
Indexed Codata Types

David Thibodeau ∗

School of Computer Science
McGill University
Montreal, Canada

david.thibodeau@mail.mcgill.ca

Andrew Cave
School of Computer Science

McGill University
Montreal, Canada

andrew.cave@mail.mcgill.ca

Brigitte Pientka
School of Computer Science

McGill University
Montreal, Canada

bpientka@cs.mcgill.ca

Abstract
Indexed data types allow us to specify and verify many interesting
invariants about finite data in a general purpose programming lan-
guage. In this paper we investigate the dual idea: indexed codata
types, which allow us to describe data-dependencies about infinite
data structures. Unlike finite data which is defined by constructors,
we define infinite data by observations. Dual to pattern matching on
indexed data which may refine the type indices, we define copattern
matching on indexed codata where type indices guard observations
we can make.

Our key technical contributions are three-fold: first, we ex-
tend Levy’s call-by-push value language with support for indexed
(co)data and deep (co)pattern matching; second, we provide a
clean foundation for dependent (co)pattern matching using equal-
ity constraints; third, we describe a small-step semantics using a
continuation-based abstract machine, define coverage for indexed
(co)patterns, and prove type safety. This is an important step to-
wards building a foundation where (co)data type definitions and
dependent types can coexist.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

Keywords Dependent Types; Coinduction; Functional Program-
ming; Logical Frameworks

1. Introduction
Over the past two decades we made significant progress in mechan-
ically verifying inductive properties about finite data and computa-
tion using proof assistants. However, the situation is very different
when it comes to specifying and mechanically verifying properties
such as fairness or liveness about programs whose computation is
infinite i. e. they continue to run and produce results. Such prop-
erties are elegantly stated and proven coinductively. Starting with
Hagino’s work (1987) in (co)algebras, there has been growing con-
sensus that proof and programming environments should view in-
finite data dual to finite data. Under this view inductive data such

∗ This author acknowledges funding from the Fonds Québécois de
Recherche sur la Nature et les Technologies (FQRNT)

[Copyright notice will appear here once ’preprint’ option is removed.]

as lists are modelled by constructors, while coinductive or infinite
data such as streams are described by observations. An important
step towards a sound type-theoretic foundation for inductive and
coinductive definitions has been taken by Abel et al. (2013) where
the authors present a simply-typed language using a rewriting se-
mantics where finite data is defined using constructors and ana-
lyzed by pattern matching while infinite data is defined via copat-
tern matching and analyzed by observations. Subsequently, it was
shown that this language is normalizing using sized types (Abel
and Pientka 2013). A prototype implementation of copatterns ex-
ists within Agda, a programming language based on Martin Löf
type theory (?). However, a theoretical foundation that supports de-
pendent types, (deep) (co)pattern matching and (co)recursion and
at the same time allows inductive and coinductive definitions to be
arbitrarily mixed remains illusive.

In this paper we take a substantial step towards such a general
foundation concentrating on a flavor of dependent types, called
indexed types (Zenger 1997; Xi and Pfenning 1999), where the
language of indices is separate from the language of types and
programs and describes a domain where equality is decidable.
Specifically we present a core language for dependent (co)pattern
matching that allows eager and lazy evaluation to be mixed by
extending Levy’s call-by-push value language (2001). Following
Levy, our language is centered around the duality of positive types
which we interpret as values and use to construct finite data, and
negative types which we take as computations and use to describe
the observations about infinite data. While indexed data types allow
us to for example specify and statically enforce properties about
finite lists and trees, indexed codata types allow us to specify and
statically enforce properties about streams and traces. Throughout
our development, we keep the index language abstract. Our main
technical contributions are three-fold:

• We extend Levy’s call-by-push value language (2001), with
support for indexed (co)data and deep (co)pattern matching. To
keep our design modular, we keep the index domain abstract
and specify the key properties it must satisfy. In particular,
our index domain must provide a decision procedure to reason
about equalities and a unification procedure to compute the
most general unifier of two index objects. We illustrate these
properties by considering the domain of natural numbers.
• Pattern matching in the presence of dependent types is chal-

lenging, as indices get refined and patterns cannot be kept lin-
ear. We propose a foundation where we track and reason with
dependencies among indices using equality constraints that are
accumulated in a context thereby supporting linear dependent
(co)patterns. Our equality context may contain both equality
constraints that are satisfiable and equality constraints that are
contradictory. This leads to a clean foundation for (co)pattern
matching in the dependently typed setting.

short description of paper 1 2016/3/17

• We describe the operational semantics of our core language
using a continuation-based abstract machine and prove type
preservation. We also provide a sound non-deterministic algo-
rithm to generate covering sets of copatterns. Finally, we show
progress – in the presence of infinite data the key idea here is
that every expression either returns a value or we can continue
to evaluate it by supplying enough observations.

We see several applications of our work: it lays the foundation
for extending languages such as DML (Xi and Pfenning 1999) and
ATS (Xi 2004) to support indexed codata; choosing as an index
language the language of types itself, it serves as a foundation
for mixing eager and lazy evaluation in functional languages that
support GADTs (Cheney and Hinze 2003; Xi et al. 2003); choosing
as an index language LF (Harper et al. 1993; Cave and Pientka
2012), our work serves as a general foundation for writing both
inductive and coinductive definitions and programs about formal
systems. Finally, we believe that the core language that we describe
in this paper provides a stepping stone in developing a sound
dependently typed foundation for Coq and Agda that supports
deep (co)pattern matching and allows inductive and coinductive
definitions to be mixed.

The remainder of this paper is organized as follows. We illus-
trate the main ideas of indexed (co)data types through several ex-
amples in Section 2. Then, we introduce in Section 3 our language
supporting both indexed data types and codata types, together with
pattern and copattern matching in a symmetric way. We describe
the typing rules together with a small-step semantics. We then de-
fine a sound coverage algorithm for indexed patterns and copat-
terns, and prove preservation and progress.

2. Main Idea
Indexed recursive types allow us to for example specify and pro-
gram with lists that track their length thereby avoiding run-time
checks for cases which cannot happen. We consider here a varia-
tion of this example: a recursive type Msg which describes a mes-
sage consisting of bits and tracks its length by choosing as an index
domain nat. Our pseudo-code follows closely the underlying foun-
dation where we model data types using recursive types and disjoint
sums together with equality constraints.

data Msg (N: nat) : type =
| Nil : N = z * 1
| Cons: ΣM:nat. N = s M * Bit * Msg [M]

We separate the index domain from the language of types and
programs and embed index objects inside types and programs using
[]. The type Msg [N] defines messages inductively: either we have
an empty message Nil where N must be zero, or we can construct
a message using Cons, if there exists M:nat s.t. N = s M and we
have a Bit together with a message of length M. In the latter case,
we have built a message of length s M. As in SML, we require
that constructors that correspond to the base case in our inductive
definition take in formally an argument of type unit (denoted by 1).
When we pattern match on a message m of type Msg [N], we need to
consider the following two cases: if m stands for an empty message,
written as Nil (e, ()), then we also obtain an equality proof e

that N = z; if m stands for a message Cons <M, (e, h, t)> where
M is the witness for the existential in the definition of Cons and e

stands for the equality proof N = s M. In both cases, we can further
pattern mach on the equality proof e, writing℘ as the witness which
forces the type checker to solve the accumulated constraints setting
in the base case N to zero and in the step case N to s M. As our
index domain is restricted to a decidable domain, equality proofs
can always be derived and reconstructed when elaborating a surface
program into our core language.

Dually to model a stream of bits which keeps track of how many
bits belong to one message we define three different observations:
codata Str (N:nat) : type =
| GetBit : ΠM:nat. N = s M → Bit
| NextBits: ΠM:nat. N = s M → Str [M]
| Done : N = z → NextMsg

and data NextMsg : type =
| NextMsg : Σ N:nat. Str [N]

Given a stream with index N, we can observe the next bit
(NextBits) and get the current bit (GetBit), provided that we sup-
ply some number M and an equality proof that N = s M. We are
done reading all bits belonging to our message, if N = z, i.e. we
can get the next message, if we can provide a proof for N = z. This
definition of a stream allows us to enforce that we read the correct
number of bits belonging to a message.

While our indexed recursive type Msg is defined via positive
types (equality, existentials, products), our coinductive definition
of Str uses negative types (universals, functions). When we pattern
match on a data type, we also learn about equality constraints that
must hold. When we make observations on a codata type, we must
supply an equality proof that satisfies the equality constraint that
guards the observation. To our knowledge this dual role that equal-
ity plays in defining data and codata types has not been observed
before, yet it seems central in understanding how to scale (co)data
type definitions and (co)pattern matching to the dependently typed
setting.

2.1 Message processing Using Deep (Co)pattern Matching
Interactions of a system with input/output devices or other systems
are performed through a series of queries and responses which are
represented using a stream of bits that can be read by the system.
Processing requests over those streams can be error prone. If one
reads too many or not enough bits, then there is a disconnect be-
tween the information a program reads and the one that was sent
which potentially could be exploited by an attacker. To avoid such
problem, we propose to use indexed codata types to parametrize a
stream with a natural number indicating how many bits we are en-
titled to read until the next message starts. Thus, one can guarantee
easily that a program will not leave parts of a message on top of
the stream but that they consume all of it. We will use this exam-
ple of message passing to highlight the role of indices in writing
programs that use (co)pattern matching.

First, we want to read a message from the stream Str [N] and
return the message together with the remaining stream. This is
enforced in the type of the function readMsg below. The type can
be read informally as: For all N given Str [N] we return a message
together with Str [z] which indicates that we are done reading the
entire message.
rec readMsg: Π N:nat. Str [N] → Msg [N] * Str [z] =
fn [z] s ⇒ (Nil (℘, ()), s)
| [s M] s ⇒

let c = s.GetBit [M] ℘ in
let (w, s’) = readMsg [M] (s.NextBits [M] ℘) in
(Cons <M, (℘, (c, w))>, s’)

The program readMsg is written by pattern matching on the in-
dex object N. Usign fn-abstractions we pattern match on multiple
input arguments simultaneously. We use a notation similar to ML-
like languages, but we wrap index objects in [] to clearly dis-
tinguish them from computation-level data and terms. If N is zero,
then we are finished reading all bits belonging to the message and
we simply return the empty message together with the remaining
stream s. If N is not zero but of the form s M, we observe the first
element c, the bit at position s M, in the stream using the obser-
vation .GetBit. We then read the rest of the message w by mak-
ing the recursive call readMsg [M] (s.NextBits [M] ℘) and then

short description of paper 2 2016/3/17

build the actual message by consing c to the front of w. Note that
in order to make the observation GetBit or NextBits we must sup-
ply two arguments, namely M and a proof that s M = s M. Dually,
when we construct a message Nil in the base case, we also must
supply a proof that z = z; similarly in the step-case, we construct
a message Cons by providing as a witness M together with a proof
that s M = s M. It seem reasonable to assume that these arguments
and equality proofs can be inferred in practice; however we make
them explicit in our core language to emphasize their dual role in
indexed (co)data types.

So far we have seen how to make observations about streams
and use them. Next, we show how to build a stream which is
aware of how many bits belong to a message effectively turning it
into a stream of messages. This is accomplished via two mutually
recursive functions mixing pattern and copattern matching: the first
marshals the size of the message with the message stream and the
second one continues to create the message stream. We assume
that we have polymorphism here (which we do not treat in our
foundation).

codata ’a Stream : type =
| Head : ’a
| Tail : ’a Stream

rec getMsg: Bit Stream → [nat] Stream → NextMsg =
fn s ns ⇒ let [N] = ns.Head in
NextMsg [N] (msgStr [N] s ns.Tail)

and msgStr: Π N:nat. Bit Stream→ [nat] Stream→ Str [N] =
fn [z] s ns .Done ℘⇒ getMsg s ns.Tail
| [s N] s ns .GetBit [M] ℘⇒ s.Head
| [s N] s ns .NextBits [M] ℘⇒

msgStr [N] s.Tail ns.Tail

The function getMsg takes in a stream s of bits and a stream of
natural numbers that tells us the size of a message. It then returns a
message of the required size by reading the appropriate number of
bits from s using the function msgStr and creating a stream of type
Str [N] where N is the size of the message. The function msgStr

is defined by (co)pattern matching: the first branch says, we can
only make the observation Done provided that N is zero; in this case
we are done reading all bits belonging to the message. The second
branch says: if the size of the message is s N, we can make the
observation GetBit provided we have a proof ℘ showing that s M is
equal to s N. Note that our (co)pattern remains linear - the fact that
M is forced to be equal to N is guaranteed by the equality proof ℘ that
solves the arising constraint s N = s M. We exploit here the fact
that equality and unification is decidable in our index domain. If
we can solve the constraint, as is the case here, we keep track of the
solution N := M : nat in our context of assumptions and continue
to type check the body of the branch under this constraint; if we can
disprove the arising equality constraint, we keep a contradiction in
our context of assumption and continue to check the body. This
allows for an elegant treatment of linear (co)patterns in the presence
of dependent types. In particular, it may serve as a foundation for
existing practical solutions such as dot-patterns in Agda.

Last, we show how to generate a bit stream where every mes-
sage contains two random bits. This illustrates deep copattern
matching.

rec genBitStr: Str [s (s z)] =
fn .GetBit [s z] ℘⇒ RandomBitGen ()
| .NextBits [s z] ℘ .GetBit [z] ℘⇒ RandomBitGen ()
| .NextBits [s z] ℘ .NextBits [z] ℘ .Done ℘⇒

NextMsg [s (s z)] genBitStr

Following the ideas described in this section, we can implement
also fair merge of two streams as and bs where we consume a finite
amount of a’s followed by a finite amount of b’s. We refer the
interested reader to the appendix for more examples on streams.

2.2 Revisiting the Duality of (Co)inductive Definitions
So far we have concentrated on two aspects: 1) how inductive data
is constructed and analyzed by pattern matching while coinductive
data is observed and analyzed by copattern matching; 2) the role of
indices and equality constraints in (co)pattern matching. For data
of type Msg [M], we provided a way of constructing a message for
each M. Dually, our codata type Str [N] provided observations for
all possible N.

An important question to clarify is whether (co)data type def-
initions need or should be covering, i.e. provide a constructor or
observation for each possible index. What does it mean to have no
constructor for a possible index? And dually, what does it mean to
have no observation for a possible index?

We discuss these questions by looking at how we define even
numbers inductively and coinductively. Clearly, inductive defini-
tions do not need to be covering. For example, our inductive defini-
tion of Even [N] states that we can construct a proof that z is even
using Ev_z provided we have a proof that N = z. For clarity, we de-
fine the type of the constructor Ev_z as N = z * 1 where 1 stands
for unit (or top). Similarly, we can construct a proof that N is even,
if there exists a number M s.t. N = s (s M) and M is even.

data Even (N:nat) : type =
| Ev_z : N = z * 1
| Ev_ss:Σ M:nat. N = s (s M) * Even [M]

The set of terms inhabitating this predicate is the least fixed
point defining even numbers. Note that there is no way that we
can construct a witness for Even [s z] and this type is empty.
Modelling the empty type

data 0: type

by declaring no constructors, we could make this more explicit
by adding a constructor Ev_s of type N = (s z) * 0. This explic-
itly states that Even [s z] cannot be constructed without any as-
sumptions, since 0 has not elements. We typically omit such a case
in the definition of our inductive types, but these impossible cases
might arise when we pattern match on elements of the type Even.

