (sstep Y X3) val/c]
14 | [ ⊢ arr X X1] =>
15 let (Arr x2 x3 : Reduce [ ⊢ arr X X1] [ ⊢ M’]) = x1 in
16 let ([ ⊢ halts/m X5 X6] : [ ⊢ halts M’]) = x2 in
17 let [ ⊢ val/abs ] = [ ⊢ X6] in
18 Arr [ ⊢ halts/m (sstep Y X5) (val/abs )]
19 (mlam N => fn y =>
20 bwd_closed [ ⊢ X1] [ ⊢ app M N] [ ⊢ app M’ N] [ ⊢ stepapp Y] (x3 [ ⊢ N] y)) } ;

1In Harpoon, this tactic is invoked using inductive-auto-solve. See https://beluga-
lang.readthedocs.io/en/latest/harpoon/proof-automation.html#inductive-auto-solve for a description on
how to use the tactic.

https://beluga-lang.readthedocs.io/en/latest/harpoon/proof-automation.html#inductive-auto-solve
https://beluga-lang.readthedocs.io/en/latest/harpoon/proof-automation.html#inductive-auto-solve
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The Beluga program that our solvers construct is given in lines 8 - 20, which gets spliced
into the overall proof script. From the given proof script, we can extract a complete Beluga
program [11]. Previously, this lemma could be proved with no less than 10 Harpoon tactic
calls (see also [11]).

The proof begins with the automatic application of the intros tactic, which performs the
uniform right phase. The rest of the proof is constructed using Beluga’s theorem provers. It
first unboxes x (line 8), concluding the uniform left phase. Since an induction variable was speci-
fied, the algorithm immediately splits on the variable. After a split, there is a round of inversions
for each produced subgoal followed by bounded focused proof search. In the first case (A = b)
after the inversions (line 13), the computation-level solver focuses on the constructor I and solves
its subgoal by providing the appropriate boxed LF proof term ( halts/m (sstep Y X3) val/c)
which it finds again through focused proof search, but this time on the LF level. In the sec-
ond case (A = arr X X1), the solver focuses on Arr which requires solving two subgoals, one
of which is of function type. It is here where the solver focuses on the induction hypothesis to
solve a subgoal. If the solver focuses on the “wrong” assumption, it will execute backtracking
and continue focusing until it has exhausted all possible branches on the bounded search tree.

3.2 Evaluation

The proof-search procedures behind our automation tactic is the beginning of the implementa-
tion of the focusing calculi presented in Section 2.3. There are several areas of incompleteness
that may be improved in the future [31]. Nevertheless, the tactic is able to prove a number of
interesting theorems both semi- and fully-automatically. We provide a summary of these case
studies here.

Case study Automation Difficulty Interesting proof features
MiniML/fix type
preservation Full Advanced Solving substitutions,

I.H. appeal, inversions
MiniML/fix value
soundness Full Basic I.H. appeal

STLC weak-head
normalization lemmas Full Intermediate Inversions, I.H. appeal,

higher-order solving
STLC type uniqueness Partial Basic I.H. appeal, inversions
Untyped λ-calculus
reduction lemmas Full/Partial Basic I.H. appeal

Table 1: Overview of case studies.

We categorize our case studies by the amount of automation that may be successfully applied.
We say full automation is applied when only auto is used to complete a proof (as in the previous
example). Partial automation is used on induction proofs when not all the subgoals fall within
the prover’s applicable subset. In these instances, auto is used after a variable split has been
manually made, and only on a portion of the subgoals. All proofs proceed by induction along
with various features that we have outlined.

We use our tactic to prove key lemmas required to show weak-head normalization for the
simply-typed lambda-calculus. The backwards closed lemma is particularly interesting as it re-
quires higher-order function type solving. Type uniqueness for the simply-typed lambda-calculus
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can be proven semi-automatically as two of its cases involve parameter variables and context
block schemas. We prove all lemmas regarding ordinary reduction for the untyped lambda-
calculus automatically, and all but one lemma regarding parallel reduction automatically. These
lemmas are used to prove equivalence of the ordinary and parallel reductions, and ultimately
the Church-Rosser theorem for each reduction procedure. For MiniML without fixpoints, we
are able to prove type preservation and value soundness fully-automatically. Preservation in
particular showcases the solvers ability to solve for substitutions [31].

Beluga’s proving power does not yet surpass that of Twelf’s. However, Beluga is able
to reason directly using logical relations, unlike Twelf. Certain properties, like normalization
theorems, are most commonly proven using logical relations. In Twelf, users must find alter-
native proof methods [30, 1], which may be conceptually different from on-paper formulations
and require more work from the user to construct additional machinery. In Beluga, such log-
ical relations may be directly translated from on-paper formulations and their proofs become
simplified with the use of our automation tactic.

