
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Focusing the inverse method for LF:

a preliminary report

Brigitte Pientka and Xi Li1

School of Computer Science
McGill University
Montreal, Canada

Florent Pompigne

ENS Cachan
94235 Cachan cedex, France

Abstract

In this paper, we describe a proof-theoretic foundation for bottom-up logic programming based on uniform
proofs in the setting of the logical framework LF. We present a forward uniform proofs calculus which
is a suitable foundation for the inverse method for LF and prove its correctness. We also present some
preliminary results of an implementation for the Horn Fragment as part of the logical framework Twelf,
and compare its performance with the tabled logic programming engine.

1 Introduction

Logic programming is typically thought of as a backward proof search method

where we start with the query and apply backchaining. We first try to find a

clause head which unifies with a given query and then try to solve its subgoals.

Proof-theoretically backchaining in logic programming can be elegantly explained

by uniform proofs [MNPS91] which serves as a foundation for higher-order logic pro-

gramming systems such as as λ-Prolog [NM99], Twelf [PS99], or Isabelle [Pau86].

These frameworks provide a general meta-language for the specification and imple-

mentation of formal systems, and execution of these specifications is based on the

operational semantics of backchaining logic programming. However, the backchain-

ing semantics has also several disadvantages. Many straightforward specifications

may not be directly executable, thus requiring more complex and sometimes less

efficient implementations and performance may be severely hampered by redun-

dant computation. The tabled logic programming engine [Pie02a,Pie05] in Twelf

1 Email: bpientka@cs.mcgill.ca

c©2007 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:bpientka@cs.mcgill.ca

Pientka

addresses these concerns. It allows the logic programming interpreter to memoize

subcomputations and re-use their result later, thereby eliminating infinite and re-

dundant computation. However, a critical potential bottleneck in this system is

that the memo-table may grow large and there are a large number of suspended

goals. The overhead of freezing and storing a given proof search state such that it

can be resumed later on is substantial.

An alternative to backchaining in logic programming is forward chaining where

we start with some axioms, and then satisfy the subgoals to conclude new facts.

This idea of forward chaining has been exploited in bottom-up logic programming

as found for example in magic sets [Ram91]. Forward logic programming has po-

tentially many advantages over the more traditional backwards logic programming

approaches, since suspending computation and storing a global state, as in tabled

logic programming, is completely unnecessary. It provides a sound and complete

proof search procedure, where only true statements are generated and only those

must be stored. Forward chaining in this sense can be naturally explained by proof

search based on the inverse method (see for example [CPP06]). In this paper, we

lay the foundation for exploring forward chaining in the logical framework Twelf,

and present a forward uniform proof calculus together with its correctness proof.

Building on this theoretical discussion, we discuss how to turn theory into a prac-

tical implementation and report on our experience with a prototype for the Horn

fragment.

This paper is structured: Section 2 we introduces briefly the syntax of LF, and

Section 3 gives some example specification in LF. Section 4 we present uniform

calculus together with a lifted version which has meta-variables. In Section 5, we

present a forward uniform proof system together with a lifted version which is

a suitable basis for inverse method for LF. Section 6, we discuss implementation

issues, and report on some some preliminary results for the Horn fragment and

compare it to the tabled higher-order logic programming engine.

2 Background: The logical framework LF

Our main interest in this paper is in designing a forward inverse method prover for

the logical framework Twelf. Twelf supports the specification of deductive systems,

given via axioms and inference rules, together with the proofs about them, and

has been extensively used over the past few years in several applications. The

theoretical foundation for Twelf is the logical framework LF [HHP93]. The LF

language, a dependently typed lambda-calculus, can be briefly described as follows:

Kinds K ::= type | Πx:A.K

Types A ::= a M1 . . . Mn | A1 → A2 | Πx : A1.A2

Normal Objects M ::= λx.M | R

Neutral Objects M ::= x | c | R M

We follow recent formulations which only concentrate on characterizing normal

forms [NPP06], however this is not strictly necessary. Objects provided by the logi-

2

Pientka

cal framework LF include lambda-abstraction, application, constants and variables.

To preserve canonical forms in the presence of substitution, we rely on hereditary

substitutions as defined in [NPP06]. Types classify objects, and range over type

constants a which may be indexed by objects M1 . . . Mn, as well as non-dependent

and dependent function types. Viewing types as propositions, LF types can be in-

terpreted as logical propositions. Atomic type a M1 . . . Mn correspond to an atomic

proposition, non-dependent function type A1 → A2 corresponds to an implication,

and the dependent function type Πx:A.B can be interpreted as the universal quan-

tifier. We will use types and formulas interchangeably.

3 Example: Bounded polymorphic subtyping

As a motivating example which illustrates also many challenges we face when design-

ing an inverse method prover for Twelf, we consider bounded subtype polymorphism

(see also Ch. 26 [Pie02b]). In this system, we enrich polymorphic types such as ∀α.T

with a subtype relation and refine the universal quantifier to carry a subtyping con-

straint. This example was proposed as part of the POPLmark challenge [ABF+05]

to study different meta-theoretic properties about bounded subtype polymorphism.