Dually, we can define even numbers coinductively using a great-
est fix point. By default the greatest fix point is inhabited by all nat-
ural numbers and in particular all even numbers. The observations
we make describe those numbers that should not be in the set of
even numbers! Specifically, we are stating that odd numbers, can-
not be in the set of even numbers. This leaves us with the set of
even numbers.

codata CoEven (N:nat) : type =
| Cev_sz : N = s z → 0
| Cev_ss : ΠM:nat. N = s (s M) → CoEven [M]

If N = s z then we return the empty type. If we make an obser-
vation Cev_sz and have a proof that N = s z then we have arrived at
a contradiction. The observation Cev_ss extracts a proof of CoEven
[M] from a proof of CoEven [s (s M)].

This discussion highlights the difference between the definition
of constructors and observations. If we omit a constructor for a
given index, then the indexed data type is not inhabited and it
is interpreted as false. Dually, if we omit an observation for a
given index, then the indexed codata type is still inhabited and it
corresponds to being trivially true.

We now prove that both interpretations give us the same set of
terms. First we show that Even [N] implies CoEven [N]:

rec evToCoEv : ΠN:nat. Even [N] → CoEven [N] =
fn [z] (Ev_z ℘ ()) .Cev_sz ℘
| [z] (Ev_z ℘ ()) .Cev_ss [M] ℘
| [s N] (Ev_ss <M, (℘, e)>) .Cev_sz ℘
| [s N] (Ev_ss <M, (℘, e)>) .Cev_ss [K] ℘⇒ evToCoEv e

short description of paper 3 2016/3/17

We write this function by pattern matching on Even [N]. In the
case where Even [z], we want to return CoEven [z]. As elements
of CoEven [z] are defined by the observations we can make about
it, we consider two sub-cases. If we try to make the observation
Cev_sz, we must provide a proof that z = s z. This will be refuted
by our decision procedure in our index domain, i.e. our decision
procedure will succeed, but add a contradiction to our context of
assumptions, from which everything follows. If we try to make the
observation Cev_ss, then we must show ΠM:nat. z = s (s M)→
CoEven [M]. Again we have arrived at a contradiction, since there
is no proof for z = s (s M).

Finally, we consider the case where Even [s (s N)]. In this
case, we can again make two possible observations, Cev_sz and
Cev_ss. In the first case, we again arrive at a contradiction, since
s (s N) = s z is always false. In the last case, we accumulate and
solve two equality constraints while type checking the (co)pattern:
s (s N) = s (s M) and s (s N) = s (s K). Then we proceed to
check the body of the branch in the context where N := K: nat and
M := N : nat.

This example highlights the mix of pattern and copattern match-
ing and the reasoning with equality constraints; it also highlight
how impossible cases arise and how we treat them.

Can we also prove that CoEven [N] implies Even [N]? - In
general this is not true since the coinductive interpretation may be
strictly bigger than the inductive one. In our case however we can
indeed show this property by induction on N. In the case where N

= s z and we assume CoEven [s z], we make the observation (c.

Cev_sz ℘) which results in an object of type 0 – however, we know
that this type is not inhabited and hence we abort. In our language
abort is an abbreviation for a function without any branches.

rec coEvToEv : ΠN:nat. CoEven [N] → Even [N] =
fn [z] c ⇒ Ev_zero (℘, ())
| [s z] c ⇒ abort (c.Cev_sz ℘)
| [s (s N)] c ⇒

Ev_ss <N, (℘ , coEvToEv [N] (c.Cev_ss [N] ℘))>

2.3 Final Remark
For simplicity all our previous examples use as index domain nat-
ural numbers. However, we want to emphazise that our theoretical
foundation is parametric in the index domain. In the appendix, we
also give several examples that use the logical framework LF as an
index domain. The examples include proving that two automata are
bisimilar and the encoding of a type-preserving environment-based
evaluator where values are defined coinductivly following (Milner
and Tofte 1991).

3. Theory
We present in this section a general purpose programming language
which supports defining finite data using indexed recursive types
and infinite data using indexed corecursive types. To analyze and
manipulate finite and infinite data, we support simultaneous pattern
and copattern matching. We omit polymorphism which is largely an
orthogonal issue.

3.1 Index Domain
Our programming language is parametric over the index domain
which we describe abstractly with U . This index domain can be
natural numbers, strings, types (Cheney and Hinze 2003; Xi et al.
2003), or (contextual) LF (Cave and Pientka 2012). Index objects
are abstractly referred to as index-term C and have index-type U .
As a running example we will use natural numbers to illustrate the
requirements our index domain must satisfy. It can be defined as
containing a single index-type nat and index-terms are simply built

of zero, suc, and variables X .

Index-Type U ::= nat
Index-Term C ::= X | zero | suc C
Index-Context ∆ ::= · | ∆, X : U | ∆, X := C : U | ∆,#
Index-Substitution θ ::= · | θ, C/X

Variables that occur in index-terms must be declared in an
index-context ∆. In our setting, the index-context also contains
equality constraints X:=C:U that says that the index-variable X
is equal to the index-term C. Such constraints arise in typing linear
(co)patterns (see the function msgStr from Sec. 2). The index-
context also keeps track of contradictions, written #, that may arise
when we encounter in a (co)pattern a constraint that can never be
satisfied.

Index-substitutions are built by supplying an index-term for an
index-variable. We interpret · as the identity index-substitution. We
define the lookup of the instantiation for a variable X as follows:

θ(X) = C Variable X is bound to term C in substitution θ

(θ, C/X)(X) = C
(θ, C/Y)(X) = θ(X) if X 6= Y
(·)(X) = X

We use index-substitutions to model the runtime environment
of index variables. Looking up X in the substitution θ returns the
index-term C to which X is bound at run-time. The index-context
∆ captures the information that is statically available and is used
during type checking.

` ∆ mctx well-formed index-context ∆

` · mctx

` ∆ mctx ∆ ` U : Type ∆ ` C : U

` ∆, X := C : U mctx

` ∆ mctx
` ∆,# mctx

∆ ` U : Type ` ∆ mctx

` ∆, X : U mctx

∆ ` θ : ∆′ θ maps index variables from ∆′ to ∆

∆ ` θ : ∆′ ∆ ` θ(X) : U [θ]

∆ ` θ : ∆′, X:U

∆ ` θ : ∆′ # ∈ ∆

∆ ` θ : ∆′,#

∆ ` θ : ∆′ ∆ ` θ(X) : U [θ] ∆ ` θ(X) = C[θ]

∆ ` θ : ∆′, X:=C:U ∆ ` θ : ·

∆ ` U : Type Index-type U is well-kinded in ∆

∆ ` nat : Type

∆ ` C : U Index-term C has type U

∆ ` zero : nat
∆ ` C : nat

∆ ` suc C : nat

∆(X) = U

∆ ` X : U

Figure 1. Index-Contexts, Index-Substitution, Index-Types, and
Index-Terms

Typing of Index Domain We define the well-formedness of
index-contexts and index-substitutions in Fig. 1. The definition of
index-contexts is mostly straightforward noting that ∆, X:=C:U
is a well-formed index-context if ∆ is well-formed, the index-type
U is well-formed in ∆, and the index-termC has index-type U . We

short description of paper 4 2016/3/17

make sure that there are no circularities in ∆. An index-substitution
θ provides a mapping for declarations in the index-context ∆′ and
guarantees that all instantiations have the expected index-type and
are compatible with existing constraints. Our judgment ∆ ` θ : ∆′

states that a given instantiation θ, computed via pattern matching
at runtime, matches the assumptions in ∆′ that were made stati-
cally during type checking. It is defined inductively on the domain
∆′. Although all instantiations computed by pattern matching are
ground (i.e. ∆ is empty), we state the relationship between θ and ∆
more generally. If ∆′ contained a contradiction, the contradiction
must also be present in ∆. We still require in this case that θ pro-
vides consistent and well-typed instantiations for all the remaining
declarations in ∆′.

While our rules for the well-formedness of index-contexts and
index-substitutions are generic, typing of index-terms and index-
types obviously depends on our choice of the index domain. We
included here the rules for natural numbers.

Our index domain must satisfy several properties. The first one
is the substitution property which we list here as a requirement1.

Requirement 1 (Index-Substitution Lemma).
If ∆ ` θ : ∆′ and ∆′ ` C : U then ∆ ` C[θ] : U [θ].

Proof. By induction on ∆′ ` C : U .

In addition to the typing rules given in Fig. 1, we also require
that equality is decidable. As we accummulate equality constraints
in ∆, we take those into account when defining equality of index-
terms. To illustrate we give the definition of equality for natural
numbers in Fig. 2.

∆ ` C1 = C2 Term C1 is equal to Term C2 in ∆.

∆ ` zero = zero

∆ ` C1 = C2

∆ ` suc C1 = suc C2 ∆ ` X = X

X:=C′:U ∈ ∆ ∆ ` C′ = C
∆ ` X = C

X:=C′:U ∈ ∆ ∆ ` C = C′

∆ ` C = X
∈ ∆

∆ ` C1 = C2

Figure 2. Equality of Index Terms

Typing of Index-Terms in (Co)patterns As index-terms occur
within (co)patterns, we also require rules that extract the type
of index-variables. As we process a list of (co)pattern we thread
through a context ∆ and accumulate index variables and con-
straints. As subsequent index patterns may depend on variables ap-
pearing earlier in the (co)pattern spine, we extend and refine ∆
by imposing constraints on existing variable declarations. In fact,
our typing rules for (co)patterns will also solve equality constraints
using unification. Hence the resulting index-context ∆′ is an exten-
sion and refinement of ∆, written as ∆ ≺ ∆′. We define synthe-
sizing free index variables contained in an index-term C in Fig. 3.
We assume that C only contains fresh variables, i.e. any variable in
C does not already occur in ∆. We are threading through ∆ which
may contain variables introduced by a previous pattern match, since
for richer and more expressive index domains U may depend on ∆
and it is more uniform.

Type checking of (co)patterns will also need to solve equations
C1 = C2 using unification on our index domain, and thus intro-
duce term assignments to variables in ∆, yielding ∆′. We define

1 Proofs can be found in the supplementary material for this paper

∆ ` C : U ↘ ∆′ Index-Pattern C of index-type U synthesizes
an index-context ∆′ s.t. ∆ ≺ ∆′

∆ ` zero : nat↘ ∆

∆ ` C : nat↘ ∆′

∆ ` suc C : nat↘ ∆′

X 6∈ ∆

∆ ` X : U ↘ ∆, X:U

Figure 3. Meta-Pattern Checking Rules

unification for the index domain of natural numbers in Fig. 4. Note
that our unification always succeeds in producing an index-context
∆′. However, if C1 and C2 were unifiable, then the arising equal-
ity constraints are recorded in ∆′. If C1 and C2 were not unifiable,
we return a ∆′ that contains a contradiction #. There are two pos-
sible sources of failure: either the two terms are syntactically dif-
ferent or the occurs check fails. As we keep track of constraints in
∆, checking whether X occurs in Y where Y :=C:U ∈ ∆, must
check whether X occurs in C. Our well-formedness of ∆ guaran-
tees that our context is not cyclic and hence the occurs check will
terminate. Our definition of unification is then straightforward. As
we must guarantee that ∆ remains well-formed, we may permute
it to an equivalent well-formed context (written as ∆ ∼ ∆′) when
unifying X with an index-term C.

Properties about Unification As we alluded during our exam-
ples, typing of (co)patterns will rely on solving equality constraints.
We therefore rely on the correctness of the unification algorithm. In
particular, we require that unification will always succeed.

Requirement 2 (Unification of Index-Terms). For any ∆, C1, C2

and U such that ∆ ` C1 : U and ∆ ` C2 : U , there is a ∆′ such
that ∆ ` C1 = C2 ↘ ∆′.

Further, we require that our unification algorithm produces the
most general unifier.

Requirement 3. If ∆ ` C1 = C2 ↘ ∆′, then for all ∆0 and θ
such that ∆0 ` θ : ∆, we have that ∆0 ` C1[θ] = C2[θ] if and
only if ∆0 ` θ : ∆′.

Proof. By induction on ∆ ` C1 = C2 ↘ ∆′.

As we mentioned, our operational semantics for our programs
is environment based and our index-substitution θ provides instan-
tiations for all the index variables. Proving type safety of our core
language relies on a series of properties our index domain must sat-
isfy. We prove these properties for our index domain nat. First, we
rely on a substitution property of index-terms occurring in patterns.

Using these requirements, we can show that the unification
algorithm is stable under substitution.

Lemma 1. If ∆ ` C1 = C2 ↘ ∆′ and ∆1 ` θ : ∆ then there is
a ∆′1 such that ∆1 ` C1[θ] = C2[θ]↘ ∆′1 and ∆′1 ` θ : ∆′.

Proof. By Req. 2 and Req. 3.

Pattern Matching on Index-Terms Our operational semantics for
our language relies on (co)pattern matching. As index terms appear
in (co)patterns, we rely on pattern matching on index terms. To
prove preservation and progress, we rely on the fact that extracting
the type of index-variables in (co)patterns is stable and does not
depend on the current run-time environment. We state this property
in general terms, although our instantiation θ will be ground during
run-time. It can be intuitively understood as follows: When we

short description of paper 5 2016/3/17

∆ ` C1 = C2 ↘ ∆′ Given the index-terms C1 and C2 synthesize the most general index-context ∆′ s.t. ∆ ≺ ∆′ and ∆′ ` C1 = C2.

∆ ` zero = zero↘ ∆

∆ ` C1 = C2 ↘ ∆′

∆ ` suc C1 = suc C2 ↘ ∆′ ∆ ` X = X ↘ ∆

∆ ` zero = suc C ↘ ∆,# ∆ ` suc C = zero↘ ∆,#

∆ ∼ ∆0, X:U,∆1 ∆0 ` C : U

∆ ` X = C ↘ ∆0, X:=C:U,∆1

∆ ∼ ∆0, X:U,∆1 ∆0 ` C : U

∆ ` C = X ↘ ∆0, X:=C:U,∆1

∆ ` occursn+1(X,C)

∆ ` X = C ↘ ∆,#

∆ ` occursn+1(X,C)

∆ ` C = X ↘ ∆,#

X:=C′:U ∈ ∆ ∆ ` C′ = C ↘ ∆′

∆ ` X = C ↘ ∆′
X:=C′:U ∈ ∆ ∆ ` C = C′ ↘ ∆′

∆ ` C = X ↘ ∆′

∆ ` occursn(X,C) X occurs in C under n constructors

∆ ` occurs0(X,X)

∆ ` occursn(X,C)

∆ ` occursn+1(X, suc C)

Y :=C:U ∈ ∆ ∆ ` occursn(X,C)

∆ ` occursn(X,Y)

Figure 4. Unification of Index Terms

process a (co)pattern we build up a context ∆ before we extend ∆
with the new variables that occur in an index term C obtaining ∆′.
Given an instantiation θ for the variables in ∆, where ∆1 ` θ : ∆,
we can also process C within the context ∆1 and extract the new
variables obtaining an extension ∆′1. In fact, as variables occurring
in C are not (yet) instantiated by θ, we also have that ∆′1 ` θ : ∆1.

