
Memoization-based proof search in LF:
an experimental evaluation of a propotype

Brigitte Pientka

Department of Computer Science

Carnegie Mellon University

Pittsburgh, PA, 15217, USA

email:bp@cs.cmu.edu

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.1/34

Outline

• LF as a logic programming framework
• Example: Type-system with subtyping
• Basics of tabled higher-order logic programming
• Experimental evaluation:

1. Refinement type-checking:
Depth-first vs tabled search

2. Parsing into higher-order abstract syntax:
Iterative deepening vs tabled search

• Related Work
• Conclusion and future work

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.2/34

LF as a logic programming framework

Logical framework LF [Harper,Honsell,Plotkin93]
dependently typed λ-calculus

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.3/34

LF as a logic programming framework

Logical framework LF [Harper,Honsell,Plotkin93]
dependently typed λ-calculus

Framework for specifying and implementing
• logical systems
• proofs about them

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.3/34

LF as a logic programming framework

Logical framework LF [Harper,Honsell,Plotkin93]
dependently typed λ-calculus

Framework for specifying and implementing
• logical systems (safety logics, type system . . .)
• proofs about them

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.3/34

LF as a logic programming framework

Logical framework LF [Harper,Honsell,Plotkin93]
dependently typed λ-calculus

Framework for specifying and implementing
• logical systems (safety logics, type system . . .)
• proofs about them (correctness, soundness . . .)

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.3/34

LF as a logic programming framework

Logical framework LF [Harper,Honsell,Plotkin93]
dependently typed λ-calculus

Framework for specifying and implementing
• logical systems (safety logics, type system . . .)
• proofs about them (correctness, soundness . . .)

Proof search via higher-order logic programming
[Pfenning91]
• Terms: (dependently) typed λ-calculus
• Clauses: implication, universal quantification

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.3/34

Proof search over declarative systems

Proof search problems:
• Infinite computation leads to non-termination.
⇒ many specifications are not executable

• Redundant computation hampers performance.

“...it is very common for the proofs to have
repeated sub-proofs that should be hoisted out and
proved only once as lemmas.” [Necula,Lee97]

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.4/34

Proof search over declarative systems

Proof search problems:
• Infinite computation leads to non-termination.
⇒ many specifications are not executable

• Redundant computation hampers performance.

“...it is very common for the proofs to have
repeated sub-proofs that should be hoisted out and
proved only once as lemmas.” [Necula,Lee97]

Solution: Memoization and re-use of sub-proofs

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.4/34

Memoization-based proof search

First-order tabelling [Tamaki,Sato86]
• Memoize atomic subgoals and re-use results
• Finds all possible answers to a query
• Terminates for programs in a finite domain
• Combine tabled and non-tabled execution
• Very successful: XSB system [Warren et.al.]

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.5/34

Memoization-based proof search

First-order tabelling [Tamaki,Sato86]
• Memoize atomic subgoals and re-use results
• Finds all possible answers to a query
• Terminates for programs in a finite domain
• Combine tabled and non-tabled execution
• Very successful: XSB system [Warren et.al.]

Higher-order tabelling (see also [Pientka, ICLP’02])
• Proof-theoretic characterization
• This talk: Experiments with higher-order tabling

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.5/34

Outline

• LF as a logic programming framework
• Example: Type-system with subtyping
• Basics of tabled higher-order logic programming
• Experimental evaluation:

1. Refinement type-checking:
Depth-first vs tabled search

2. Parsing into higher-order abstract syntax:
Iterative deepening vs tabled search

• Related Work
• Conclusion and future work

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.6/34

Declarative description of subtyping

types τ :: = zero | pos | nat | bit | τ1 ⇒ τ2 | . . .

Example: 6 = 110 and 110 ∈ nat

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.7/34

Declarative description of subtyping

types τ :: = zero | pos | nat | bit | τ1 ⇒ τ2 | . . .

Example: 6 = 110 and 110 ∈ nat

zn
zero � nat

pn
pos � nat

nb
nat � bit

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.7/34

Declarative description of subtyping

types τ :: = zero | pos | nat | bit | τ1 ⇒ τ2 | . . .