Here our focus is primarily in executing the given specification and experimenting

with it. The syntax of types can be defined as follows:

Types T ::= top | α | T1 ⇒ T2 | ∀α ≤ T1.T2

Context Γ ::= · | Γ, w:α ≤ T

In ∀α ≤ T1.T2, the type variable α only binds occurrences of α in T2. The typing

context Γ keeps track of constraints such as α ≤ T . Next, we describe a subtyping

algorithm using the judgment:

Γ ` T ≤ S Type T is a subtype of S in the context Γ

Γ ` T ≤ top
sa-top

α ≤ T ∈ Γ
Γ ` α ≤ T

sa-hyp
Γ ` α ≤ α

sa-ref-tvar

Γ ` T1 ≤ S1 Γ ` S2 ≤ T2

Γ ` S1 ⇒ S2 ≤ T1 ⇒ T2
sa-arr

Γ ` α ≤ U Γ ` U ≤ V
Γ ` α ≤ V

sa-tr-tvar

Γ ` T1 ≤ S1 Γ, w:α ≤ T1 ` S2 ≤ T2

Γ ` ∀α ≤ S1.S2 ≤ ∀α ≤ T1.T2
sa-allα,w

The description is algorithmic in the sense that general rules for reflexivity and

transitivity are admissible, and for each type constructor, top, ∀ and ⇒ there is one

rule which can be applied. However, it is worth pointing out that while the presented

characterization has pleasant meta-theoretic properties, it does not eliminate all

non-determinism. While the rule for transitivity is restricted to type variables on

the left side of the subtyping relation, we can satisfy the left premise with four

possible rules, i.e. the rule sa-top, sa-hyp, sa-ref-tvar, and sa-tr-tvar. However, only

3

Pientka

the rule sa-hyp is really fruitful. A crucial question therefore is not only how we can

implement this formal system in the logical framework, but also what is the right

paradigm to execute this implementation.

We begin by encoding the object-language of polymorphic types in LF using

higher-order abstract syntax, i.e. type variables α in the object language will be

represented as variables in the meta-language. This is standard practice.

tp:type.

top: tp.

arr: tp -> tp -> tp.

all: tp -> (tp -> tp) -> tp.

We define an LF type called tp, with the constructors top, arr, and all. The

type for the constructor all takes in two arguments. The first argument stands for

the bound and has type tp, while the second argument represents the body of the

forall-expression and is represented by the function type (tp -> tp).

Next we consider the implementation of the subtyping relation. Since we rep-

resent variables of the object language implicitly, we cannot generically represent

sa-ref and sa-tr where both these rules are applicable for all type variables. Instead

of a general variable rule, we will add rules for reflexivity and transitivity for each

type variable. Reflexivity and transitivity rules are dynamically introduced for each

type variable.

We are now ready to show the encoding of these subtyping rules in LF. We first

define the constant sub which describes the subtyping relation. Next, we represent

each inference rule in the object-language as a clause consisting of nested universal

quantifiers and implications. Upper-case letters denote logic variables which are

implicitly bound by a Π-quantifier at the outside.

sub : tp -> tp -> type.

sa top : sub S top.

sa arr : sub S2 T2 -> sub T1 S1

-> sub (arr S1 S2) (arr T1 T2) .

sa all : (Πa:tp.

(ΠU.ΠV.sub U V -> sub a U -> sub a V) ->

sub a T1 -> sub a a ->

sub (S2 a) (T2 a))

-> sub T1 S1

-> sub (all S1 (λa.(S2 a))) (all T1 (λa.(T2 a))).

Using a higher-order logic programming interpretation based on backchaining,

we can read the clause sa arr as follows: To prove the goal sub (arr S1 S2) (arr

T1 T2), we must prove sub T1 S1 and then sub S2 T2. Similarly we can read the

clause sa all: To prove sub (all S1 (λa.(S2 a))) (all T1 (λa.(T2 a))), we

need to prove first sub T1 S1, and then assuming tr:ΠU.ΠV. sub U V -> sub a

U -> sub a V, w:sub a T1, and ref:sub a a, prove that sub (S2 a) (T2 a) is

true where a is a new parameter of type tp.

Unfortunately, this specification cannot directly be executed using the backward

logic programming engine, since the transitivity rule does not eliminate all non-

determinism. Tabled logic programming memoizes previously encountered subgoals

and allows us to reuse the results later on. This enables us to execute the specifica-

tion for bounded subtype polymorphism. However, tabled logic programming has

4

Pientka

also a substantial overhead of storing encountered goals together with their answer

substitution, and freezing and suspending computation to resume it later.

In this paper, we explore an alternative paradigm, a forward logic programming.

This means we start from some axioms and then apply the given rules in a forward

direction. In this example, sub T top is an axiom and so is for example, sub a a

for any variable a. The clause sa arr is then interpreted in a forward direction as

follows: Given a proof for sub T1 S1 and a proof for sub S2 T2, we can derive sub

(arr S1 S2) (arr T1 T2). We present first a theoretical foundation for forward

proof search, and then outline the basic idea and challenges when implementing an

inverse method search engine based on it. Finally, we conclude with a discussion

of some preliminary results of our current prototype implementation. While our

prototype only concentrates on the Horn fragment, it nevertheless provides some

interesting preliminary results and analysis especially when compared to tabled logic

programming.

4 Uniform Proofs

A standard proof-theoretic characterization for backchaining in logic programming

is based on uniform proofs [MNPS91]. The essential idea in uniform proofs is to

chain all invertible rules eagerly, and postpone the non-invertible rules lead to a

uniform sequent calculus. In a uniform calculus, we distinguish between uniform

phase, where we apply all the invertible rules, and focusing phase, where we pick

and focus on a non-invertible rule. We can characterize uniform proofs by two main

judgments:

Γ =⇒ A There is a uniform proof for A from the assumptions in Γ

Γ � A =⇒ P There is a focused proof for the atom P focusing on the

proposition A using the assumptions in Γ

Next, we present a proof system characterizing uniform proofs.