Requirement 4 (Substitution Property of Index-Terms). If ∆ `
C : U ↘ ∆′ and ∆1 ` θ : ∆ then there is ∆′1 such that
∆1 ` C : U [θ]↘ ∆′1 and ∆′1 ` θ : ∆′.

Proof. The proof of this statement is by induction on the derivation
∆ ` C : U ↘ ∆′.

Requirement 5 (Adequacy of Pattern Matching for Index-Terms).
Suppose · ` C : U . If ` C′ : U ↘ ∆ and C = C′[θ]. Then
· ` θ : ∆.

Proof. By induction on the derivation · ` C′ : U ↘ ∆.

Coverage of Index-Terms To discuss coverage of (co)patterns,
we rely on coverage of index-terms. We therefore define a splitting
algorithm that takes as input ∆ ` X where either X:U ∈ ∆ or
X:=C:U ∈ ∆. It generates a set containing ∆i ` Ci where Ci are
the possible refinements of X (see Fig. 5).

Requirement 6 (Coverage of splitting for index objects).
Suppose · ` θ : ∆ and split(∆ ` X) = (∆i, Ci)∀i∈I , then there
is an i and θi such that ` θi : ∆i and θ(X) = Ci[θi] and θ ≺ θi.

The judgment θ ≺ θi means that θi is of the form θ, ~C/ ~X for
some terms ~C = C1, . . . , Cn and variables ~X = X1, . . . , Xn that
are not already bound by θ.

Proof of Req. 6. By induction on the splitting judgment.

We also require that the splitting algorithm preserves coverage
under the application of a substitution.

Requirement 7 (Preservation of splitting under substitution).
Suppose ∆′ ` θ : ∆ and split(∆ ` X) = (∆i ` Ci)∀i∈I , then
there are {∆′i}i∈I such that split(∆′ ` X) = (∆′i ` Ci)∀i∈I and
for all i ∈ I , ∆′i ` θ : ∆i.

3.2 Indexed Types and Kinds
Following Levy (2001) we distinguish between positive types (1,
ΣX:U.P , P1 × P2) which characterize finite data and negative
types (P → N , ΠX:U.N) which describes infinite data. We allow
negative types to be embedded into positive types and vice versa
using explicit coercions written as ↓N and ↑P respectively. Our
language also supports indexed recursive and indexed corecursive
types. The recursive type written as µY.λ ~X.D is a positive type, as
it allows us to construct finite data using labelled sums D (written
as 〈
−→
c P 〉). While Y denotes a type variable, λ ~X.D describes a type-

level function which expects index objects and returns a labelled
sum D. Dually, in the corecursive type, written as νZ.λ ~X.R,
the type-level function λ ~X.R expects index objects and returns
a record of indexed observations. Corecursive types are negative
types, as they describe infinite data using records R (standing for
{
−−→
d:N}).

Kinds K ::= type | ΠX:U.K

Positive Types P ::= Y | 1 | P1 × P2 | C1 = C2 | ↓N
| µY.λ

−→
X.D | P ~C | ΣX:U.P

Negative Types N ::= Z | P → N | ↑P
| νZ.λ

−→
X.R | N ~C | ΠX:U.N

Variant D ::= 〈c1 P1 | · · · | cn Pn〉
Record R ::= {d1 : N1, . . . , dn : Nn}

Figure 6. Types

Index objects from our index domain U can be embedded and
returned by computations by returning an object of type ΣX : U.1.
Our core language also include equality constraints between index
objects. They typically are used inside (co)recursive type defini-
tions. As we have seen in the examples, we mostly use equalities
in two forms: constrained products (written as C1 = C2 × P) in
defining indexed data types and constrained (or guarded) function
(written as C1 = C2 → N) in defining indexed codata types. As

short description of paper 6 2016/3/17

split(∆ ` X) = {∆i ` Ci}i∈I Splitting the index-variable X in ∆ yields a complete and non-redundant set of refinements ∆i ` Ci

split(∆, X:nat,∆′ ` X) = {(∆, Y :nat,∆′[suc Y/X] ` suc Y) , (∆,∆′[zero/X] ` zero)}

split(∆, X:U ` X) = {∆i ` Ci}i∈I for each i, ∆i ` Ci = C ↘ ∆̂i

split(∆, X:=C:U,∆′ ` X) = {∆̂i,∆
′[C/X] ` Ci}i∈I

Figure 5. Splitting of Index-Variable

we require that our index domain comes with decidable equality,
we believe the equality proofs can always be reconstructed when
elaborating source level programs into our core language.

Our computation-level types can directly refer to index types.
In this article, both µY.λ ~X.D and νZ.λ ~X.R are just recursive
types rather than inductive and coinductive types resp. SinceD and
R are not checked for functoriality and programs are not checked
for termination or productivity, resp., there are no conditions that
ensure µY.λ ~X.D to be a least fixed-point inhabited only by finite
data, and νZ.λ ~X.R to be a greatest fixed-point that hosts infinite
objects which are productive. However, we keep the notational
distinction to allude to the intended interpretation as least and
greatest fixed-points in a total setting.

Examples 1: Indexed recursive type Datatypes C = µY.λ ~X.D
for D = 〈c1 P1 | · · · | cn Pn〉 describe least fixed point. Choosing
as index domain natural numbers, we can model our previous
definition of Msg as follows in our core language.

µMsg.λX.〈Nil : X = zero× 1 ,
Cons : ΣY :nat.X = suc Y × (Bit×Msg Y)〉

Example 2: Indexed corecursive types Record types C =
νZ.λ ~X.R with R = {d1 : N1, . . . , dn : Nn} are recursive la-
beled products and describe infinite data. As for data, non-recursive
record types are encoded by a void ν-abstraction ν .λ ~X.R. Con-
sider our previous codata type definition for indexed streams, i.e.
Str, with the three observations, GetBit, NextBits, and Done. De-
pending on the index N we choose the corresponding observation.
It directly translates to the following:

νStr.λM. { Done : M = zero → ↑NextMsg ,
NextBits : ΠN :nat.M = suc N→ Str N ,
GetBit : ΠN :nat.M = suc N→ ↑Bit }

µNextMsg. 〈 NextMsg : ΣN :nat.↓ Str N 〉

Dually to data types where we employ Σ and product types, we
use Π and simple function types when defining codata types.

3.3 Terms and Typing
In our core language, we distinguish between terms which have
negative type and values which have positive type (see Fig. 7). Val-
ues include unit (written as ()), pairs (written as (e1, e2)), depen-
dent pairs (written as pack 〈C, e〉). We also include data built us-
ing constructors (written as c v). Finally we can embed computa-
tion into values using thunk t. A thunk represents a term which is
suspended and may produce a value at a later stage. Last but not
least, we include the witness for equality between two index ob-
jects, written as ℘, in our values.

Computations (or terms) correspond to negative types. Compu-
tations include recursion (written as rec f.e) and functions (written
as fn ~u) which are defined by (co)pattern matching. In addition, we

Values v ::= x | () | (v1, v2) | ℘ | thunk t | c p | pack 〈C, p〉
Terms t ::= rec f.t | fn ~u | t v | t C | produce v | t.d

| t1 to x.t2 | force v
Branch u ::= q 7→ t | q
Pattern p ::= x | () | (p1, p2) | ℘ | c p | pack 〈C, p〉
Copattern q ::= · | p q | C q | .d q

Figure 7. Values, Terms, (Co)patterns

have application (written as t v), index domain application (written
as t C) and destructor applications (written as t.d); given a term
t describing infinite data we unfold its corresponding corecursive
type to a record and select the component d of the record. Finally,
we can force a suspended computation v using force v and produce
a value (written as produce v). We also include a sequencing term
which is written as (t1 to x.t2).

We eliminate expressions of positive type such as recursive
types via pattern matching; dually, we make observations about ex-
pressions of negative types such as corecursive types. Simultane-
ous (co)patterns are described using a spine that is built out of pat-
terns (written as p), or observations (written as .d). Patterns them-
selves are derived from values and can be defined using pattern
variables x, pairs (written as (p1, p2)), pattern instances (written as
pack 〈C, e〉) and patterns formed with a data constructor c.

Branches in case-expressions are modelled by q 7→ t. We also
allow branches with no body – they will only succeed if the pattern
q is impossible, i.e. we arrived at some equality constraints that lead
to a contradiction. Strictly speaking, it is not necessary as we could
always write some arbitrary expression for the body which would
be inaccessible and thus never reached.

The typing rules for terms and values are mostly straightforward
(see Fig. 8). We highlight here a few. Typing of index object C
refers to typing of index-terms as described in Section 3.1. A
constructor takes a term of type Dc[µY.λ ~X.D/Y, ~C/ ~X], yielding
a term of type (µY.λ ~X.D) ~C. A thunk of a computation is well
typed, if the computation itself is. The witness for an equality
C1 = C2 is simply ℘ provided C1 and C2 are equal in our
index domain using our rules from Fig. 2. As we have constraints
in ∆ we also include type conversion rules (TPConv and TNConv).
∆ ` P = P ′ (and resp. ∆ ` N = N ′) is defined inductively
on the structure of positive and negative types. When we compare
∆ ` (P ~C) = (P ′ ~C′), we simply compare ∆ ` P = P ′ and
for all i we have ∆ ` Ci = C′i falling back to the comparison on
index terms. We proceed similarly when comparing negative types.

A rec-expression introduces a variable of type ↓N in the type
t. Dual to a constructor, an observation .d takes a term of type
(νZ.λ ~X.R) ~C yielding a term of type Rd[νZ.λ ~X.R/Z, ~C/ ~X].
For applications we ensure that we apply a term of function type
to a value. The operational reading of t1 to x.t2 is that we first
evaluate the computations of t1 to produce v1 of type ↑P , and

short description of paper 7 2016/3/17

∆; Γ ` v : P Value Typing: In index-context ∆ and context Γ, value v has positive type P .

∆; Γ ` () : 1
TUnit

Γ(x) = P

∆; Γ ` x : P
TVar

∆; Γ ` v1 : P1 ∆; Γ ` v2 : P2

∆; Γ ` (v1, v2) : P1 × P2
TPair

∆ ` C : U ∆; Γ ` v : P [C/X]

∆; Γ ` pack 〈C, v〉 : ΣX:U.P
TPack

∆; Γ ` v : Dc[µY.λ ~X.D/Y, ~C/ ~X]

∆; Γ ` c v : (µY.λ ~X.D) ~C
TConst

∆; Γ ` v : P ′ ∆ ` P = P ′

∆; Γ ` v : P
TPConv

∆ ` C1 = C2

∆; Γ ` ℘ : C1 = C2
TCProd

∆; Γ ` t : N

∆; Γ ` thunk t : ↓N TThunk

∆; Γ ` t : N Computation typing : In index-context ∆ and context Γ, term t has negative type N .

∆; Γ, x : ↓N ` t : N

∆; Γ ` rec x.t : N
TRec

for each i ∆; Γ ` ui : N

∆; Γ ` fn ~u : N
TFn

∆; Γ ` t : (νZλ ~XR) ~C

∆; Γ ` t.d : Rd[νZ.λ ~X.R/Z, ~C/ ~X]
TDest

∆; Γ ` t : P → N ∆; Γ ` v : P

∆; Γ ` t v : N
TApp

∆; Γ ` t : ΠX:U.N ∆ ` C : U

∆; Γ ` t C : N [C/X]
TMApp

∆; Γ ` t : N ′ ∆ ` N = N ′

∆; Γ ` t : N
TNConv

∆; Γ ` v : ↓N
∆; Γ ` force v : N

TForce
∆; Γ ` v : P

∆; Γ ` produce v : ↑P TProduce
∆; Γ ` t1 : ↑P ∆; Γ, x : P ` t2 : N

∆; Γ ` t1 to x.t2 : N
TTo

∆; Γ ` ui : N In index-context ∆ and context Γ, branch ui has negative type N .

∆; Γ;N ` q ↘ ∆′; Γ′;N ′ ∆′; Γ′ ` t : N ′

∆; Γ ` q 7→ t : N

∆; Γ;N ` q ↘ ∆′; Γ′;N ′ # ∈ ∆′

∆; Γ ` q : N

Figure 8. Typing rules for terms.

then evaluate the term t2 where we replace x by the value v1. This
is captured in the typing rule for to-statements.

The function abstraction (written as fn ~u) introduces branches u
of the form q 7→ t. A branch is well typed if the copattern q checks
against the overall type N of the function and synthesizes a new
index-context ∆′, a new context Γ′, and the output typeN ′, against
which the term t is checked. The contexts ∆′ and Γ′ describe the
types of the variables occurring in the pattern together with equality
constraints. Note that ∆′ not only accumulates equality constraints,
but might also contain a contradiction, if some equality constraint
is not satisfied. Our typing rules will then still guarantee that the
body t is effectively simply typed, as all equality constraints will
be trivially true.

As mentioned earlier, we also allow branches that only consist
of a copattern but without a body to allow the programmer to write
inaccessible (co)patterns. We check such branches by verifying that
∆′ contains a contradiction. In this case, we know that the branch
cannot be taken during runtime; it is essentially dead-code and we
simply succeed.

The typing rules for (co)patterns (see Fig. 9) are defined using
the following two judgments:

∆; Γ ` p : P ↘ ∆′; Γ′ Typing for pattern p
∆; Γ;N ` q ↘ ∆′; Γ′;N ′ Typing for copattern q

In both typing judgments, the index-context ∆ and the context Γ
contain variable declarations that were introduced at the outside.
We assume that all variables occurring in the (co)pattern are fresh
with respect to ∆ and Γ and occur linearly, although this is not ex-
plicitly enforced in our rules. When we check a pattern p against
a positive type P in the index-context ∆ and context Γ, we syn-
thesize an index-context ∆′ such that ∆′ is an extension of ∆ (i.e.
∆ ≺ ∆′) and Γ′ is an extension of Γ. We note that as we check
the pattern p we may update and constrain some of the variables al-

ready present in ∆. This happens in the rule Pcon where we fall back
to type checking patterns in our domain and in the rule PEq where
we unify two index objects C1 and C2, and return a new index-
context ∆′ such that ∆′ ` C1 = C2. For simplicity, we thread
through both the index-context ∆ and the context Γ, although only
∆ may actually be refined.