Example: 6 = 110 and 110 ∈ nat

zn
zero � nat

pn
pos � nat

nb
nat � bit

refl
T � T

T � R R � S
tr

T � S

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.7/34

Typing rules for Mini-ML

expressions e ::= ε | e 0 | e 1 | lam x.e | app e1 e2

Γ ` e : τ ′ τ ′ � τ
tp-sub

Γ ` e : τ

Γ, x : τ1 ` e : τ2
tp-lamx

Γ ` lam x.e : τ1 ⇒ τ2

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.8/34

Implementation of subtyping

zn: sub zero nat.

pn: sub pos nat.

nb: sub nat bit.

refl: sub T T.

tr: sub T S

<- sub T R

<- sub R S.

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.9/34

Implementation of subtyping

zn: sub zero nat.

pn: sub pos nat.

nb: sub nat bit.

refl: sub T T.

tr: sub T S

<- sub T R

<- sub R S.

Not executable!

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.9/34

Implementation of typing rules

tp sub: of E T

<- of E T’

<- sub T’ T.

tp lam: of (lam λ x.E x) (T1 => T2)

<-(Π x:exp.of x T1 -> of (E x) T2).

“forall x:exp, assume of x T1

and show of (E x) T2”

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.10/34

Implementation of typing rules

tp sub: of E T

<- of E T’

<- sub T’ T.

tp lam: of (lam λ x.E x) (T1 => T2)

<-(Π x:exp.of x T1 -> of (E x) T2).

“forall x:exp, assume of x T1

and show of (E x) T2”

Redundancy: tp sub is always applicable!

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.10/34

Outline

• LF as a logic programming framework
• Example: Type-system with subtyping
• Basics of tabled higher-order logic programming
• Experimental evaluation:

1. Refinement type-checking:
Depth-first vs tabled search

2. Parsing into higher-order abstract syntax:
Iterative deepening vs tabled search

• Related Work
• Conclusion and future work

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.11/34

Tabled higher-order logic programming

• Eliminate redundant and infinite paths from
proof search using a memo-table

• Table entry: (Γ→ a , A)
- Γ : context of assumptions (i.e.x:exp, u:of x T1)
- a : atomic goal (i.e. of (lam λx. x) T)
- A : list of answer substitutions for all free

variables in Γ and a

• Depth-first multi-stage strategy
adopted from [Tamaki,Sato89]

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.12/34

How higher-order tabling works...

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) R,

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.13/34

How higher-order tabling works...

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.13/34

How higher-order tabling works...

tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,
x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.13/34

How higher-order tabling works...

Suspend
tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,
x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.13/34

How higher-order tabling works...

tp_lam

Suspend
tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,
x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.13/34

How higher-order tabling works...

tp_lam

Suspend
tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.13/34

How higher-order tabling works...

utp_lam

Suspend
tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.13/34

How higher-order tabling works...

utp_lam

Suspend
tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.13/34

How higher-order tabling works...

tp_sub

utp_lam

Suspend
tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.13/34

How higher-order tabling works...

Suspend

Stage 1 finished

tp_sub

utp_lam

Suspend
tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.13/34

How higher-order tabling works...

Resume

Suspend

Stage 1 finished

tp_sub

utp_lam

Suspend
tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.13/34

How higher-order tabling works...

Resume

Resume

Suspend

Stage 1 finished

tp_sub

utp_lam

Suspend
tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.13/34

Higher-order issues

• Dependencies among propositions
x:exp, u:of x P→ sub P R

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.14/34

Higher-order issues

• Dependencies among propositions
x:exp, u:of x P→ sub P R,

strengthen: → sub P R

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.14/34

Higher-order issues

• Dependencies among propositions
x:exp, u:of x P→ sub P R,

strengthen: → sub P R

• Dependencies among terms
x:exp, u:of x T1→ of x (R x u),

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.14/34

Higher-order issues

• Dependencies among propositions
x:exp, u:of x P→ sub P R,

strengthen: → sub P R

• Dependencies among terms
x:exp, u:of x T1→ of x (R x u),

strengthen x:exp, u:of x T1→ of x R

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.14/34

Higher-order issues

• Dependencies among propositions
x:exp, u:of x P→ sub P R,

strengthen: → sub P R

• Dependencies among terms
x:exp, u:of x T1→ of x (R x u),

strengthen x:exp, u:of x T1→ of x R

• Subordination analysis [Virga99]

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.14/34

Outline

• LF as a logic programming framework
• Example: Type-system with subtyping
• Basics of tabled higher-order logic programming
• Experimental evaluation:

