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Online programming platforms have immense potential to improve students’ educational experience. They
make programming more accessible, as no installation is required; and automatic grading facilities provide
students with immediate feedback on their code, allowing them to to fix bugs and address errors in their
understanding right away. However, these graders tend to focus heavily on the functional correctness of a
solution, neglecting other aspects of students’ code and thereby causing students to miss out on a significant
amount of valuable feedback.

In this paper, we recount our experience in using the Learn-OCaml online programming platform to
teach functional programming in a second-year university course on programming languages and paradigms.
Moreover, we explore how to leverage Learn-OCaml’s automated grading infrastructure to make it easy
to write more expressive graders that give students feedback on properties of their code beyond simple
input/output correctness, in order to effectively teach elements of functional programming style. In particular,
we describe our extensions to the Learn-OCaml platform that evaluate students on test quality and code style.

By providing these tools and a suite of our own homework problems and associated graders, we aim to
promote functional programming education, enhance students’ educational experience, and make teaching and
learning typed functional programming more accessible to instructors and students alike, in our community
and beyond.
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1 INTRODUCTION
Online programming environments, such as Ask-Elle [Gerdes et al. 2017] and the one used by
the popular learning platform Codecademy [Sims and Bubinski 2011], offer immense potential to
enhance students’ educational experience in courses with high programming content. For one,
having an entire development environment just a click away in a browser drastically lowers the
entry barrier; students can start programming right away and concentrate on learning the course
material, rather than getting frustrated and bogged down in the technical aspects of installing a new
language and possibly learning a new editor. This is particularly the case for a lot of typed functional
programming languages, such as OCaml, SML, or Haskell, where few integrated development
environments (IDEs) exist, and support across platforms and operating systems differs widely. More
significantly, online programming platforms feature autograding facilities that allow students to
run and get feedback on their code while they are developing their programs, giving them the
opportunity to fix bugs and address errors in their understanding right away. Having access to
immediate feedback on their code has been recognized to significantly improve student learning
outcomes and engagement with their assignments (see, e.g., [Gramoli et al. 2016; Sherman et al.
2013; Wilcox 2015]).
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However, these automatic graders tend to focus heavily or even solely on the input/output
correctness of an implementation, since this is the most straightforward property to assess without
human interference. This approach neglects several other aspects of a student’s code that are
important to consider in order to give useful feedback; for instance, input/output testing cannot
determine whether a student used the intended algorithm, language constructs such as pattern
matching, or even good coding practices to solve a particular problem. As a consequence, students
miss out on an entire class of valuable feedback that is extremely important for their learning.
In the Fall 2018 term, we piloted the use of the Learn-OCaml online programming platform

[Canou et al. 2017, 2016] to deliver the course assignments in a second-year university course on
programming languages and paradigms. The goal of the course is to provide a new perspective
on fundamental concepts that are common in many programming languages through the lens of
functional programming. It is taught primarily in OCaml and has had a combined enrollment of
642 students over the Fall 2018/Winter 2019 terms.

Learn-OCaml is an exercise environment originally developed for the massive open online course
(MOOC) Introduction to Functional Programming in OCaml [Di Cosmo et al. 2015], colloquially
known as “The OCaml MOOC”. The platform allows students to write, typecheck, and run OCaml
code directly in their browser. It includes an integrated grader: while working on their assignments,
students can run the grader, see the grade they would get, and then improve their code until
they are satisfied with the results. Graders are written in OCaml using the high-level grading
combinators and lower-level grading primitives provided by Learn-OCaml’s testing library. The
bulk of the high-level portion of the library focuses on input/output testing, with much of the other
functionality being as of yet underdeveloped; however, what makes the Learn-OCaml platform
truly interesting, and why it offers so much promise for grading, is that grader code is given access
to the student’s code AST. This opens up a number of possibilities for performing static checks on
the student’s code using OCaml’s compiler front-end libraries.
In this paper, we report on our experience in delivering and grading assignments using the

Learn-OCaml platform in a classroom environment. Topics covered in our course and evaluated
using Learn-OCaml include: higher-order functions; stateful vs. state-free computation; modelling
objects and closures; using exceptions and continuations to defer control; and lazy programming.
We discuss which concepts were easy to test using the platform and which were unexpectedly
difficult; problems that arose when students started using the grader in ways other than what
was intended; and the extensions to the platform that our experience motivated in order to better
accomplish our teaching goals. The concrete contributions of this paper are the following:

(1) We describe how we used the built-in functionality of the Learn-OCaml grading library to
evaluate students on a variety of functional programming concepts (Section 2).

