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Abstract

We present the Kripke-style modal type theory, MINT, which combines dependent types and the
necessity modality. It extends the Kripke-style modal lambda-calculus by Pfenning and Davies to
the full Martin-Löf type theory. As such it encompasses dependently typed variants of system K, T ,
K4, and S4. Further, MINT seamlessly supports a full universe hierarchy, usual inductive types, and
large eliminations. In this paper, we give a modular sound and complete normalization-by-evaluation
(NbE) proof for MINT based on an untyped domain model, which applies to all four aforementioned
modal systems without modification. This NbE proof yields a normalization algorithm for MINT,
which can be directly implemented. To further strengthen our results, our models and the NbE
proof are fully mechanized in Agda and we extract a Haskell implementation of our NbE algorithm
from it.

1 Introduction

Over the past two decades, modal logic’s notion of necessity and possibility has pro-
vided precise characterizations for a wide range of computational phenomena: from
reasoning about different stages of computation (Davies & Pfenning, 2001; Jang et al.,
2022) and meta-programming (Schürmann et al., 2001; Pientka et al., 2019) to homotopy
type theory (Licata et al., 2018; Shulman, 2018) and guarded recursions (Nakano, 2000;
Clouston et al., 2015). One might say that these applications bear witness to the unusual
effectiveness of modalities in programming languages and logic.

To support these applications in various areas, the foundational study of the neces-
sity modality (�) has started in the early 1990s. The study was primarily driven by the
computational interpretation of modal logics from a proof-theoretic point of view. In his
PhD thesis, Borghuis (1994) gives a formulation of pure type system with a � modality.
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2 J. Z. S. Hu et al.

Similarly, Pfenning & Wong (1995) and Davies & Pfenning (2001) propose an intuitionis-
tic formulation of the all sublogics of the modal logic S4. Martini & Masini (1996) explore
reading modal proofs from various modal logics as programs. All the prior work men-
tioned uses a context stack structure to organize modal assumptions in order to incorporate
the � modality.

In this work, we contribute to the foundational landscape of modal type theories using
context stacks by investigating MINT, a Modal INtuitionistic Type theory, which directly
extends the simply typed Kripke-style modal lambda-calculus by Davies & Pfenning
(2001) to the dependently typed setting. In particular, MINT adds to the usual Martin-Löf
type theory (MLTT) the necessity modality (�) and supports a full hierarchy of cumula-
tive universes, inductive types, and large eliminations. MINT captures dependently typed
variants of modal Systems K, T ,1 K4, and S4, complementing previous work by Gratzer
et al. (2019), which only supports idempotent S4.

The Kripke style and context stacks. Following Davies & Pfenning (2001), MINT uses
a context stack where each context corresponds to a Kripke world to model the Kripke
semantics (Kripke, 1963). A term t is then typed in a context stack

−→
� , which at the

beginning is a singleton with an empty context (i.e. ε; ·).
ε; �1; . . . ; �n � t : T or

−→
� � t : T

where the topmost context denotes the current world. Subsequently, we use “context” and
“world” interchangeably.

In the simply typed setting, the rules for � introduction and elimination are as follows:
−→
� ; · � t : T

−→
� � box t : �T

−→
� � t : �T

−→
� ; �1; . . . ; �n � unboxn t : T

In the � introduction rule, we enter a new world by appending an empty context to the
context stack. The � elimination rule allows us to use the fact that �T is true. In particular,
if �T holds in a context stack

−→
� , then we can use T in any world that is accessible from

it. Which previous world can be reached is controlled by the unbox level n, which we
call modal offset. Modal offsets eliminate the need of explicit structural rules to manage
the context stack structure as done by Borghuis (1994) and Pfenning & Wong (1995).
Following Davies & Pfenning (2001), we refer to the systems with context stacks and
unbox for elimination as the Kripke-style systems.

There are two reasons why we are investigating a modal dependent type theory in the
Kripke style:

• Firstly, the Kripke style, as indicated by its name and our previous introduction,
corresponds to the Kripke semantics directly. In other words, the Kripke-style sys-
tems provide syntactic theories for the corresponding Kripke semantics. Moreover,
in the Kripke style, we can elegantly and uniformly capture various modal systems
such as K, T , K4, and S4 simply by restricting modal offsets (Davies & Pfenning,
2001; Hu & Pientka, 2022a). Modal offsets enable us to study properties such as

1 One should not confuse the modal system T with the unrelated Gödel’s system T .
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Normalization by evaluation for modal dependent type theory 3

normalization uniformly for all subsystems of S4 and give rise to a fresh perspec-
tive of corresponding semantic concepts that internalize this syntactic context stack
structure.

• Secondly, from a practical point of view, the Kripke style provides a foundation
for the usual meta-programming style of quasi-quoting, as observed by Davies &
Pfenning (2001). We are interested in reasoning directly about meta-programs for
languages such as MetaML (Taha & Sheard, 1997; Taha, 2000) and similar staged-
or meta-programming systems (see also Brady & Hammond, 2006) that use quasi-
quotation. In this work, we hence develop the equational theory of the Kripke style
formulation of the � modality. This allows MINT’s S4 variant to be used as a pro-
gram logic for reasoning directly about meta-programs. We give an example in
Section 3.3.

Overview. In this paper, we establish normalization of MINT using normalization by
evaluation (NbE) (Martin-Löf, 1975; Berger & Schwichtenberg, 1991). This yields an
algorithm that can be directly implemented. An NbE algorithm typically consists of two
steps: (1) we evaluate terms from the type theory in a chosen mathematical model and
(2) we extract normal forms from that model. Here, we follow work by Abel (2013) and
choose an untyped domain as the mathematical model. In the literature, there are other
possible choices like presheaf categories (Altenkirch et al., 1995; Kaposi & Altenkirch,
2017), but untyped domains are simpler to work with and mechanize. Further, they allow
us to derive an actual normalization algorithm that can be implemented. In fact, as we will
show, such an implementation of NbE can be extracted from our mechanization in Agda.

One problem in NbE is how we should model the Kripke structure introduced by � in
the semantics. This is intimately related to how we characterize � elimination. In our con-
structions, the Kripke structure is captured by a novel algebra truncoid and is internalized
in the semantics. Due to the internalization, our proof structure is just a moderate exten-
sion of Abel (2013). Since truncoids precisely capture various meta-theoretical structures
in MINT including substitutions and evaluation environments, as a bonus, this allows us to
elegantly and uniformly capture the differences across all subsystems. Further, the sound-
ness and completeness proofs of NbE can easily be re-used for all the subsystems of S4
mentioned above without change.

Contributions. Our main contributions in this paper are:

• We present a core modal dependent type theory, MINT, as an explicit substitution
calculus (Section 4) together with an equational theory. We successfully scale the
concept of Kripke-style substitutions from Hu & Pientka (2022a) to dependent types,
so that we obtain a unified representation of the modal and local structural properties
of Kripke-style context stacks.

• Following Abel (2013), we develop an NbE algorithm (Section 5) for MINT which
we prove complete (Section 6) and sound (Section 7). It builds on an untyped domain
model. Central to the models and the NbE algorithm is the algebra of truncoid
(Section 4.2). Truncoid provides an algebraic description of the Kripke structure
of MINT, so that the Kripke structure in the semantics is internalized in the model
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4 J. Z. S. Hu et al.

as untyped modal transformations (UMoTs). As a result, our constructions are very
adaptive, accommodating all four subsystems of S4 without change.

• The NbE algorithm of MINT with a full cumulative universe hierarchy and its
soundness and completeness proofs are fully mechanized in Agda. Our mecha-
nization of the NbE algorithm only relies on two standard extensions: induction–
recursion (Dybjer, 2000) and function extensionality, which are more familiar than
the advanced combination of induction–induction (Nordvall Forsberg & Setzer,
2010) and quotient inductive types exploited by Altenkirch & Kaposi (2016b,a) and
Kaposi & Altenkirch (2017).

• We adjust our models so that they explicitly maintain universe levels and no longer
fundamentally rely on cumulativity as in Abel (2013), Abel et al. (2017), and Gratzer
et al. (2019). On the one hand, this adjustment directly enables a type-theoretic
mechanization, as former on-paper approaches require taking limits of universe lev-
els to infinity due to cumulativity. On the other hand, this adjustment also seems
to suggest a more robust model construction that applies for both cumulative and
non-cumulative universe hierarchies.

• Last, we extract from our Agda mechanization a Haskell implementation of NbE
for MINT (Section 8), which may serve as a verified kernel of an implementation of
MINT. We also provide an executable example for normalizing programs in MINT

in our mechanization.

Our Agda mechanization consists of ∼11k LoC. This is close to or fewer than exist-
ing mechanizations (Abel et al., 2017; Kaposi & Altenkirch, 2017; Pujet & Tabareau,
2022, 2023). Please refer to our technical report (Hu & Pientka, 2022b) and Agda mech-
anization for full details. The paper contains hyperlinks to an online artifact for an easy
correspondence between code and discussions.

2 The Kripke style in the landscape of modal type theories

Over the past three decades, modal type systems have been studied from different per-
spectives. For example, Bierman & de Paiva (1996, 2000) use a regular context by
requiring a substitution for modal assumptions during the introduction of �. In 2001,
Davies & Pfenning (2001) and Pfenning & Davies (2001) propose an alternative to the
Kripke-style formulation where they separate modal assumptions and regular (or local)
assumptions into two contexts. Hence, this formulation is often referred to as dual-context
style. They also provide a translation for simply typed terms between the Kripke-style and
the dual-context formulation. This translation can be viewed as compiling Kripke-style
representations which corresponds to meta- or staged programming idioms under Curry–
Howard correspondence to the dual-context representation which makes evaluation order
more clear.

In recent years, the dual-context representation of modal logic has been well studied.
For example, Kavvos (2017) looks into the dual-context style and gives formulations
for systems K, T , K4, and GL. Shulman (2018) uses spatial type theory, a dependently
typed variant of the dual-context style, to separate discrete and continuous assumptions
to establish Brouwer’s fixed-point theorem in HoTT. Licata et al. (2018) restrict spatial
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type theory and obtain crisp type theory to internally represent universes in HoTT. The
implementation of crisp type theory, Agda-flat, is also in the dual-context style. A recent
general framework for modal type theories, multi-mode type theory (MTT) (Gratzer et al.,
2020; Gratzer, 2022), is a generalization of the dual-context style due to its elimination
principle of the modalities. We therefore review here the dual-context style formulation
and discuss differences between both styles.

The Kripke and dual-context styles differ in the organization of assumptions and the
elimination principle of �. As opposed to context stacks in the Kripke style, a dual-
context-style system has precisely two contexts. One context stores modal (or global)
assumptions, while the other one stores regular (or local) assumptions. The defining dif-
ference between both styles is the elimination principle of the � modality. In simply typed
S4, the introduction and elimination rules for � are defined as follows:

�; · � t : T

�; � � box t : �T

�; � � s : �T �, u : T ; � � t : T ′

�; � � letbox u = s in t : T ′

In the judgments, � is the global context while � is the local one. The introduction rule
requires that t is well typed only with the global assumptions. In the elimination rule, s : �T
is eliminated by letbox; essentially letbox is a form of pattern matching.2 The body t is
type-checked with a global context extended with an extra global assumption u : T . This
elimination principle implies that � is viewed as sums. One shortcoming of sum types is
the lack of extensionality. Extensionality of sum types including � in the dual-context style
requires a set of special equivalences like commuting conversions to be included (Lindley,
2007). Such commuting conversions are usually absent with dependent types. On the other
hand, in the Kripke style, we use unbox for elimination. unbox is a projection and treats
� as products. � in the Kripke style is therefore extensional due to its η equivalence rule.
This difference in elimination principles finds a very close resemblance in the two styles
of defining � types. When we define � inductively, its elimination is pattern matching.3

If � is defined as a product, then we use projections for elimination. These two styles are
not always equivalent and we may even clearly distinguish them in some settings, e.g.,
a substructural system. Moreover, even in regular MLTT, � as a product is extensional,
because products admit η equivalence, while inductive types usually do not. Furthermore,
the situation of � is more complex. Davies & Pfenning (2001) only show a translation
between the Kripke and the dual-context styles in the simply typed case. This translation in
fact is not preserved by equivalence. Due to type-level computation, the translation given
by Davies & Pfenning (2001) seems very challenging to extend to dependent types. In fact,
due to the lack of extensionality in the dual-context style, we do not currently think that
such a translation is possible between the Kripke-style and the dual-context style system.

Though the Kripke style presents appealing advantages of extensionality and unifor-
mity in formulation, it is technically more challenging to study than the dual-context style.
For example, direct normalization proofs of the simply typed Kripke-style systems were
established (Hu & Pientka, 2022a; Valliappan et al., 2022) only recently. The ultimate
reason why the Kripke style is more challenging than the dual-context style is the lack
of a proper notion of simultaneous substitutions. In the dual-context style, its notion of

2 It is an irrefutable pattern.
3 Also an irrefutable pattern.
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simultaneous substitutions is clear: there are two list of terms, one substituting the global
context and the other for the local one. The obvious definition of simultaneous substi-
tutions in the dual-context style is a significant advantage, both when implementing and
when reasoning about these systems. In the Kripke style, it is less obvious how to define
simultaneous substitutions. Gratzer et al. (2019) have given a substitution calculus for
the dependently typed idempotent S4 and Birkedal et al. (2020a) have given a version
for dependently typed K, but the general cases for other modal systems like T and non-
idempotent S4 remain unknown. In our previous work (Hu & Pientka, 2022a), we propose
the Kripke-style substitutions (or K-substitutions), which is shown to be a proper notion
of simultaneous substitutions for the Kripke style with simple types. By introducing MINT

and its foundational study, we have shown that K-substitutions and our normalization proof
scale to the dependently typed settings. Therefore, our work is a significant step forward
to a deeper understanding of the Kripke-style systems.

3 Introducing MINT by examples

Before introducing MINT and its NbE proof, we illustrate how to write programs that
exploit the � modality. In particular, we will use these programs to highlight different
design decisions. We use an Agda-like syntax as our front-end language.

3.1 Axioms in S4

MINT is a system that captures dependently typed variants of four different modal systems:
K, T , K4, and S4. These systems are distinguished by the logical axioms that they admit.
In MINT, we can implement the following modal axioms generically:

K: �(A → B) →�A →�B
T : �A → A
4: �A →��A

In these axioms, A and B refer to any propositions and hence are generic. Recall that in all
four subsystems of S4, Axiom K is mandatory. The system that only admits K is System K.
If Axiom T is added to System K, then we obtain System T . If we further add Axiom 4 to
System T , then we have S4. System K4 only admits Axioms K and 4, but not T . To actually
write down these axioms in MINT, intuitively we would like to give T , for example, the
following type in MINT:

T : {A : Ty} → � A → A

Here we use Ty to denote universes to avoid clashing with Agda’s terminology.
Unfortunately, this type does not type-check, because A is in the current world, but �
requires the type A to be meaningful in the next world. The correct implementation of T

states that A is a type that is universally accessible by giving it the kind � Ty. This ensures
that A remains accessible. When we want to use A in the definition of T, we now need to
first unbox it with a proper level.
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T : {A : � Ty} → � (unbox 1 A) → unbox 0 A
T x = unbox 0 x

It might appear counter-intuitive at first glance, why we distinguish between a type of kind
� Ty and a type of kind Ty. This distinction is necessary, as MINT does not support cross-
stage persistence (Taha & Sheard, 1997), i.e., the axiom R: A →�A or more specifically
Ty→�Ty. In particular, there is no way to implement a function that would lift any type
of kind Ty such that it would have kind �Ty. As a consequence, to ensure that all our
types, in particular types such as �A, are well kinded, we need to ensure that A is globally
meaningful. A similar design decision has been taken by Jang et al. (2022) in their work on
developing a polymorphic modal type system that supports the generation of polymorphic
code.