1. Refinement type-checking:
Depth-first vs tabled search

2. Parsing into higher-order abstract syntax:
Iterative deepening vs tabled search

• Related Work
• Conclusion and future work

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.15/34

Outline

• LF as a logic programming framework
• Example: Type-system with subtyping
• Basics of tabled higher-order logic programming
• Experimental evaluation:

1. Refinement type-checking:
Depth-first vs tabled search

2. Parsing into higher-order abstract syntax:
Iterative deepening vs tabled search

• Related Work
• Conclusion and future work

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.15/34

Refinement type checking

• Type-inference with subtyping and intersections
• Bi-directional type-checking algorithm

[Davies, Pfenning00]
• Distinguish between expressions for which

1. a type can be synthesized
2. can be checked against a given type

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.16/34

Depth-first vs Memoization(all solutions)
Program Depth-First Memoization
plus’4 483.070 sec 2.330 sec
plus4 696.730 sec 3.150 sec
plus4(np) 22.770 sec 1.95 sec
sub’1a 0.070 sec 0.240 sec
sub1b 3.88 sec 7.560 sec
sub3b 10.440 sec 11.200 sec
mult1(np) 1133.490 sec 4.690 sec
mult1a 807.730 sec 4.730 sec
mult4 ∞ 17.900 sec
mult4(np) ∞ 13.140 sec

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.17/34

Depth-first vs Memoization(first solution)
Program Depth-First Memoization
plus’4 0.08 sec 0.180 sec
plus4 0.1 sec 0.430 sec
plus4(np) 22.770 sec 1.95 sec
sub’1a 0.050 sec 0.240 sec
sub1b 0.250 sec 5.020 sec
sub3b 0.350 sec 8.160 sec
mult1(np) 1133.490 sec 4.690 sec
mult1a 0.160 sec 2.900 sec
mult4 0.250 sec 7.150 sec
mult4(np) ∞ 13.020 sec

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.18/34

Evaluation

• Simple memoization improves performance
• #Entries in table < 300
• #SuspendedGoals < 200
• Quick failure is important for program development
• Overhead of memoization may hurt performance
• Multi-stage strategy delays the reuse of answers

SCC(strongly connected components)

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.19/34

Type-checker with explicit memoization?

• Investigate special memoization techniques
[Davies,Pfenning00]

• Implementation is non-trivial.
• Proofs are larger.
• Sending and checking proofs takes longer.
• Harder to reason about this implementation

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.20/34

Outline

• LF as a logic programming framework
• Example: Type-system with subtyping
• Basics of tabled higher-order logic programming
• Experimental evaluation:

1. Refinement type-checking:
Depth-first vs tabled search

2. Parsing into higher-order abstract syntax:
Iterative deepening vs tabled search

• Related Work
• Conclusion and future work

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.21/34

Outline

• LF as a logic programming framework
• Example: Type-system with subtyping
• Basics of tabled higher-order logic programming
• Experimental evaluation:

1. Refinement type-checking:
Depth-first vs tabled search

2. Parsing into higher-order abstract syntax:
Iterative deepening vs tabled search

• Related Work
• Conclusion and future work

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.21/34

Parsing into higher-order abstract syntax

Tokens T :
’forall’ | ’exist’| ’and’|’or’|’imp’|’not’|’(’|’)’|’true’|’false’

Propositions A :
atom P | ¬A | A & A | A v A | A⇒ A | true | false |
forall x.A | exists x.A | (A)

Precedence ¬ > & > ∨ >⇒
Associativity

& ,∨: left associative
⇒: right associative

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.22/34

Implementation (idea by D.S.Warren)

% implication -- right associative

fimp: fi Ctx S S’ (P1 => P2)

<- fo Ctx S (’imp’ ; S1) P1

<- fi Ctx S1 S’ P2.

ci: fi Ctx S S’ P

<- fo Ctx S S’ P.

% disjunction -- left associative

for: fo Ctx S S’ (P1 v P2)

<- fo Ctx S (’or’ ; S1) P1

<- fa Ctx S1 S’ P2.