4 Related work

4.1 Proof environments based on HOAS

Twelf [22] currently provides the most automation out of all HOAS-based proof assistants de-
signed to formalize PLs. It fully automatically proves many theorems such as type-preservation
for MiniML, Church-Rosser for the simply typed lambda-calculus, and cut-admissibility for first-
order logic [29, 28]. It essentially has a simple loop that splits on an assumption based on a
heuristic, generates induction hypothesis, and tries to prove a given goal by bounded depth-first
proof search. If the last step fails, it will again split on an assumption heuristically picking one.
This has proven remarkably effective. However, the kind of properties that can be stated is
more restrictive. For example, Twelf’s meta-logic permits only theorems expressed as Π2 state-
ments and lacks support for recursive types. Therefore it cannot, for example, directly deal with
proofs that proceed via logical relations. More importantly, Twelf’s prover does not produce
proof terms and therefore provides no way to verify its proofs. Even worse, if the meta-theorem
prover fails to find a proof automatically, there is no possibility for the user to pick up the pieces
and manually proceed.

Abella is another HOAS-based proof assistant with the capabilities to mechanize meta-
theoretic proofs about PLs [14]. Semi-automation exists in Abella provided in the form of tactics
that are similar to the ones previously implemented in Harpoon. Contexts and (simultaneous)
substitutions in Abella are not treated as first-class like they are in Beluga. This means that
in order to use such constructs, users must manually define them and any properties they wish
to utilize about them (e.g. context weakening). These can further add to the complexity of
formal theorem proving. As Twelf, Abella also does not construct proof objects during proof
development. Moreover, the tactics used in constructing proofs in Abella concentrate on “small”
steps and there is presently no analogue to the proof search tactic that we describe in this
paper. However, we believe that similar semi-automation could be added to Abella to discharge
straightforward cases.
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4.2 General proof environments

The Hybrid system aims to bring full HOAS support to general proof environments like Coq and
Isabelle/HOL [2, 18]. These systems often have more users compared to specialized systems and
thus more reason to provide tooling and automation. Both systems employ the use of tacticals,
which allow users to create their own tactics specific to their mechanizations.

In Coq, users write decision procedures in a tactic language like LTac [10]. There are general
automated proof search tactics (auto, eauto, iauto and jauto) but they do not conduct any
case analysis (including inversions), inductions, or rewritings, and are intended to finish a proof
instead of complete it entirely [26]. Coq also offers many libraries to assist with building and
verifying infrastructure needed in PL mechanizations. Autosubst may be used as a library for
example to automatically generate parallel substitution operations for a custom type and prove
the related substitution lemmas [27]. The libraries Ott [32] and LNgen [4] may be used together
to generate locally nameless definitions from a specification and provide the corresponding recur-
sion schemes and infrastructure lemmas. However these tools are limited as they only automate
trivial lemmas.

For much of its automation, Isabelle elicits the help of several external solvers. Sledgehammer
[21], for example, takes a goal and heuristically chooses from Isabelle’s libraries containing
various lemmas, definitions, and axioms, a few hundred applicable ones to perform search over.
Then, translates the goal and each of these assumptions to SMT (first-order logic) and sends the
query off to an external SMT or resolution-based solver. In its own system, Isabelle performs
various general-purpose proof search methods which help discharge simple parts of a proof
allowing users to focus on the main ones [7]. They also have several strengthened endgame
tactics which are meant to finish a proof but provide no hints upon failing.

Despite the abundance of tooling in these systems, some specialized systems (Beluga and
Twelf for example) offer more automation for PL mechanizations. This is because these systems
have fixed specification logics, so automatic proof procedures can be more intricate. Hybrid on
the other hand allows for encodings of various specification logics, therefore proof procedures
are more difficult as they must be customized to work for different logics.

5 Conclusion

In closing, we have presented the theorem and meta-theorem provers behind Beluga, a spe-
cialized proof assistant with sophisticated built-in support for specifying formal systems. These
provers perform two-leveled proof search over a core subset of Beluga’s logic which allows
for the automatic completion of many simple lemmas and cases of PL theory proofs. Users of
Beluga may now bypass simple proofs and focus their energy on the interesting cases. Along
with our implementation, we provide a theoretical foundation for our solvers in the form of
a cut-free sequent calculus, which is easy to understand, and a sound and complete focusing
calculus, which closely reflects our implementation. These provide us with a way to study our
implementation and ensure its correctness.

Our next steps are to expand the solver so that its proving capabilities are equivalent to
that of the logic presented in this paper [31]. After that we plan to add support for context
block schemas, and substitution and parameter variables, which should bring its proving power
up to that of Twelf’s. Finally, it would be interesting to extend the focusing calculus (and
implementation) with automatic induction, similar to [5].
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