(2) We release a set of homework problems and associated graders used in the Fall 2018 offering
of the course, available upon request, for use by other instructors wishing to incorporate
Learn-OCaml into their curriculum.

(3) In order to emphasize good software testing practices, even in the presence of an automated
grader, we provide a mutation testing framework for Learn-OCaml. This framework can be
used by instructors to require students to write unit tests for every function they implement,
and evaluate these test cases on both correctness and coverage (Section 3).

(4) We present a set of extensions we have written for Learn-OCaml’s grading library (Section
4). In particular, to teach students about good functional programming style, we release an
extensible framework that supports style checking and provides suggestions (Section 4.2).1

1Our extensions to Learn-OCaml can be found at https://github.com/teaching-the-art-of-fp/learn-ocaml/tree/teaching-fp
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In summary, we provide an account of our own experience and extend the out-of-the-box
functionality of the Learn-OCaml platform in order to promote functional programming educa-
tion, enhance students’ educational experience, and make teaching and learning typed functional
programming more accessible to both instructors and students.

2 LEARN-OCAML & OUR CURRICULUM
In this section, we describe our experience in using the Learn-OCaml platform for homework
assignments in the Fall 2018 term. We discuss specific concepts in a programming languages course
that were easy or difficult to evaluate using the automated grading library, and how switching
to this mode of delivering assignments affected the course experience for students and teaching
assistants in general. The lessons taken from this discussion will motivate the extensions to the
platform that we describe in Sections 3-4.

2.1 Functional Programming Concepts
We used the Learn-OCaml platform to grade 9 homework assignments over the course of the Fall
2018 term. Here we highlight some of the main concepts these exercises tested and how we made
use of the platform’s grading library to evaluate students on these topics. After releasing some
of these assignments it became clear when crucial aspects of the graders were overlooked, so we
discuss also how these graders have been improved for future iterations of the course.

Datatypes and PatternMatching. We introduced the students to user-defined datatypes by defining
the types suit and rank as variant types, a playing card as a pair of a rank and a suit, and a hand
as a list of cards as in Figure 1, inspired by an example in Harper [2013]. In the related exercise,
students were asked to write functions to compare two cards by their rank, then by their suit and
rank, and then to sort a hand of cards.

type suit = Clubs | Spades | Hearts | Diamonds

type rank = Six | Seven | Eight | Nine | Ten | Jack | Queen | King | Ace

type card = rank * suit

type hand = Empty | Hand of card * hand

Fig. 1. Datatype definition for a hand of playing cards

The built-in functionality of the Learn-OCaml platform worked quite well for this exercise.
The grading library provided us with the student’s code AST, and a simple syntactic check could
determine whether the student used pattern matching to implement their functions. Input/output
testing was then sufficient to verify that the student’s code worked as intended. There was one
issue we did not anticipate: several students tried to brute-force a function to compare two cards
by writing a pattern matching with a case for each of the 81 possible pairs of ranks. This is easy to
prevent by extending the syntactic check to confirm that the pattern matching contains a reasonable
number of cases, and our grader has been modified to do this. To give an idea of the scope of this
issue, we found that 63% percent of submissions used more than the 10 pattern matching cases that
were needed for our solution.

Higher-Order Functions. Questions where we required students to use particular higher-order
functions were relatively easy to test. A popular homework question (according to an end-of-term
survey) was one where we defined a type cupcake as a pair of a price (float) and a list of ingredients
(given as a variant type) as in Figure 2. Students were asked to write a function allergy_free,
which takes as input a list of cupcakes and a list allergens of ingredients, and returns a list of only
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type price = float

type ingredient = Nuts | Gluten | Soy | Dairy

type cupcake = Cupcake of price * ingredient list

Fig. 2. Datatype definition of a cupcake made up of possible allergens

those cupcakes that do not contain any of the given ingredients. They were required to implement
this function using the higher-order functions List.filter, List.for_all, and List.exists.
We were able to verify that an implementation met those requirements fairly easily with a simple
syntactic check on the code AST.