Γ � A =⇒ P A ∈ Γ
Γ =⇒ P

choose
Γ � P =⇒ P

hyp

Γ, c:A1 =⇒ A2

Γ =⇒ A1 → A2
→ R

Γ =⇒ A1 Γ � A2 =⇒ P
Γ � A1 → A2 =⇒ P

→ L

Γ, x:A =⇒ B

Γ =⇒ Πx:A.B
ΠR

Γ � [M/x]A =⇒ P Γ ` M : A

Γ � Πx:A.B =⇒ P
ΠL

We note that our context Γ keeps track of dynamic assumptions which are

introduced in the rule →R and can be used during proof search as well as parameter

assumptions which are introduced in the rule ΠR but cannot be used in proof search.

Our goal is to enforce that every proposition is well-typed, so in the sequent Γ =⇒ A

we have that A is a well-formed type in the context Γ, and similarly in the sequent

5

Pientka

Γ � A =⇒ P we have that A and P are a well-formed types in the context Γ.

Moreover, we require in the rule ΠL that M has type A in the context Γ.

In practice, we typically do not guess the correct instantiation for the univer-

sally quantified variables in the ΠL rule, but introduce a meta-variable which will be

instantiated with unification later. Previously[Pie03] , we have been advocating the

use of meta-variables. Meta-variables are associated with a postponed substitution

σ which is applied as soon as we know what the meta-variable stands for. A for-

mal treatment for meta-variables based on contextual modal types can be found in

[Pie03,NPP06]. This allows us to formally distinguish between the ordinary bound

variables introduced by ΠR or a λ-abstraction and meta-variables u which are sub-

ject to instantiation. An advantage of this approach is that we localize dependencies

while allowing in-place updates. Moreover, we can present all meta-variables that

appear in a given term in a linear order and ensure that the types and contexts

of meta-variables further to the right may mention meta-variables. When a meta-

variable is introduced it is created as u[idΓ] meaning it can depend on all the bound

variables occurring in Γ. During search Γ is concrete and idΓ will be unfolded.

Moreover, we can easily characterize all the meta-variables occurring in a formula

or sequent. The distinction between ordinary bound variables and meta-variables

provides a clean basis for describing proof search. We will therefore enrich our

lambda-calculus with first-class meta-variables denoted by u.

Neutral Terms M ::= . . . | u[σ]

Meta-variable context ∆ ::= · | ∆, u::A[Ψ]

The type of a meta-variable is A[Ψ] denoting an object M which has type A

in the context Ψ. We briefly highlight how contextual substitution into types and

objects-level terms is defined to give an intuition, but refer the interested reader

to [NPP06] for more details. We write [[Ψ̂.M/u]] for replacing a meta-variable u

with an object M . Ψ̂ characterizes the ordinary bound variables occurring in M .

This explicit listing of the bound variables occurring in M is necessary because

of α-renaming issues and can be eliminated in an implementation. We only show

contextual substitution into objects here.

[[Ψ̂.M/u]](λy.N) = λy.N ′ if [[Ψ̂.M/u]]N = N ′

[[Ψ̂.M/u]](u[σ]) = M ′ if [[Ψ̂.M/u]]σ = σ′ and [σ′/Ψ]M = M ′

[[Ψ̂.M/u]](u′[σ]) = u′[σ′] if u′ 6= u and [[Ψ̂.M/u]]σ = σ′

[[Ψ̂.M/u]](R N) = (R′ N ′) if [[Ψ̂.M/u]]R = R′ and [[Ψ̂.M/u]](N) = N ′

[[Ψ̂.M/u]](x) = x

[[Ψ̂.M/u]](c) = c

We note that there are no side-conditions necessary when substituting into λ-

abstraction, since the objects M we substitute for u is closed with respect to Ψ̂.

When we encounter a meta-variable u[σ], we first apply [[Ψ̂.M/u]] to the substitution

6

Pientka

σ yielding σ′ and then replace u with M and apply the substitution σ ′. Note because

of α-renaming issues we must possibly rename the domain of σ ′.

Simultaneous contextual substitution can be defined following similar principles.

A simultaneous contextual substitution maps the meta-variables in its domain ∆ ′

to another meta-variable context ∆ which describes its range. More formally we

can define simultaneous contextual substitutions as well-typed as follows:

∆ ` · : ·

∆ ` θ : ∆′ ∆;Ψ ` M : A

∆ ` (θ, Ψ̂.M/u) : ∆′, u::A[Ψ]

Finally, we are in the position to give a uniform calculus which introduces meta-

variables in the rule ΠL, and delays their instantiation to the hyp rule where we

rely on higher-order unification to find the correct instantiation. Since higher-order

unification is undecidable in general we restrict it to the pattern fragment.

∆; Γ =⇒ A/(θ,∆′) There is a uniform proof for A from the assumptions

in Γ where θ is a contextual substitution which instan-

tiates the meta-variable in ∆ and has range ∆′

∆;Γ � A =⇒ P/(θ,∆′) There is a focused proof for the atom P focusing on

the proposition A using the assumptions in Γ where

θ is a contextual substitution which instantiates the

meta-variable in ∆ and has range ∆′

In the rule ΠL we introduce a new meta-variable u[idΓ] of type A[Γ]. This means

we introduce a meta-variable whose instantiation can depend on all the parameters

occurring in Γ. In the hypothesis rule, we rely on higher-order pattern unification

to find the most general unifier θ of P ′ and P , s.t. [[θ]]P ′ = [[θ]]P .