We are now in a position to also implement the other two axioms similarly:

K : {A B : � Ty} → � (unbox 1 A → unbox 1 B) → � (unbox 1 A) → � (unbox 1
B)

K f x = box ((unbox 1 f) (unbox 1 x))

A4 : {A : � Ty} → � (unbox 1 A) → � � (unbox 2 A)
A4 x = box (box (unbox 2 x))

3.2 Lifting of natural numbers

As previously discussed, MINT does not support cross-stage persistence and the axiom
A →�A is not admissible for all A. Nevertheless, there are types where we can explicitly
lift an element of type A to �A. The type for natural numbers is one such example. In
MINT, we need to implement such lifting functions when required to ensure cross-stage
persistence. Since MINT supports inductive types just as MLTT does, we define natural
numbers, Nat, in the usual way, with zero and succ as the constructors. Then, we define its
lift function, which shows that natural numbers do admit Axiom A →�A:

lift : Nat → � Nat
lift zero = box zero
lift (succ n) = box (succ (unbox 1 (lift n)))

Note that this function is implemented by recursion on the input number. If the input is just
zero, then the solution is easy: it is just box zero. We can refer to zero inside of a box, which
requires a term in the next world, because Nat is a closed definition, which can be auto-
matically lifted to any other world. In the succ case, we first provide a box as required
by the output type obligation. Then, we must perform a recursion somehow. Luckily,
unbox1 brings us back to the current world, which allows us access to n, which is precisely
needed for a structural recursion.

Just as pure MLTT, MINT can be used to prove properties about a definition. For
example, we can show that unbox0 is an inverse of lift:

unbox -lift : (n : Nat) → unbox 0 (lift n) ≡ n
unbox -lift zero = refl -- zero ≡ zero
unbox -lift (succ n) = cong succ (unbox -lift n)

In the base case, the left-hand side evaluates to unbox0 (box zero), which is just equivalent
to zero. Therefore, reflexivity (refl) suffices to prove this goal. In the step case, we need
to prove
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unbox 0 (box (succ (unbox 1 (lift n)))) ≡ succ n

The left-hand side is reduced to succ (unbox0 (lift n)) based on the equivalence rules that
we describe in the next section. Note the recursive call unbox-lift n : unbox0 (lift n) ≡
n. Therefore, we can conclude the goal by the recursive call modulo an extra congruence
of succ.

3.3 Generating N-ary sum

According to Davies & Pfenning (2001), the modal logic S4 corresponds to staged compu-
tation under Curry–Howard correspondence, where �A denotes the type of a computation
of type A, the result of which is only available in some future stages of computation.
Effectively, � segments different computational stages, so that variables in past stages
cannot be directly referred to in the current stage. The � modality provides a logical
foundation for multi-staged programming systems like MetaML (Taha & Sheard, 1997;
Taha, 2000). By integrating � into MLTT, we can use MINT as a program logic to model
dependently typed staged computations and use MINT’s equational theory to prove that
the programs satisfy certain specifications. In this section, we show how the S4 variant of
MINT can model staged programming and in the next, we prove that this program is cor-
rectly implemented. Proving the correctness of a staged or meta-program in MetaML or a
similar system has not been previously considered, but with MINT, this capability comes
very naturally. For more practicality, we postulate that certain extraction mechanisms can
be employed here to extract the code to a mature staged programming system such as
MetaML (Taha & Sheard, 1997) with proper type-level magic to erase the dependent types
as commonly practiced in Coq and Agda.

Our task here is to model a meta-program that generates code for an n-ary sum function
that sums up n numbers. If n is zero, then we return zero; if it is one, then we return the
identity function; if it is two, then we return the function that sums up two arguments,
i.e., box λ x y → x + y. Writing such an n-ary sum function in a type-safe manner can be
achieved by exploiting large elimination in MLTT.

We first define a type-level function nary n, which computes the type of an n-ary
function:

nary : Nat → Ty
nary zero = Nat
nary (succ n) = Nat → nary n

We then define the type of nary-sum as taking in a natural number n : Nat and intuitively
returning code of type nary n. This, however, does not quite work, as � (nary n) is ill-
typed. Note that n is defined in the current world, but we need to use it inside � (i.e. in the
next world). We hence need to first lift the n : Nat to � Nat using the previously defined
lift function to then be able to splice it in. The need to lift values such as natural numbers
to have access to both their values and their code representations is a common theme
when writing staged programs. In a dependently typed setting, we need to use such lifting
functions also on the type level to support a form of cross-stage persistence of values. We
hence arrive at the type (n : Nat) → � (nary (unbox1 (lift n))) for the nary-sum function.
Its implementation follows, in fact, directly from our intention.
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nary -sum : (n : Nat) → � (nary (unbox 1 (lift n)))
nary -sum zero = box zero
nary -sum (succ zero) = box λ x → x
nary -sum (succ (succ n)) =

box λ x y → (unbox 1 (nary -sum (succ n))) (x + y)

Note that in the base case of zero, the return type is � Nat; in the case of succ zero, we
return the boxed identity function; in the case of succ (succ n), nary-sum (succ (succ n))

returns a term of type � (nary (unbox1 (lift (succ (succ n))))). The recursive call nary-
sum (succ n) has type � (nary (unbox1 (lift (succ n)))). Further, we have

nary (unbox 1 (lift (succ n)))
= Nat → nary (unbox 1 (lift n))

nary (unbox 1 (lift (succ (succ n))))
= nary (succ (succ (unbox 1 (lift n))))
= Nat → Nat → nary (unbox 1 (lift n))

To compute the final result of nary-sum (succ (succ n)), we first unbox the code gen-
erated by nary-sum (succ n), which has type Nat → nary (unbox1 (lift n)), and apply it
to the sum of the first two arguments. For convenience, we use numeric literals 0, 1, etc.
for natural numbers zero, succ zero, etc. interchangeably. To illustrate, let us normalize
nary-sum 3:

nary -sum 1 = box λ x1 → x1
nary -sum 2 = box λ x2 x1 → (unbox 1 (nary -sum 1)) (x2 + x1)

= box λ x2 x1 → (λ x1 → x1) (x2 + x1)
= box λ x2 x1 → x2 + x1

nary -sum 3 = box λ x3 x2 → (unbox 1 (nary -sum 2)) (x3 + x2)
= box λ x3 x2 → (λ x2 x1 → x2 + x1) (x3 + x2)
= box λ x3 x2 x1 → (x3 + x2) + x1

The last equation shows in MINT that nary-sum 3 and the code of λ x y z → (x + y) + z

are definitionally equal due to the congruence of box:

nary -sum -3 : nary -sum 3 ≡ box λ x y z → (x + y) + z
nary -sum -3 = refl

MINT admits the congruence of box and as a result, reductions occur freely even inside of a
box as in MetaML (Taha, 2000). The congruence of box is essential to model MetaML and
particularly helpful when using MINT as a program logic, for the same reason as having the
congruence of λ. Moreover, the congruence of box allows a significantly simpler semantic
model leading to a straightforward normalization proof.

3.4 Soundness of N-ary sum

Previously, we have shown a specific proof for the ternary sum. MINT can take one step
further: we can prove general properties about nary-sum. In particular, we can prove that
given a list xs of natural numbers, which has length n, adding up all numbers in xs returns
the same result as using the code generated by nary-sum n to add them up. To make this
theorem precise, we first define the function sum, which sums up all the numbers in a list
xs of length n, and the function ap-list, which applies a function f : nary n to all the
numbers in xs:

sum : (n : Nat) (xs : List Nat) → length xs ≡ n → Nat
sum zero [] refl = zero
sum (succ zero) (x :: []) refl = x
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sum (succ (succ n)) (x :: y :: xs) eq =
sum (succ n) ((x + y) :: xs) omitted -eq

ap -list : (n : Nat) (xs : List Nat) → length xs ≡ n → nary n → Nat
ap -list zero [] refl x = x
ap -list (succ n) (x :: xs) eq f = ap -list n xs omitted -eq (f x)

where omitted-eq has type length xs ≡ n when eq has type succ (length xs) ≡ succ n.
We omit it to avoid being distracted by equational reasoning. The slightly unorthodox
definition of sum is defined by recursion on n just as ap-list, so that auxiliary lemmas such
as the associativity of addition are avoided in our subsequent soundness theorem. Proving
it equal to the standard definition is an easy exercise in pure MLTT, which we omit here.
We now can state and prove our target theorem:

nary -sum -sound : (n : Nat) (xs : List N)
(eq : length xs ≡ n) (eq ’ : length xs ≡ unbox 0 (lift n)) →
ap -list (unbox 0 (lift n)) xs eq ’ (unbox 0 (nary -sum n)) ≡ sum n xs
eq

nary -sum -sound zero [] refl refl
= refl -- zero ≡ zero

nary -sum -sound (succ zero) (x :: []) refl refl
= refl -- x ≡ x

nary -sum -sound (succ (succ n)) (x :: y :: xs) eq eq ’
= nary -sum -sound (succ n) ((x + y) :: xs) omitted -eq omitted -eq ’

nary-sum-sound takes two equality proofs to simplify the formulation of this lemma. When
using nary-sum-sound, eq’ can be derived from eq and unbox-lift defined above. The first
two base cases are easy. In the last case, a recursive call suffices. We reason as follows.
The expected return type is

ap -list (succ (succ (unbox 0 (lift n)))) (x :: y :: xs) eq ’
(unbox 0 (nary -sum (succ (succ n))))

≡ sum (succ (succ n)) (x :: y :: xs) eq

By simplifying the left-hand side, we obtain

ap -list (succ (succ (unbox 0 (lift n)))) (x :: y :: xs) eq ’
(unbox 0 (nary -sum (succ (succ n))))

= ap -list (unbox 0 (lift n)) xs omitted -eq ’
((λ x y → unbox 0 (nary -sum (succ n)) (x + y)) x y)

= ap -list (unbox 0 (lift n)) xs omitted -eq ’
((unbox 0 (nary -sum (succ n))) (x + y))

On the other hand, the recursive call gives us:

ap -list (succ (unbox 0 (lift n))) ((x + y) :: xs) eq ’
(unbox 0 (nary -sum (succ n)))

≡ sum (succ n) ((x + y) :: xs) eq

By again simplifying the left-hand side, we conclude

ap -list (succ (unbox 0 (lift n))) ((x + y) :: xs) omitted -eq ’
(unbox 0 (nary -sum (succ n)))

= ap -list (unbox 0 (lift n)) xs omitted -eq ’
((unbox 0 (nary -sum (succ n))) (x + y))

Therefore by definitional equality, nary-sum-sound is a valid proof.
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4 Definition of MINT

In this section, we formally introduce MINT. We introduce its syntax, typing rules, and
equivalence rules. To manipulate the modal structure, we introduce two operations on
Kripke-style substitutions, truncation and truncation offset, to the system. Both opera-
tions turn out to be components of an algebraic structure, called truncoid, which captures
the Kripke structure of MINT generically. We use this algebraic structure throughout our
technical development and have corresponding definitions in the semantics.

4.1 Syntax and judgments of MINT

MINT has the following syntax:

m, n ∈ N (unbox levels or modal offsets)
x, y ∈ N (de Bruijn indices)

s, t, M , S, T := vx | Nat |�T | 	S.T | Tyi | zero | succ t | elim M s s′ t
| box t | unboxn t | λt | s t | t[−→σ ] (Terms, Trm)

−→σ ,
−→
δ := −→

I | −→σ , t | wk | −→σ ; ⇑n | −→σ ◦ −→
δ

(Kripke-style substitutions or K-substitutions, Substs)
�, �, � := · | �.T (Contexts, Ctx)−→

� ,
−→
� := ε | −→� ; � (Context stacks,

−→
Ctx)

w, W := u | Nat | Tyi |�W | 	W .W ′ | zero | succ w | box w | λw
(Normal forms, Nf)

u, V := vx | elim W w w′ u | unboxn u | u w (Neutral forms, Ne)

MINT extends MLTT with context stacks and the � modality. As discussed in Section 1,
MINT models and reasons about the Kripke semantics (Kripke, 1963). In particular, we
use context stacks to keep track of assumptions in all accessed worlds. MINT has natural
numbers (Nat, zero, succ t), 	 types, cumulative universes, written as Tyi, and explicit
Kripke-style substitutions, which model the mapping between context stacks. Here, the
cumulativity of universes means if a type is in the universe of level i, then it is also in the
universe of level 1 + i, not a stronger notion of cumulativity based on universe subtyping
working even for function types and others. We also include a recursor on natural numbers
(elim M s s′ t). In this expression, t is the scrutinee describing a natural number, and s and
s′ are referring to the two possible cases where t is zero and the successor, respectively;
M is the motive describing essentially the overall type skeleton of the recursor. As the
overall type of the recursor depends on t, we model the motive M as a type with one free
variable. Subsequently, we omit most discussions of natural numbers for brevity and refer
the interested readers to our technical report and our mechanization. To construct and use a
term of 	 type, we have λ abstraction and function application as usual. We have discussed
box and unbox, the constructor and eliminator of � types, in Section 3. When unbox’ing
a term t, we must specify a number n, i.e., unboxn t, to describe the Kripke world we
travel back to when type-checking t. By restricting n, MINT is specialized to one of the
dependently typed generalizations of four different modal systems: K, T , K4, and S4. For
example, if the modal offset must be 1, i.e., only unbox1 t is possible, then we obtain the
System K. By allowing the modal offset to be either 0 or 1, we obtain the System T . If the
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modal offset must be positive, we obtain the System K4. If there is no restriction at all,
then we obtain the most general System S4. The Kripke style has the advantage of being
specialized to different modal systems by controlling the modal offsets. This observation
has been made by Pfenning & Wong (1995), Davies & Pfenning (2001), and Hu & Pientka
(2022a). At last, since MINT is formulated with explicit Kripke-style substitutions, the
substitution closure t[−→σ ] is defined as a form of syntax. We emphasize that the t[−→σ ] has
a very low binding precedence in our representation. For example, when we write t s[−→σ ],
we mean (t s)[−→σ ]. If we want −→σ to be applied to s only, we add explicit parentheses
t (s[−→σ ]). Similarly, unboxn t[−→σ ] denotes (unboxn t)[−→σ ].

Moreover, in this paper, we explicitly work with de Bruijn indices to stay close to our
mechanization. The de Bruijn index of a variable is to be understood relative to the topmost
context in a context stack, keeping in mind that box and unbox modify the context stack
and change the topmost context. For example, given a context stack �Nat; 	Nat.Nat the
term v0 (unbox1 v0) is well formed, but the first occurrence of v0 refers to the function
	Nat.Nat, while the second occurrence in unbox1 v0 refers to �Nat, as unbox1 v0 refers
to a term in the prior world. Notationally, we consistently use upper cases for types and
lower cases otherwise.

We turn the formulation of Kripke-style substitutions (or just K-substitutions) from our
previous work at Mathematical Foundations of Programming Semantics (MFPS) (Hu &
Pientka, 2022a) between context stacks into explicit K-substitutions. K-substitutions are
a generalization of the usual simultaneous substitutions. Instead of representing a map-
ping between two contexts in the typical case, a K-substitution is a mapping between two
context stacks. In our explicit K-substitutions, the following syntax directly replicates the
usual formulation of simultaneous substitutions:

−→
I is the identity K-substitutions between

two context stacks; −→σ , t extends a K-substitution with a term; wk is local weakening sup-
porting weakening of the topmost context of a context stack; and −→σ ◦ −→

δ composes −→σ
with

−→
δ . Furthermore, a K-substitution is no longer simply a list of terms. Modal exten-

sion −→σ ; ⇑n is added and unique in Kripke-style modal type theories, and models modal
weakening of context stacks. The modal offset n originates from the modal transformation
operation (MoT) (Davies & Pfenning, 2001) and is used to keep track of the number of
contexts, which are added to the codomain context stack as in the following rule. A modal
extension only introduces one empty context to the domain context stack:

−→
� � −→σ :

−→
� � −→

� ;
−→
� ′ |−→� ′| = n

−→
� ;

−→
� ′ � −→σ ; ⇑n:

−→
� ; ·

Please refer to our previous work at MFPS (Hu & Pientka, 2022a) for a complete moti-
vation for modal extensions. −→σ provides a mapping from

−→
� to

−→
� , while −→σ ; ⇑n maps

from
−→
� ;

−→
� ′ to

−→
� ; · where the number of contexts in

−→
� ′ is n. This modal weakening is

crucial to characterize the β rule of � in a type-safe manner (see β RULE OF �). Hence,
we incorporate modal weakening into our definition of K-substitution.