Modelling Objects with Closures. One homework assignment asked students to write a function
new_account which, given an initial password, would return a new value of type bank_account as
defined in Figure 3. All operations on a bank account required that the correct password be given
along with the operation, and providing the wrong password three times in a row was supposed to
lock the account, not allowing any more operations to be performed. Problems involving modelling
objects with state using closures are not difficult to grade automatically, just as it is not difficult to
test implementations of simple classes in an object-oriented language.

type passwd = string

type bank_account = {

update_passwd: passwd -> passwd -> unit;

retrieve : passwd -> int -> unit;

deposit : passwd -> int -> unit;

balance : passwd -> int

}

Fig. 3. Definition of a bank account “object”

The unexpected difficulties in grading this assignment came from the fact that student code
returned a bank account “object”, which was a record of several functions. The high-level utilities
in Learn-OCaml’s grading library focus on comparing the output of running the student’s code to
some expected output; in this case the outputs were “objects” which we wished to run our own
series of tests on, instead of simple values that we would want to compare to some others. Testing
the outputs in this way while providing the students with informative feedback required us to copy
a lot of code from the grading library and modify it slightly for our purposes. This was a problem
that came up repeatedly in other contexts and is not specific to the topic of modelling objects.

Control Flow. Students implemented a parser for a simple arithmetic language twice: once using
exceptions for control flow, and once using continuations. Both were very easy to test using
the built-in functionality of the grading library. Since the testing functions by default compare
exceptions raised by the student’s code and the solution as part of input/output testing, the only
extra work we had to do in this case was adjust how exceptions carrying more complex values
like lists were printed, so that the feedback given to the students was properly meaningful. In the
case of the implementation using continuations, testing the student’s code with a few predefined
continuations with different output types was sufficient to confirm that they were indeed calling
the given continuation with the expected inputs.

Lazy Programming. One of the final assignments of the term focused on lazy lists, as defined
in Figure 4. Delayed computation is modelled by a function that takes an input of type unit; lazy
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type 'a susp = Susp of (unit -> 'a)

let force (Susp s) = s ()

type 'a lazy_list = {

hd: 'a;

tl: ('a lazy_list option) susp

}

Fig. 4. Definitions for lazy computation

(a) Default printed representation of a lazy list

(b) Output of our custom lazy list comparator

Fig. 5. Grading reports for functions involving lazy lists

lists are defined as a record of a head element and the delayed computation for the tail of the list.
Students were asked to implement map, append, and flatten functions for lazy lists, and then
to use these to write a function permute which lazily computes all the permutations of a given
(non-lazy) list.

Students were also tasked with implementing a function hailstones that lazily generates the
hailstone sequence (also known as the Collatz sequence) starting from a given positive integer. The
hailstone sequence (ai )i ∈N starting from a positive integer n is defined as follows:

a0 = n

ai+1 =



ai
2 ai is even
3ai + 1 ai is odd

For up to extremely large values of n, the hailstone sequence starting from n has been checked to
always eventually reach the cycle 4, 2, 1, 4, 2, 1, · · · . However, while it is conjectured that this is
true for all positive integers n, this has not been proven; thus students were asked to generate the
sequences using lazy lists.
Automatically grading these functions was predictably quite difficult, since potentially infinite

structures were involved. One difficulty was in simply giving the students meaningful feedback.
Lazy lists, by their definition, do not have an easy-to-read printed representation, and since they
have the potential to be infinite, naïvely trying to print out the elements of a lazy list is not practical.
The default printed representation of a lazy list is shown in Figure 5a, and is clearly not useful
to students trying to replicate a failed test case. An acceptable solution might be to print out the
elements of the list only up to a certain bound.
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Comparing a lazy list against an expected output could not be done with 100% certainty, as the
structures involved could be infinite. Indeed, in the case of the hailstones function, all outputs
were expected to represent infinite sequences. We wrote a custom tester that steps through two
lazy lists to compare them pairwise until a certain value is reached (in the case of hailstones,
that value was 1). An example error report given by this tester is shown in Figure 5b.

Other Topics. Other concepts covered in the assignments over the term include references and
state, and implementation of a type-checker and evaluator for a small toy language. These topics
did not bring any new insights to the table in terms of implementing graders, so we do not give
further detail on them here.

2.2 General Lessons
Apart from the lessons learned about writing effective graders for a variety of important concepts in
a programming languages course, we found several takeaways about writing and using automated
graders in general. Many of these have been previously encountered by instructors introducing
automated grading into their courses, but are not well-documented in the functional programming
community. We summarize a few key difficulties here.