∆; Γ � A =⇒ P/(θ,∆′) A ∈ Γ

∆;Γ =⇒ P/(θ,∆′)

∆; Γ ` P ′ .
= P/(θ,∆′)

∆; Γ � P ′ =⇒ P/(θ,∆′)

∆; Γ, A1 =⇒ A2/(θ,∆′)

∆; Γ =⇒ A1 → A2/(θ,∆′)

∆; Γ =⇒ A1/(θ1,∆1)

∆1; [[θ1]]Γ � [[θ1]]A2 =⇒ [[θ1]]P/(θ2,∆2)

∆; Γ � A1 → A2 =⇒ P/([[θ2]]θ1,∆2)

∆; Γ, x:A =⇒ B/(θ,∆′)

∆; Γ =⇒ Πx:A.B (θ,∆′)

∆, u::A[Γ]; Γ � [u[idΓ]/x]B =⇒ P/((θ, Γ̂.M/u),∆′)

∆; Γ � Πx:A.B =⇒ P/(θ,∆′)

Next, we prove that this system is sound and complete with the uniform proofs

where we guess the correct instantiation for the meta-variables.

Theorem 4.1 (Soundness)

(i) If ∆;Γ =⇒ A/(θ,∆′) then for any grounding substitution · ` ρ : ∆′ we have

·; [[ρ]][[θ]]Γ =⇒ [[ρ]][[θ]]A.

7

Pientka

(ii) If ∆;Γ � A =⇒ P/(θ,∆′) then for any grounding substitution · ` ρ : ∆′ we

have ·; [[ρ]][[θ]]Γ � [[ρ]][[θ]]A =⇒ [[ρ]][[θ]]P .

Proof. By structural induction on the first derivation (see also [Pie03]). 2

Theorem 4.2 (Completeness)

(i) If ·; [[ρ]]Γ =⇒ [[ρ]]A for a modal substitution ρ, s.t. · ` ρ : ∆

then ∆;Γ =⇒ A/(∆′, θ) for some θ and ρ = [[ρ′]]θ for some ρ′ s.t. · ` ρ′ : ∆′.

(ii) If ·; [[ρ]]Γ � [[ρ]]A =⇒ [[ρ]]P for a modal substitution ρ s.t. · ` ρ : ∆

then ∆;Γ � A =⇒ P/(∆′, θ) for some θ and ρ = [[ρ′]]θ for some ρ′, s.t.

· ` ρ′ : ∆′.

Proof. Simultaneous structural induction on the first derivation (see also [Pie03]).2

5 Inverse method and focusing

An interesting alternative to backward proof search, is forward proof search based

on the inverse method. This has potentially many advantages. While backward

logic programming based depth first search is incomplete and requires backtracking,

forward search provides a complete search strategy without backtracking. Similar

to tabling, it also allows us to execute some specifications which were not previously

executable. Next, we present a forward uniform proof system where we guess the

correct instantiation. We derive this forward calculus from the uniform proof system

presented earlier which models backchaining. Hence our system will only distinguish

between the left focusing and right uniform phase. To obtain a more general proof-

theoretic foundation, one could distinguish between a right-focusing and a left-

focusing phase (see for example [CPP06]). Finally, we describe a lifted version with

meta-variables.

Γ
f

=⇒A A has forward uniform proof using the assumptions in Γ

Γ � A
f

=⇒P P has a forward focused proof focusing on the proposition

A using the assumptions in Γ

The context Γ is now interpreted differently, in that sequents Γ
f

=⇒A and

Γ � A
f

=⇒P assert that all assumptions in Γ as well as A, if the sequent is fo-

cused are needed to prove the conclusion. General weakening is thus disallowed but

incorporated in the rule f→R2. Since our context Γ keeps track of dynamic assump-

tion and parameters, we do not require it to be completely empty in the rule f-ax.

Instead we can think of it as the strongest context in which P is well-typed. Since

we want to preserve that contexts Γ are well-typed, we must make sure in the rule

f→L that the union two context Γ1 and Γ2 is well-typed and preserves the present

dependencies between parameter assumptions and dynamic assumptions. The rule

f-drop was called in the backwards uniform calculus choose. In the forward direction

there is no choice but rather we must drop the formula out of the focus.

8

Pientka

Γ � A
f

=⇒P

Γ ∪ {A}
f

=⇒P
f-drop

Γ � P
f

=⇒P
f-ax

Γ, c:A1
f

=⇒A2

Γ
f

=⇒A1 → A2

f→R1
Γ

f
=⇒A2

Γ
f

=⇒A1 → A2

f→R2
Γ1

f
=⇒A1 Γ2 � A2

f
=⇒P

Γ1 ∪ Γ2 � A1 → A2
f

=⇒P
f→L

Γ, x:A
f

=⇒B

Γ
f

=⇒Πx:A.B
fΠR

Γ � [M/x]B
f

=⇒P Γ ` M : A

Γ � Πx:A.B
f

=⇒P
fΠL

Next, we prove soundness and completeness of this forward uniform calculus.

Theorem 5.1 (Soundness)

(i) If Γ
f

=⇒A then Γ =⇒ A

(ii) If Γ � A
f

=⇒P then Γ � A =⇒ P .

Proof. Straightforward structural induction. 2

Theorem 5.2 (Completeness)

(i) If Γ =⇒ A then Γ′ f
=⇒A where Γ′ ⊆ Γ.

(ii) If Γ � A =⇒ P then Γ′ � A
f

=⇒P where Γ′ ⊆ Γ

Proof. Straightforward structural induction. 2

The forward uniform proof system presented gives rise to a proof search method

based on the inverse method central to which is the notion of subformula. We outline

the notion of subformulas and present a lifted calculus following the development set

out in [DV01]. We adapt the standard definition of subformulas to the higher-order

setting where objects may contain meta-variables. The immediate free subformula of

the negative occurrence of the formula Πx:A.B in the context Γ is then [u[idΓ]/x]B.