We give some selected typing rules in Figure 1. The full set of rules can be found in
Appendix A. The definition of MINT consists of six judgments: � −→

� denotes that the
context stack

−→
� is well formed; � −→

� ≈ −→
� denotes that

−→
� and

−→
� are equivalent context

stacks;
−→
� � t : T denotes that term t has type T in context stack

−→
� ;

−→
� � t ≈ s : T denotes
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Fig. 1. Selected rules for MINT.

that terms t and s of type T are equivalent in context stack
−→
� ;

−→
� � −→σ :

−→
� denotes that −→σ

is a K-substitution susbtituting terms in
−→
� into ones in

−→
� ; and

−→
� � −→σ ≈ −→

δ :
−→
� denotes

that −→σ and
−→
δ are equivalent in K-substituting terms in

−→
� into ones in

−→
� . Due to explicit

K-substitutions, there needs to be more judgments than usual. The equivalence between
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context stacks � −→
� ≈ −→

� is necessary, because we must specify a conversion rule for the
equivalence between K-substitutions:

−→
� � −→σ :

−→
� � −→

� ≈ −→
� ′

−→
� � −→σ :

−→
� ′

In turn, we need the equivalence between K-substitutions
−→
� � −→σ ≈ −→

δ :
−→
� due to the

following congruence rule for the K-substitution closure:
−→
� � t ≈ t′ : T

−→
� � −→σ ≈ −→σ ′ :

−→
�

−→
� � t[−→σ ] ≈ t′[−→σ ′] : T[−→σ ]

Without explicit (K-)substitutions, both � −→
� ≈ −→

� and
−→
� � −→σ ≈ −→

δ :
−→
� are defined after

the typing judgments, instead of mutually defined. This style of definitions follows Abel
(2013) closely.

Following Harper & Pfenning (2005), we introduce extra premises in the rules in order
to establish syntactic properties like context stack conversion and presupposition. Context
stack conversion states that all syntactic judgments respect context stack equivalence �−→
� ≈ −→

� . Presupposition (or syntactic validity) includes for example facts such as if
−→
� �

t : T , then � −→
� and

−→
� � T : Tyi for some i.

Theorem 4.1 (Context stack conversion). Given � −→
� ≈ −→

� ,

• if
−→
� � t : T, then

−→
� � t : T;

• if
−→
� � t ≈ s : T, then

−→
� � t ≈ s : T;

• if
−→
� � −→σ :

−→
� ′, then

−→
� � −→σ :

−→
� ′;

• if
−→
� � −→σ ≈ −→σ ′ :

−→
� ′, then

−→
� � −→σ ≈ −→σ ′ :

−→
� ′.

Theorem 4.2 (Presupposition).

• If � −→
� ≈ −→

� , then � −→
� and � −→

� .
• If

−→
� � t : T, then � −→

� and
−→
� � T : Tyi for some i.

• If
−→
� � t ≈ t′ : T, then � −→

� ,
−→
� � t : T,

−→
� � t′ : T and

−→
� � T : Tyi for some i.

• If
−→
� � −→σ :

−→
� , then � −→

� and � −→
� .

• If
−→
� � −→σ ≈ −→σ ′ :

−→
� , then � −→

� ,
−→
� � −→σ :

−→
� ,

−→
� � −→σ ′ :

−→
� and � −→

� .

After proving these two properties, we remove the highlighted premises and call the
resulting judgments the true and golden definition of MINT. These two definitions are
equivalent:

Theorem 4.3. The two sets of rules of MINT given above are equivalent.

4.2 Truncoid: Algebra of truncation and truncation offset

MINT fundamentally relies on two operations, truncation (_ | _) and truncation offset
(O(_, _)) to handle its Kripke structure. Given

−→
� � −→σ :

−→
� and some n < |−→� |, truncation
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of a K-substitution, written as −→σ | n, returns a prefix of −→σ with domain context stack
−→
� | n

where n modal extensions and accordingly n contexts from
−→
� are dropped. The main ques-

tion then is, what is the codomain context stack of this K-substitution? – Since we drop
modal extensions including their modal offsets from −→σ , the codomain context stack

−→
�

must also be adjusted. Recall that each modal offset in a modal extension accounts for a
number of contexts in

−→
� . Hence, intuitively, we should drop k contexts from

−→
� where k

is the sum of all dropped modal offsets.
For example, let −→σ be (

−→
δ ; ⇑1, t; ⇑2, s) where

−→
� ; �0; �1; �2 � −→σ :

−→
� ; ·.T ; ·.S.

Truncation −→σ | 2 then returns the prefix
−→
δ after dropping everything up to two modal

extensions ⇑1 and ⇑2. This resulting K-substitution intuitively must have domain context
stack

−→
� and codomain context stack

−→
� , i.e.,

−→
� � −→

δ :
−→
� . How do we obtain

−→
� from−→

� ; �0; �1; �2? – The answer is by simply dropping the top 3 contexts where 3 is exactly
the sum of the modal offsets in the dropped part of −→σ .

To compute the sum of modal offsets, we define the truncation offset O(−→σ , n) below.
In general, we have

−→
� | O(−→σ , n) � −→σ | n :

−→
� | n.

Our syntax of explicit K-substitutions is carefully designed such that truncation and
truncation offset can be defined by recursion on the structure of the inputs:

Truncation (_ | _) −→σ | 0 := −→σ−→
I | 1 + n := −→

I
(−→σ , t) | 1 + n := −→σ | 1 + n

wk | 1 + n := −→
I

(−→σ ; ⇑m) | 1 + n := −→σ | n

(−→σ ◦ −→
δ ) | 1 + n := (−→σ | 1 + n) ◦ (

−→
δ | O(−→σ , 1 + n))

Truncation Offset (O(_, _)) O(−→σ , 0) := 0

O(
−→
I , 1 + n) := 1 + n

O((−→σ , t), 1 + n) := O(−→σ , 1 + n)
O(wk, 1 + n) := 1 + n

O(−→σ ; ⇑m, 1 + n) := m + O(−→σ , n)

O(−→σ ◦ −→
δ , 1 + n) := O(

−→
δ , O(−→σ , 1 + n))

These two operations satisfy the following two coherence conditions:

Lemma 4.4 (Coherence conditions).

• Coherence of addition: for all −→σ , m and n,−→σ | (n + m) = (−→σ | n) | m and O(−→σ , n + m) = O(−→σ , n) + O(−→σ | n, m).
• Coherence of composition: for all −→σ ,

−→
δ and m,

(−→σ ◦ −→
δ ) | n = (−→σ | n) ◦ (

−→
δ | O(−→σ , n)) and O(−→σ ◦ −→

δ , n) = O(
−→
δ , O(−→σ , n)).

These two operations describe how K-substitutions interact with the Kripke structure of
MINT so that the whole system remains coherent, e.g., in the following rule:

−→
� ; · � T : Tyi

−→
� � t : �T |−→� ′| = n

−→
� � −→σ :

−→
� ;

−→
� ′

−→
� � unboxn t[−→σ ] ≈ unboxO(−→σ ,n) (t[−→σ | n]) : T[−→σ | n; ⇑O(−→σ ,n)]
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When applying a K-substitution −→σ to unbox, the K-substitution is pushed recursively
inside with a truncated K-substitution and the unbox level adjusted by truncation
offset.

Truncation and truncation offset turn out to be very general concepts and are central to
modeling the Kripke structure in both syntax and semantics. In particular, truncation and
truncation offset form an algebra, which we call a truncoid. The following gives a concrete
and the most basic algebraic characterization of a truncoid:

Definition 4.1. A truncoid is a triple (S, _ | _, O(_, _)), where

• S is a set;
• the truncation operation _ | _ takes an S and a natural number and returns an S;
• the truncation offset operation O(_, _) takes an S and a natural number and returns a

natural number.

where the coherence of addition holds:

s | (n + m) = (s | n) | m and O(s, n + m) = O(s, n) + O(s | n, m)

Following the common mathematical practice, we directly call S a truncoid if it has
coherent truncation and truncation offset. We have already shown that K-substitutions are
a truncoid. In Section 5 and later sections, we will describe other instances of truncoids
on the semantic side. Essentially, the normalization proof is just a study of interactions
among different truncoids. In fact, most truncoids we encounter in the normalization proof
are more specific, so it is worth organizing a few important and special truncoids ahead
of time. The first kind is applicative truncoids, which allows a truncoid to be applied to
another:

Definition 4.2. An applicative truncoid consists of a triple of truncoids (S0, S1, S2) and an
additional apply operation _[_] which takes S0 and S1 and returns S2. Moreover, the apply
operation satisfies an extra coherence condition:

s[s′] | n = (s | n)[s′ | O(s, n)] and O(s[s′], n) = O(s′, O(s, n))

Most semantic models that we depend on in the normalization proof are also applicative.
For example, evaluation environments in Section 5 are applicative. K-substitutions are also
applicative, as we can just let the apply operation be composition. Following this intuition,
we define a specialized applicative truncoid as a substitutional truncoid by asking the apply
operation to behave like composition:

Definition 4.3. A substitutional truncoid S is an applicative truncoid (S, S, S) with an iden-
tity id ∈ S. Note that the apply operation is essentially composition, which we just write as
_ ◦ _. The extra coherence conditions are for identity:

id | n = id, O(id, n) = n, id ◦ s = s and s ◦ id = s
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and associativity:

(s0 ◦ s1) ◦ s2 = s0 ◦ (s1 ◦ s2)

As expected, K-substitutions are a substitutional truncoid. We will see very soon that the
UMoTs, which model the Kripke structure in the semantics, are also substitutional. There
is another way to specialize applicative truncoid. Starting from an applicative truncoid, if
we allow S1 to be substitutional, then we obtain a closed truncoid:

Definition 4.4. A closed truncoid (S0, S1) is an applicative truncoid triple (S0, S1, S0) where
S1 is a substitutional truncoid. We write id and _ ◦ _ for identity and composition of S1.
The following additional coherence conditions are required:

• coherence of identity: s[id] = s.
• coherence of composition: s[s1 ◦ s2] = s[s1][s2]

We say that S0 is closed under S1. The apply operation of a closed truncoid must return
S0 as required by the definition. In the semantics, the evaluation environments are closed
under UMoTs. Note that K-substitutions are also closed under themselves. The laws of
applicative and closed truncoids cover all the properties we need to reason about the
normalization process. There are also non-closed applicative truncoids. The evaluation
operation of K-substitutions to be shown in Section 5 is one such example.

5 Untyped domain

Starting from this section, we begin to prove the normalization of MINT. The plan is as
follows:

1. In this section, we define the untyped domain to which we evaluate valid programs
of MINT and the NbE algorithm.

2. In Section 6, we establish the completeness theorem, which states that equivalent
terms evaluate to syntactically equal normal forms by our algorithm. Completeness
is proved by constructing a partial equivalence relation (PER) model, which relates
two values from the untyped domain.

3. In Section 7, we establish the soundness theorem, which states that a well-typed
term is equivalent to the normal form returned by the NbE algorithm. The model
to prove soundness is more sophisticated as it relies on the PER model defined for
completeness. The model for soundness must glue both values in the untyped domain
and the syntactic terms, so conventionally, we call this model a gluing model.

In our NbE algorithm, we first evaluate a well-typed syntactic term into an untyped seman-
tic domain, D. This domain contains no β redex, so the evaluation process performs all β

reductions. After obtaining a value in the untyped domain, we must convert this value
back to the syntax as a normal form. This process is done by the readback functions. The
readback functions also perform η expansion, so we eventually obtain a βη normal form.
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In this section, we give the definition of the untyped domain in which we operate and
the NbE algorithm. For brevity, we omit most of discussion about natural numbers and
recursion. We refer interested readers to our technical report and our Agda code. For math-
ematical accuracy, we use := for assignments and = for equality. We use :: to denote a
meta-level name binding, i.e., Agda level.

5.1 Definition of untyped domain

The untyped domain has the following syntax. :

z ∈ N (Domain variables in de Bruijn levels)
a, b, A := N |�A | Pi(A, T , −→ρ ) | Ui | ze | su(a) | �(t, −→ρ ) | box(a) | ↑A (c)

(Domain values, D)
c, C := lz | rec(M , a, t, c, −→ρ ) | c d | unbox(n, c) (Neutral domain values, DNe)
d, D := ↓A (a) (Normal domain values, DNf )

ρ ∈ Env :=N→ D (Local evaluation environment)−→ρ ∈ Envs :=N→N× Env ((Global) evaluation environment)

In the untyped domain, variables are represented by de Bruijn levels. Consider a topmost
context �.T .� in some stack. If a variable vx is bound to type T , in the syntax, we use a
de Bruijn index and x = |�|. Its corresponding de Bruijn level z, on the other hand, equals
to |�|. De Bruijn levels assign a unique absolute name to each variable in each context, so
that we can avoid handling local weakening of variables in the semantics. Evidently, these
two representations satisfy z + x + 1 = |�.T .�|. This equation will be used in the readback
functions to correspond syntactic and semantic variables.

In this untyped domain, values are effectively partially β-reduced values and classified
into three categories: values (D), neutral values (DNe), and normal values (DNf ). Same as
before, we consistently use upper cases for semantic types and lower cases otherwise. In D,
� models � semantically and Ui models a universe at level i. ze models zero and su(a)
models successors. A neutral value c is embedded into D when annotated with a type A.
Following Abel (2013), we use defunctionalization (Reynolds, 1998; Ager et al., 2003)
to capture open syntactic terms in the domain together with their surrounding evaluation
environments, which enables formalization in Agda.

For example, a domain type Pi(A, T , −→ρ ) models a 	 type and consists of a domain type
A as the input type and a syntactic type T as the output type together with its ambient
environment −→ρ, which provides instantiations for all the free variables in T except the
topmost one bound by 	 in the syntax. Similarly, a domain value �(t, −→ρ ) models a λ term
and describes a syntactic body t together with an environment −→ρ, which provides values
for all the free variables in t except the topmost one bound by λ in the syntax. For a neutral
domain value for the recursor of natural numbers rec(M , a, t, c, −→ρ ), the neutral domain
value c describes the scrutinee, which is intended to be a natural number, while a describes
the domain value for the base case. Next, t is an open syntactic term because it describes
the term for the step-case. Last, M describes the motive in the syntax with one free variable
expressing the dependency on the natural number c. Due to defunctionalization, we thus
capture −→ρ , the surrounding environment of M and t.

The NbE algorithm relies on local and global environments in the evaluation process.
Local evaluation environments (Env) are functions mapping de Bruijn indices to domain
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values. Global evaluation environments (Envs), or just environments, are functions map-
ping modal offsets to tuples N× Env where the first projection is a modal offset, thereby
allowing us to model different modal logics. An environment can be viewed as a stream
of local environments paired with modal offsets. In the NbE algorithm, when evaluating
a well-typed term, only a finite prefix of an environment is used, which is ensured by
soundness.

We use emp :: Env for the empty local environment and empty :: Envs for the global
environment.

emp :: Env empty :: Envs
emp(_) := ze empty(_) := (1, emp)

emp and empty are the empty local and global evaluation environments. Their defini-
tions do not matter here because they only provide default values, which are guaranteed
to be never used by soundness. Instead, we focus on how to extend local and global
environments. First, we can modally extend an environment with a modal offset n:

ext :: Envs →N→ Envs
ext(−→ρ , n)(0) := (n, emp)
ext(−→ρ , n)(1 + m) := −→ρ (m)

We write ext(−→ρ ) for ext(−→ρ , 1). ext models modal extension of a K-substitution
(−→σ ; ⇑n), so n is not associated with any local environment, hence emp.