Writing Graders is Time-Consuming. We released assignments on the Learn-OCaml platform
weekly, and the graders were written by the teaching assistants during the term. It became clear
very early on that this was not a sustainable practice. We would like to emphasize that letting
the selection of high-level functions provided by the grading library prescribe the criteria for the
graders, and simply writing grader code accordingly, is not sufficient to write a good grader. Writing
an effective grader requires:
(1) Deciding on a sufficient set of test cases and how to weight them;
(2) Determining what syntactic checks should be performed on the student’s code;
(3) Anticipating unusual solutions that students may come up with to the homework problems,

and making sure that the planned grading procedures will handle them properly;
(4) Actually implementing the grader;
(5) Thoroughly testing the grader.
Notably, implementing the graders using the libraries provided by Learn-OCaml is only a small

part of the process. We have also omitted a step (0) of deciding if an assignment is even suited to
automated grading at all. An example of an assignment that may not be suitable would be one
that requires students to define their own datatype and then write functions that take values of
this type as input or return them as output. Since the datatype is declared in the student’s code,
we cannot generate values of that type in the grader, nor do we have anything to compare values
of that type to if they are returned as output. It could be possible to test this code by requiring
students to do the extra work of writing conversion functions between the new datatype and some
type built in to OCaml, but particularly for earlier assignments we would prefer not to do this.

It is also infeasible to keep coming up with graders for new assignment problems year after year.
Therefore, we plan to build a repository of pre-written graders, starting with the ones we have
written for the Fall 2018 term, and re-use them over the years. As a contribution of this paper, we
release these homework problems and associated graders to other instructors teaching courses
in OCaml upon request. We hope for this to be a starting point for a bank of tried and tested
homework assignments that can be shared among instructors in the community at large, making
adoption of the Learn-OCaml platform more accessible to those who wish to make the switch.

Improper Use of the Grader. A major issue we experienced over the course of the term was that
students were becoming overreliant on the automated grader and using it as a substitute for testing
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their code on their own. The Learn-OCaml platform provides an interactive toplevel for students to
test their code; however, in an end-of-term survey, 35% of students responded that they used the
toplevel to test their code “rarely” or “never”. On earlier assignments, students could get away with
writing their programs by trial and error based on the grader’s feedback. Later assignments where
the questions were more complicated made this strategy much more difficult and prohibitively
time-consuming. A common complaint through the term was that the grader did not give the
expected output for failed test cases, and students were thus required to figure out the expected
outputs themselves. This phenomenon has been previously observed when relying on automated
grading for programming assignments; for some examples, see [Chen 2004; Edwards 2003].

One possible solution to this problem is to limit the number of times students can run the grader
on their submissions, thus requiring them to test their code carefully before using up one of their
limited tries. This has been observed by Pettit et al. [2015] to increase the average quality of student
submissions.

We have decided to take a different route, in which we require students to write their own tests
and make use of the automated testing infrastructure to grade students on their test quality. A
similar approach has been tried in a third-year computer organization course by Chen [2004], and
is still in use in the course today. We give details on this solution, and how we have implemented it
as a library for Learn-OCaml, in Section 3.

Limitations of the Grading Library. The grading library that Learn-OCaml provides specializes in
testing input/output correctness against a solution and in performing simple syntactic checks on
the student’s code: for instance, checking that a certain name occurs syntactically in the body of a
function, or verifying that a function is implemented without using for loops. More complicated
syntactic checks one might like to perform, such as checking if a certain call is a tail call, are doable
with the library’s provided functionality, but require users to write a lot of extra code from scratch.

A major syntactic property of a student’s code that we wish to evaluate is code style. The meaning
of code style is subjective among instructors, but it is commonly taken into account in some form
when grading programming assignments manually; when using Learn-OCaml’s provided library
out of the box, students miss out on this entire class of valuable feedback. Again, writing style
checks is possible with the current grader library, but involves a lot of extra code.

We have written extensions for Learn-OCaml’s grading library to mitigate this issue, which we
discuss in Section 4.