The typing rules for patterns are straightforward except for
equality. A pattern ℘ checks against C1 = C2 provided that C1

and C2 unify in our domain and ∆′ contains the solution which
makes C1 and C2 equal. It might also be the case that C1 does not
unify withC2, i.e. there is no instantiation for the index-variables in
C1 and C2 that makes C1 and C2 equal. In this case, we expect the
judgment ∆ ` C1 = C2 ↘ ∆′ to introduce in ∆′ a contradiction
which will make typing of the expression in the branch trivial
as the branch is inaccessible. This is necessary for the substitution
lemma to hold.

Copattern spines allow us to make observations on a negative
type N in the index-context ∆ and context Γ. As we process the
copattern spine from left to right, we synthesize a negative typeN ′.
Intuitively, N ′ is the suffix of N . As copattern spines also contain
patterns we also return a new index-context ∆′ and context Γ′.

To illustrate we give the typing derivation for the copattern spine
[s N] s ns .GetBit that arises from the program MsgStr given in
Sec. 2.1. This copattern spine is represented in our core language
as (s N) s ns .GetBitM ℘. We now show that it checks against
ΠN :nat.Bit Stream → [nat] Stream → Str N . After in-
ferring the type of N and introducing declarations for s and ns,
we need to show that .GetBit M ℘ has type Str N in the con-
text N :nat and the context Γ = s:Bit Stream, ns:[nat] Stream.
Recall, we write [nat] as a notation for ΣX:nat.1. We show the
partial typing derivation in Fig. 9.

short description of paper 8 2016/3/17

∆; Γ ` p : P ↘ ∆′; Γ′ Pattern p of positive type P extends contexts ∆; Γ into ∆′; Γ′.

∆; Γ ` x : P ↘ ∆; Γ, x:P
PVar

∆; Γ ` p : Dc[µY.λ ~X.D/Y, ~C/ ~X]↘ ∆′; Γ′

∆; Γ ` c p : (µY.λ ~X.D) ~C ↘ ∆′; Γ′
PConst

∆; Γ ` () : 1↘ ∆; Γ
PUnit

∆; Γ ` p1 : P1 ↘ ∆′; Γ′ ∆′; Γ′ ` p2 : P2 ↘ ∆′′; Γ′′

∆; Γ ` (p1, p2) : P1 × P2 ↘ ∆′′; Γ′′
PPair

∆ ` C : U ↘ ∆′ ∆′; Γ ` p : P [C/X]↘ ∆′′; Γ′

∆; Γ ` pack 〈C, p〉 : ΣX:U.P ↘ ∆′′; Γ′
PPack

∆ ` C1 = C2 ↘ ∆′

∆; Γ ` ℘ : C1 = C2 ↘ ∆′; Γ
PEq

∆; Γ;N ` q ↘ ∆′; Γ′;N ′ Copattern q elimininates negative typeN into typeN ′ and extending contexts ∆; Γ into ∆′; Γ′.

∆; Γ;N ` · ↘ ∆; Γ;N
CPBase

∆; Γ ` p : P ↘ ∆′; Γ′ ∆′; Γ′;N ` q ↘ ∆′′; Γ′′;N ′

∆; Γ;P → N ` p q ↘ ∆′′; Γ′′;N ′
CPApp

∆ ` C : U ↘ ∆′ ∆′; Γ;N [C/X] ` q ↘ ∆′′; Γ′;N ′

∆; Γ; ΠX:U.N ` C q ↘ ∆′′; Γ′;N ′
CPMApp

∆; Γ;Rd[(νZ.λ ~X.R)/Z, ~C/ ~X] ` q ↘ ∆′; Γ′;N ′

∆; Γ; (νZ.λ ~X.R) ~C ` .d q ↘ ∆′; Γ′;N ′
CPDest

Example:

...
N : nat `M : nat↘ ∆0

...
∆0 ` s M = s N ↘ ∆1 ∆1 = N : nat,M := N : nat

∆0 ` ℘ : s M = s N ↘ ∆1 ∆1; Γ; StrM ` · ↘ ∆1; Γ; StrM

∆0; Γ; s M = s N → StrM ` ℘ · ↘ ∆1; Γ; StrM

N : nat; Γ; ΠM :nat.s M = s N → StrM `M ℘ · ↘ ∆1; Γ; StrM

N : nat; Γ; StrN ` .GetBitM ℘ · ↘ ∆1; Γ; StrM

where Γ = s : Bit Stream, ns : [nat] Stream and ∆0 = N : nat,M : nat

Figure 9. Type checking for patterns.

Example 3 Recall our previous program genBitStr which gen-
erated Str [2]. Abbreviating RandomBitGenerator simply by RBG,
this program can be elaborated into our core language straightfor-
wardly to a program of type Str 2.

rec genBitStr.fn
| .GetBit (suc zero) ℘ 7→ RandomBigGen ()
| .NextBits (suc zero) ℘ .GetBit z ℘ 7→ RandomBitGen ()
| .NextBits (suc zero) ℘ .NextBits (suc zero) ℘ .Done ℘ 7→

NextMsg (pack 〈(suc zero), genBitStr〉)

Example 4 Next, we consider the translation of readMsg.

rec readMsg.fn
| zero s 7→ produce (Nil (℘, ()), s)
| (suc M) s 7→
(force s).GetBit to c.
(force readMsg) M (thunk (force s).NextBits) to x.
(fn (w, s′) 7→
produce (Cons (pack 〈M, (℘, (c, w))〉), s′)) x

This function deserves some explanation. The type of readMsg
is translated to ΠN :nat.(↓(Str N)) → ↑((Msg N) × ↓(Str z)).
Since Str N is in negative position, it needs to have positive
type (thus the ↓) and so the input s of the function is in fact a
thunk that needs to be forced before we can use the observations
.GetBit and .NextBits. The recursive call needs also to be forced
because the variable readMsg needs to be positive to live in the
context. Let-statements are defined as to-statements whose left-
hand side produces a value, that is then bound to the variable c and
x, respectively. Moreover, the second let-statement in the orignal
program also used pattern matching. Our language does not have

case-expression. Hence, we use a function to pattern match on x.
The output needs to be of negative type but we want to return a
product which is positive. It is thus embedded using a produce-
statement. This also allows the recursive call to be put on the left-
hand side of a to-statement.

4. Evaluation and type preservation
In this section, we present a small step operational semantics using
evaluation contexts (continuations) following Levy (2001). We also
define a non-deterministic coverage algorithm and prove that our
operational semantics satisfies subject reduction and progress.

4.1 Evaluation contexts
Evaluation contexts are defined inductively. We start from a hole ·
and we accumulate values, index objects, observations, and sus-
pended to-bindings.

Evaluation Context K ::= · | v K | C K | .d K | ([] to x.t) K
We note that we only collect closed values, index objects, etc. in the
evaluation context and hence the typing judgment for them does not
carry any contexts. We use the following judgment to define well-
typed evaluation contexts:

N ` K ↘ N ′ Evaluation context K transforms N to N ′

The negative type N describes some computation t which when
used in the evaluation context K returns a computation of type
N ′. Intuitively, t stands for a function fn (

−−−−→
qi 7→ ti) and we match

the evaluation context K against the copattern spine qi and con-
sume part of K to take a step. As evaluation contexts closely cor-

short description of paper 9 2016/3/17

respond to copattern spines, their typing rules follow the ones for
(co)patterns.

When the evaluation context is empty (rule KBase), we simply
return N . Intuitively, nothing is applied to the computation of
type N . If we have a computation of type P → N and our
evaluation context provides a value v of type P , then we check that,
given a computation of type N , applying the remaining evaluation
context takes us to N ′ (see KApp). If we have a computation of
type ΠX:U.N and the evaluation context supplies an index object
C, then we verify that, given a computation of type N [C/X],
applying the remaining evaluation context takes us toN ′. Similarly,
given a term of type (νZ.λ ~X.R)~C and an evaluation context that
supplies an observation .d, we verify that, given a computation of
typeRd[(νZ.λ ~X.R)/Z, ~C/ ~X], applying the remaining evaluation
context takes us to N ′.

Finally, given a computation of type ↑P and an evaluation
context ([] to x.t) K, we check that once we are done evaluating
t and return a computation of type N , passing to it the remaining
evaluation context K yields a computation of type N ′.

N ` · ↘ N
KBase

Rd[(νZ.λ ~X.R)/Z, ~C/ ~X] ` K ↘ N

(νZ.λ ~X.R) ~C ` .d K ↘ N
KDest

` v : P N ` K ↘ N ′

P → N ` v K ↘ N ′
KApp

x : P ` t : N N ` K ↘ N ′

↑P ` ([] to x.t) K ↘ N ′
Kto

N [C/X] ` K ↘ N ′ ` C : U

ΠX:U.N ` C K ↘ N ′
KMApp

4.2 Small step operational semantics
Unlike the language described by Abel et al. (2013) which pre-
sented programs as rewrite rules, we give here the operational se-
mantics in a more traditional functional programming style using a
continuation-based abstract machine semantics. We might view our
language as a core language into which we can compile programs
given as rewrite rules to. More importantly it directly gives rise to
an implementation and illustrates how to extend more traditional
ML-like languages with copattern matching.

Our operational semantics is defined on configurations t;K
which contain a term and an evaluation context. Such pair is said
to have type N ′ (written ` t;K : N ′) if ` t : N and N ` K ↘
N ′. The rules for the operational semantics on configurations are
defined in Fig. 10. To evaluate an expression t1 to x.t2, we evaluate
t1 in the evaluation context extended with [] to x.t2. Once we have
a value v for t1 we pop off [] to x.t2 and continue evaluating
t2[v/x]. Forcing thunks continues the evaluation. When processing
applications (i.e. applications to a value, an index object or an
observation), we simply extend our evaluation context accordingly
until we step a configuration fn (

−−−−→
qi 7→ ti);K. In this case, we

match the evaluation context K against the copattern spine qi
yielding (θ;σ) and then step ti[θ;σ].

Next, we prove that types are preserved during evaluation (see
Theorem 4). This relies on substitution lemmas for values and com-
putations and adequacy of copattern matching. For convenience, we
describe below well-typed environments (θ, σ) and generalize the
relationship between the computation of the type N and an evalua-
tion contexts K that transforms N into N ′.

∆′ ` θ : ∆ ∆′; Γ′ ` σ : Γ[θ]

∆′; Γ′ ` (θ;σ) : (∆; Γ)

` (θ;σ) : (∆; Γ) N [θ] ` K ↘ N ′

` (θ;σ;K) : (∆; Γ;N)↘ N ′

Lemma 2 (Substitution lemmas). The following hold

1. If ∆; Γ ` v : P and ∆′; Γ′ ` (θ;σ) : (∆; Γ)
then ∆′; Γ′ ` v[θ;σ] : P [θ].

t1;K1 −→ t2;K2 t1;K1 evaluates to t2;K2 in one step.

t1 to x.t2;K −→ t1; ([] to x.t2) K
produce v; ([] to x.t) K −→ t[v/x];K
force (thunk t);K −→ t;K
t.d;K −→ t; .d K
t v;K −→ t; v K
t C;K −→ t;C K
rec x.t;K −→ t[thunk (rec x.t)/x];K

K = qi[θ;σ]@K′

fn (
−−−−→
qi 7→ ti);K −→ ti[θ;σ];K′

Figure 10. Operational Semantics

2. If ∆; Γ ` t : N and ∆′; Γ′ ` (θ;σ) : (∆; Γ)
then ∆′; Γ′ ` t[θ;σ] : N [θ].

Proof. The proof of both statements is done by mutual induction on
the derivations of ∆; Γ ` v : P and ∆; Γ ` t : N , respectively

Lemma 3 (Adequacy of copattern matching).

1. Suppose ` v : P . If ` p : P ↘ ∆; Γ and v = p[θ;σ] then
` (θ;σ) : (∆; Γ).

2. Suppose N ` K ↘ N ′′ If N ` q ↘ ∆; Γ;N ′ and K =
q[θ;σ]@K′, then ` (θ;σ;K′) : (∆; Γ;N ′)↘ N ′′.

Proof. The proof is done by induction on the judgments ` p : P ↘
∆; Γ and N ` q ↘ ∆; Γ;N ′.

Theorem 4 (Type preservation).
If ·; · ` t;K : N and t;K −→ t′;K′, then ` t′;K′ : N .

Proof of theorem 4. The proof is done by case analysis on the step-
ping rule. The only interesting case is when dealing with function
abstraction.

K = qi[θ;σ]@K′

fn (
−−−−→
qi 7→ ti);K −→ ti[θ;σ];K′

By inversion on the derivation for ` fn (
−−−−→
qi 7→ ti);K : N , we have

that ` fn (
−−−−→
qi 7→ ti) : N ′ and N ′ ` K ↘ N .

By inversion on the derivation for fn (
−−−−→
qi 7→ ti), we have

·; ·;N ′ ` qi ↘ ∆i; Γi;Ni and ∆i; Γi ` ti : Ni.
By lemma 3, ` θ;σ;K′ : ∆i; Γi;Ni ↘ N . Thus, by substitu-

tion lemma, we have ` ti[θ;σ] : [θ]Ni
Thus, ` ti[θ;σ];K′ : N .

4.3 Coverage
In this section, we define a notion of coverage for copatterns, which
allows us to prove a type safety result in the next section.

To define coverage, we need to take into account that a function
abstraction can be underapplied, i.e., it will not trigger a reduction
step unless we add more to the evaluation context. To take into
account such possibility, we need to introduce some notation. We
define the append operation of evaluation contexts, denoted K@k,
where k = .d | v | [] to x.n | C which adds to the end an
evaluation context. We also use this operation on copatterns.

We now define coverage. The main judgment ∆; Γ;N /| Q de-
fined in Figure 11 means that the (finite) set Q of copatterns covers
the typeN in context ∆; Γ. It is established by iteratively refining a
covering set, begining with the trivial copattern. It is easiest to read
the rules from the top to the bottom. A covering set Q is refined by
choosing a particular copattern q ↘ ∆′; Γ′;N ′ in Q and refining

short description of paper 10 2016/3/17

it further into a (finite) set of copatterns. This is accomplished us-
ing the auxiliary judgment (q ↘ ∆′; Γ′;N ′) =⇒ Q′, which states
that the copattern q refines into the set of copatterns Q′.

There are two different types of refinement which can be done.
The first one is introducing the result type. We look at the type
of a particular rule and we introduce it. If we have an arrow type
P → N , we introduce a variable of that type, yielding the copattern
q@x. If we have a corecursive type, for each observation d ∈ R,
we create a new copattern q@.d for each d ∈ R.

The second type of refinement is the splitting on a variable. We
expose a variable occuring in q, and its type in ∆ or Γ. We write
q[x] for a copattern q with a single distinguished position in which
the variable x occurs. We consider in this judgment the contexts to
be unordered, so the notation Γ, x : P (or ∆, X : U) is simply to
expose any variable x ∈ Γ (X ∈ ∆, respectively), no matter its
actual position in the context. The splitting is done by examining
the type of the exposed variable. If x : P1 × P2, we introduce two
new variables x1 : P1 and x2 : P2 and perform the instantiation
q[(x1, x2)]. If the variable is of recursive type (µY.λ ~X.D)~C, we
introduce a new copattern for each constructor c ∈ D with the
variable replaced by c x′ where x′ : Dc[µY.λ

~X.D/Y , ~C/~X]. If we
have an equality constraint C1 = C2, we attempt to unify them.
If they cannot be unified, we record this copattern as unreachable,
marking it with ⊥. Again we omit for space reasons rules which
perform further refinements on unreachable copatterns.