We can locally extend an environment with a value by inserting it into the topmost local
environment. lext’ conses a value to a local environment, and lext just extends a value
to its topmost local environment by calling lext’:

lext’ :: Env → D → Env
lext’(ρ, a)(0) := a
lext’(ρ, a)(1 + m) := ρ(m)

lext :: Envs → D → Envs
lext(−→ρ , a)(0) := (n, lext’(ρ, a)) (where (n, ρ) := −→ρ (0))
lext(−→ρ , a)(1 + m) := −→ρ (1 + m)

The drop operation drops the zeroth mapping from the topmost Env. It is needed for the
interpretation of wk:

drop :: Envs → Envs
drop(−→ρ )(0) := (n, m �→ ρ(1 + m)) (where (n, ρ) := −→ρ (0))
drop(−→ρ )(1 + m) := −→ρ (1 + m)

Last, environments form a truncoid,4 and we define truncation and truncation offset on −→ρ :

_ | _ :: Envs →N→ Envs
(−→ρ | n)(m) := −→ρ (n + m)

O(_, _) :: Envs →N→N

O(−→ρ , 0) := 0
O(−→ρ , 1 + n) := m + O(−→ρ | 1, n) (where (m, _) := −→ρ (0))

4 Coherence condition 1 and 2.
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5.2 Untyped Modal Transformations

To model �, we must consider how to model the Kripke structure of MINT. In our untyped
domain model, we employ the internal approach, where the Kripke structure is internalized
by UMoTs, ranged over by κ . Formally, a UMoT is just an (Agda) function of type N→N,
modeling a stream of modal offsets. Given a domain value a ∈ D and a UMoT κ , the UMoT
application operation a[κ] applies κ to a and denotes sending a to another world according
to κ . The internalization further requires subsequent models to satisfy monotonicity w.r.t.
UMoTs (see Sections 6.2.3 and 7.3.1), which is the root of other properties involving
UMoTs. The internalization seems to provide certain modularity, and we conjecture that
our proof can be adapted to other modalities in Kripke style by only adjusting the definition
of UMoTs and the proof of monotonicity. In fact, UMoTs have sufficiently captured the
Kripke structures of all Systems K, T , K4, and S4, so as a bonus, their normalization is
established simultaneously.

Our approach is in contrast to the external approach by Gratzer et al. (2019), where
the model is parameterized by an extra layer of poset. Subsequent proofs thus must
explicitly quantify over this poset, making their proof more difficult to adapt to other
modalities (Gratzer et al., 2020).

Before defining applications of UMoTs, we first define the following operations:

Truncation of UMoTs Identity UMoT

_ | _ :: UMoT →N→ UMoT
−→
1 :: UMoT

(κ | n) (m) := κ(n + m)
−→
1 (_) := 1

Truncation Offset of UMoTs Cons of UMoTs
O(_, _) :: UMoT →N→N _; ⇑_ :: UMoT →N→ UMoT
O(κ , 0) := 0 (κ; ⇑n) (0) := n
O(κ , 1 + n) := κ(0) + O(κ | 1, n) (κ; ⇑n) (m) := κ(1 + m)

Composition of UMoTs _ ◦ _ :: UMoT → UMoT → UMoT
(κ ◦ κ ′) (0) := O(κ ′, κ(0))
(κ ◦ κ ′) (1 + n) := ((κ | 1) ◦ (κ ′ | κ(0)))(n)

Cons of UMoTs is defined in a way similar to environments. UMoTs have composition,
and we use

−→
1 to represent the identity UMoT in our setting. As previously mentioned,

UMoTs form a substitutional truncoid. A quick intuition is that UMoTs behave like substi-
tutions in the semantics, except that it only brings values from one world to another without
touching the variables. In the following, we give the definitions for applying a UMoT to
domain values and environments:

�A[κ] := �(A[κ; ⇑1]) lz[κ] := lz
Pi(A, T , −→ρ )[κ] := Pi(A[κ], T , −→ρ [κ]) c d[κ] := (c[κ]) (d[κ])

Ui[κ] := Ui unbox(n, c)[κ] := unbox(O(κ , n), c[κ | n])
box(a)[κ] := box(a[κ; ⇑1])

�(t, −→ρ )[κ] := �(t, −→ρ [κ]) −→ρ [κ](0) := (O(κ , n), ρ[κ])
↑A (c)[κ] := ↑A[κ] (c[κ]) (where (n, ρ) := −→ρ (0))
↓A (a)[κ] := ↓A[κ] (a[κ]) −→ρ [κ](1 + n) := −→ρ | 1[κ | O(−→ρ , 1)](n)

Following our previous convention, we let a[κ] take a very low parsing precedence. Most
cases just recursively push κ inwards, except the �, box and unbox cases. The cases for
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� and box are similar. κ; ⇑1 instructs their recursions to enter a new world, indicated by
cons’ing 1 to κ . The unbox case is similar to the rule in Section 4.2. The recursion is
c[κ | n] because c is in the n-th previous world. The unbox level is adjusted to O(κ , n) for
coherence with the Kripke structure. The apply operation for a local environment ρ is just
defined by applying κ to all values within pointwise. The apply operation for −→ρ can be
motivated by making the triple (Envs, UMoT, Envs) an applicative truncoid. Indeed, this
is the unique definition (up to isomorphism) to prove −→ρ [κ] | n = (−→ρ | n)[κ | O(−→ρ , n)].
From here, we can see the formulation of truncoids does guide us very quickly to the right
definition of operations. Moreover, since UMoTs are substitutional, we would hope that
Envs is closed under UMoTs. Indeed, this fact can be examined by checking the necessary
laws imposed by a closed truncoid.

5.3 Evaluation

Next we consider the evaluation functions (�_�), which, given −→ρ , evaluates a syntac-
tic term to a domain value or evaluates a K-substitution to another environment. In the
following sections, we will define a number of partial functions (denoted by ⇀), which
cannot be directly formalized in Agda. Instead, we define them as relations between inputs
and outputs, and we prove that given the same inputs, the outputs are equal. When we
refer to a result of a partial function, we implicitly existentially quantify this result for
brevity.

�_� :: Trm⇀ Envs → D

�Tyi�(−→ρ ) := Ui

��T�(−→ρ ) :=�(�T�(ext(−→ρ )))

�	S.T�(−→ρ ) := Pi(�S�(−→ρ ), T , −→ρ )

�vx�(−→ρ ) := ρ(x) (where (_, ρ) := −→ρ (0))

�box t�(−→ρ ) := box(�t�(ext(−→ρ )))

�unboxn t�(−→ρ ) := unbox · (O(−→ρ , n), �t�(−→ρ | n))

�λt�(−→ρ ) := �(t, −→ρ )

�t s�(−→ρ ) := �t�(−→ρ ) · �s�(−→ρ )

�t[−→σ ]�(−→ρ ) := �t�(�−→σ �(−→ρ ))

�_� :: Substs⇀ Envs → Envs
�
−→
I �(−→ρ ) := −→ρ

�wk�(−→ρ ) := drop(−→ρ )
�−→σ , t�(−→ρ ) := lext(�−→σ �(−→ρ ), �t�(−→ρ ))

�−→σ ; ⇑n�(−→ρ ) := ext(�−→σ �(−→ρ | n), O(−→ρ , n))

�−→σ ◦ −→
δ �(−→ρ ) := �−→σ �(�

−→
δ �(−→ρ ))

Note that here (Substs, Envs, Envs) forms an applicative truncoid when the evaluation ter-
minates. In the evaluation of Trm, we make use of partial functions, which evaluate box
and �. These partial functions are defined below:
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unbox· :: N→ D⇀D

unbox · (n, box(a)) := a[
−→
1 ; ⇑n]

unbox · (n, ↑�A (c)) :=↑A[
−→
1 ;⇑n] (unbox(n, c))

_ · _ :: D⇀D⇀D
(�(t, −→ρ )) · a := �t�(lext(−→ρ , a))

(↑Pi(A,T ,−→ρ ) (c)) · a :=↑�T�(lext(−→ρ ,a)) (c ↓A (a))

Effectively, these partial functions remove all β redexes.

5.4 Readback functions

After evaluating a Trm to D, we have already got the corresponding β normal form in D.
We need one last step, readback functions, to read from D back to normal form and do the
η expansion at the same time to obtain a βη normal form:

RNf ::
−→
N ⇀DNf

⇀Nf
RNf−→z (↓Ui (A)) := RTy−→z (A)

RNf−→z (↓↑A(c) (↑A′
(c′))) := RNe−→z (c′)

RNf−→z (↓�A (a)) := box RNf−→z ;0
(↓A (unbox · (1, a)))

RNf−→z ;z
(↓Pi(A,T ,−→ρ ) (a)) := λRNf−→z ;1+z

(↓�T�(lext(−→ρ ,↑A(lz))) (a· ↑A (lz)))

RTy ::
−→
N ⇀D⇀Nf

RTy−→z (Ui) := Tyi

RTy−→z (�A) :=�RTy−→z ;0
(A)

RTy−→z ;z
(Pi(A, T , −→ρ )) := 	(RTy−→z ;z

(A)).RTy−→z ;1+z
(�T�(lext(−→ρ , ↑A (lz))))

RTy−→z (↑A (c)) := RNe−→z (c)

RNe ::
−→
N ⇀DNe

⇀Ne
RNe−→z ;z′ (lz) := vmax(z′−z−1,0)

RNe−→z (c d) := RNe−→z (c) RNf−→z (d)
RNe−→z (unbox(n, c)) := unboxn RNe−→z |n(c)

A readback function takes as an argument −→z ::
−→
N , which is a nonempty list of natural

numbers. Each number in this list records the length of the context in that position of the
context stack. This list supplies new de Bruijn levels (i.e. new absolute and fresh names)
as the readback process continues. In the � case, since we enter a new world, 0 is pushed
to the list because the new world has no assumption. In the Pi case, the topmost context
is extended by one due to the argument of λ, so we also increment the topmost de Bruijn
level by one. In the unbox case, we must truncate −→z in order to correctly keep track of the
lengths of contexts in the stack because the context stack is also truncated. In the variable
case in RNe, we use the aforementioned formula z′ − z − 1 to compute the corresponding
de Bruijn index in the syntax. If we begin with a well-typed term, then this formula is
always non-negative, so we do not have to consider the case where we are cut off at 0.

The readback process consists of three functions: RNf reads back a normal form; RNe

reads back a neutral form; and RTy reads back a normal type. Note that RNf is type-directed,
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so η expansion is performed. With evaluation and readback, we are ready to give the defi-
nition of the NbE algorithm by first evaluating a term and its type to the domain and then
read back as a normal form:

Definition 5.1. For
−→
� � t : T , the NbE algorithm is

nbeT−→
�

(t) := RNf
map(� �→|�|,−→� )

(↓�T�(↑
−→
� ) (�t�(↑−→

� )))

where the initial environment ↑−→
� is defined by the structure of

−→
� :

↑ ::
−→
Ctx⇀ Envs

↑ε;· := empty

↑−→
� ;· := ext(↑−→

� )

↑−→
� ;(�.T) := lext(−→ρ , ↑�T�(−→ρ ) (l|�|)) (where −→ρ :=↑−→

� ;�)

We have an elaborated example for running the NbE algorithm in Appendix B.

6 PER model and completeness

In the previous section, we have given the full definition of the NbE algorithm. In this
section, we follow Abel (2013) and define a PER model for the untyped domain and prove
the completeness theorem, which states that equivalent terms evaluate to an equal nor-
mal form. There are two steps to establish completeness: (1) the fundamental theorems,
which prove soundness of the PER model, and (2) the realizability theorem, which states
that values related by the PER model have an equal normal form. Similar to other NbE
proofs for dependent types (Abel, 2013; Abel et al., 2017; Kaposi & Altenkirch, 2017;
Wieczorek & Biernacki, 2018; Gratzer et al., 2019), the soundness proof of NbE relies on
the fundamental theorems of the PER model, so the PER model is a prerequisite for the
next section.

Due to our intention of staying close to our mechanization, we assign names to
judgments, ranging from D , E , and J .

6.1 PER model

We follow Abel (2013) and first introduce the following relations.

∀−→z , κ .RNf−→z (d[κ]) = RNf−→z (d′[κ])

d ≈ d′ ∈ Nf

∀−→z , κ .RTy−→z (A[κ]) = RTy−→z (A′[κ])

A ≈ A′ ∈ Ty

∀−→z , κ .RNe−→z (c[κ]) = RNe−→z (c′[κ])

c ≈ c′ ∈ Ne

where Nf ⊆ DNf × DNf , Ty ⊆ D × D and Ne ⊆ DNe × DNe. Nf relates two normal domain
values iff their readbacks are equal given any context stack and UMoT. Ty and Ne are
defined similarly. We will show by realizability (Section 6.2.5) that all forthcoming PERs
are subsumed by Nf , so any two related values have equal readbacks as normal forms,
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through which completeness is established. These relations are part of dependently typed
candidate space introduced by Abel (2013). Since these relations are defined by equality,
they are indeed PERs.

The premises of these PERs are all universally quantified over UMoTs. This univer-
sal quantification is and continues to be crucial in our PERs. Due to the substitutional
truncoid structure of UMoTs, particularly composition, universally quantifying UMoTs
allows us to internalize the Kripke structure and delegate the handling of the said struc-
ture to UMoTs, so that the proof structure is completely oblivious to the exact structure �
possesses, making our constructions very adaptive as explained in Section 5.2.

Now we move on to define the actual PERs that relate domain values. The PER model
consists of two PERs: Ui which denotes a universe and relates two domain types at level
i, and Eli(D) which given D :: A ≈ B ∈ Ui relates two domain values of domain types
A and B. The PER model resembles Tarski-style universes (Palmgren, 1998), in which
universes contain “codes” and El converts these codes into actual types which contain
values. Following Abel (2013) and Abel et al. (2017), Ui and Eli are defined inductive-
recursively (Dybjer, 2000). Moreover, due to cumulative universes, they must in addition
be defined with the well-foundedness of the universe levels. We refer interested readers to
our Agda code for our actual formalization of these two relations.

Definition 6.1. The equivalence for domain types D :: A ≈ B ∈ Ui and the equivalence for
domain values a ≈ b ∈ Eli(D) are defined as follows:

• Neutral types and neutral values:

D :=
C ≈ C′ ∈ Ne

↑A (C) ≈↑A′
(C′) ∈ Ui

Then a ≈ b ∈ Eli(D) iff a ≈ b ∈ Neu, where Neu relates two values only when they
are actually neutral:

c ≈ c′ ∈ Ne

↑A1 (c) ≈↑A2 (c′) ∈ Neu

Note that the annotating domain types A1 and A2 do not matter as long as c and c′ are
related by Ne.

• Universes:

D :=
j < i

Uj ≈ Uj ∈ Ui

Then a ≈ b ∈ Eli(D) iff a ≈ b ∈ Uj. Note that here Eli(D) is defined in terms of Uj.
This is fine because of j < i and the well-foundedness of universe levels.

• Semantic � types:

D :=
J :: ∀κ . A[κ] ≈ A′[κ] ∈ Ui

�A ≈�A′ ∈ Ui
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Then a ≈ b ∈ Eli(D) iff for any UMoT κ and unbox level n, the unboxing’s of
a[κ] and b[κ] remain related: unbox · (n, a[κ]) ≈ unbox · (n, b[κ]) ∈ Eli(J (κ; ⇑n)).
In other words, if a and b are still related no matter how they travel in Kripke worlds
and then are unbox’ed, then they are related by Eli(D).

• Semantic Pi types:

D :=
J1 :: ∀κ . A[κ] ≈ A′[κ] ∈ Ui

J2 :: ∀κ , a ≈ a′ ∈ Eli(J1[κ]). �T�(lext(−→ρ [κ], a)) ≈ �T ′�(lext(−→ρ ′[κ], a′)) ∈ Ui

Pi(A, T , −→ρ ) ≈ Pi(A′, T ′, −→ρ ′) ∈ Ui

Then a ≈ b ∈ Eli(D) iff for any UMoT κ and related a′ and b′, i.e.,
E :: a′ ≈ b′ ∈ Eli(J1(κ)), the results of applying a[κ] and b[κ] remain related: a[κ] ·
a′ ≈ b[κ] · b′ ∈ Eli(J2(κ , E )). That is, a and b are related if all results of applying
them in other worlds to related values are still related.