3 ENCOURAGING TEST-DRIVEN DEVELOPMENT
A drawback of having a readily-accessible automatic grader for the homework assignments is
that it is tempting for students to rely on the grader to tell them if their code is correct, instead
of testing their own code thoroughly. We have implemented an extension to the Learn-OCaml
platform similar to the idea described in Chen [2004], by which we can leverage the automated
grader to evaluate students not only on their code, but also on unit tests that they write for it.
We assess the quality of a student’s tests using a strategy based on mutation testing [DeMillo

et al. 1978]. Suppose that we wish the student to write tests for a function pow such that, for natural
numbers n and k, pow n k evaluates to nk (we do not care what pow 0 0 returns). The student
provides the tests as a list of input/expected output pairs as shown in Figure 6a. Programmed
into the grader is a set of buggy implementations of the pow function, which we call mutants. An
example of some mutants of the pow function is given in Figure 6b: one buggy implementation
simply multiplies its inputs instead of performing exponentiation, and the other has a typo in the
first line of the if-expression, resulting in all calls returning 0.
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let pow_tests = [

((4, 1), 4);

((0, 5), 0);

((2, 2), 4)

]

(a) A set of sample unit tests

let pow n k = n * k

let pow n k =

if k = 0 then 0

else n * pow n (k - 1)

(b) A set of sample mutants

(c) Sample grading report for mutation testing

Fig. 6. Mutation testing extension for Learn-OCaml

The student’s tests are first checked for correctness by running them against the correct solution
code, as seen in the first section of the report in Figure 6c. Including this functionality allows
students to experiment with how they think the functions they are asked to implement should
work, by writing test cases and then verifying their understanding against the solution.

Once all of the student’s tests have been deemed correct, they are next checked for coverage by
running them against each of the mutants. Given a specific mutant, if at least one of the student’s
test cases results in an output from the mutant that does not match the indicated expected output,
the student’s tests are said to have exposed the bug in that implementation. Otherwise the tests are
insufficient to reveal the bug, and the student must revisit their test cases and consider what cases
they might not be covering. In Figure 6, the given test cases are enough to uncover the bug in the
second mutant in 6b, but not the first, as the test cases are not enough to distinguish exponentiation
from simple multiplication. Adding the test case ((2, 3), 8) to pow_tests in Figure 6a would be
sufficient for the test suite to uncover the bugs in both mutants.

Normally in a software development setting, a large number of mutants are generated automati-
cally by making small modifications to the code being tested, such as replacing a mathematical
operator with a different one, or replacing a variable name with a constant or a different variable;
this is meant to mimic common programmer errors. A drawback of this is that since so many
mutants need to be generated and then executed against the test suite for this to be effective, the
computational cost of mutation testing can be quite high [Jia and Harman 2011]. In our use case,
we already know what a desired solution looks like. We can thus write a small number of very
specific mutants manually while writing the grader, and use these for mutation testing. Writing
the mutants manually allows us to isolate certain cases that we want to make sure students are
testing for. Mutation testing is thus ideal here since we can achieve a high level of effectiveness
with a low computational cost.

Having students write their unit tests as input/output pairs is simple enough that they can
start writing tests right away on their very first homework assignment, given a proper template.
However, it does not allow them to account for console output, express that a test case should
raise an exception, or write test cases for functions involving randomness, for example. The simple
input/output testing functionality is sufficient for the non-error cases in the vast majority of
functions we have students write, so we believe this is not a significant drawback, and we expect
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based on the experience by Chen [2004] that it will help us significantly in achieving our broader
learning goal of emphasizing good software development practices for our students.

4 WRITING MORE POWERFUL GRADERS MORE EASILY
As it is, the grading library provided by the Learn-OCaml platform has a lot of potential for writing
powerful graders, as the library allows graders to access the student’s code AST. However, the
library only provides helpers for carrying out simple syntactic checks on the parse tree. In order
to take full advantage of having access to the AST, users are required to write a lot of extra code,
and this code needs to be copied and pasted into each grader separately. We have also come across
situations where we would like to have access to the full typed AST: for instance to make use of
scoping information, or because we might want to look at types to determine whether a student is
using higher-order functions without knowing which specific functions we are looking for. Over
the course of our first term using the platform, we wrote several extensions to the grading library
aimed at increasing the out-of-the-box functionality of Learn-OCaml’s syntax checking, so that
future users of the platform can more easily write powerful and expressive graders.