The immediate ground subformula of the negative occurrence of the formula Πx:A.B

in the context Γ is [M/x]B. Free signed subformulas and its immediate signed

subformulas are defined inductively as follows:

signed subformula free signed subformula immediate signed subformula

(A → B)− A+, B− A+, B−

(A → B)+ A−, B+ A−, B+

(Πx:A.B)− ([u[idΓ]/x]B)− ([M/x]B)−

(Πx:A.B)+ ([a/x]B)+ ([a/x]B))+

Definition 5.3 [Subformula property]

9

Pientka

(i) Every derivation of a uniform sequent Γ =⇒ A consists of signed ground sub-

formulas of signed formulas in Γ− and A+.

(ii) Every derivation of a focused Γ � A =⇒ P consists of signed ground subfor-

mulas of signed forumlas in Γ− and A+.

Theorem 5.4 (Ground subformula property of uniform proofs)

(i) Let D be a derivation of a signed uniform sequent Γ− =⇒ A+ then every

signed uniform sequent Γ−
0 =⇒ A+

0 or signed focused sequent Γ−
1 � A−

1 =⇒ P1

occurring in D fulfills the subformula property, i.e. [Γ−
0 , A+

0] < [Γ−, A+] or

[Γ−
1 , A−

1 , P+
1] < [Γ−, A+] .

(ii) Let D be a derivation of a signed focused sequent Γ− � A− =⇒ P+ then every

signed uniform sequent Γ−
0 =⇒ A+

0 or signed focused sequent Γ−
1 � A−

1 =⇒ P1

occurring in D fulfills the subformula property, i.e. [Γ−
0 , A+

0] < [Γ−, A−, P+]

or [Γ−
1 , A−

1 , P+
1] < [Γ−, A−, P+].

Proof. By routine inspection of the inference rules for uniform and focused proofs.2

Thus when we search for a proof of a particular signed sequent Γ =⇒ A or

Γ � A =⇒ P resp. we can restrict our search to sequents consisting of signed

subformulas of [Γ−, A+]. When [Γ−, A+] contains quantifiers, it may have an infinite

number of signed subformulas, so the subformula property does not restrict the

search space good enough. However any signed formula has only a finite number of

free signed subformulas.

Next, we consider free signed subformula property. We will often represent signed

subformulas of a given uniform sequent Γ− =⇒ A+ in the form [[θ]]Γ−
0 =⇒ [[θ]]A+

0 ,

where θ is a substitution from the meta-variables ∆ to some ground instance, i.e.

· ` θ : ∆ and ∆;Γ−
0 =⇒ A−

0 . We call this the representation via free signed

subformula. Similarly we often represent signed subformulas of a given focused

sequent Γ− � A− =⇒ P+ in the form [[θ]]Γ−
0 � [[θ]]A− =⇒ [[θ]]P +. Moreover, we

often write S = [Γ−, A+] as an abbreviation for the sequent Γ =⇒ A, and ∆ ` S

as an abbreviation for ∆; Γ =⇒ A.

Lemma 5.5 Let S0 = [Γ−
0 , A+

0], and S1 = [Γ−
1 , A+

1] be free signed subformulas s.t.

∆0 ` S0 and ∆1 ` S1. Then [Γ−
1 , A+

1] < [Γ−
0 , A+

0] i.e. S1 is a signed subformula of

S0, iff S1 = [[θ]]S for some signed sequent S s.t. S is a free signed subformula of

S0, where ∆1 ` θ : ∆ and ∆ ` S and ∆ ∩ ∆0 = ∅.

Proof. By inspection of the definition of signed subformulas. 2

Every signed subformula of a closed signed formula can be obtained from a free

signed subformula by applying a contextual substitution. We now reformulate the

subformula property.

Corollary 5.6 (Free subformula property) Let D be a derivation of a closed

signed uniform sequent S = Γ− =⇒ A+ or closed signed focused sequent Γ− �
A− =⇒ P+. Every signed sequent occurring in D has the form [[θ]]S0 for a free

signed sequent S0 of S and a substitution θ s.t. ∆ ` S0 and · ` θ : ∆.

Suppose we want to check the provability of a closed signed sequent S. By the

10

Pientka

previous corollary, we can restrict signed formulas occurring in the derivation to

signed sequents of the form [[θ]]S0 where S0 is a free signed sequent of S s.t. ∆ ` S0

and · ` θ : ∆. Since this applies to axioms as well, every axiom has the form

Γ � [[θ]]([[ρ]]P) → [[θ]]P ′ where P and P ′ are atomic free signed subformulas of the

sequent S and [[θ]]([[ρ]]P) = [[θ]]P ′, and ρ is a renaming of meta-variables occurring in

P , and Γ characterizes the parameters occurring in [[θ]]P ′ and [[θ]]([[ρ]]P) respectively.

For any given P , P ′ there may be an infinite number of such axioms because of

different choices for substitutions θ, but there is only a finite number of pairs of free

signed sequents. We can choose a most general axiom that represents all axioms.

We will now introduce a forward calculus FA for the inverse method with meta-

variables. The calculus is based on the idea of representing sequents through free

subformulas and using most general unifiers. Since higher-order unification is only

decidable for patterns, we restrict our attention for now to this fragment. A sequent

S in the original forward calculus for closed sequents, is an instance of a sequent

[[θ]]S0 in the calculus FA if there exists a grounding substitution ρ s.t. [[ρ]][[θ]]S0 = S.

Unlike more standard presentation where we associate a substitution θ with each

of the formulas in Γ and the conclusion A, we will associate a substitution θ with

a sequent. The judgment (Γ → A) · θ denotes a sequent where [[θ]]Γ → [[θ]]A. This

will be easier to implement, and models more closely our prototype.