6.2 Properties for PERs

During mechanization, we are forced to make everything precise and type theory friendly
and observe certain gaps between a set-theoretic proof and a type-theoretic one. In this sec-
tion, we discuss how properties of our PERs are formulated and proved in a type-theoretic
flavor. Our mechanization also exposes some oversimplifications about universes that are
common in on-paper, set theoretic NbE proofs (Abel, 2013; Abel et al., 2017; Gratzer
et al., 2019) in Section 6.2.4.

6.2.1 U irrelevance

While it comes for free in paper proofs, we must prove the intuition that Eli only relies on
A and B in A ≈ B ∈ Ui, not how exactly they are related by Ui. Effectively, we would like
to show that U is proof-irrelevant:

Lemma 6.1 (U irrelevance). Given D :: A ≈ B ∈ Ui and a ≈ b ∈ Eli(D),

• if E1 :: A ≈ B′ ∈ Ui, then a ≈ b ∈ Eli(E1);
• if E2 :: A′ ≈ B ∈ Ui, then a ≈ b ∈ Eli(E2).

This lemma matches our set-theoretic intuition and states that a and b are related as long
as we know they are related by one “representative” domain type.

6.2.2 U and El are PERs

When proving U and El being PERs, we were already facing strong scrutiny from Agda’s
termination checker, so we must adjust our statements to more type-theoretic ones. To
even state symmetry, we have to introduce an extra premise D2. This extra assumption
D2 exposes a clearer termination measure and allows Agda to admit our proof just by
recognizing decreasing structures.
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Lemma 6.2 (Symmetry). Given D1 :: A ≈ B ∈ Ui,

• B ≈ A ∈ Ui;
• if D2 :: B ≈ A ∈ Ui, and a ≈ b ∈ Eli(D1), then b ≈ a ∈ Eli(D2).

Proof Induction on i and D1 and inversion on D2 in the second statement. �

The symmetry of El requires two Ui derivations: D1 relating A and B, and D2 relating
B and A. They are used in the premise and the conclusion, respectively. D2 is important
to handle the contravariance of the input and the output in the function case. D2 can be
eventually discharged by combining the symmetry of Ui and irrelevance, but it is necessary
to prove the lemma in a type-theoretic flavor.

Transitivity also requires a similar treatment but more complex:

Lemma 6.3 (Transitivity). Given D1 :: A1 ≈ A2 ∈ Ui and D2 :: A2 ≈ A3 ∈ Ui,

• A1 ≈ A3 ∈ Ui;
• if D3 :: A1 ≈ A3 ∈ Ui, A1 ≈ A1 ∈ Ui, and a1 ≈ a2 ∈ Eli(D1) and a2 ≈ a3 ∈ Eli(D2),

then a1 ≈ a3 ∈ Eli(D3).

In addition to D3 which is used in Eli(D3) in conclusion, reflexivity of A1, A1 ≈ A1 ∈ Ui,
is also a required assumption. This is again due to the function case. Prior to establish-
ing transitivity, we do not have reflexivity, so it is easier to make A1 ≈ A1 ∈ Ui an extra
assumption. Again, Agda admits our proof just by decreasing structures.

6.2.3 Monotonicity

As explained in Section 5.2, our PERs must respect UMoTs, i.e., are monotonic.
Monotonicity ensures that the Kripke structure is successfully internalized, so subsequent
proofs are unaware of the exact modality we are handling, making our proof structure very
general. Due to the composition of UMoTs, all properties describing the Kripke structure
eventually boil down to monotonicity.

Lemma 6.4 (Monotonicity). Given D :: A ≈ B ∈ Ui and a UMoT κ ,

• A[κ] ≈ B[κ] ∈ Ui;
• if E :: A[κ] ≈ B[κ] ∈ Ui and a ≈ b ∈ Eli(D), then a[κ] ≈ b[κ] ∈ Eli(E ).

Similar to symmetry and transitivity, we also require E in the second statement to ease
termination checking in Agda.

6.2.4 Cumulativity and lowering

While there is existing work on NbE proofs of dependent type theories (Abel, 2013; Abel
et al., 2017; Gratzer et al., 2019) which considers full cumulative universe hierarchies, they
all slightly oversimplify the proofs of the cumulativity of their PER models. Cumulativity
states that if two types or values are related at level i, then they are also related at level
1 + i. At first glance, this property is too intuitive to be worth looking into. However, if we
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carefully consider the function case, we see that in the proof, we assume two related values
at level 1 + i, but our premise requires them to be related at level i, and we are stuck. To
correctly prove cumulativity, we must mutually prove a lowering lemma:

Lemma 6.5 (Cumulativity and lowering). If D :: A ≈ B ∈ Ui,

• then D ′ :: A ≈ B ∈ Ui+1;
• if a ≈ b ∈ Eli(D), then a ≈ b ∈ Eli+1(D ′);
• if a ≈ b ∈ Eli+1(D ′), then a ≈ b ∈ Eli(D).

Note that according to the last statement, we can lower from El1+i to Eli if we know A
and B are related at level i. In general, lowering is necessary for type constructors in which
types can occur in negative positions. It is this lowering property that is being somewhat
glossed over in prior work.

6.2.5 Realizability

Following Abel (2013), we prove the realizability theorem, which states that related val-
ues are read back equal. Realizability of the PER model is essential to establish the
completeness and the soundness theorems. More formally,

Theorem 6.6 (Realizability). Given D :: A ≈ B ∈ Ui,

• A ≈ B ∈ Ty;
• if c ≈ c′ ∈ Ne, then ↑A (c) ≈↑B (c′) ∈ Eli(D);
• if a ≈ b ∈ Eli(D), then ↓A (c) ≈↓B (c′) ∈ Nf .

Proof Induction on i and D . �

The first statement says that if A and B are related, then they are always read back as an
equal normal type in syntax. The third statement says that if a and b are related, then they
are always read back as an equal normal form in syntax. Combined with the fundamental
theorems which we are about to give in Section 6.4, we prove completeness.

6.3 PER model for context stacks and environments

To define semantic judgments that are used to state fundamental theorems, we extend the
PER model to context stacks and environments.

Definition 6.2. The equivalence of context stacks D :: �−→
� ≈ −→

� and the equivalence of
evaluation environments −→ρ ≈ −→ρ ′ ∈ �D� are defined inductive-recursively as follows:

•
D := � ε; · ≈ ε; ·

Then −→ρ ≈ −→ρ ′ ∈ �D� is always true.
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•

D :=
J :: �−→

� ≈ −→
� ′

�−→
� ; · ≈ −→

� ′; ·
Then −→ρ ≈ −→ρ ′ ∈ �D� iff

– truncations of −→ρ and −→ρ ′ by one are recursively related: −→ρ | 1 ≈ −→ρ ′ | 1 ∈
�J �, and

– first modal offsets are equal: n = n′ where (n, _) := −→ρ (0) and (n′, _) := −→ρ ′(0).

•
D :=

J1 :: �−→
� ; � ≈ −→

� ′; �′ J2 :: ∀−→ρ ≈ −→ρ ′ ∈ �J1�.�T�(−→ρ ) ≈ �T ′�(−→ρ ′) ∈ Ui

�−→
� ; �.T ≈ −→

� ′; �′.T

Then −→ρ ≈ −→ρ ′ ∈ �D� iff

– drop(−→ρ ) and drop(−→ρ ′) are recursively related:
E :: drop(−→ρ ) ≈ drop(−→ρ ′) ∈ �J1�, and

– the topmost values are related by the evaluations of T :
ρ(0) ≈ ρ ′(0) ∈ Eli(J2(E )) where (_, ρ) := −→ρ (0) and (_, ρ ′) := −→ρ ′(0).

We can extend properties in Section 6.2 to context stacks and environments as well, e.g.,
irrelevance, symmetry, transitivity, and monotonicity.

6.4 Semantic judgments, fundamental theorems, and completeness

Having defined all PER models, we are ready to define the semantic judgments:

Definition 6.3. We define semantic judgments as follows:

�−→
� ≈ −→

�

�−→
�

−→
� � t ≈ t : T
−→
� � t : T

−→
� �−→σ ≈ −→σ :

−→
�

−→
� �−→σ :

−→
�

where
−→
� � t ≈ t′ : T iff

• −→
� is semantically well formed: D :: �−→

� , and
• there exists a universe level i, such that for any related −→ρ and −→ρ ′, i.e.,

E :: −→ρ ≈ −→ρ ′ ∈ �D�,

– evaluations of T are related types: J :: �T�(−→ρ ) ≈ �T�(−→ρ ′) ∈ Ui, and
– evaluations of t and t′ are related values: �t�(−→ρ ) ≈ �t′�(−→ρ ′) ∈ Eli(J );

and
−→
� �−→σ ≈ −→σ ′ :

−→
� iff

• −→
� and

−→
� are semantically well formed: D :: �−→

� and E :: �−→
� , and
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• for any related −→ρ and −→ρ ′, i.e., −→ρ ≈ −→ρ ′ ∈ �D�, −→σ and −→σ ′ evaluate to related
environments: �−→σ �(−→ρ ) ≈ �−→σ ′�(−→ρ ′) ∈ �E �.

The fundamental theorem states that the semantic judgments are sound w.r.t. the
syntactic judgments:

Theorem 6.7 (Fundamental).

• If � −→
� , then �−→

� .
• If

−→
� � t : T, then

−→
� � t : T.

• If
−→
� � −→σ :

−→
� , then

−→
� �−→σ :

−→
� .

• If � −→
� ≈ −→

� ′, then �−→
� ≈ −→

� ′.
• If

−→
� � t ≈ t′ : T, then

−→
� � t ≈ t′ : T.

• If
−→
� � −→σ ≈ −→σ ′ :

−→
� , then

−→
� �−→σ ≈ −→σ ′ :

−→
� .

Proof Mutual induction on all premises (see the mechanization for full details) �

The completeness theorem states that syntactic equivalent terms evaluate to equal
normal forms:

Theorem 6.8 (Completeness). If
−→
� � t ≈ t′ : T, then nbeT−→

�
(t) = nbeT−→

�
(t′).

Proof By the fundamental theorems, we have
−→
� � t ≈ t′ : T from which we know

D :: �−→
� . We have that the initial environment is related: ↑−→

� ≈↑−→
� ∈ �D�. We further

learn that �t�(↑−→
� ) and �t′�(↑−→

� ) are related, and due to realizability, they have equal normal
forms. �

6.5 Consequences of completeness

From the fundamental theorems of the PER model, we can derive a few consequences,
which are useful but very challenging to prove syntactically:

Lemma 6.9 (Equal universe levels). If
−→
� � Tyi ≈ Tyj : Tyk , then i = j.

Proof Completeness says that Tyi and Tyj have equal normal form, which implies i = j. �

Due to the previous lemma, we can prove the following “exact inversion” lemma:

Lemma 6.10 (Exact inversion).

• If
−→
� ��T : Tyi, then

−→
� ; · � T : Tyi.

• If
−→
� ; � � 	S.T : Tyi, then

−→
� ; � � S : Tyi and

−→
� ; �.S � T : Tyi.

If we proceed by induction on the premise, the universe levels in the conclusion cannot
be made exactly i. However, this is now possible with the fundamental theorems.
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7 Kripke gluing model and soundness

In the previous section, we have established the completeness theorem. In this section, we
present the soundness proof for the NbE algorithm, which states that a well-typed term is
equivalent to its evaluated normal form. Central to the proof is a Kripke gluing model. The
model glues the syntax and the semantics (Coquand & Dybjer, 1997) and is Kripke because
it is monotonic w.r.t. a special class of K-substitutions, restricted weakenings. Similar to
completeness, the proof of soundness also has two steps: (1) the fundamental theorems and
(2) the realizability theorem stating that a term is equivalent to the readback of its related
value. We first give the definitions of restricted weakenings and the gluing model.

7.1 Restricted weakening

Restricted weakenings are a special class of K-substitutions, which characterize the pos-
sible changes in context stacks during evaluation. Therefore, if a term and a value are
related, their relation must be stable under restricted weakenings, hence introducing a
Kripke structure to the gluing model.

Definition 7.1. A K-substitution −→σ is a restricted weakening if it inductively satisfies

� � −→σ ≈ −→
I :

−→
�

−→
� �r

−→σ :
−→
�

−→
� �r

−→σ ′ :
−→
� ; �.T � � −→σ ≈ wk ◦ −→σ ′ :

−→
� ; �

−→
� �r

−→σ :
−→
� ; �

−→
� �r

−→σ ′ :
−→
� |−→� ′| = n

−→
� ; �′ � −→σ ≈ −→σ ′; ⇑n:

−→
� ; ·

−→
� ; �′ �r

−→σ :
−→
� ; ·

Effectively, a restricted weakening can only do either local weakenings (wk) or modal
extensions (_; ⇑n), because only these two cases are possible during evaluation. Since
restricted weakenings form a category, we require the gluing model to respect them.

7.2 Gluing model

Restricted weakenings are already K-substitutions, so they naturally apply to syntactic
terms. However, to define the gluing model, we must also apply them to domain val-
ues. This is achieved by UMoT extraction (mt(_)),5 which extracts a UMoT from a
K-substitution (not just a restricted weakening).

mt(_) :: Substs → UMoT

mt(
−→
I ) := −→

1
mt(−→σ , t) := mt(−→σ )

mt(wk) := −→
1

mt(−→σ ; ⇑n) := mt(−→σ ); ⇑n

mt(−→σ ◦ −→
δ ) := mt(−→σ ) ◦ mt(

−→
δ )

5 mt() stands for “we modal transform a K-substitution into a UMoT.”
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Moreover, for conciseness, given a K-substitution −→σ and a domain value a, we write
a[−→σ ] for a[mt(−→σ )] unless the distinction is worth emphasizing. Next, we define the gluing
model that relates syntactic and domain terms and types. For a PER P, we write p ∈ P for
p ≈ p ∈ P:

Definition 7.2. Given D :: A ≈ B ∈ Ui,

• −→
� � T �i D says that T is related to domain types A and B in

−→
� as a type at

level i.
• −→

� � t : T �i a ∈ Eli(D) says that in
−→
� , t of type T is related to domain value a in

Eli(D).

−→
� � T �i D and

−→
� � t : T �i a ∈ Eli(D) are defined mutually by first well-founded

recursion on i and then recursion on D :

•

D := C ≈ C′ ∈ Ne

↑A (C) ≈↑A′
(C′) ∈ Ui

−→
� � T �i D iff

– T is a type at level i: � � T : Tyi.

– For any restricted weakening −→σ , that is
−→
� �r

−→σ :
−→
� , s.t.

−→
� � T[−→σ ] ≈ RNe−→z (C[−→σ ]) : Tyi

−→
� � t : T �i ↑A′′

(c) ∈ Eli(D) iff

– c ∈ Ne.
– T is a type at level i: � � T : Tyi.
– t is well typed: � � t : T .
– For any restricted weakening −→σ , that is

−→
� �r

−→σ :
−→
� , s.t.

−→
� � T[−→σ ] ≈ RNe−→z (C[−→σ ]) : Tyi

and
−→
� � t[−→σ ] ≈ RNe−→z (c[−→σ ]) : T[−→σ ]

•

D := j < i

Uj ≈ Uj ∈ Ui

−→
� � T �i D iff

−→
� � T ≈ Tyj : Tyi.−→

� � t : T �i a ∈ Eli(D) iff

– t is well typed: � � t : T .
– T is equivalent to Tyj:

−→
� � T ≈ Tyj : Tyi.
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– a is in PER Uj: E :: a ∈ Uj.

– t and a are recursively related as types by well-foundedness:
−→
� � t �j E .

Note that
−→
� � t : T �i a ∈ Eli(D) refers to

−→
� � t �j E , so the definition requires a

well-founded recursion on i.
•

D := E :: ∀κ . A′[κ] ≈ A′′[κ] ∈ Ui

�A′ ≈�A′′ ∈ Ui

−→
� � T �i D iff there exists some T ′, such that

– T is equivalent to �T ′:
−→
� � T ≈�T ′ : Tyi.