4.1 Checking Tail Recursion
Tail recursion is one of the first topics we cover in our course; multiple questions on the first couple
of exercises specifically ask students to implement certain functions in a tail-recursive manner.
Thus one of the first issues we encountered when using the platform was: How can we check that
a student’s implementation is actually tail recursive?
The first, dynamic, approach that we used was simply to call their function with an extremely

large input; if their function was not tail recursive, this would result in a stack overflow which the
platform would detect. This seemed to work well enough for a while, although it would have been
desirable to have a way of pointing out which recursive call was not a tail call.
However, we ran into a problem in the Winter 2019 term when we gave an example using

exponentiation by repeated squaring, as implemented in Figure 7, and asked students to implement
a tail-recursive version of this algorithm. By design, exponentiation by repeated squaring uses
stack space logarithmic in k, so that giving even the largest possible integer value for k as argument
to the non-tail-recursive implementation in the figure will not result in a stack overflow. This
means that we cannot try to verify that a student’s implementation is indeed tail recursive using a
dynamic approach.

let rec fast_pow n k =

if k = 0 then 1

else if k mod 2 = 1 then

n * fast_pow n (k - 1)

else

let x = fast_pow n (k / 2) in

x * x

Fig. 7. Exponentiation by repeated squaring

The OCaml compiler features a [@tailcall] annotation which can be added to recursive calls
so that the compiler will emit a warning if they are not tail calls; however, in the grader we do not
have access to compiler warnings, and we would prefer students not to need to annotate all of their
recursive calls.

We have thus written our own syntactic check which attempts to determine if a function is tail
recursive and incorporated it as part of a library in Learn-OCaml. The problem of determining

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



1:10 Aliya Hameer and Brigitte Pientka

whether or not a function is tail recursive is undecideable in the general case due to factors like
aliasing and mutation, and we do not attempt to address such factors in our implementation;
however, we feel that our implementation is sufficient for handling the scenarios that come up in
practice with student code. We traverse the code AST of the function in question and check if we
can find any recursive call that is not a tail call. If so, we flag it as an error and provide the student
with the context in which the function call appears outside of tail position. As an example, consider
an attempt to implement exponentiation by repeated squaring tail-recursively using the helper
function fast_pow_tl given in Figure 8a. This function is not tail recursive, since a recursive call
to fast_pow_tl appears in a binding of a let-expression on line 6. Our syntactic check generates
a report as shown in Figure 8b, informing the student that a recursive call has been found outside
of tail position and pinpointing the location where this happens.

1 let rec fast_pow_tl n k acc =

2 if k = 0 then acc

3 else if k mod 2 = 1 then

4 fast_pow_tl n (k - 1) (n * acc)

5 else

6 let x = fast_pow_tl n (k / 2) acc in

7 x * x

(a) Attempt to implement exponentiation by repeated squaring tail-recursively

(b) Grading report generated for the implementation in (a)

Fig. 8. Tail recursion checking in Learn-OCaml

4.2 Style Checking
One major class of feedback students miss out on when their code is graded automatically is
feedback on their code style. What constitutes good style is a subject of debate: it can concern
identifier names, use of whitespace, comments, number of characters in a line, etc. We are not
interested in syntactic concerns such as these; following Michaelson [1996], we instead focus on
teaching students good style on a semantic level. By “semantics” here we refer to the intended
purpose of specific language constructs. Good style on a semantic level can thus be described as
“making appropriate use of language constructs”: for instance, in a typed functional programming
setting this includes using pattern matching instead of explicit selectors when appropriate; making
use of partial application instead of defining eta-expanded functions as inputs to higher-order
functions such as List.map; and not making comparisons with boolean values. It is our experience
that semantic style errors that students make are often rooted in conceptual misunderstandings
about the constructs in question.

As an example, consider the following function, which checks if an integer n is odd:
let odd n =

if n mod 2 = 1 then true

else false
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[e1] @ e2 =⇒ e1 :: e2

if e1

then true

else e2

=⇒ e1 || e2

if e = []

then e1

else e2

=⇒
match e with

| [] -> e1

| hd :: tl -> e2′

where e2 = [List.hd e / hd, List.tl e / tl] e2′

(a) Sample of the rewrite rules implemented in the style checker extension

(b) Sample feedback report corresponding to code that triggers the rewrite rules in (a)

Fig. 9. Style checking extension for the Learn-OCaml platform

This could be written more elegantly as:

let odd n =

n mod 2 = 1

However, students will sometimes write the former due to confusion about how conditional
expressions relate to boolean values. Even after being given a general warning never to write
expressions of the form if ≪boolean-expression≫ then true else false some students will continue
to do so. We believe that this is due to students not connecting this general form to specific instances
of it that they write in their code. It is this observation that led us to the design of our style-checking
extension to the Learn-OCaml platform.