(∆; Γ � A
f

=⇒P) · θ

(∆; Γ ∪ {A}
f

=⇒P) · θ

∆;Γ ` [[ρ]]P ′ .
= P/θ

(∆; Γ � [[ρ]]P ′ f
=⇒P) · θ

(∆; Γ
f

=⇒B) · θ

(∆; Γ
f

=⇒(A → B)) · θ

(∆; Γ, c:A1
f

=⇒A2) · θ

(∆; Γ
f

=⇒(A1 → A2)) · θ

(∆1; Γ1
f

=⇒A1) · θ1 (∆2; Γ2 � A2
f

=⇒P) · θ2

(((∆1 ∪ ∆2); Γ1 ∪ Γ2) � (A1 → A2)
f

=⇒P) · [[θ]]θ′1

where ext(∆1 ∪ ∆2, θ1) = θ′1
ext(∆1 ∪ ∆2, θ2) = θ′2
mgu(θ′1, θ

′
2) = θ

(∆; Γ, x:A
f

=⇒B) · θ

(∆; Γ
f

=⇒(Πx:A.B) · θ

(∆, u::A[Γ]; Γ � [u[idΓ]/x]B
f

=⇒P) · (θ, Γ̂.M/u) u is new

(∆; Γ � (Πx:A.B)
f

=⇒P) · θ

In the hypothesis rule where we unify the assumption [[ρ]]P ′ with P we keep a

context Γ which describes the parameters occurring in P ′ and P . As mentioned

earlier, typical formulations of forward calculi require the context to be empty,

since they do not keep track explicitly of the parameters introduced during proof

search. Due to the dependent nature of our calculus, and the fact that we would

like to preserve that all propositions are well-typed, we keep track of parameters

explicitly and allow the context Γ in this hypothesis rule to be non-empty. Our

intention is that Γ describes all the parameters occurring in P and P ′. This is

largely straightforward. In the implication left rule, we must union not only the

assumptions in Γ1 and in Γ2, but we also must union the meta-variables occurring

in both branches. Since meta-variables occurring in both branches of the proof, may

have been instantiated differently, we must reconcile their different instantiations in

11

Pientka

θ1 and θ2 by unifying them. Before we can unify them we first extend them with

identity substitution s.t. they share the same domain. This extension is denoted

with ext(∆1 ∪ ∆2, θ1) = θ′1 and ext(∆1 ∪ ∆2, θ2) = θ′2 respectively.

Theorem 5.7 (Soundness)

(i) If (Γ
f

=⇒A) · θ then for any grounding substitution ρ,

we have [[ρ]]([[θ]]Γ)
f

=⇒[[ρ]][[θ]]A.

(ii) If (Γ � A
f

=⇒P) · θ then for any grounding substitution ρ,

we have [[ρ]]([[θ]]Γ) � [[ρ]]([[θ]]A)
f

=⇒[[ρ]][[θ]]P .

Proof. Proof by induction on the first derivation. 2

Theorem 5.8 (Completeness) Suppose Γ
f

=⇒[[θ]]A (resp. Γ � [[θ]]A
f

=⇒[[θ]]P)

and Γ = [[θ1]]A1, . . . [[θn]]An where A+, A−
1 , . . . A−

n are signed free subformulas of

the goal. Then there exist a substitution θ ′ and a grounding substitution ρ such

that:

(i) (A1, . . . An
f

=⇒A) · θ′ (resp. (A1, . . . An � A
f

=⇒P) · θ′)

(ii) [[ρ]][[θ′]](Ai) = θi(Ai) and [[ρ]][[θ′]](A) = [[θ]](A) (resp. and [[ρ]][[θ ′]](P) = [[θ]](P))

Proof. Proof by induction on the first derivation. 2

6 Implementation of an inverse method prover for LF

In this section, we discuss the implementation of an inverse method prover for LF

by considering the example given earlier. The first step in the inverse method

is computation of subformulas. Given a signed formula we compute the set N
of negative subformulas and the set P of positive subformulas. Each subformula

is denoted as ∆; Γ ` a M1 . . . Mn where ∆ characterizes the meta-variables, and

Γ describes the parameters occurring in a M1 . . . Mn Given the set N of negative

subformulas and the set P of positive subformulas, we can generate a focused axioms,

if a negative subformula unifies with a positive subformula. We compute the minimal

set F of focused axioms by checking forward and backward subsumption of newly

generated axiom. Following Chaudhuri et al., our implementation creates big-step

derived rules by chaining all the focused rules together to form a focused thread

and chaining all the uniform rules together to form a uniform thread. Our compiled

rules are therefore of the following form

f
=⇒P1 . . .

f
=⇒Pn

f
=⇒P

After this pre-compilation phase is finished, we delete the focused axiom, and

search over the set F of uniform facts and the set R of pre-compiled derived rules.

6.1 Top-level of the inverse method

Next, we must iterate over the set F of uniform facts and the set R of pre-compiled

derived rules to generate new facts by forward chaining. Essentially we need to plug

12

Pientka

the facts into the open premises to generate new facts. There are essentially two

possible loop structures which we both briefly discuss. Both of these two loops have

been implemented and tested for the Horn fragment.

Iteration over facts The first loop follows essentially ideas used by K. Chaudhuri

in his implementation of the inverse method for linear logic [Cha06]. We pick a fact

f from the set F of fact and then use this fact f to generate new pre-instantiated

rules and new facts from the set R. Given a rule with the premises P1, . . . , Pn,

we try to unify each Pi with the fact f and generate all pre-instantiated rules for

this given fact f . If the fact f unifies with k premises, then we generate possibly

up to 2k − 1 pre-instantiated rules where k is less than n. If k is equal to n, i.e.

all premises can be satisfied, a new fact P is generated which is added to the set

F if there is no fact f ′ in F s.t. P is an instance of f ′. The set of rules therefore

may grow exponentially during execution. However, an advantage is that every fact

f will be chosen only once, and only once we unify it with a given premise. We

terminate if no new facts have been generated.