– For any
−→
� ′ such that � −→

� ;
−→
� ′ and any restricted weakening

−→
� �r

−→σ :
−→
� ,

T ′[−→σ ; ⇑|−→� ′|] and E (−→σ ; ⇑|−→� ′|) are recursively related as types:

−→
� ;

−→
� ′ � T ′[−→σ ; ⇑|−→� ′|] �i E (−→σ ; ⇑|−→� ′|)

−→
� � t : T �i a ∈ Eli(D) iff there exists some T ′, such that

– t is well typed:
−→
� � t : T .

– a is in Eli(D): a ∈ Eli(D).
– T is equivalent to �T ′:

−→
� � T ≈�T ′ : Tyi.

– For any
−→
� ′ such that � −→

� ;
−→
� ′ and any restricted weakening

−→
� �r

−→σ :
−→
� ,

the results of eliminating t[−→σ ] and a[−→σ ] are recursively related as terms:
−→
� ;

−→
� ′ � unbox|−→� ′| (t[−→σ ]) : T ′[−→σ ; ⇑|−→� ′|] �i unbox · (|−→� ′|, a[−→σ ]) ∈

Eli(E [mt(−→σ ); ⇑|−→� ′|])

•
D :=

E1 :: ∀κ . A′[κ] ≈ A′′[κ] ∈ Ui

E2 :: ∀κ , a ≈ a′ ∈ Eli(E1[κ]). �T ′�(lext(−→ρ ′[κ], a)) ≈ �T ′′�(lext(−→ρ ′′[κ], a′) ∈ Ui

Pi(A′, T ′, −→ρ ′) ≈ Pi(A′′, T ′′, −→ρ ′′) ∈ Ui

−→
� ; � � T �i D iff there exist T1 and T2, such that

– T and 	T1.T2 are equivalent:
−→
� ; � � T ≈ 	T1.T2 : Tyi.

– T2 is well typed:
−→
� ; �.T1 � T2 : Tyi.

– For any restricted weakening
−→
� �r

−→σ :
−→
� ; �,

* T1[−→σ ] and E1(−→σ ) are recursively related:
−→
� � T1[−→σ ] �i E1(−→σ ), and

* For any related s and b, i.e.
−→
� � s : T1[−→σ ] �i b ∈ Eli(E1(−→σ )), and

E3 :: b ∈ Eli(E1(−→σ )), T2[−→σ , s] and E2(−→σ , E3) are recursively related as
types:

−→
� � T2[−→σ , s] �i E2(−→σ , E3)
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Note that here we require E3 :: b ∈ Eli(E1(−→σ )) as an assumption,
which technically we can derive from

−→
� � s : T1[−→σ ] �i b ∈ Eli(E1(−→σ )).

However, this fact requires a proof and thus cannot be used at the time of
definition. Adding this assumption simplifies our definition.

−→
� ; � � t : T �i a ∈ Eli(D) iff there exist T1 and T2, such that

– t is well typed:
−→
� ; � � t : T .

– a is in the PER Eli(D): a ∈ Eli(D).
– T and 	T1.T2 are equivalent:

−→
� ; � � T ≈ 	T1.T2 : Tyi.

– T2 is well typed:
−→
� ; �.T1 � T2 : Tyi.

– For any restricted weakening
−→
� �r

−→σ :
−→
� ; �,

* T1[−→σ ] and E1(−→σ ) are recursively related:
−→
� � T1[−→σ ] �i E1(−→σ ), and

* For any related s and b, i.e.,
−→
� � s : T1[−→σ ] �i b ∈ Eli(E1(−→σ )), and

E3 :: b ∈ Eli(E1(−→σ )), the results of eliminating t[−→σ ] and a[−→σ ] are recur-
sively related as terms :

−→
� � t[−→σ ] s : T2[−→σ , s] �i a[−→σ ] · b ∈ Eli(E2(−→σ , E3))

7.3 Properties of gluing model

In this section, we discuss some properties of the gluing model. For conciseness, we focus
on monotonicity, realizability, and cumulativity.

7.3.1 Monotonicity

Monotonicity ensures that the gluing model is stable under restricted weakenings.
Restricted weakenings apply to both syntax and semantics because they contain modal
extensions to instruct both sides to travel among Kripke worlds. Following a similar strat-
egy as in the PER model, we add the additional typing derivations D and E , which
characterize A ≈ B and A[−→σ ] ≈ B[−→σ ], resp., to expose more clearly the proof structure
and simplify the termination argument.

Lemma 7.1 (Monotonicity). Given a restricted weakening
−→
� �r

−→σ :
−→
� , D :: A ≈ B ∈ Ui

and E :: A[−→σ ] ≈ B[−→σ ] ∈ Ui,

• if
−→
� � T �i D , then

−→
� � T[−→σ ] �i E ;

• if
−→
� � t : T �i a ∈ Eli(D), then

−→
� � t[−→σ ] : T[−→σ ] �i a[−→σ ] ∈ Eli(E ).

7.3.2 Realizability

In completeness, realizability morally states that El is subsumed by Nf . In soundness,
realizability has a similar structure. We first need to give three definitions, which serve a
purpose similar to Ty, Ne, and Nf in completeness:
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Definition 7.3. Given D :: A ≈ B ∈ Ui,
−→
� � T : Tyi A ≈ B ∈ Ty ∀−→

� �r
−→σ :

−→
� .

−→
� � T[−→σ ] ≈ RTy

map(� �→|�|,−→� )
(A[−→σ ]) : Tyi

−→
� � T �i D

−→
� � t : T

−→
� � T �i D

c ∈ Ne ∀−→
� �r

−→σ :
−→
� .

−→
� � t[−→σ ] ≈ RNe

map(� �→|�|,−→� )
(c[−→σ ]) : T[−→σ ]

−→
� � t : T �

i
c ∈ Eli(D)

−→
� � t : T

−→
� � T �i D

↓A (a) ≈↓B (a) ∈ Nf ∀−→
� �r

−→σ :
−→
� .

−→
� � t[−→σ ] ≈ RNf

map(� �→|�|,−→� )
(↓A (a)[−→σ ]) : T[−→σ ]

−→
� � t : T �i a ∈ Eli(D)

The first judgment
−→
� � T �i D states that T is equivalent to the readback of A (or

equally the readback of B) under all valid restricted weakenings. Similarly, the third judg-
ment

−→
� � t : T �i a ∈ Eli(D) states that t is equivalent to the readback of a under all valid

restricted weakenings. The realizability theorem states that the gluing models of types and
terms are subsumed by these two judgments, respectively, which constitutes our second
step to the soundness proof. Then, we state the realizability for the gluing model:

Theorem 7.2 (Realizability). Given D :: A ≈ B ∈ Ui,

• if
−→
� � T �i D , then

−→
� � T �i D .

• if
−→
� � t : T �

i
c ∈ Eli(D), then

−→
� � t : T �i ↑A (c) ∈ Eli(D);

• if
−→
� � t : T �i a ∈ Eli(D), then

−→
� � t : T �i a ∈ Eli(D);

7.3.3 Cumulativity and lowering

Similar to the PER model, cumulativity of the gluing model also requires a lowering state-
ment to handle the function cases and contravariant occurrences in type constructors in
general:

Lemma 7.3 (Cumulativity and lowering). Given D :: A ≈ B ∈ Ui and E :: A ≈ B ∈ U1+i

which we obtain by applying Lemma 6.5 to D ,

• if
−→
� � T �i D , then

−→
� � T �1+i E ;

• if
−→
� � t : T �i a ∈ Eli(D), then

−→
� � t : T �1+i a ∈ El1+i(E );

• if
−→
� � t : T �1+i a ∈ El1+i(E ) and

−→
� � T �i D , then

−→
� � t : T �i a ∈ Eli(D).

The first two statements are just cumulativity. However, there is one more compli-
cation here in the lowering: we cannot simply derive

−→
� � t : T �i a ∈ Eli(D) from−→

� � t : T �1+i a ∈ El1+i(E )! This is because the gluing model contains syntactic
information about types so the lowering statement must in addition have an assumption
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about T and D’s relation at a lower level, which is introduced by
−→
� � T �i D . With this

assumption, we successfully establish the cumulativity for the gluing model.

7.4 Gluing model for K-substitutions and environments

In this section, we generalize the gluing model to K-substitutions and evaluation environ-
ments. Our gluing model is in fact more complex than existing proofs on paper (Abel,
2013; Abel et al., 2017; Gratzer et al., 2019), in that our gluing model is again defined
through induction–recursion, while existing proofs directly proceed by recursion on the
structure of the domain contexts (or context stacks in our case). This existing proof tech-
nique will not work in mechanization, because this technique heavily relies on cumulativity
to bring the gluing model for terms and values to a limit, so the generalization to K-
substitutions and environments does not care about universe levels. Evidently, in Agda,
we cannot really take limits, so we must always keep track of universe levels. In our defi-
nition, we have an inductive definition �−→

� of semantic well formedness of context stacks,
in which universe levels are maintained. We speculate that this extra inductive predicate
allows an easy adaptation to non-cumulative settings, an NbE proof of which remains
unseen to date.

Definition 7.4. The semantic well formedness of context stacks D :: �−→
� and the gluing

model for K-substitutions and environments
−→
� � −→σ : D �−→ρ are defined inductive-

recursively:

•
D :=

� ε; ·
−→
� � −→σ : D �−→ρ iff

−→
� � −→σ : ε; ·.

•

D := E :: �−→
�

�−→
� ; ·

−→
� � −→σ : D �−→ρ iff

– −→σ is well typed:
−→
� � −→σ :

−→
� ; ·.

– There exists a K-substitution −→σ ′ and an modal offset n, such that

*
−→σ ′ is −→σ ’s truncation:

−→
� | n � −→σ | 1 ≈ −→σ ′ :

−→
� ,

* modal offsets are equal: O(−→σ , 1) = O(−→ρ , 1) = n, and

*
−→σ ′ and −→ρ | 1 are recursively related:

−→
� | n � −→σ ′ : E �−→ρ | 1.

•

D :=
∃i E :: �−→

� ; �

∀−→
� � −→

δ : D �−→ρ . �(J :: �T�(−→ρ ) ∈ Ui).
−→
� � T[

−→
δ ] �i J

�−→
� ; �.T
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−→
� � −→σ : D �−→ρ iff

– −→σ is well typed:
−→
� � −→σ :

−→
� ; �.T .

– There exists a K-substitution −→σ ′ and t, such that

*
−→σ ′ is −→σ with the topmost term dropped:

−→
� � wk ◦ −→σ ≈ −→σ ′ :

−→
� ; �,

* t is that topmost term:
−→
� � v0[−→σ ] ≈ t : T[−→σ ′].

* T evaluates in drop(−→ρ ) and the result is in Ui:

J ′ :: �T�(drop(−→ρ )) ∈ Ui

* t and −→ρ (0) are related at level i:
−→
� � t : T[−→σ ′] �i ρ(0) ∈ Eli(J ′), where

(_, ρ) := −→ρ (0),

*
−→σ ′ and drop(−→ρ ) are recursively related:

−→
� � −→σ ′ : E � drop(−→ρ ).

We can then prove properties like monotonicity, which we omit here in favor of space.
We refer the readers to our Agda development. We then give the definitions for semantic
judgments.

Definition 7.5. Semantic judgments for soundness are defined as follows:

∃i D :: �−→
� ∀−→

� � −→σ : D �−→ρ .
−→
� � t[−→σ ] : T[−→σ ] �i �t�(−→ρ ) ∈ Eli(�T�(−→ρ ))

−→
� � t : T

D1 :: �−→
� D2 :: �−→

� ′ ∀−→
� � −→σ : D1 �−→ρ .

−→
� � −→

δ ◦ −→σ : D2 � �
−→
δ �(−→ρ )

−→
� �−→

δ :
−→
� ′

7.5 Fundamental theorems and soundness

Finally, we are ready to establish the fundamental theorems and soundness:

Theorem 7.4 (Fundamental).

• If � −→
� , then �−→

� .
• If

−→
� � t : T, then

−→
� � t : T.

• If
−→
� � −→σ :

−→
� , then

−→
� �−→σ :

−→
� .

Theorem 7.5 (Soundness). If
−→
� � t : T, then

−→
� � t ≈ nbeT−→

�
(t) : T.

Proof We first apply the fundamental theorems and obtain
−→
� � t : T . Moreover, we know−→

� � −→
I :

−→
� � ↑−→

� , t and �t�(↑−→
� ) are related. The goal is concluded by further applying

realizability. �

7.6 Consequences

The fundamental theorems for the gluing model allow us to establish a few more conse-
quences, which are difficult to prove syntactically. We show that the standard injectivity
and canonicity hold in MINT.

https://doi.org/10.1017/S0956796823000060 Published online by Cambridge University Press

https://hustmphrrr.github.io/Kripke-style/Mint.Soundness.Properties.Substitutions.html
https://hustmphrrr.github.io/Kripke-style/Mint.Soundness.LogRel.html#15360
https://hustmphrrr.github.io/Kripke-style/Mint.Soundness.LogRel.html#15582
https://hustmphrrr.github.io/Kripke-style/Mint.Soundness.Fundamental.html
https://hustmphrrr.github.io/Kripke-style/Mint.Soundness.html
https://hustmphrrr.github.io/Kripke-style/Mint.Soundness.Properties.Substitutions.html#14746
https://doi.org/10.1017/S0956796823000060


Normalization by evaluation for modal dependent type theory 37

Lemma 7.6 (Injectivity of Type Constructors).

• If
−→
� ��T1 ≈�T2 : Tyi, then

−→
� ; · � T1 ≈ T2 : Tyi.

• If
−→
� ; � � 	S1.T1 ≈ 	S2.T2 : Tyi, then

−→
� ; � � S1 ≈ S2 : Tyi and−→

� ; �.S1 � T1 ≈ T2 : Tyi.

Lemma 7.7 (Canonicity of N). If ε; · � t : N, then ε; · � t ≈ succn zero : N for some
number n.

The following lemma about universe levels is also interesting. It says that if two types
are equivalent and they are well typed at a different level, then they are equivalent also at
that level. This lemma is intuitive but very challenging to prove syntactically.

Lemma 7.8 (Type equivalence). If
−→
� � T1 ≈ T2 : Tyi,

−→
� � T1 : Tyj and

−→
� � T2 : Tyj, then−→

� � T1 ≈ T2 : Tyj.

Proof From
−→
� � T1 ≈ T2 : Tyi and completeness, we know T1 and T2 have equal normal

form. We conclude the goal by soundness and transitivity. �

As the final and conclusive theorem, we show that MINT is consistent.

Theorem 7.9 (Consistency). There is no closed term of type 	Tyi.v0. That is, there is no
t such that the following judgment holds:

ε; · � t : 	Tyi.v0

In Agda’s syntax, the type is written as (A : Seti) → A and consistency requires that
this type does not have a closed inhabitant. In other words, there is no generic way to
construct a term for an arbitrary type. If MINT has a bottom type, then the consistency
proof is immediately reduced to the consistency of our meta-language (i.e. Agda) and
hence significantly simplifies the proof. For the current definition of MINT, we can still
prove this theorem with a bit more technical setup.

Proof Note that consistency is equivalent to proving that there is no t′ such that

ε; Tyi � t′ : v0

Note that, by soundness, t′ must be equivalent to some neutral term u by NbE, because its
type (v0) is neutral. So our goal is to show that this u also does not exist:

ε; Tyi � u : v0

Now we do induction on u. We show that in ε; Tyi, there does not exist a neutral term of
any type other than Tyj (i and j are not necessarily equal due to cumulativity), and thus it
is impossible for u to have type v0. Otherwise, that would require Tyi and v0 to be equiv-
alent, which can be rejected by completeness as they do not evaluate to the same normal
form. �
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8 Extraction of the NbE algorithm

To use our NbE algorithm as a verified kernel of a proof assistant, we want to execute our
mechanization. Even though we cannot directly execute our mechanization in Agda, we
can obtain a Haskell implementation of our NbE algorithm from it using Agda’s extraction
facility.