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.23/34

Iterative Deepening vs Memoization

Length of input Iter. deepening Memoization
5 0.020 sec 0.010 sec
20 1.610 sec 0.260 sec
32 208.010 sec 2.020 sec
56 ∞ 7.980 sec
107 ∞ 86.320 sec

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.24/34

Evaluation

• Memoization outperforms iter. deepening
• Iterative deepening requires depth-bound

- Failure meaningless
- No decision procedure

• #Entries in table < 1000
• #SuspendedGoals < 1100
• Remarks

1. Unambiguous parser
2. Representing tokens as facts

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.25/34

Outline

• LF as a logic programming framework
• Example: Type-system with subtyping
• Basics of tabled higher-order logic programming
• Experimental evaluation:

1. Refinement type-checking:
Depth-first vs tabled search

2. Parsing into higher-order abstract syntax:
Iterative deepening vs tabled search

• Related work
• Conclusion and future work

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.26/34

Higher-order theorem proving

• Tactics and tacticals
- Isabelle [Paulson86], λProlog[Miller91,Felty93]
- Need to be rewritten for each specification
- Requires understanding of prover
- Proving correctness of tactics often hard

• Memoization-based search
- User concentrates on specification
- Generic proof search mechanism
- Table may contain useful failure information

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.27/34

Deterministic search: an alternative?

• Safe cut: finds exactly one solution
• In general: incomplete
• If there are only ground goals, then deterministic

search is complete.
• Less general than memoization-based search
• No overhead

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.28/34

Conclusion

Memoization-based search allows
• generic efficient theorem proving
• execution of more declarative specification
• more efficient execution of implementations
• more flexibility
• small proofs

Memoization has some overhead
• Mixing tabled and non-tabled computation
• Table access
• Table size

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.29/34

Future work

• Higher-order indexing
• Different table strategies
• Incorporate into meta-theorem prover Twelf

[Schürmann,Pfenning99]
• Applying tabelling to linear logic programming

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.30/34

Finally ...

Acknowledgements: Frank Pfenning

if you want to find out more:

Demo after workshop

http://www.cs.cmu.edu/˜bp
email: bp@cs.cmu.edu

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.31/34

Application:Certified code

Program

Certificate
Safety policy

Code Producer

Safety policy

Generate Certificate

Code Consumer

Check Certificate

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.32/34

Application:Certified code

proof

execute logic program

higher−order logic program

Program

Certificate
Safety policy

Code Producer

Safety policy

Generate Certificate

Code Consumer

Check Certificate

• Foundational proof-carrying code : [Appel, Felty 00]

• Proof-carrying authentication: [Felten, Appel 99]

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.32/34

Application:Certified code

bit−string

execute logic program
guided by certificate

execute logic program

higher−order logic programhigher−order logic program

Program

Certificate
Safety policy

Code Producer

Safety policy

Generate Certificate

Code Consumer

Check Certificate

• Foundational proof-carrying code : [Appel, Felty 00]

• Proof-carrying authentication: [Felten, Appel 99]

• Proof-checking via bit-strings: [Necula, Rahul 01]

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.32/34

Runtime, #Entries, #SuspGoals
Program Run-Time #Entries #SuspGoals
plus’4 2.330 sec 151 48
plus4 3.150 sec 171 74
plus4(np) 1.95 sec 143 56
sub’1a 0.240 sec 58 11
sub1b 7.560 sec 252 138
sub3b 11.200 sec 278 170
mult1(np) 4.690 sec 217 83
mult1a 4.730 sec 211 78
mult4 17.900 sec 298 270
mult4(np) 13.140 sec 275 194

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.33/34

Time, #Entries, #SuspGoals

Length of input Memoization #Entries #SuspGoals
5 0.010 sec 15 11
20 0.260 sec 60 54
32 2.020 sec 176 197
56 7.980 sec 371 439
107 86.320 sec 929 1185

Memoization-based proof search in LF:an experimental evaluation of a propotype – p.34/34

	Outline
	LF as a logic programming framework
	Proof search over declarative systems
	Memoization-based proof search
	Outline
	Declarative description of subtyping
	Typing rules for Mini-ML
	Implementation of subtyping
	Implementation of typing rules
	Outline
	Tabled higher-order logic programming
	How higher-order tabling works...
	Higher-order issues
	Outline
	Refinement type checking
	Depth-first vs Memoization(all solutions)
	Depth-first vs Memoization(first solution)
	Evaluation
	Type-checker with explicit memoization?
	Outline
	Parsing into higher-order abstract syntax
	Implementation (idea by D.S.Warren)
	Iterative Deepening vs Memoization
	Evaluation
	Outline
	Higher-order theorem proving
	Deterministic search: an alternative?
	Conclusion
	Future work
	Finally ...
	Application:Certified code
	Runtime, #Entries, #SuspGoals
	Time, #Entries, #SuspGoals