Inspired by Michaelson [1996]’s work on a style checker for SML, we have implemented a style
checker as a program that traverses the student’s code AST and suggests the application of various
rewrite rules in order to improve the style of the student’s code. Figure 9a gives a small sample of
the formal rewrite rules we have implemented. In the first example, a list element e1 is put into
a singleton list so that the list e2 can be appended to it, instead of simply using the :: (“cons”)
operator which has the same purpose. The second example shows a conditional statement that
could be transformed into a use of the || (“or”) operator. For the final example, we emphasize
that pattern matching on list structure is strictly preferable to comparing to the empty list ([])
and using the explicit list selectors List.hd and List.tl. A full list of the rewrite rules we have
implemented can be found in the Appendix. We have also included checks that will emit a warning
if the student’s code uses more than a given number of cases in any one pattern matching or
conditional expression.
When the style checking extension is enabled, a section on code style will be added to the

student’s feedback report whenever they run the autograder on their code. A sample such report
can be found in Figure 9b. Note that we have two categories of style feedback: suggestions (gray
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background) and warnings (yellow background). Suggestions are those rewritings that one may
or may not want to apply depending on concerns such as code readability. Warnings are those
rewrites that we feel should always be applied. Using features already present in Learn-OCaml’s
grading library, it is possible to have the style report contribute points to the student’s grade, or to
refuse to grade the functionality of the student’s code if they have more than a certain number of
warnings.

We believe that by continuously emphasizing ideas of good style to our students with examples
involving their own code, this style checking extension will be a great help in teaching our students
elements of good functional programming style.

4.3 Implementation of Grader Extensions
The extensions to the grading libraries discussed in this section are implemented atop our own
augmented version of the OCaml parse tree, which we call Typed_ast to differentiate from the
OCaml compiler’s internal Typedtree structure. By design, grader code is only run on code that
typechecks; therefore, we can make use of OCaml’s compiler front-end to build up the Typedtree
structure from the student’s code AST and get access to typing and scoping information for all
identifiers. However, this internal Typedtree structure is difficult to work with, and the process of
going from the untyped AST to a Typedtree is non-invertible, which is an issue when we wish
to print out rewritten code back to the student as in Figure 9. Thus, we build our own Typed_ast
by extracting the information we need from the Typedtree and using it to annotate the untyped
AST. We annotate each expression in the untyped AST with its type and the typing environment in
which it was type-checked, and each identifier with scoping information, which includes its full
resolved module path and a unique identifier so that shadowed identifiers can be distinguished.

Basing all of our syntactic checks on these Typed_asts instead of the untyped AST means that
our implementations are scope-safe:

• Tail call checking continues to work as expected when the name of the function in question
has been shadowed inside the body of the function.
• In the style checker, AST transformations that introduce references to predefined identi-
fiers (such as List.tl, &&, or not) are not suggested in contexts where the identifier to be
introduced has been overshadowed by another definition.

5 RELATEDWORK
Using automated grading for programming classes has been suggested as early as 1960 [Hollingsworth
1960] and the practice has become common in higher education, with the development of systems
such as ASSYST [Jackson and Usher 1997], Ceilidh [Benford et al. 1995], Web-CAT [Edwards and
Perez-Quinones 2008], BOSS [Joy et al. 2005], and many more. Ala-Mutka [2005] provides a survey
of the field up to the mid-2000s. These systems generally follow a simple model: students write code
on their own machines and submit their work to a server. The server then executes the student’s
code in some sort of sandboxed environment and, usually after some delay, sends some report back
to the student.
In our experience, the Learn-OCaml online programming platform provides a more expressive

and flexible environment. Students do not need to install anything, and can work on and grade their
code all in one place. Instructors can not only take advantage of the simple out-of-the-box support
for checking input/output correctness of a students’ program, but also tap into its potential to teach
software testing practices via mutation testing and suggestions on elements of programming style.
We believe this can substantially enhance the learning experience of the student.
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The DrRacket IDE, augmented with the Handin Server plugin2, provides a similar experience
for students as the Learn-OCaml platform. Students download and install DrRacket and a course-
specific plugin and are then able to submit their work simply by clicking a “Handin” button in
the IDE, which uploads their work to a server, runs some instructor-defined tests, and returns the
results of these tests to the student. The test automation framework allows instructors to test for
input/output correctness, perform syntactic checks on the student’s code AST, and evaluate the
code coverage of student test suites. Student submissions remain on the server after tests are run
for teaching staff to carry out further manual grading if desired. Our work on the Learn-OCaml
platform is in a similar spirit to the DrRacket project: the DrRacket IDE has made languages in
the Scheme family popular in the university setting, but there exists no such platform for typed
functional programming languages in the ML family.