To illustrate how to use and run this extracted algorithm, we provide an example of exe-
cutable code of the ubiquitous power function (see Appendix B). This Agda file contains
the representation of the power function, its typing derivation, and use cases in MINT. We
also apply the NbE algorithm to these use cases. Once extracted into Haskell, we can run
the NbE algorithm on these use cases to obtain their normal forms and print them. For ease
of use and reproducibility, we also provide the extracted Haskell code itself.

This shows that our formalization in principle can serve as an implementation of a
verified kernel of a proof assistant equipped with the necessity modality.

9 Related work

9.1 Applications of modalities in multi-staged programming

As previously mentioned, the modal system S4 corresponds to multi-staged programming
under Curry–Howard correspondence (Davies & Pfenning, 2001) and MINT provides a
dependently typed variant of S4. There are other applications of dependent typed systems
to multi-staged programming. Kawata & Igarashi (2019) study λMD, a logical framework
with stages. λMD uses stage variables to keep track of stages, while MINT uses context
stacks and unbox levels for the same purpose. Pasalic et al. (2002) propose Meta-D to
remove administrative redexes introduced in a staged interpreter. Brady & Hammond
(2006) improve Pasalic et al. (2002) by also extending MLTT with stages. Fundamentally,
the type theory in Brady & Hammond (2006) is the dependently typed system T with cross-
stage persistence. Extending the T variant of MINT with cross-stage persistence would
constitute Brady & Hammond (2006)’ system. Though the authors claim that their type the-
ory is strongly normalizing, they do not provide any proof, whereas MINT’s normalization
proof naturally adapts to all subsystems of S4, including T .

9.2 Modal type theories

One of the first “propositions-as-types”-interpretations of modal logics was given
by Borghuis (1994) in his PhD thesis, which studies the modal natural deduction with the
modality S4 and modal pure type system. His work, similar to Pfenning & Wong (1995)
and Davies & Pfenning (2001), also introduces a context stack structure (called general-
ized contexts). However, in contrast to Davies & Pfenning (2001) where the elimination
rule (unboxn) integrates both modal and local weakening, Borghuis’ elimination rule has
explicit rules for both local weakening and modal weakening. As a consequence, weak-
ening is not a property of the overall system in Borghuis’ work. Further, Borghuis studies
strong normalization via a translation of the modal pure type system to a pure type system.
In contrast, we give a direct normalization proof that yields an algorithm for normalizing
objects in MINT.
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Most closely related to our work is the line of research by Clouston (2018), Gratzer
et al. (2019), Birkedal et al. (2020b), and Valliappan et al. (2022). This line of work
explores various modal dependent type theories where different stages are separated by
locks (�). Kripke- and Lock-style (sometimes also referred to as Fitch-style) systems are
fundamentally the same, although we manage the context stack structure slightly differ-
ently. Syntactically, the Kripke style simply uses a stack of contexts, while the Lock-style
uses locks (�) to segment one context into sections. Therefore, Lock-style systems typ-
ically rely on external side conditions such as “delete all of the locks that occur in the
context” or “no lock occurs in context �”. These checks and operations on contexts with
locks correspond in fact to modal structural properties in the Kripke-style formulation.
For example, “deleting all of the locks” corresponds to the property of modal fusion. The
condition that “no locks occur in context �” is naturally captured simply by the stack struc-
ture of the context stack in Kripke-style systems. Hence, while the lock-based treatment
of contexts and the use of context stacks are related (see also Clouston, 2018), context
stacks reflect more directly the underlying Kripke semantics. As a consequence, structural
properties of context stacks are more clearly formulated as general logical principles on
those context stacks. This also allows us to characterize the context stack structure by a
truncoid algebra and internalize it in our semantics. One consequence of that approach is
that it allows us to directly adapt existing NbE algorithms such as Abel (2013). The end
result is a clean and general NbE proof that captures all four subsystems of S4 without
change. The fact that our NbE algorithm can be compactly and elegantly mechanized in
Agda further emphasizes the benefit of the Kripke-style structure of context stacks and its
corresponding semantic characterizations.

In comparison, Valliappan et al. (2022) give four (similar but) different formulations for
all four subsystems of simply typed S4 and provide their normalization proofs separately.
Our previous work (Hu & Pientka, 2022a) considers the Kripke style and gives one NbE
proof based on a presheaf model that handles all four subsystems. The NbE proof given
by Gratzer et al. (2019) for dependently typed, idempotent S4 cannot be easily adapted to
all four subsystems of S4 and it is also not fully mechanized.

Last, the work by Gratzer (2022) gives a NbE proof for a richer MTT. However, its
relationship to Kripke-style formulations is less clear, as it uses a very different formulation
of the � elimination rule. As such, it is closer in spirit to the dual-context formulation of
modal S4 given by Davies & Pfenning (2001) and further developed by Jang et al. (2022)
(see also discussion below). Disregarding the differences in the underlying formulation
of the modal elimination rule, the NbE proof described in Gratzer (2022) builds on the
idea of synthetic Tait’s computability introduced by Sterling (2022). This framework is
much less understood than, for example, Abel (2013). In particular, it is less clear how
one would mechanize the NbE proof given by Gratzer (2022) or how one would extract
an algorithm that can be implemented in a conventional programming language. Hence,
while MINT is less powerful than MTT, our work has direct practical benefits: it simply
relies on well-understood techniques and approaches and we can extract an NbE algorithm
from our Agda mechanization.

An alternative formulation of modal type systems is the dual-context formulation, which
also goes back to Davies & Pfenning (2001) and where the authors gave a translation
between the implicit (or Kripke-style) modal λ-calculus using context stacks and the
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explicit using dual contexts to distinguish between global assumptions and local assump-
tions. This translation shows that both styles have the same logical strength. However, the
translation does not give a correspondence between the equivalence relations of both styles.
In fact, we speculate that the translation from the Kripke style to the dual-context style
does not preserve equivalence. This further implies that the translation cannot be scaled
to dependent types, because of the mutual definition of typing and equivalence judgments,
and that both styles may not have the same expressive power in the dependently typed set-
ting. In recent years, modal type systems in the dual-context style have found a wide range
of seemingly unconnected applications: from reasoning about universes in homotopy type
theory (Licata et al., 2018; Shulman, 2018) to mechanizing meta-theory (Pientka, 2008),
to reasoning about effects (Zyuzin & Nanevski, 2021), and meta-programming (Jang et al.,
2022). It would hence be interesting to further explore the relationship between implicit
and explicit formulations of modal type theories in the future.

9.3 Mechanization of normalization for dependent type theory

From the 1990s, the question of how to mechanize the normalization proof for dependent
type theory has been fundamental to gain trust in the type-theoretic foundation proof assis-
tants such as Coq or Agda are built on. One of the earliest works is, for example, by
Barras & Werner (1997). Barras and Werner formalized the strong normalization for
the calculus of construction in Coq using reducibility candidates. More recently, Abel
et al. (2017) mechanize a normalization proof for Martin-Löf logical framework in Agda.
Instead of NbE, they first reduce terms to weak head normal forms and then use a type-
directed algorithmic convertibility checking algorithm to check the equivalence of terms.
In their development, they also rely on induction–recursion to give a semantics to depen-
dent types. The algorithmic convertibility checking algorithm is shown to be complete and
sound w.r.t. the equivalence rules. The completeness and soundness proofs are parame-
terized by a relation, reducing the size of the proofs. Pujet & Tabareau (2022) extend the
work by Abel et al. (2017) by mechanizing observational equality and two-level cumu-
lative universe hierarchy. In their work, they did not need a lowering lemma for related
cumulative properties. Instead, they make the following adjustments:

• In their logical relations, they added an extra case to represent the embedding from
the lower universe to the higher one. This adjustment turns the cumulativity lemmas
into a case in the logical relations.

• Moreover, in addition to the level 0 and level 1 universes, they have an extra level ∞
universe, which subsumes both level 0 and 1 universes. Then, the proof can simply
lift all types to the ∞ level and completely avoid explicit discussions of universe
levels entirely. This treatment resembles the typical paper proof.

This work is further superseded by Pujet & Tabareau (2023), which mechanizes impred-
icative observational equality. In this work, however, cumulativity is removed from the
universe hierarchy.

In contrast, mechanizations of NbE algorithms in dependent type theory are less com-
mon and remain challenging. Danielsson (2006) presents the first mechanization of NbE
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for Martin-Löf logical framework using induction–recursion in AgdaLight. As pointed
out by Chapman (2009), Danielsson (2006)’s formulation contains non-strictly positive
predicates, which compromise the trust in this work.

Chapman (2009) formalizes Martin-Löf logical framework in the style of categories with
families (Dybjer, 1996) in Agda and presents a sound normalizer. However, the normalizer
is not shown complete whereas our paper has shown both completeness and soundness.

Altenkirch & Kaposi (2016b,a) and Kaposi & Altenkirch (2017) mechanize an NbE
algorithm for Martin-Löf logical framework in Agda and prove completeness and sound-
ness using a presheaf formulation akin to categories with families. Their development
explores an advanced combination of intrinsic syntactic representations and involved
features like induction–induction (Nordvall Forsberg & Setzer, 2010) and quotient induc-
tive types. In comparison, our development is simpler and only relies on two standard
extensions: induction–recursion and functional extensionality. The simplicity leads to a
formalization of a full hierarchy of universes. We hope that our mechanization of NbE in
Agda, while focused on a modal type theory, also provides more general guidance on how
to deal with a full universe hierarchy in the mechanization and implementation of NbE in
type theory.

Most work in this area is done in Agda, as it supports induction–recursion, which
strengthens the logical power of the meta-language and allows us to define the semantics
for universes. Nevertheless, Agda is not the only choice. Wieczorek & Biernacki (2018)
mechanize an NbE algorithm for Martin-Löf logical framework in Coq. Since Coq does
not support induction–recursion, they universally quantify over the impredicative universe
Prop in their models. Their algorithm can also be extracted to and run in Haskell or OCaml.
One benefit of using Coq is that Prop is automatically removed during extraction. Hence,
their extraction code is cleaner than the one generated from Agda. While the readability of
our extracted code could be improved by adding compiler auxiliary pragmas, the root cause
for the verbosity of our extracted code lies in Agda’s extraction facilities. In the future, it
would be interesting to adapt Wieczorek & Biernacki (2018)’s work to mechanize the NbE
algorithm for MINT in Coq, which would allow us to take advantage of Coq’s extraction
facilities.

10 Conclusions and future work

In this paper, we introduce MINT, a foundation for dependently typed variants of Systems
K, T , K4, and S4. This work adds a further piece to the landscape of combining modalities
and dependent types. To justify MINT, we provide an NbE algorithm and its completeness
and soundness proofs. To further strengthen our confidence in the theoretical develop-
ment, we fully mechanize our constructions in safe Agda, with the standard extensions of
functional extensionality and induction–recursion. In our proof, we introduce the notion
of truncoids, a special algebra that characterizes structures appearing in both syntax and
semantics. It serves as a guiding principle throughout our proof. We further exploit the
notion of UMoTs to modularize our constructions so that our normalization result applies
to all aforementioned systems without modifications.

As part of future work, we will explore the application of the dependently typed variant
of S4 to multi-staged and meta-programming. This direction allows us to develop a type
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theory that is capable of proving and meta-programming in the same language. To achieve
this goal, we would like to have the power of doing pattern matching on code as demon-
strated by Jang et al. (2022). Having pattern matching on code will allow MINT to write
meta-programs that construct proofs based on the goal types. As such it would provide a
general foundation for boot-strapping proof assistants.
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A Full set of rules for MINT

� −→
� : Context stack

−→
� is well formed.

� ε; ·
� −→

�

� −→
� ; ·

� −→
� ; �

−→
� ; � � T : Tyi

� −→
� ; �.T

� −→
� ≈ −→

� :
−→
� and

−→
� are equivalent context stacks.

� ε; · ≈ ε; ·
� −→

� ≈ −→
�

� −→
� ; · ≈ −→

� ; ·
� −→

� ; � ≈ −→
� ; �

−→
� ; � � T ≈ T ′ : Tyi−→

� ; � � T ≈ T ′ : Tyi
−→
� ; � � T : Tyi

−→
� ; � � T ′ : Tyi

� −→
� ; �.T ≈ −→

� ; �.T ′

−→
� � −→σ :

−→
� : −→σ is a K-substitution substituting terms in

−→
� into ones in

−→
� .

� −→
�

−→
� � −→

I :
−→
�

� −→
� ; �.T

−→
� ; �.T � wk :

−→
� ; �

−→
� � −→σ :

−→
� ′; �

−→
� ′; � � T : Tyi

−→
� � t : T[−→σ ]

−→
� � −→σ , t :

−→
� ′; �.T

−→
� � −→σ :

−→
�

� −→
� ;

−→
� ′ |−→� ′| = n

−→
� ;

−→
� ′ � −→σ ; ⇑n:

−→
� ; ·

−→
� ′ � −→σ :

−→
� ′′ −→

� � −→
δ :

−→
� ′

−→
� � −→σ ◦ −→

δ :
−→
� ′′

−→
� � −→σ :

−→
� � −→

� ≈ −→
� ′

−→
� � −→σ :

−→
� ′

−→
� � −→σ ≈ −→

δ :
−→
� : −→σ and

−→
δ are equivalent in K-substituting terms in

−→
� into ones

in
−→
� .
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Congruence rules:

� −→
�

−→
� � −→

I ≈ −→
I :

−→
�

� −→
� ; �.T

−→
� ; �.T � wk ≈ wk :

−→
� ; �

−→
� � −→σ ≈ −→σ ′ :

−→
� ′; �

−→
� ′; � � T : Tyi

−→
� � t ≈ t′ : T[−→σ ]

−→
� � −→σ , t ≈ −→σ , t′ :

−→
� ′; �.T

−→
� � −→σ ≈ −→σ ′ :

−→
�

� −→
� ;

−→
� ′ |−→� ′| = n

−→
� ;

−→
� ′ � −→σ ; ⇑n≈ −→σ ′; ⇑n:

−→
� ; ·

−→
� ′ � −→σ ≈ −→σ ′ :

−→
� ′′

−→
� � −→

δ ≈ −→
δ

′
:
−→
� ′

−→
� � −→σ ◦ −→

δ ≈ −→σ ′ ◦ −→
δ

′
:
−→
� ′′

Categorical rules:
−→
� � −→σ :

−→
�

−→
� � −→σ ◦ −→

I ≈ −→σ :
−→
�

−→
� � −→σ :

−→
�

−→
� � −→

I ◦ −→σ ≈ −→σ :
−→
�

−→
� ′′ � −→σ ′′ :

−→
� ′′′ −→

� ′ � −→σ ′ :
−→
� ′′ −→

� � −→σ :
−→
� ′

−→
� � (−→σ ′′ ◦ −→σ ′) ◦ −→σ ≈ −→σ ′′ ◦ (−→σ ′ ◦ −→σ ) :

−→
� ′′′

Other rules:
−→
� � −→σ ≈ −→σ ′ :

−→
�

−→
� � −→σ ′ ≈ −→σ :

−→
�

−→
� � −→σ ≈ −→σ ′ :

−→
�

−→
� � −→σ ′ ≈ −→σ ′′ :

−→
�

−→
� � −→σ ≈ −→σ ′′ :

−→
�

−→
� ′ � −→σ :

−→
� ′′; �

−→
� ′; � � T : Tyi

−→
� ′ � t : T[−→σ ]

−→
� � −→

δ :
−→
� ′

−→
� � (−→σ , t) ◦ −→

δ ≈ (−→σ ◦ −→
δ ), t[

−→
δ ] :

−→
� ′′; �.T

−→
� � −→σ :

−→
�−→

� � T : Tyi
−→
� � t : T[−→σ ]

−→
� � wk ◦ (−→σ , t) ≈ −→σ :

−→
�

−→
� � −→σ :

−→
� ′ −→

� ′′ � −→
δ :

−→
� ;

−→
�

|−→� | = n � −→
� ;

−→
�

−→
� ′′ � (−→σ ; ⇑n) ◦ −→

δ ≈ (−→σ ◦ −→
δ | n); ⇑O(

−→
δ ,n):

−→
� ′; ·

−→
� � −→σ :

−→
� ; · |−→� | > 0

−→
� � −→σ ≈ −→σ | 1; ⇑O(−→σ ,1):

−→
� ; ·

−→
� ′ � −→σ :

−→
� ; �.T

−→
� ′ � −→σ ≈ (wk ◦ −→σ ), v0[−→σ ] :

−→
� ; (�.T)

−→
� � −→σ ≈ −→σ ′ :

−→
� � −→

� ≈ −→
� ′

−→
� � −→σ ≈ −→σ ′ :

−→
� ′

To define the variable rule for the typing judgment, we need to define the lookup
judgment x : T ∈ −→

� :

0 : T[wk] ∈ −→
� ; �.T

x : T ∈ −→
� ; �

1 + x : T[wk] ∈ −→
� ; �.S
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−→
� � t : T : Term t has type T in context stack

−→
� .