When splitting on an index variable in ∆, we use the splitting
mechanism from the index domain, as discussed in Section 3.1
which produces a set of refined patterns {(∆i, Ci) | i ∈ I}. We
then return the refined set of copatterns q[Ci/X] for each i ∈ I .

Our coverage algorithm generates a covering set Q. However, it
does not account for writing overlapping and fall-through patterns.
In this sense, our notion of coverage is not complete: there are sets
Q of copatterns which a programmer might write in a program
and one would consider covering, but for which one cannot derive
∆; Γ;N /| Q. However, it would be possible to check that for all
copattern spines q in the generated covering set Q, there exists a
copattern spines q′ in a given program s.t. q is an instance of q′.
For simplicity, we omit this generalization.

With copattern refinement and coverage of evaluation contexts
defined, we are able to prove some technical results which justify
the soundness of the copattern refinement rules. The first of these
states that if a copattern q matches an evaluation context K, and q
refines in one step into the set Q of copatterns, then eventually K
will match one of the copatterns in Q.

Lemma 5. Soundness of copattern refinement
If (q ↘ ∆; Γ;N) =⇒ Q and ` θ;σ;K : ∆; Γ;N ↘ ↑P then
there exists q′ ↘ ∆′; Γ′;N ′ ∈ Q and ` θ′;σ′;K′ : ∆′; Γ′;N ′ ↘
↑P such that q[θ;σ]@K = q′[θ′;σ′]@K′.

Proof. The proof is done by case analysis on (q ↘ ∆; Γ;N) =⇒
Q and inversion on the typing ` θ;σ;K : ∆; Γ;N ↘ ↑P .

The soundness of our notion of coverage now follows easily. It
states that if K is an evaluation context consuming type N , and Q
coversN , then eventuallyK will match one of the copatterns inQ.

Corollary 6. Soundness of coverage
If N ` K ↘ ↑P and ·; ·;N /| Q, then there exists (q ↘
∆; Γ;N ′) ∈ Q, and θ;σ;K′ : ∆; Γ;N ′ ↘ ↑P such that
K = q[θ;σ]@K′.

Proof. By induction on the derivation of ·; ·;N /| Q.

In order for progress to hold for whole programs, we need the
operational semantics to preserve coverage so that the program

cannot become stuck under an incomplete copattern set. The only
concern lies when a covering set is under a substitution.

Lemma 7 (Preservation of coverage under substitution).
If ∆′; Γ′ ` (θ;σ) : ∆; Γ and ∆; Γ;N /| {qi ↘ ∆i; Γi;Ni}i∈I
then there are {∆′i; Γ′i}i∈I such that

∆′; Γ′;N [θ] /| {qi ↘ ∆′i; Γ′i;Ni[θ]}i∈I
and for all i ∈ I , ∆′i; Γ′i ` (θ;σ) : ∆i; Γi

Proof. By induction on the derivation
∆; Γ;N /| {qi ↘ ∆i; Γi;Ni}i∈I .

We are now able to prove progress, assuming each copattern set
Q used in a function abstraction is covering.

Theorem 8 (Progress theorem). If ` t;K : ↑P , then either
t;K −→ t′;K′ or t;K = produce v;·.

Proof. Proof by case analysis on t.
If t is of the form t′.d, or t′ v, or force thunk t′, or t′ to x.t′′,

or rec f.t′, then there is a stepping rule. If t is produce v we have
two cases: If K = · we are done. If K = ([] to x.t′′) K′, then it
steps to [v/x]t′′;K′.

The last case is t = fn ~u. By assumption, if ` fn ~u : N , then we
have N /| Q where Q is the set of copatterns in ~u. By Lemma 6,
there exists q ↘ ∆; Γ;N ′ ∈ Q and θ;σ;K′ : ∆; Γ;N ′ ↘ ↑P
such that K = q[θ;σ]@K′. Hence fn ~u;K steps.

5. Related Work
Our work builds and extends directly the work by Levy (2001) to
track data-dependencies in finite and infinite data. We model fi-
nite data using dependent sums and infinite data using dependent
records where fields share a given index. This is in contrast to de-
pendent records that allow a particular field to depend on previous
ones (Betarte 1998).

Most closely related to our development is the work on DML
(Xi and Pfenning 1999) where the authors also accumulate equality
constraints during type checking to reason about indices. However,
in DML all indices are erased before running the program while we
reason about indices and their instantiation during run-time. As in-
dices are also computationally relevant in fully dependently typed
languages, we believe our work lays the ground of understanding
the interaction of indices and (co)pattern matching in these lan-
guages. Finally, our work may be seen as extending DML to sup-
port both lazy and eager evaluation using (co)pattern matching.

Dependent type theories provide in principle support to track
data dependencies on infinite data, although this has not received
much attention in practice. Agda (?), a dependently typed proof
and programming environment based on Martin Löf’s type theory,
has support for copatterns since version 2.3.4 (Agda team 2014).
We can directly define equality guards and using large eliminations
we can match on index arguments. We use dot-patterns to instruct
Agda that the instantiation of a particular index is forced which al-
lows us to recover the simplicity and performance of linear pattern
matching. However, we believe the meta-theory underlying these
extensions is not fully understood. We see our work as providing
a foundation for what dot-patterns accomplish and investigating
clearly the interactions between equality constraints and (co)pattern
matching.

Our work draws on the distinction between finite data defined
by constructors and infinite data described by observations which
was pioneered by Hagino (1987). Hagino models finite objects via
initial algebras and infinite objects via final coalgebras in category
theory. This work, as others in this tradition such as Cockett and

short description of paper 11 2016/3/17

(q ↘ ∆′; Γ′;N ′) =⇒ Q Copattern q refines into copatterns Q

Impossible (Co)Pattern

(q ↘ ∆′; Γ′;N ′) =⇒ {} if # ∈ ∆′

(Co)Pattern Introduction

(q ↘ ∆′; Γ′; ΠX:U.N ′) =⇒ {q@X ↘ ∆′, X:U ; Γ′;N ′}
(q ↘ ∆′; Γ′;P → N ′) =⇒ {q@x↘ ∆′; Γ′, x:P ;N ′}

(q ↘ ∆′; Γ′; (νZ.λ ~X.R)~C) =⇒ {q@.d↘ ∆′; Γ′;Rd[νZλ
~X.R/Z, ~C/~X] | d ∈ R}

Pattern Refinement

(q[x]↘ ∆′; Γ′, x : C1=C2;N ′) =⇒ {q[℘]↘ ∆′′; Γ′;N ′} provided ∆′ ` C1 = C2 ↘ ∆′′

(q[x]↘ ∆′; Γ′, x : P1 × P2;N ′) =⇒ {q[(x1, x2)]↘ ∆′; Γ′, x1:P1, x2:P2;N ′}
(q[x]↘ ∆′; Γ′, x : ΣX:U.P ;N ′) =⇒ {q[pack 〈X,x′〉]↘ ∆′, X:U ; Γ′, x′:P ;N ′}

(q[x]↘ ∆′; Γ′, x : (µY.λ ~X.D)~C;N ′) =⇒ {q[c x′]↘ ∆′; Γ′, x′:Dc[µY.λ
~X.D/Y , ~C/~X];N ′ | c ∈ D}

(q[X]↘ ∆′; Γ′;N ′) =⇒ {q[Ci]↘ ∆i; (Γ′;N ′)[Ci/X]}i∈I if split(∆′ ` X) = {(∆i ` Ci)}i∈I

∆; Γ;N /| Q Copatterns Q cover type N in context ∆; Γ

∆; Γ;N /| {· ↘ ∆; Γ;N}
∆; Γ;N /| (Q] {q ↘ ∆′; Γ′;N ′}) (q ↘ ∆′; Γ′;N ′) =⇒ Q′

∆; Γ;N /| Q ∪Q′

Figure 11. Coverage

Fukushima (1992) and Tuckey (1997), concentrates on the sim-
ply typed setting. Extensions to dependent types with weakly fi-
nal coalgebra structures have been explored Hancock and Setzer
(2005). However in this line of work one programs directly with
coiterators and corecursors instead of using general recursion and
deep copattern matching. Further, equality is not treated first-class
in their system – however, we believe understanding the role of
equality constraints is central to arriving at a practical sound foun-
dation for dependently typed programming.

Our development of indexed patterns and copatterns builds on
the growing body of work (Zeilberger 2007; Licata et al. 2008)
which relates focusing and linear logic to programming language
theory via the Curry-Howard isomorphism. Zeilberger (2008) and
Krishnaswami (2009) have argued that focusing calculi for proposi-
tional logic provide a proof-theoretic foundation for pattern match-
ing in the simply-typed setting. Our work extends and contin-
ues this line of work to first-order logic (= indexed types) with
(co)recursive types and equality. Our work also takes inspiration
from the proof theory described in Baelde (2012) and Baelde et al.
(2010) and the realization of this work in the Abella system (Baelde
et al. 2014). While Baelde’s proof theory supports coinductive def-
initions and equality, coinduction is defined by a non-wellfounded
unfolding of a coinductive definition. Proofs in this work would
correspond to programs written by (co)iteration. This is in contrast
to our work, which is centered around the duality of (co)data types
and supports simultaneous deep (co)pattern matching.

Finally, our approach of defining infinite data using records
bears close similarity to the treatment and definition of objects and
methods in foundations for object-oriented languages. To specify
invariants about objects and methods and check them statically, De-
Line and Fähndrich (2004) propose typestates. While this work fo-
cuses on the integration of typestates with object-oriented features
such as effects, subclasses, etc., we believe many of the same ex-
amples can be modelled in our framework.

6. Conclusion
In this paper, we have presented an extension of a general purpose
programming language with support for indexed (co)datatype to al-
low the static specification and verification of invariants of infinite
data such as streams or bisimulation properties. In our development
we keep the index domain abstract and clearly state structural re-
quirements our index domain must satisfy. Our language extends
Levy (2001)’s call-by-push value with indexed (co)datatypes and
deep (co)pattern matching. We use equality constraints to reason
about dependencies between index arguments providing a clean
foundation for dependent (co)pattern matching. We describe the
operational semantics using a continuation-based abstract machine
and prove that our language’s operational semantics preserves
types. We also provide a non deterministic algorithm to gener-
ate covering sets of copatterns, ensuring that terms do not get stuck
during evaluation.

In the future, we plan to address two main directions: first,
we aim to prove normalization of our language restricting our
programs to total functions. This then justifies the use of our core
language as a proof language for developing coinductive proofs;
second, we will extend this work to full dependent types providing
a foundation for Agda and Coq.

References
A. Abel and B. Pientka. Well-founded recursion with copatterns:a unified

approach to termination and productivity. In 18th ACM SIGPLAN In-
ternational Conference on Functional Programming (ICFP ’13), pages
185–196, 2013. .

A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns: Programming
infinite structures by observations. In 40th ACM Symp. on Principles of
Programming Languages (POPL’13), pages 27–38, 2013.

Agda team. The Agda Wiki, 2014.

short description of paper 12 2016/3/17

D. Baelde. Least and greatest fixed points in linear logic. ACM Transactions
on Computational Logic, 13(1):2:1–2:44, 2012.

D. Baelde, Z. Snow, and D. Miller. Focused inductive theorem proving.
In J. Giesl and R. Haehnle, editors, 5th International Joint Conference
on Automated Reasoning (IJCAR’10), Lecture Notes in Artificial Intel-
ligence (LNAI 6173), pages 278–292. Springer, 2010.

D. Baelde, K. Chaudhuri, A. Gacek, D. Miller, G. Nadathur, A. Tiu, and
Y. Wang. Abella: A system for reasoning about relational specifications.
Journal of Formalized Reasoning, 7(2):1–89, 2014.

G. Betarte. Dependent Record Types and Formal Abstract Reasoning:
Theory and practice. PhD thesis, Department of Computing Science,
Chalmers University of Technology and University of Göteborg, 1998.

A. Cave and B. Pientka. Programming with binders and indexed data-
types. In 39th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL’12), pages 413–424. ACM
Press, 2012.

J. Cheney and R. Hinze. First-class phantom types. Technical Report
CUCIS TR2003-1901, Cornell University, 2003.

R. Cockett and T. Fukushima. About charity. Technical report, Department
of Computer Science, The University of Calgary, June 1992. Yellow
Series Report No. 92/480/18.

R. DeLine and M. Fähndrich. Typestates for objects. In 18th European
Conference on Object-Oriented Programming (ECOOP 2004), Lecture
Notes in Computer Science (LNCS 3086), pages 465–490. Springer,
2004.

T. Hagino. A typed lambda calculus with categorical type constructors. In
D. H. Pitt, A. Poigné, and D. E. Rydeheard, editors, Category Theory and
Computer Science, volume 283 of Lecture Notes in Computer Science,
pages 140–157. Springer, 1987.

P. Hancock and A. Setzer. Interactive programs and weakly final coalgebras
in dependent type theory. In L. Crosilla and P. Schuster, editors, From
Sets and Types to Topology and Analysis. Towards Practicable Foun-
dations for Constructive Mathematics, pages 115 – 134, Oxford, 2005.
Clarendon Press. ISBN 9780198566519.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, January 1993.

N. R. Krishnaswami. Focusing on pattern matching. In Proceedings of
the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’09, pages 366–378, New York, NY,
USA, 2009. ACM.

P. B. Levy. Call-by-push-value. PhD thesis, Queen Mary and Westeld
College, University of London, 2001.

D. R. Licata, N. Zeilberger, and R. Harper. Focusing on binding and com-
putation. In F. Pfenning, editor, 23rd Symposium on Logic in Computer
Science, pages 241–252. IEEE Computer Society Press, 2008.

R. Milner and M. Tofte. Co-induction in relational semantics. Theoretical
Computer Science, 87(1):209 – 220, 1991.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineer-
ing, Chalmers University of Technology, Sept. 2007. Technical Report
33D.

B. Pientka and A. Cave. Inductive beluga:programming proofs (system de-
scription). In A. P. Felty and A. Middeldorp, editors, 25th International
Conference on Automated Deduction (CADE-25), volume 9195 of Lec-
ture Notes in Computer Science, pages 272–281. Springer, 2015.

C. Tuckey. Pattern matching in Charity. Master’s thesis, The University of
Calgary, July 1997.

H. Xi. Applied type system. In TYPES 2003, volume 3085 of Lecture Notes
in Computer Science, pages 394–408. Springer, 2004.

H. Xi and F. Pfenning. Dependent types in practical programming. In
26th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’99), pages 214–227. ACM Press, 1999.