Iterate over rules In this alternative implementation, we keep the two sets of

facts F and Fn and iterate over the set R of rules. Initially, all facts generated

during the pre-compilation phase are in the set Fn and F is empty. Given a rule

with the premises P1, . . . , Pn, we try to find a fact f from the set Fn which unifies

with P1 up to Pn. If we succeed in unifying with Pi, we continue to search over the

set F and Fn to find instantiations of the remaining premises. If all the premises

are unifiable with some fact f , we generate a new fact P which is temporarily added

to a set F ′, if there is no fact f ′ in F , Fn or F ′ s.t. P is an instance of f ′. This

stage will terminate if all rules have been tried with the facts from Fn. Now we

add Fn to the set of facts F and F ′ will be used as our new set of facts Fn. In this

loop, the size of R remains constant. On the other hand, we may unify multiple

times a given premise Pi with a given fact from F . We terminate if no new facts

are generated, i.e. F ′ is empty.

6.2 Experimental results

So far we have completed a prototype for the Horn fragment of LF. In this section, we

discuss our preliminary experience and compare the performance with the tabled

logic programming engine. We will pay particular attention to the two different

implementation strategies of the inverse method. To evaluate and understand the

current limitations, we will concentrate here on two examples, the first one computes

the Fibonacci numbers, and the second one parses propositional formulas. All

experiments are done on a machine with the following specifications: 3.4GHz Intel

Pentium, 4.0GB RAM. We are using SML of New Jersey 110.55 under the Linux

distribution Gentoo 16.14.under Linux. Times are measured in seconds, and the ∞
indicates we terminated the process after 30min.

Fibonacci example Computing the Fibonacci numbers is an interesting example,

because a depth-first search will yield an exponential algorithm. Memoization allows

us to re-use the computation of previous subgoals, and we expect its performance to

be linear. Similarly, forward search has the potential of re-using results, and should

yield a linear time algorithm. We compare the two different implementations for

13

Pientka

the inverse method, and the tabled logic programming engine.

IR IF Tab

k fib(k) Facts Time Time Time]Entries

14 377 377(add) + 14(fib) 1.48 2.75 0.46 (0.08) 403

15 610 610(add) + 15(fib) 4.41 102.37 1.210 (0.07) 638

16 987 987(add) + 16(fib) 11.19 ∞ 3.135 (0.10) 1017

17 1597 1597(add) + 17(fib) 34.10 ∞ 6.861 (0.10) 1629

18 2584 2584(add) + 18(fib) 193.79 ∞ 139.826 (0.16) 2618

IF describes the inverse method where we iterate over facts and generate pre-

instantiated rules, and IR denotes the inverse method where we iterate over the

rules and the number of rules remains constant. The column Tab lists the runtime

when all predicates are tabled. In parenthesis, we list the time if we selectively table

only the fib predicate. The number of rules generated by the IF loop is 1470 for

k = 14 and 2302 for k = 15. This is a staggering number compared to the 2 rules

used in the IR loop. The high number of rules generated also yields a severe per-

formance penalty. Tabling still outperforms inverse method search, even if we table

all predicates in the program. As we can see, there is a severe penalty for tabling

if we do not table selectively. In fact, selective tabling yields the best performance

and does also outperform depth-first search.

Parsing Parsing algorithms are interesting since we typically would like to mix right

and left recursive program clauses to model the right and left associativity prop-

erties of implications, conjunctions and disjunction. Clauses for conjunction and

disjunction are left recursive, while the program clause for implication is right re-

cursive. This program is not executable via depth-first search, and we compare the

performance between the two implementations of the inverse method and tabling.

IR IF Tab

tokens time]facts time]fact time]entries

5 0.860 138 0.109 2214 0.016 6

7 1.359 138 29.828 3702 0.015 10

9 1.016 138 33.391 3846 0.032 10

11 ∞ ∞ 0.171 18

While the number of rules generated by the IF loop is not quite as large as

for Fibonacci, it is still substantial. For 3 tokens, we generate 54 rules up to 182

rules for 9 tokens. This is compared to 13 rules which are generated during the pre-

compilation phase in the IR method. These results clearly demonstrate that tabling

cannot easily be outperformed. The inverse method is costly, and especially in the

implementation IF the number of facts is growing substantially more. Our other

implementation of the inverse method where the number of rules remain constant

14

Pientka

has fair performance, although it cannot rival tabling.

To gain a better understanding of where the bottleneck lies in the inverse method

implementation compared to a tabled implementation, we measured the number of

unification failures. Unification is at the heart of proof search, and its performance

affects in a crucial way the global efficiency of each of these applications. This is

especially the case for the inverse method, since we rely on it to instantiate premises

of rules, and to check for subsumption, i.e. is a newly derived uniform fact subsumed

by an existing uniform fact. In the parsing example for example, we have over 3

million unification failures during subsumption checking, and over 21,000 unification

failures when unifying a premise with a given fact. Let us contrast this to tabled

logic programming where we count 70 unification failures all of which are in fact

handled by the linear assignment algorithm. To check whether a new subgoal is

already in the table no higher-order subsumption check is performed since we only

check for α-variance. This strikingly illustrates that the performance of unification

has a much greater impact on the inverse method than on tabled proof search.

7 Future Work and Conclusion

We presented the basis for an inverse method prover for the logical framework LF.

Following standard development, we presented a forward uniform proof calculus

and lifted it to allow for subformulas which may contain meta-variables. While we

concentrate here on the logical framework LF, which is the basis of Twelf, it seems

possible to apply the presented approach to λProlog [NM88] or Isabelle [Pau86],

which are based on hereditary Harrop formulas. Moreover, we proved the cor-

rectness of forward uniform proof calculus. Finally, we discuss challenges when

implementing an inverse method prover for the logical framework LF.