� −→
� ; � x : T ∈ −→

� ; �
−→
� ; � � vx : T

−→
� � t : T

−→
� � T ≈ T ′ : Tyi−→

� � t : T ′

−→
� � t : T

−→
� � −→σ :

−→
�

−→
� � t[−→σ ] : T[−→σ ]

−→
� ; � � S : Tyi

−→
� ; �.S � T : Tyi−→

� ; � � 	S.T : Tyi

−→
� ; � � S : Tyi−→
� ; �.S � t : T

−→
� ; � � λt : 	S.T

−→
� ; � � S : Tyi

−→
� ; �.S � T : Tyi−→

� ; � � t : 	S.T
−→
� ; � � s : S

−→
� ; � � t s : T[

−→
I , s]

� −→
�

−→
� � Nat : Tyi

� −→
�

−→
� � zero : Nat

−→
� � t : Nat

−→
� � succ t : Nat

−→
� ; �.Nat� M : Tyi

−→
� ; � � s : M[

−→
I , zero]−→

� ; �.Nat.M � s′ : M[(wk ◦ wk), succ v1]
−→
� ; � � t : Nat

−→
� ; � � elim M s s′t : M[

−→
I , t]

� −→
�

−→
� � Tyi : Ty1+i

−→
� � T : Tyi−→

� � T : Ty1+i

−→
� ; · � T : Tyi−→
� ��T : Tyi

−→
� ; · � t : T

−→
� � box t : �T

−→
� ; · � T : Tyi

−→
� � t : �T � −→

� ;
−→
� |−→� | = n

−→
� ;

−→
� � unboxn t : T[

−→
I ; ⇑n]

−→
� � t ≈ s : T : Terms t and s of type T are equivalent in context stack

−→
� .

Congruence rules:

� −→
� ; � x : T ∈ −→

� ; �
−→
� ; � � vx ≈ vx : T

−→
� ; � � S : Tyi−→

� ; � � S ≈ S′ : Tyi
−→
� ; �.S � T ≈ T ′ : Tyi−→

� ; � � 	S.T ≈ 	S′.T ′ : Tyi

−→
� � t ≈ t′ : T

−→
� � −→σ ≈ −→σ ′ :

−→
�

−→
� � t[−→σ ] ≈ t′[−→σ ′] : T[−→σ ]

−→
� ; � � S : Tyi

−→
� ; �.S � t ≈ t′ : T

−→
� ; � � λt ≈ λt′ : 	S.T

−→
� ; � � S : Tyi

−→
� ; �.S � T : Tyi

−→
� ; � � t ≈ t′ : 	S.T

−→
� ; � � s ≈ s′ : S

−→
� ; � � t s ≈ t′ s′ : T[

−→
I , s]
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� −→
�

−→
� � zero≈ zero : Nat

−→
� � t ≈ t′ : Nat

−→
� � succ t ≈ succ t′ : Nat

−→
� ; �.Nat� M ≈ M ′ : Tyi

−→
� ; � � s1 ≈ s′

1 : M[
−→
I , zero]−→

� ; �.Nat.M � s2 ≈ s′
2 : M[(wk ◦ wk), succ v1]

−→
� ; � � t ≈ t′ : Nat

−→
� ; � � elim M s1 s2 t ≈ elim M ′ s′

1 s′
2 t′ : M[

−→
I , t]

−→
� ; · � T ≈ T ′ : Tyi−→

� ��T ≈�T ′ : Tyi

−→
� ; · � t ≈ t′ : T

−→
� � box t ≈ box t′ : �T

−→
� ; · � T : Tyi

−→
� � t ≈ t′ : �T � −→

� ;
−→
� |−→� | = n

−→
� ;

−→
� � unboxn t ≈ unboxn t′ : T[

−→
I ; ⇑n]

β and η rules:

−→
� ; � � S : Tyi

−→
� ; �.S � T : Tyi−→

� ; �.S � t : T
−→
� ; � � s : S

−→
� ; � � (λt) s ≈ t[

−→
I , s] : T[

−→
I , s]

−→
� ; � � S : Tyi

−→
� ; �.S � T : Tyi−→

� ; � � t : 	S.T
−→
� ; � � t ≈ λ(t[wk] v0) : 	S.T

−→
� ; �.Nat� M : Tyi−→

� ; � � s : M[
−→
I , zero]

−→
� ; �.Nat.M � s′ : M[(wk ◦ wk), succ v1]

−→
� ; � � elim M s s′zero≈ s : M[

−→
I , zero]

−→
� ; �.Nat� M : Tyi

−→
� ; � � s : M[

−→
I , zero]−→

� ; �.Nat.M � s′ : M[(wk ◦ wk), succ v1]
−→
� ; � � t : Nat

−→
� ; � � elim M s s′ (succ t) ≈ s′[

−→
I , t, elim M s s′t] : M[

−→
I , succ t]

−→
� ; · � T : Tyi

−→
� ; · � t : T

� −→
� ;

−→
� |−→� | = n

−→
� ;

−→
� � unboxn (box t) ≈ t[

−→
I ; ⇑n] : T[

−→
I ; ⇑n]

−→
� ; · � T : Tyi

−→
� � t : �T

−→
� � t ≈ box (unbox1 t) : �T

General K-substitution rules:
−→
� � t : T

−→
� � t[

−→
I ] ≈ t : T

−→
� ′ � −→σ :

−→
� ′′ −→

� � −→
δ :

−→
� ′ −→

� ′′ � t : T
−→
� � t[−→σ ◦ −→

δ ] ≈ t[−→σ ][
−→
δ ] : T[−→σ ◦ −→

δ ]

Variable rules:

� −→
� ; �.T x : T ′ ∈ −→

� ; �
−→
� ; � � vx[wk] ≈ v1+x : T ′[wk]

−→
� � −→σ :

−→
� ; �

−→
� ; � � T : Tyi

−→
� � t : T[−→σ ]

−→
� � v0[−→σ , t] ≈ t : T[−→σ ]

−→
� � −→σ :

−→
� ; �

−→
� ; � � T ′ : Tyi

−→
� � t : T ′[−→σ ] x : T ∈ −→

� ; �
−→
� � v1+x[−→σ , t] ≈ vx[−→σ ] : T[−→σ ]

	 rules:
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To describe how K-substitutions are propagated into different constructs, we need to
define the weakening of a K-substitution:

qT (−→σ ) := (−→σ ◦ wk), v0

where the subscript T is needed for the following typing rule:
−→
� ; � � −→σ :

−→
� ; �

−→
� ; � � T : Tyi−→

� ; �.T[−→σ ] � qT (−→σ ) :
−→
� ; �.T

We often omit this subscript when it can be inferred from the context.

−→
� ; � � −→σ :

−→
� ; �

−→
� ; � � S : Tyi

−→
� ; �.S � T : Tyi−→

� ; � � (	S.T)[−→σ ] ≈ 	S[−→σ ].(T[q(−→σ )]) : Tyi

−→
� ; � � −→σ :

−→
� ; �

−→
� ; �.S � t : T

−→
� ; � � (λt)[−→σ ] ≈ λ(t[q(−→σ )]) : (	S.T)[−→σ ]

−→
� ; � � S : Tyi−→

� ; �.S � T : Tyi
−→
� � −→σ :

−→
� ; �

−→
� ; � � s : 	S.T

−→
� ; � � t : S

−→
� � s t[−→σ ] ≈ (s[−→σ ]) (t[−→σ ]) : T[−→σ , t[−→σ ]]

Nat rules:
−→
� � −→σ :

−→
�

−→
� � N[−→σ ] ≈ N : Tyi

−→
� � −→σ :

−→
�

−→
� � zero[−→σ ] ≈ zero : N

−→
� � −→σ :

−→
�

−→
� � t : N

−→
� � succ t[−→σ ] ≈ succ (t[−→σ ]) : N

−→
� � −→σ :

−→
� ; �

−→
� ; �.N � M : Tyi−→

� ; � � s : M[
−→
I , zero]

−→
� ; �.N .M � s′ : M[(wk ◦ wk), succ v1]

−→
� ; � � t : N

−→
� � (elim M s s′t)[−→σ ] ≈ elim M[q(−→σ )] (s[−→σ ]) s′[q(q(−→σ ))](t[−→σ ]) : M[−→σ , t[−→σ ]]

� rules:
−→
� ; · � T : Tyi

−→
� � −→σ :

−→
�

−→
� ��T[−→σ ] ≈�(T[−→σ ; ⇑1]) : Tyi

−→
� ; · � t : T

−→
� � −→σ :

−→
�

−→
� � box t[−→σ ] ≈ box (t[−→σ ; ⇑1]) : �T[−→σ ]

−→
� ; · � T : Tyi

−→
� � t : �T |−→� ′| = n

−→
� � −→σ :

−→
� ;

−→
� ′

−→
� � unboxn t[−→σ ] ≈ unboxO(−→σ ,n) (t[−→σ | n]) : T[−→σ | n; ⇑O(−→σ ,n)]

Ty rule:
−→
� � −→σ :

−→
�

−→
� � Tyi[

−→σ ] ≈ Tyi : Ty1+i
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Other rules:
−→
� � t ≈ t′ : T
−→
� � t′ ≈ t : T

−→
� � t ≈ t′ : T

−→
� � t′ ≈ t′′ : T

−→
� � t ≈ t′′ : T

−→
� � t ≈ t′ : T

−→
� � T ≈ T ′ : Tyi−→

� � t ≈ t′ : T ′

−→
� � T ≈ T ′ : Tyi−→

� � T ≈ T ′ : Ty1+i

B Generating power functions

In this section, we give one more example for a program in MINT and run our NbE algo-
rithm on it. The program that we use is a quintessential example of staged programming:
the staged power function, which generates code of the n-th power of another number that
will be given in a later stage. Recall that the S4 variant of MINT models staged compu-
tation. Following Davies & Pfenning (2001), we use the box modality to ascribe the type
� (Nat → Nat) to generated code. The implementation of the power function in MINT then
follows familiar ideas.

pow : Nat → � (Nat → Nat)
pow zero = box λ x → 1
pow (succ n) = box λ x → ((unbox 1 (pow n)) x) * x

In the zero case, pow returns a constant function always returning 1. Otherwise, if the
input is succ n, pow recurses on n to generate code for pow n. To build our final result, i.e.,
the code for pow (succ n), we need to splice in the code from the recursive call. We use
unbox1 (pow n) to obtain code of type Nat → Nat. We then apply this function to x to obtain
the code for n-th power of x and then multiply it with x to obtain the final result. The
following is an execution of pow 2:

pow 2
= box λ x → ((unbox 1 (pow 1)) x) * x
= box λ x → ((unbox 1 (box λ y → ((unbox 1 (pow 0)) y) * y)) x) * x
= box λ x → ((λ y → ((unbox 1 (pow 0)) y) * y) x) * x
= box λ x → ((( unbox 1 (pow 0)) x) * x) * x
= box λ x → (((λ z → 1) x) * x) * x
= box λ x → x * x

In the rest of this section, we will run pow 2 using our NbE algorithm. To normalize pow 2,
let us redefine pow in MINT syntax:

pow : 	Nat.�(	Nat.Nat)

pow := λ elim (�(	Nat.Nat)) (box (λ1)) (box (λ((unbox1 v1) v0) ∗ v0))v0

We assume multiplication is defined in the syntax and the semantics in the usual way. In
this definition, we rewrite pattern matching into an elimination of a natural number and
change named variables to de Bruijn indices. Instead of using explicit names, we asso-
ciate binders and variables using colors. First, pow is a function, so we start with a λ. It
introduces a variable, which we mark in red. Then we eliminate that variable (v0) using
elim. We supply the motive (�(	Nat.Nat)), the base case (box (λ1)), the step case, and
the scrutinee (v0). The step case introduces two more variables marked in orange, one for
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the predecessor (which we do not use) and the result of the recursive call. Then, we intro-
duce another λ in box for constructing 	Nat.Nat. Inside, we first unbox the result of the
recursive call (v1) and obtain a function of type 	Nat.Nat. We apply that function to v0 to
obtain a Nat and then multiply that by an v0 again. Note that although there are three v0’s
in the code, they refer to two different variables, as distinguished by their colors.

Now let us first examine our evaluation process. For simplicity, we use 0, 1, and 2 for
ze, su(ze), and su(su(ze)). To simplify the evaluation of �pow 2�(↑ε;·), we first define a
few sub-evaluations. Let −→ρ be lext(↑ε;·, 2):

P0 := �elim (�(	Nat.Nat)) (box (λ1)) (box (λ((unbox1 v1) v0) ∗ v0))0�(−→ρ )

= box(�(1, ext(−→ρ )))

Here P0 represents the evaluation of the body of pow in the case of 0. The λ of the base
case is evaluated to a �, in which the first component is still a syntactic term of MINT

and the second component is the surrounding environment. The environment is extended
modally because of the outer box. We define P1 similarly:

P1 := �elim (�(	Nat.Nat)) (box (λ1)) (box (λ((unbox1 v1) v0) ∗ v0))1�(−→ρ )

= box(�((((unbox1 v1) v0) ∗ v0), ext(lext(lext(−→ρ , 0), P0))))

Similarly, in the final result, the function body ((unbox1 v1) v0) ∗ v0 is captured. The envi-
ronment is extended with 0 and P0 because the step case has two open variables: the
predecessor and the recursive call. Then, we define �pow 2�(↑ε;·):

�pow 2�(↑ε;·) = box(�((((unbox1 v1) v0) ∗ v0), ext(lext(lext(−→ρ , 1), P1))))

Note that this only evaluates the term. To perform NbE, we must also evaluate its type:

��(	Nat.Nat)�(↑ε;·) =�(Pi(N, Nat, ↑ε;·))

Note that the first component of Pi is evaluated and in the domain while the second one is
still syntax. Now, we compute nbe�(	Nat.Nat)

ε;· (pow 2), which expands to

nbe�(	Nat.Nat)
ε;· (pow 2) = RNf

ε;0(↓��(	Nat.Nat)�(↑ε;·) (�pow 2�(↑ε;·)))

We have computed the evaluations above and now move on to the readback:

nbe�(	Nat.Nat)
ε;· (pow 2)

= RNf
ε;0(↓�(Pi(N,Nat,↑ε;·)) (�pow 2�(↑ε;·)))

= RNf
ε;0(↓�(Pi(N,Nat,↑ε;·)) (box(�((((unbox1 v1) v0) ∗ v0), ext(lext(lext(−→ρ , 1), P1))))))

= box RNf
ε;0;0(↓Pi(N,Nat,↑ε;·) (�((((unbox1 v1) v0) ∗ v0), ext(lext(lext(−→ρ , 1), P1)))))

= box λ RNf
ε;0;1(↓N (�((unbox1 v1) v0) ∗ v0�(lext(ext(lext(lext(−→ρ , 1), P1)), ↑N (l0)))))

= box λ RNf
ε;0;1(↓N ((unbox · (1, P1)) · ↑N (l0))) ∗ v0

= box λ v0 ∗ v0

Thus, we obtain a normal form as we previously claimed.
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