H. Xi, C. Chen, and G. Chen. Guarded recursive datatype constructors.
In 30th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’03), pages 224–235. ACM, 2003. ISBN 1-
58113-628-5. .

N. Zeilberger. On the unity of duality. Annals of Pure and Applied Logic,
to appear (draft available on Noam’s webpage), 2007.

N. Zeilberger. Focusing and higher-order abstract syntax. In Proceedings
of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’08, pages 359–369, New York, NY,
USA, 2008. ACM.

C. Zenger. Indexed types. Theoretical Computer Science, 187(1-2):147–
165, 1997.

A. Appendix
A.1 Fair scheduling
For the first example, we choose as an index domain bool together
with the constant tt and ff. We define here the fair interleavings of
two streams using an indexed data type Flip.

data Flip (B:bool) (B’:bool) : type =
| Flip0: B = ff * B’ = tt * 1
| Flip1: B = tt * B’ = ff * 1;

data Bit (B:bool) : type =
| F: B = ff * 1
| T: B = tt * 1

We want to implement a fair merge of two streams. Here we zip
a stream of zeroes and a stream of ones together and return a stream
that alternates between zeroes and ones. We describe the type of the
alternating bit stream as follows:

codata Alt (B:bool) → type =
| Zero: B = ff → Bit [ff]
| One : B = tt → Bit [tt]
| Next: Π B’:bool. Flip B B’ → Alt [B’]

We index the fair bit stream Alt with a boolean flag. If the flag
is false (i.e. ff), we can observe a zero; if the flag is true (i.e. tt),
we can observe a one. In both situations we can also always ask
for the next bit using the observation Next, but we flip the boolean
flag before proceeding to return more bits. Let us see how we zip a
stream of zeroes and ones together to an alternating bit stream that
starts with a zero. It essentially produces a stream

F T F T F T F T F T ...

rec merge:(Bit[ff]) Stream→ (Bit[tt])Stream→ Alt[ff] =
fn s0 s1 .Zero ℘ ⇒ s0.Head
| s0 s1 .Next [tt] (Flip0 (℘, ℘, ())) .One ℘⇒ s1.Head
| s0 s1 .Next [tt] (Flip0 (℘, ℘, ()))

.Next [ff] (Flip1 (℘, ℘, ())) ⇒
merge s0.Tail s1.Tail

merge s0 s1 will produce a stream upon which we can make
different observations. If we ask for .Zero, we simply return the
head of the first stream s0. Note that we cannot ask for .One

immediately, since we are making observations about Alt [ff].
We hence must first ask for the next element using the observation
.Next and provide a witness that we can flip ff to tt. Providing
tt and Flip0 as such a witness, we obtain a stream Alt [tt] upon
which we can now ask for .One. We can however also ask for more
bits, by now flipping tt to ff again via the witness Flip1, and
merging the s0.Tail and s1.Tail.

This example illustrates the power of mixing pattern and copat-
tern matching. If we think of the streams s0 and s1 as streams of
requests, zipping both streams together guarantees that we alter-
nate between requests from stream s0 and s1, hence guaranteeing
fairness.

Another scheduling example is the following: given three
streams, the first one sends a’s, the second one b’s, and the third
one c’s, we want to first serve c, followed by b followed by a and
then restart with c.

short description of paper 13 2016/3/17

c b a c b a c b a ...

This can be viewed as a variation of the alternating bit stream
where we cycle between the three streams. We choose again nat as
our index domain. First, we define values a, b, c of priority 1, 2,
and 3 resp. The stream that cycles between elements of priority 1,
priority 2, and priority 3 is defined as a codata type CycStr.

data Val (N:nat) : type =
| a: N = z * 1
| b: N = s z * 1
| c: N = s (s z) * 1

codata CycStr (N:nat) : type =
| GetVal : Val [N]
| Reset : N = z → cycStr [s (s z)]
| Next : Π M:nat. N = suc M → cycStr [M]

rec cycle:(Val [z]) Stream → (Val [s z]) Stream
→ (Val [s (s z)]) Stream → CycStr [s (s z)] =

fn sA sB sC .GetVal ⇒ c
| sA sB sC .Next [s z] ℘ .GetVal ⇒ b
| sA sB sC .Next [s z] ℘ .Next [z] ℘ .GetVal ⇒ a
| sA sB sC .Next [s z] ℘ .Next [z] ℘ .Reset ℘

⇒ cycle sA.Tail sB.Tail sC.Tail

Finally, we merge three streams of different priority such that
we cycle between them and treat each stream fairly.

A.2 Type-Preserving Evaluator with Environments
Next, we consider the implementation of a type preserving evalua-
tor using environment. Environments are lists of values, but values
themselves are modelled coinductively following (Milner and Tofte
1991).

Choosing as an index language the logical framework LF
(Harper et al. 1993) we can elegantly define a fragment of Min-
iML consisting of functions, function application, and fix points to
model recursive functions exploiting higher-order abstract syntax
representation. We define only well-typed terms by defining the
type family tm which is indexed by MiniML types tp. To model
binding in MiniML, we exploit the LF function space taking ad-
vantage of higher-order abstract syntax encoding. For example,
we map MiniML functions to objects define with the constructor
lam with one argument of type tm A → B; and we map MiniML
fixpoints to the constructor fix with one argument of type tm (arr

A B) → tm A → tm B where tm (arr A B) stands for the name
of the recursive function we want to define, tm A stands for the
argument, and tm B describes the body of the recursive functions.

LF tp : type =
| arr : tp → tp → tp
| c : tp

LF tm : tp → type =
| app : tm (arr A B) → tm A → tm B
| lam : (tm A → tm B) → tm (arr A B)
| fix : (tm (arr A B) → tm A → tm B) → tm (arr A B)

Our goal is to write a recursive function that evaluates a term M

in an environment which provides values for all the variables in M.
To accomplish this we rely on ideas from the Beluga, a program-
ming and proof environment that uses contextual LF with first-class
contexts as an index domain (Pientka and Cave 2015; Cave and
Pientka 2012). Contextual LF allows us to work with a term M in
the context ψ in which it is meaningful. Just as kinds classify types
and types classify terms, schemas classify contexts. In our exam-
ple, the context ψ consists of assumptions tm A for some type A.
This is captured using the following schema declaration schema
ctx = tm A

The environment can then be defined inductively as a list of
values. We index the environment by the contextψ to guarantee that
indeed the environment provides well-typed values for all variables
in the context ψ.

data Env (ψ:ctx) : type =
| Empty: ψ = []
| Cons : Σφ:ctx.ΣA:tp.

ψ = (φ, x:tm A) * Val [A] * Env [φ]

The interesting question is how to define Val [A]. A value is a
closure of an open term M in a context ψ, x:tm B together with an
environment Env [ψ]. We note that Env [ψ] might have references
to itself and closures might be circular. Thus, we define values
coinductively.

and codata Val (T:tp) : type =
| FunVal: Π A:tp.Π B:tp.T = arr A B → Closure [arr A B]

and data Closure (T:tp) : type =
| Closure: ΣA:tp.ΣB:tp.Σψ:ctx.

T = arr A B * [ψ, x:tm A ` tm B] * Env [ψ]

Making an observation about a value of type arr A B yields a
closure of the same type. Since we only have functions as values,
this is the only observation we can make. Were we to add also
numbers, we would need to add observations for Val [nat].

Closures are then defined using a recursive type pairing the open
term of type tm B which depends on variables in ψ, x:tm A with
the environment providing values for variables in ψ.

We can now implement a type-preserving evaluator as defined
in Figure 12. The evaluation is done by case analysing the term.
There are three different possibilities: if the term is a variable from
the context ψ, written as #p, we use a lookup function which returns
the value corresponding to the variable in the context.

In the lambda case, we create a closure of the environment env
together with the term in the extend context. We could have ap-
pended the observation Val to the specified patterns, but for clar-
ity chose to return a function which is guarded by the observation.
When we encounter an application, we first evaluate E1 to a clo-
sure Closure [ψ,x:tm _ ` E], then evaluate the term E2 to some
value v2, and finally evaluate E in the environment which is ex-
tended with the value v2. Finally, we consider fix-points. Here we
want to return a closure of type arr A B which consists of an en-
vironment providing values for ψ,f:tm (arr A B) together with
the term [ψ, f: tm (arr A B), x:tm A ` E]. The tricky part is
to create the environment for ψ,f:tm (arr A B), in particular pro-
viding a value for f. Intuitively, we want to provide as a value the
closure of type arr A B we are currently building. We accomplish
this using the corecursive function unfold which takes the term in
the extended context and the environment in the context ψ and re-
turns a value of type arr A B. This is the type of both f and of the
closure itself. As mentioned the key is to provide a value for f -
we simply use unfold e env, the value computated by unfold it-
self. Since the corecursive call is guarded by the observation Val

this corecursive function is productive. We have hence represented
environments and values in a circular fashion.

As this example illustrates, adding coinductive definitions to the
programming and proof environment Beluga allows us to define
coinductive properties about formal systems specified in LF. Im-
plementing the pi-calculus in LF, we can then define bisimulation
properties about processes as coinductive data types.

A.3 Bisimulation of Automata
In this section, we define an index domain of states, actions, tran-
sitions and final states allowing us to describe automata. We can
also think of encoding it in LF and choose LF as our index domain,
as we did in the previous example. Then, we proceed two describe
bisimulation of states and to prove that states in two different au-
tomata are bisimilar.

The index domain contains four different types. The two firsts
are state and action whose terms are simply constants. Our ex-
ample will assume there are five states denoted s1, s2, s3, t1, and

short description of paper 14 2016/3/17

rec eval:Πψ:ctx.ΠA:tp.[ψ `tm A[]]→ Env [ψ] → Val [A] =
fn [ψ] [A] [ψ ` #p] env ⇒ lookup [ψ ` #p] env

| [ψ] [arr A B] [ψ ` lam A[] B[] λx.E] env .FunVal [A] [B] ℘ ⇒
Closure <ψ, <A, (℘, [ψ, x:tm A[] ` E] , env) >>>

| [ψ ` app A[] B[] E1 E2] env ⇒
let v1 = eval [ψ] [arr A B] [ψ ` E1] env in
let Closure <ψ, <A, (℘, [ψ,x:tm A[] ` E], env’) >>> = v1.FunVal [A] [B] ℘ in
let v2 = eval [ψ] [A] [ψ ` E2] env in

eval [ψ] [B] [ψ,x:tm A[] ` E] (Cons <φ, <A, (℘, v2, env’)>>)

| [ψ ` fix A[] B[] (λf. λx.E)] env ⇒
unfold [ψ] [A] [B] [ψ, f:tm (arr A[] B[]), x:tm B[] ` E] env

rec unfold : Πψ:ctx.Π A:tp.ΠB:tp.[ψ,f:tm (arr A[] B[]), x:tm A[] t̀m B] → Env [ψ] → Val [arr A B] =
fn [ψ] [A] [B] [ψ, f, x ` E] env Val ⇒
Closure <ψ, <A, (℘, [ψ, f:tm (arr A[] B[]), x:tm A[] ` E],

(Cons <ψ, <arr A B, (℘, (unfold [ψ] [A] [B] t env), env)))>>

Figure 12. Environment-based evaluator

s1

s2 s3

t1

t2

a b

a, b a, b

a, ba, b

Figure 13. Two automata

t2 but we can assume the type is inhabited by arbitarily many of
those. Similarly, we will assume that we have two actions a and b,
but we could have arbitrarily many.

The other two types are the types of transitions and final states.
Transitions are indexed by two states and an action, while final
states are indexed by the state they represent. They are again in-
habited by constants. We have s1-a-s2 to denote the single term
of type transition s1 a s2. We assume we have such a term for
every edge in our automata. The list is the following.

s1-a-s2 : transition s1 a s2.
s1-b-s3 : transition s1 b s3.
s2-a-s1 : transition s2 a s1.
s2-b-s1 : transition s2 b s1.
s3-a-s1 : transition s3 a s1.
s3-b-s1 : transition s3 b s1.
t1-a-t2 : transition t1 a t2.
t1-b-t2 : transition t1 b t2.
t2-a-t1 : transition t2 a t1.
t2-a-t1 : transition t2 a t1.

For final states, we have final-s1 and final-t1 to denote the
terms of the types final s1 and final t1. The automata are drawn
in Figure 13.

Bisimulation of states is then defined through a codata type. It
contains four different observations. The first observation describes
that S is similar to T, namely that a state S is similar to a state T if for
all actions c and states S’ if there is a transition from S to S’ using
A, then there is a state T’ and a transition from T to T’ using A such
that s’ is bisimilar with T’. The second observation represents the
other direction. The third and fourth observations describes that S
is a final state if and only if T is a final state.

codata Bisim (S:state) (T:state) : type =
| Left : Π A:action.Π S’:state.

Π Tr:transition S A S’. Σ T’:state.
Σ Tr’:transition T A T’. Bisim [S’] [T’]

| Right : Π A:action.Π T’:state.
Π Tr:transition T A T’.Σ S’:state.
Σ Tr’:transition S A S’. Bisim [S’] [T’]

| FinalL : Π f:final S. Σ f’:final T. 1
| FinalR : Π f:final T. Σ f’:final S. 1

Now we can go on and prove that s1 and t1 are bisimilar and
that t2 is bisimilar with both s2 and s3. This is defined using the
following mutually recursive terms.

rec bisim-s1-t1 : Bisim [s1] [t1]
fn .Left [A] [S] [s1-a-s2] ⇒

<t2, <t1-a-t2, bisim-s2-t2>>
| .Left [A] [S] [s1-b-s3] ⇒

<t2, <t1-b-t2, bisim-s3-t2>>
| .Right [A] [S] [t1-a-t2] ⇒

<s2, <s1-a-s2, bisim-s2-t2>>
| .Right [A] [S] [t1-b-t2] ⇒

<s3, <s1-b-s3, bisim-s3-t2>>
| .FinalL [final-s] ⇒ <final-t, ()>
| .FinalR [final-t] ⇒ <final-s, ()>

and bisim-s2-t2 : Bisim [s2] [t2]
fn .Left [A] [S] [s2-a-s1] ⇒

<t1, <t2-a-t1, bisim-s1-t1>>
| .Left [A] [S] [s2-b-s1] ⇒

<t1, <t2-b-t1, bisim-s1-t1>>
| .Right [A] [S] [t2-a-t1] ⇒

<s1, <s2-a-s1, bisim-s1-t1>>
| .Right [A] [S] [t2-b-t1] ⇒

<s1, <s2-a-s1, bisim-s1-t1>>

and bisim-s3-t2 : Bisim [s3] [t2]
fn .Left [A] [S] [s3-a-s1] ⇒

<t1, <t2-a-t1, bisim-s1-t1>>
| .Left [A] [S] [s3-b-s1] ⇒

<t1, <t2-b-t1, bisim-s1-t1>>
| .Right [A] [S] [t2-a-t1] ⇒

<s1, <s3-a-s1, bisim-s1-t1>>
| .Right [A] [S] [t2-b-t1] ⇒

<s1, <s3-a-s1, bisim-s1-t1>>

In order for the types of those terms to make sense, we must
have that the introduction of the pattern [s3-a-s1] fixes constraints
on A and S. As such, the pattern judgment ∆ ` C : U ↘ ∆′ will
refine the type of variables in ∆′, unlike in the definition of our
index domain of natural numbers.