In the future we intend to extend our implementation of the inverse method to

hereditary Harrop formulas and cover the full higher-order fragment. To achieve a

basic implementation seems not that difficult, however to build an inverse method

prover with competitive performance we must tackle several issues. The first issue is

efficient higher-order unification which seems central to the inverse method. Related

to this issue is the fact that our theoretical development and implementation only

deals with higher-order patterns where unification is decidable. To handle the full

fragment of higher-order terms, we carefully need to revisit the issue of constraints.

Another important question is how to bound the inverse method search. While

we do get a decision procedure when we execute the parsing algorithm with tabling,

the inverse method does not directly yield a decision procedure. One way of ad-

dressing this problem may be to incorporate ideas from Chaudhuri et al. [CPP06]

and distinguish not only between left focusing and uniform proofs, but also intro-

duce a right focusing phase. As observed in [CPP06], this may have a substantial

effect on performance. However, it remains unclear how to in general classify atoms

as being left or right biased or mix the two biases. Extending the given theoretical

framework to consider different bias for atoms is in principle possible.

Finally an important question is how to bring some goal-directed search into

the inverse method. While the subformula property restricts the proof search on

the level of formulas, it does not restrict the possible instantiations for the objects

15

Pientka

occurring in formulas. This has been already observed in the logic programming

community and lead to the development of magic sets [Ram91]. Magic sets trans-

form the original program in such a way that a forward chaining logic programming

engine is goal-directed and will only generate the relevant subgoals for a given

query. Incorporating magic sets into the inverse method could substantially reduce

the number of generated intermediate goals, and only generate relevant subgoals

thereby yielding a competitive engine compared to backward chaining logic pro-

gramming.

References

[ABF+05] B. Aydemir, A. Bohannon, M. Fairbairn, J. Foster, B. Pierce, P. Sewell, D. Vytiniotis,
G. Washburn, S. Weirich, and S. Zdancewic. Mechanized metatheory for the masses: The
poplmark challenge. In Joe Hurd and Thomas F. Melham, editors, Proceedings of the Eighteenth
International Conference on Theorem Proving in Higher Order Logics (TPHOLs), Oxford, UK,
August 22-25, volume 3603 of Lecture Notes in Computer Science(LNCS), pages 50–65. Springer,
2005.

[Cha06] Kaustuv Chaudhuri. The focused inverse method for linear logic. Technical report, Department
of Computer Science,, December 2006. CMU-CS-06-162.

[CPP06] Kaustuv Chaudhuri, Frank Pfenning, and Greg Price. A logical characterization of forward and
backward chaining in the inverse method. In U. Furbach and N. Shankar, editors, Proceedings
of the Third International Joint Conference on Automated Reasoning, Seattle, USA, Lecture
Notes in Artificial Intelligence (LNAI). Springer-Verlag, 2006.

[DV01] Anatoli Degtyarev and Andrei Voronkov. The inverse method. In John Alan Robinson and
Andrei Voronkov, editors, Handbook of Automated Reasoning, pages 179–272. Elsevier and MIT
Press, 2001.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of
the Association for Computing Machinery, 40(1):143–184, January 1993.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a
foundation for logic programming. Annals of Pure and Applied Logic, 51:125–157, 1991.

[NM88] Gopalan Nadathur and Dale Miller. An overview of λProlog. In Kenneth A. Bowen and
Robert A. Kowalski, editors, Fifth International Logic Programming Conference, pages 810–
827, Seattle, Washington, August 1988. MIT Press.

[NM99] Gopalan Nadathur and Dustin J. Mitchell. System description: Teyjus – a compiler and abstract
machine based implementation of Lambda Prolog. In H. Ganzinger, editor, Proceedings of the
16th International Conference on Automated Deduction (CADE-16), pages 287–291, Trento,
Italy, July 1999. Springer-Verlag LNCS.

[NPP06] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. A contextual modal type theory.
ACM Transactions on Computational Logic (accepted, to appear in 2007), page 56 pages, 2006.

[Pau86] Lawrence C. Paulson. Natural deduction as higher-order resolution. Journal of Logic
Programming, 3:237–258, 1986.

[Pie02a] Brigitte Pientka. A proof-theoretic foundation for tabled higher-order logic programming. In
P. Stuckey, editor, 18th International Conference on Logic Programming, Copenhagen, Denmark,
Lecture Notes in Computer Science (LNCS), 2401, pages 271 –286. Springer-Verlag, 2002.

[Pie02b] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[Pie03] Brigitte Pientka. Tabled higher-order logic programming. PhD thesis, Department of Computer
Sciences, Carnegie Mellon University, December 2003. CMU-CS-03-185.

[Pie05] Brigitte Pientka. Tabling for higher-order logic programming. In Robert Nieuwenhuis, editor,
20th International Conference on Automated Deduction (CADE), Talinn, Estonia, volume 3632
of Lecture Notes in Computer Science, pages 54–68. Springer, 2005.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-logical framework
for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th International Conference
on Automated Deduction (CADE-16), pages 202–206, Trento, Italy, July 1999. Springer-Verlag
Lecture Notes in Artificial Intelligence (LNAI) 1632.

[Ram91] Raghu Ramakrishnan. Magic templates: a spellbinding approach to logic programs. Journal of
Logic Programming, 11(3-4):189–216, 1991.

16

	Introduction
	Background: The logical framework LF
	Example: Bounded polymorphic subtyping
	Uniform Proofs
	Inverse method and focusing
	Implementation of an inverse method prover for LF
	Top-level of the inverse method
	Experimental results

	Future Work and Conclusion
	References