Other tools exist that suggest code refactorings for better style in the sense of our style checker.
Examples of these include Tidier, for Erlang [Sagonas and Avgerinos 2009], and HLint3, for Haskell.
Tidier functions simlarly to our style checker, suggesting a variety of program transformations
based on ideas such as using appropriate language constructs and making good use of pattern
matching. HLint focuses heavily on pointing out functional equivalences, such as replacing concat
(map f x) with concatMap f x, though it includes rules for several of the transformations we
have implemented for our style checker as well. The set of checks can be extended with custom
rules added via a configuration file.

6 CONCLUSION
In this paper we have reported on our experience in using the Learn-OCaml platform, which was
originally developed as an exercise environment for a MOOC, in a university setting. We have
discussed how we used the features of the platform to test students on a variety of concepts that
come up in a programming languages course, the problems that came up while doing so, and the
extensions to the platform that we subsequently implemented for evaluating students on properties
of their code beyond input/output correctness.

There still remains work to be done. In the future, we plan to work on several fronts to incorporate
new ideas into Learn-OCaml:

(1) Plagiarism detection. Systems for measuring code similarity such as MOSS4 [Schleimer et al.
2003] are commonly used in large programming classes to detect possible cases of plagiarism
by comparing student code submissions. No such mechanism currently exists in the Learn-
OCaml platform.

(2) Interactive lessons. In addition to the exercise functionality, the Learn-OCaml platform allows
instructors to create interactive tutorials and lessons for their students. In the future we
would like to convert our course notes to this format to help facilitate independent learning.

(3) Typed holes. We encourage our students to develop their programs incrementally by “following
the types”; as such, it would be quite useful to be able to type-check partial programs, as
in the live programming environment Hazel [Omar et al. 2017]. Being able to insert typed
holes into incomplete programs would allow students to check, for example, the type of an
argument that they need to provide to a function, or the type that a certain sub-expression
needs to evaluate to in order for the full expression to have a desired type.

2https://docs.racket-lang.org/handin-server/Handin-Server_and_Client.html
3https://github.com/ndmitchell/hlint
4https://theory.stanford.edu/ aiken/moss/
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(4) Incremental stepping. The DrRacket environment includes an algebraic stepper5 which al-
lows students to step through their code and visualize what conceptionally happens when
evaluating a given program. Cong and Asai [2016] presents an implementation of a stepper
for a small subset of OCaml, implemented in a fork of the Caml language.

(5) Complexity analysis. Aside from correctness, test quality, and code style, another metric of
student code that would be useful to assess automatically is time complexity. Hoffmann
et al.’s work on automatically analyzing resource bounds of OCaml programs has led to
the development of Resource Aware ML (RAML) [Hoffmann et al. 2012, 2017], a resource-
aware version of the OCaml language. Currently only a subset of OCaml is supported and
the language is not ready for deployment in a learning setting. In the future it would be
interesting to see if these ideas could be ported to Learn-OCaml.

By sharing our experience and our tools together with a suite of homework problems, we hope
to make it easier for other instructors to offer high-quality functional programming courses and
allow us to promote best functional programming practices in our community and beyond.
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A STYLE CHECKER REWRITE RULES
Below we give a full list of the rewrite rules for the style checker described in section 4.2.

e = true =⇒ e

e = false =⇒ not e

if e then true else false =⇒ e

if e then false else true =⇒ not e

if e1 then true else e2 =⇒ e1 || e2

if e1 then e2 else false =⇒ e1 && e2

match e1 with

| pat -> e2
=⇒

let pat = e1 in

e2

[e1] @ e2 =⇒ e1 :: e2

e @ [] =⇒ e

[] @ e =⇒ e

if e = []

then e1

else e2

=⇒
match e with

| [] -> e1

| hd :: tl -> e2′∗

fun pats1 pats2 ->

e pats2
=⇒ fun pats1 -> e∗∗

∗ where e2 = [List.hd e / hd, List.tl e / tl] e2′
∗∗ where no pattern variable from pats2 appears free in e
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