In addition, we have no copattern branch for .FinalL and .

FinalR when dealing with the non final states. If no term of type

short description of paper 15 2016/3/17

final S for some state S is valid, then coverage removes the branch
as there is nothing to prove.

A.4 Proofs
Lemma 1. If ∆ ` C1 = C2 ↘ ∆′ and ∆1 ` θ : ∆ then there is
a ∆′1 such that ∆1 ` C1[θ] = C2[θ]↘ ∆′1 and ∆′1 ` θ : ∆′.

Proof. From ∆ ` C1 = C2 ↘ ∆′, we have ∆ ` C1 : U and
∆ ` C2 : U . Hence, ∆1 ` C1[θ] : U [θ] and ∆1 ` C2[θ] : U [θ].
By Req. 2, there is a ∆′1 such that ∆1 ` C1[θ] = C2[θ] ↘ ∆′1.
Thus, ∆′1 ` C1[θ] = C2[θ] and ∆1 ≺ ∆′1. But then ∆′1 ` · : ∆1.
By composition of substitutions, ∆′1 ` θ : ∆. By Req. 3, we can
deduce that ∆′1 ` θ : ∆′.

Lemma A.1. If ∆; Γ ` p : P ↘ ∆′; Γ′ and ∆1; Γ1 ` (θ;σ) :
(∆; Γ) then there are ∆′1 and Γ′1 such that ∆1; Γ1 ` p : P [θ] ↘
∆′1; Γ′1 and ∆′1; Γ′1 ` (θ;σ) : (∆′; Γ′).

Proof. Implicitly here we assume that the variables bound in p are
fresh for dom(θ;σ).

By induction on ∆; Γ ` p : P ↘ ∆′; Γ′.

Case ∆; Γ ` x : P ↘ ∆; Γ, x:P

Trivially, ∆1; Γ1 ` x : P [θ]↘ ∆1; Γ1, x:P [θ].
Then, ∆1; Γ1, x:P [θ] ` (θ;σ) : (∆; Γ, x:P)

Case ∆; Γ ` () : 1↘ ∆; Γ Trivial.

Case
∆; Γ ` p : Dc[µY.λ ~X.D/Y, ~C/ ~X]↘ ∆′; Γ′

∆; Γ ` c p : (µY.λ ~X.D) ~C ↘ ∆′; Γ′

By induction hypothesis, there are ∆′1 and Γ′1 such that
∆1; Γ1 ` p : (Dc[µY.λ ~X.D/Y, ~C/ ~X])[θ]↘ ∆′1; Γ′1 and
∆′1; Γ′1 ` (θ;σ) : (∆′; Γ′).

Hence, ∆1; Γ1 ` c p : ((µY.λ ~X.D) ~C)[θ]↘ ∆′1; Γ′1

Case
∆; Γ ` p1 : P1 ↘ ∆′; Γ′ ∆′; Γ′ ` p2 : P2 ↘ ∆′′; Γ′′

∆; Γ ` (p1, p2) : P1 × P2 ↘ ∆′′; Γ′′

By induction hypothesis, we have ∆′1 and Γ′1 such that
∆1; Γ1 ` p1 : P1[θ]↘ ∆′1; Γ′1 and
∆′1; Γ′1 ` (θ;σ) : (∆′; Γ′).

By induction hypothesis, we have ∆′′1 and Γ′′1 such that
∆′1; Γ′1 ` p2 : P2[θ]↘ ∆′′1 ; Γ′′1 and
∆′′1 ; Γ′′1 ` (θ;σ) : (∆′′; Γ′′).

Hence, ∆1; Γ1 ` (p1, p2) : (P1 × P2)[θ]↘ ∆′′1 ; Γ′′1

Case
∆ ` C : U ↘ ∆′ ∆′; Γ ` p : P [C/X]↘ ∆′′; Γ′

∆; Γ ` pack 〈C, p〉 : ΣX:U.P ↘ ∆′′; Γ′

By inversion on ∆1; Γ1 ` (θ;σ) : (∆; Γ), we have ∆1 ` θ : ∆
and ∆1; Γ1 ` σ : Γ[θ].

By Req 4, there is a ∆′1 such that ∆1 ` C : U [θ] ↘ ∆′1 and
∆′1 ` θ : ∆′.

Thus, ∆′1; Γ1 ` (θ;σ) : (∆′; Γ).
By induction hypothesis, there are ∆′′1 and Γ′1 such that

∆′1; Γ1 ` p : P [C/X][θ]↘ ∆′′1 ; Γ′1 and
∆′′1 ; Γ′1 ` (θ;σ) : (∆′′; Γ′).

Hence, ∆1; Γ1 ` pack 〈C, p〉 : (ΣX:U.P)[θ]↘ ∆′′1 ; Γ′1

Case
∆ ` C1 = C2 ↘ ∆′

∆; Γ ` ℘ : C1 = C2 ↘ ∆′; Γ

By Lemma 1, there is a ∆′1 such that ∆1 ` C1[θ] = C2[θ] ↘
∆′1 and ∆′1 ` θ : ∆′.

Hence, ∆1; Γ1 ` ℘ : C1[θ] = C2[θ]↘ ∆′1; Γ1

Lemma A.2. If ∆; Γ;N ` q ↘ ∆′; Γ′;N ′ and ∆1; Γ1 ` (θ;σ) :
(∆; Γ) then there are ∆′1 and Γ′1 such that ∆1; Γ1;N [θ] ` q ↘
∆′1; Γ′1;N ′[θ] and ∆′1; Γ′1 ` (θ;σ) : (∆′; Γ′).

Proof. Implicitly here we assume that the variables bound in q are
fresh for dom(θ;σ).

By induction on ∆; Γ;N ` q ↘ ∆′; Γ′;N ′.

Case ∆; Γ;N ` · ↘ ∆; Γ;N

Trivial.

Case
∆; Γ ` p : P ↘ ∆′; Γ′ ∆′; Γ′;N ` q ↘ ∆′′; Γ′′;N ′

∆; Γ;P → N ` p q ↘ ∆′′; Γ′′;N ′

By Lemma A.1, we have ∆′1 and Γ′1 such that
∆1; Γ1 ` p : P [θ]↘ ∆′1; Γ′1 and
∆′1; Γ′1 ` (θ;σ) : (∆′; Γ′).

By induction hypothesis, we have ∆′′1 and Γ′′1 such that
∆′1; Γ′1;N [θ] ` q ↘ ∆′′1 ; Γ′′1 ;N ′[θ] and
∆′′1 ; Γ′′1 ` (θ;σ) : (∆′′; Γ′′).

Hence, we have ∆′′1 and Γ′′1 such that
∆1; Γ1; (P → N)[θ] ` p q ↘ ∆′′1 ; Γ′′1 ;N ′[θ] and
∆′′1 ; Γ′′1 ` (θ;σ) : (∆′′; Γ′′).

Case
∆ ` C : U ↘ ∆′ ∆′; Γ;N [C/X] ` q ↘ ∆′′; Γ′;N ′

∆; Γ; ΠX:U.N ` C q ↘ ∆′′; Γ′;N ′

By inversion on ∆1; Γ1 ` (θ;σ) : (∆; Γ), we have ∆1 ` θ : ∆
and ∆1; Γ1 ` σ : Γ[θ].

By Req. 4, there is a ∆′1 such that ∆1 ` C : U [θ] ↘ ∆′1 and
∆′1 ` θ : ∆′.

Thus, ∆′1; Γ1 ` (θ;σ) : (∆′; Γ).
By induction hypothesis, there are ∆′′1 and Γ′1 such that

∆′1; Γ1;N [C/X][θ] ` q ↘ ∆′′1 ; Γ′1;N ′[θ] and
∆′′1 ; Γ′1 ` (θ;σ) : (∆′′; Γ′).

Hence, ∆1; Γ1; ΠX:U.N [θ] ` C q ↘ ∆′′1 ; Γ′1;N ′[θ]

Case
∆; Γ;Rd[(νZ.λ ~X.R)/Z, ~C/ ~X] ` q ↘ ∆′; Γ′;N ′

∆; Γ; (νZ.λ ~X.R)~C ` .d q ↘ ∆′; Γ′;N ′

By induction hypothesis, there are ∆′1, Γ′1 such that
∆1; Γ1;Rd[(νZ.λ ~X.R])/Z, ~C/ ~X][θ] ` q ↘ ∆′1; Γ′1;N ′[θ] and
∆′1; Γ′1 ` (θ;σ) : (∆′; Γ′).

Hence, ∆1; Γ1; ((νZ.λ ~X.R) ~C)[θ] ` .d q ↘ ∆′1; Γ′1;N ′[θ]

Lemma 2 (Substitution lemmas). The following hold

1. If ∆; Γ ` v : P and ∆′; Γ′ ` (θ;σ) : (∆; Γ)
then ∆′; Γ′ ` v[θ;σ] : P [θ].

2. If ∆; Γ ` t : N and ∆′; Γ′ ` (θ;σ) : (∆; Γ)
then ∆′; Γ′ ` t[θ;σ] : N [θ].

Proof. The proof of both statements is done by mutual induction
on the derivations of ∆; Γ ` v : P and ∆; Γ ` t : N , respectively.
Let us start with the cases for Statement 1.

Case ∆; Γ ` () : 1
TUnit

Trivial as [θ;σ]() = ().

Case
Γ(x) = P

∆; Γ ` x : P
TVar

∆′; Γ′ ` x[σ] : P [θ] by definition of ∆′; Γ′ ` σ : Γ[θ]

Case
∆; Γ ` v1 : P1 ∆; Γ ` v2 : P2

∆; Γ ` (v1, v2) : P1 × P2
TPair

∆′; Γ′ ` v1[θ;σ] : P1[θ] by induction on ∆; Γ ` v1 : P1

∆′; Γ′ ` v2[θ;σ] : P2[θ] by induction on ∆; Γ ` v2 : P2

short description of paper 16 2016/3/17

Hence, ∆′; Γ′ ` (v1, v2)[θ;σ] : (P1 × P2)[θ].

Case
∆ ` C : U ∆; Γ ` v : P [C/X]

∆; Γ ` pack 〈C, v〉 : ΣX:U.P
TPack

∆′ ` C[θ] : U [θ] by Requirement 1.
∆′; Γ′ ` v[θ;σ] : P [C/X][θ] by induction hypothesis
∆′; Γ′ ` v[θ;σ] : P [θ][C[θ]/X] by properties of substitution
Hence, ∆′; Γ′ ` pack 〈C, v〉 [θ;σ] : (ΣX:U.P)[θ]

Case
∆; Γ ` v : Dc[µY.λ ~X.D/Y, ~C/ ~X]

∆; Γ ` c v : (µY.λ ~X.D) ~C
TConst

∆′; Γ′ ` v[θ;σ] : Dc[µY.λ ~X.D/Y, ~C/ ~X][θ] by induction
hypothesis

∆′; Γ′ ` v[θ;σ] : Dc[θ][µY.λ ~X.D[θ]/Y, ~C[θ]/ ~X]
by properties of substitution

Hence, ∆′; Γ′ ` (c v)[θ;σ] : ((µY.λ ~X.D) ~C)[θ]

Case
∆; Γ ` v : P ′ ∆ ` P = P ′

∆; Γ ` v : P
TPConv

∆′; Γ′ ` v[θ;σ] : P ′[θ] by induction hypothesis
∆′ ` P [θ] = P ′[θ] by definition of equality judgment
Hence, ∆′; Γ′ ` v[θ;σ] : P [θ]

Case
∆ ` C1 = C2

∆; Γ ` ℘ : C1 = C2
TCProd

∆′ ` C1[θ] = C2[θ] by definition of equality
Hence, ∆′; Γ′ ` ℘[θ;σ] : (C1 = C2)[θ]

Case
∆; Γ ` t : N

∆; Γ ` thunk t : ↓N TThunk

∆′; Γ′ ` t[θ;σ] : N [θ] by Statement 2

Now, we prove the cases for Statement 2.

Case
∆; Γ, x : ↓N ` t : N

∆; Γ ` rec x.t : N
TRec

∆′; Γ′, x : ↓N [θ] ` t[θ;σ] : N [θ] by induction hypothesis
Hence, ∆′; Γ′ ` (rec x.t)[θ;σ] : N [θ].

Case
∆; Γ ` t : (νZλ ~XR) ~C

∆; Γ ` t.d : Rd[νZ.λ ~X.R/Z, ~C/ ~X]
TDest

∆′; Γ′ ` t[θ;σ] : (νZλ ~XR[θ]) ~C[θ] by induction hypothesis
Hence, ∆′; Γ′ ` (t.d)[θ;σ] : Rd[νZ.λ ~X.R/Z, ~C/ ~X][θ]

Case
∆; Γ ` t : P → N ∆; Γ ` v : P

∆; Γ ` t v : N
TApp

∆′; Γ′ ` t[θ;σ] : P [θ]→ N [θ] by induction hypothesis
∆′; Γ′ ` v[θ;σ] : P [θ] by Statement 1
Hence, ∆′; Γ′ ` (t v)[θ;σ] : N [θ]

Hence, ∆′; Γ′ ` (t.d)[θ;σ] : Rd[νZ.λ ~X.R/Z, ~C/ ~X][θ]

Case
∆; Γ ` t : ΠX:U.N ∆ ` C : U

∆; Γ ` t C : N [C/X]
TMApp

∆′; Γ′ ` t[θ;σ] : ΠX:U.N [θ] by induction hypothesis
∆′ ` C[θ] : U [θ] by Requirement 1
∆′; Γ′ ` (t C)[θ;σ] : N [θ][C[θ]/X] by typing rule
∆′; Γ′ ` (t C)[θ;σ] : N [C/X][θ] by properties of substitution

Case
∆; Γ ` t : N ′ ∆ ` N = N ′

∆; Γ ` t : N
TNConv

∆′; Γ′ ` t[θ;σ] : N ′[θ] by induction hypothesis
∆′ ` N [θ] = N ′[θ] by definition of equality
Hence, ∆′; Γ′ ` t[θ;σ] : N [θ]

Case
∆; Γ ` v : ↓N

∆; Γ ` force v : N
TForce

∆′; Γ′ ` v[θ;σ] : ↓N [θ] by Statement 1
Hence, ∆′; Γ′ ` (force v)[θ;σ] : N [θ]

Case
∆; Γ ` v : P

∆; Γ ` produce v : ↑P TProduce

∆′; Γ′ ` v[θ;σ] : P [θ] by Statement 1
Hence, ∆′; Γ′ ` (produce v)[θ;σ] : (↑P)[θ]

Case
∆; Γ ` t1 : ↑P ∆; Γ, x : P ` t2 : N

∆; Γ ` t1 to x.t2 : N
TTo

∆′; Γ′ ` t1[θ;σ] : ↑P [θ] by induction hypothesis
∆′; Γ′, x : P [θ] ` t2[θ;σ] : N [θ] by induction hypothesis
Hence ∆′; Γ′ ` (t1 to x.t2)[θ;σ] : N [θ]

Case
for each i ∆; Γ ` ui : N

∆; Γ ` fn ~u : N
TFn

Each branch is of the form ∆; Γ ` qi 7→ ti : N . By inversion
on this judgment, we have ∆; Γ;N ` qi ↘ ∆i; Γi;Ni and
∆i; Γi ` ti : Ni. By Lemma A.2, we have ∆′i and Γ′i such that
∆′; Γ′;N [θ] ` q ↘ ∆′i; Γ′i;Ni[θ] and ∆′i; Γ′i ` (θ;σ) : (∆i; Γi).
Hence ∆′; Γ′ ` qi 7→ ti[θ;σ] : N [θ].

Lemma 3 (Adequacy of copattern matching).

1. Suppose ` v : P . If ` p : P ↘ ∆; Γ and v = p[θ;σ] then
` (θ;σ) : (∆; Γ).

2. Suppose N ` K ↘ N ′′ If N ` q ↘ ∆; Γ;N ′ and K =
q[θ;σ]@K′, then ` (θ;σ;K′) : (∆; Γ;N ′)↘ N ′′.

Proof. By induction on the judgments ` p : P ↘ ∆; Γ and
N ` q ↘ ∆; Γ;N ′. We show some interesting cases:

Case ` x : P ↘ ·;x:P :
Then v = σ(x). So ` (θ;σ) : (·;x:P) as required.

Case
` C1 = C2 ↘ ∆

` ℘ : C1=C2 ↘ ∆; ·
By inversion lemma on ` v : P , we have ` C1=C2.
Since ` θ : ·, we can use Req. 3, to conclude that ` θ : ∆ and

thus ` (θ;σ) : (∆; ·).

Lemma 5. Soundness of copattern refinement
If (q ↘ ∆; Γ;N) =⇒ Q and ` θ;σ;K : ∆; Γ;N ↘ ↑P then
there exists q′ ↘ ∆′; Γ′;N ′ ∈ Q and ` θ′;σ′;K′ : ∆′; Γ′;N ′ ↘
↑P such that q[θ;σ]@K = q′[θ′;σ′]@K′.

Proof. The proof is done by case analysis on (q ↘ ∆; Γ;N) =⇒
Q and inversion on the typing ` θ;σ;K : ∆; Γ;N ↘ ↑P .

Lemma 7 (Preservation of coverage under substitution).
If ∆; Γ;N /| {qi ↘ ∆i; Γi;Ni}i∈I and ∆′; Γ′ ` (θ;σ) : ∆; Γ
then there are {∆′i; Γ′i}i∈I such that

∆′; Γ′;N [θ] /| {qi ↘ ∆′i; Γ′i;Ni[θ]}i∈I
and for all i ∈ I , ∆′i; Γ′i ` (θ;σ) : ∆i; Γi

Proof. Implicitly here we assume that the variables bound in qi are
fresh for dom(θ;σ).

By induction on the derivation
∆; Γ;N /| {qi ↘ ∆i; Γi;Ni}i∈I . We show some interesting
cases:

Case ∆; Γ;N /| {· ↘ ∆; Γ;N}
Trivial.

Case
∆; Γ;N /| (Q] {q ↘ ∆′; Γ′;N ′}) (q ↘ ∆′; Γ′;N ′) =⇒ Q′

∆; Γ;N /| Q ∪Q′

short description of paper 17 2016/3/17

Using the induction hypothesis, we have {∆′i; Γ′i}i∈I where I is
the index set for Q] {q ↘ ∆′; Γ′;N ′} such that
∆′; Γ′;N [θ] /| {qi ↘ ∆′i; Γ′i;Ni[θ]}i∈I and for all i ∈ I ,
∆′i; Γ′i ` (θ;σ) : ∆i; Γi.

Now, we need to show that for all i ∈ I ′ where I ′ is the index set
for Q′, we have {∆′i; Γ′i}i∈I′ such that {qi ↘ ∆′i; Γ′i;Ni[θ]}i∈I′
and for all i ∈ I ′ ∆′i; Γ′i ` (θ;σ) : ∆i; Γi. This is done by case
analysis on (q ↘ ∆q; Γq;Nq) =⇒ Q′ using from the induction
hypothesis ∆′; Γ′;N [θ] ` q ↘ ∆′q; Γ′q;Nq[θ] and
∆′q; Γ′q ` (θ;σ) : ∆q; Γq .

Subcase

∆q ` C1 = C2 ↘ ∆̂

(q[x]↘ ∆q; Γq, x : C1=C2;Nq) =⇒ {q[℘]↘ ∆̂; Γq;Nq}

By Lemma 1, there is a ∆̂′ such that ∆′q ` C1[θ] = C2[θ] ↘ ∆̂′

and ∆̂′ ` θ : ∆̂.
Thus, ∆̂′; Γ′q ` (θ;σ) : ∆̂; Γq and

(q[x]↘ ∆′q; Γ′q, x : C1[θ]=C2[θ];Nq[θ])

=⇒ {q[℘]↘ ∆̂′; Γ′q;Nq[θ]}

Subcase
∈ ∆q

(q ↘ ∆q; Γq;Nq) =⇒ {}
Since # ∈ ∆q and ∆′q ` θ : ∆q , then # ∈ ∆′q .
Thus (q ↘ ∆′q; Γ′q;Nq[θ]) =⇒ {}.

Subcase
split(∆q ` X) = {(∆i, Ci)}i∈I′

(q[X]↘ ∆q; Γq;Nq) =⇒ {q[Ci]↘ ∆i; (Γq;Nq)[Ci/X]}i∈I′

By Req. 7, we have {∆′i}i∈I′ such that split(∆′q ` X) =
{(∆′i, Ci)}i∈I′ and for all i ∈ I ′, we have ∆′i ` θ : ∆i.

Hence, (q[X]↘ ∆′q; Γ′q;Nq[θ])
=⇒ {q[Ci]↘ ∆′i; (Γ′q;Nq[θ])[Ci/X]}i∈I′

A.5 Index Domain: Natural Numbers
This section describes how the theory of Section 3.1 applies to
an index domain of natural numbers. The index domain contains
a single type nat and terms are simply made of zero, suc, and
variables X .

Meta-Type U ::= nat
Meta-Term C ::= X | zero | suc C

The typing rules are the following. The judgment ∆(X) = U
applies whether X := C : U ∈ ∆ or X : U ∈ ∆.

∆ ` zero : nat
∆ ` C : nat

∆ ` suc C : nat

∆(X) = U

∆ ` X : U

Requirement 1 (Meta-Substitution Lemma).
If ∆ ` θ : ∆′ and ∆′ ` C : U then ∆ ` C[θ] : U [θ].

Proof. By induction on ∆′ ` C : U .

Case ∆′ ` zero : nat.

Trivially, ∆ ` zero : nat.

Case ∆′ ` C : nat

∆′ ` suc C : nat
.

By induction hypothesis, ∆ ` C : nat.
Thus, ∆ ` suc C : nat.

Case
∆′(X) = U

∆′ ` X : U
.

∆ ` C : U [θ] by definition of substitution

∆ ` C : U ↘ ∆′

∆ ` zero : nat↘ ∆

∆ ` C : nat↘ ∆′

∆ ` suc C : nat↘ ∆′

X 6∈ ∆

∆ ` X : U ↘ ∆, X:U

Figure 14. Meta-Pattern Checking Rules

The pattern checking rules are defined in Figure 3. The uni-
fication appears in Figure 4. The judgment ∆ ` occursn(X,C)
defines the occurs check which needs to take into account the
occurences of X in the constraints in ∆. The judgment ∆ ∼
∆0, X:U,∆1 describes that ∆0, X:U,∆1 is a wellformed meta-
context obtained through a permutation of ∆.

∆ ` C1 = C2

∆ ` zero = zero

∆ ` C1 = C2

∆ ` suc C1 = suc C2 ∆ ` X = X

X:=C′:U ∈ ∆ ∆ ` C′ = C
∆ ` X = C

∈ ∆

∆ ` C1 = C2

X:=C′:U ∈ ∆ ∆ ` C = C′

∆ ` C = X

Figure 15. Equality of Index Terms

Lemma A.3. If ∆ ` occurs0(X,C) then ∆ ` X = C ↘ ∆

Proof. By induction on the derivation of ∆ ` occurs0(X,C).

Lemma A.4. If ∆ is a minimal well-formed context such that
∆ ` C : U and X ∈ ∆ then ∆ ` occursn(X,C).

Proof. By lexicographic induction on ∆ and C.
Case: C = zero: Then ∆ = · which contradicts X ∈ ∆.
Case: C = suc C′: The result follows from induction.
Case: C = X: Trivial
Case: C = Y 6= X: Then ∆ is ∆′,Y :=C′:U by minimality.

Then ∆′ ` C′ : U and ∆′ must be a minimal such context, so
the result follows by induction.

Requirement 2 (Completeness of Unification). For any ∆,C1,C2

and U such that ∆ ` C1 : U and ∆ ` C2 : U , there is a ∆′ such
that ∆ ` C1 = C2 ↘ ∆′.

Proof. By induction on size(∆ ` C1) + size(∆ ` C2) where we
define:

size(∆ ` zero) = 0
size(∆ ` suc C) = size(∆ ` C) + 1
size(∆0,X:U,∆1 ` X) = 0
size(∆0,X:=C:U,∆1 ` X) = size(∆0 ` C) + 1

The interesting case is when C1 is X and X:U ∈ ∆.
Then we permute ∆ ∼ ∆0,∆1 so that ∆0 is a minimal well-

formed context such that ∆0 ` C2 : U .
Subcase:X:U ∈ ∆0: By Lem. A.4, we have ∆0 ` occursn(X,C2).

If n = 0 apply Lem. A.3, otherwise we have ∆ ` X = C ↘
∆,#.

short description of paper 18 2016/3/17

∆ ` C1 = C2 ↘ ∆′

∆ ` zero = zero↘ ∆

∆ ` C1 = C2 ↘ ∆′

∆ ` suc C1 = suc C2 ↘ ∆′ ∆ ` X = X ↘ ∆

∆ ` zero = suc C ↘ ∆,# ∆ ` suc C = zero↘ ∆,#

∆ ∼ ∆0, X:U,∆1 ∆0 ` C : U

∆ ` X = C ↘ ∆0, X:=C:U,∆1

∆ ∼ ∆0, X:U,∆1 ∆0 ` C : U

∆ ` C = X ↘ ∆0, X:=C:U,∆1

∆ ` occursn+1(X,C)

∆ ` X = C ↘ ∆,#

∆ ` occursn+1(X,C)

∆ ` C = X ↘ ∆,#

X:=C′:U ∈ ∆ ∆ ` C′ = C ↘ ∆′

∆ ` X = C ↘ ∆′
X:=C′:U ∈ ∆ ∆ ` C = C′ ↘ ∆′

∆ ` C = X ↘ ∆′

∆ ` occursn(X,C) X occurs in C under n constructors.

∆ ` occurs0(X,X)

∆ ` occursn(X,C)

∆ ` occursn+1(X, suc C)

Y :=C:U ∈ ∆ ∆ ` occursn(X,C)

∆ ` occursn(X,Y)

Figure 16. Unification of Index Terms

Subcase: X:U ∈ ∆1: i.e ∆1 is of the form ∆2,X:U,∆3. Then
we have ∆ ` X = C2 ↘ ∆0,∆2,X:=C2:U,∆3.

Lemma A.5. If ∆ ` C = sucn+1C then # ∈ ∆

Proof. By lexicographic induction on ∆ and C.
Case C = zero. Then # ∈ ∆ by inversion.
Case C = suc C′. Then ∆ ` C′ = sucn+1C′ by injectivity, and
the result follows by the induction hypothesis.
Case C = X . Then either # ∈ ∆ and we are done, or # /∈ ∆
and by inversion we have ∆ = ∆0, X:=C′:U,∆1 and ∆ ` C′ =
sucn+1X . Then ∆ ` C′ = sucn+1C′ and we can strengthen this
to ∆0 ` C′ = sucn+1C′ and the result follows by induction on
∆0 which is smaller than ∆.

Requirement 3. If ∆ ` C1 = C2 ↘ ∆′, then for all ∆0 and θ
such that ∆0 ` θ : ∆, we have that ∆0 ` C1[θ] = C2[θ] if and
only if ∆0 ` θ : ∆′.

Proof. By induction on ∆ ` C1 = C2 ↘ ∆′.

Case ∆ ` zero = zero↘ ∆: Trivial.

Case ∆ ` X = X ↘ ∆: Trivial.

Case
∆ ` C1 = C2 ↘ ∆′

∆ ` suc C1 = suc C2 ↘ ∆′:
Then ∆0 ` C1[θ] = C2[θ] iff ∆0 ` θ : ∆′ by i.h.
The result follows from the suc rule and an injectivity lemma.

Case ∆ ` zero = suc C ↘ ∆,#:

Then ∆0 ` zero = suc C[θ] iff # ∈ ∆0 iff ∆0 ` θ : ∆,#.

Case
∆ ∼ ∆1, X:U,∆2 ∆1 ` C : U

∆ ` X = C ↘ ∆1, X:=C:U,∆2.
Then ∆0 ` θ : ∆1 and ∆0 ` θ : ∆2[θ]. So ∆0 ` θ(X) = C[θ]

iff ∆0 ` θ : ∆1, X:=C:U,∆2 as required.

Case
X:=C′:U ∈ ∆ ∆ ` C′ = C ↘ ∆′

∆ ` X = C ↘ ∆′

Then ∆0 ` C′[θ] = C[θ] if and only if ∆0 ` θ : ∆′ by i.h.
We have ∆0 ` θ(X) = C′[θ] because X:=C′ : U ∈ ∆.

By transitivity and symmetry, ∆0 ` θ(X) = C[θ] iff ∆0 ` θ :
∆′ as required.

Case:
∆ ` occursn+1(X,C)

∆ ` X = C ↘ ∆,#
Then ∆ ` C = sucn+1X (follows from occurs)
Suppose ∆0 ` θ(X) = C[θ].
Then ∆0 ` C[θ] = sucn+1(C[θ]).
Then # ∈ ∆0 by Lem. A.5.
So ∆0 ` θ : ∆,# as required.
Conversely, suppose ∆0 ` θ : ∆,#. Then # ∈ ∆0 and so

∆0 ` θ(X) = C[θ] trivially.
The other cases are symmetric.

Requirement 4. If ∆ ` C : U ↘ ∆′ and ∆1 ` θ : ∆ then there
is ∆′1 such that ∆1 ` C : U [θ]↘ ∆′1 and ∆′1 ` θ : ∆′.

Proof. Implicitly here we assume that the variables bound in C are
fresh for dom(θ).

By induction on the derivation ∆ ` C : U ↘ ∆′.

Case ∆ ` zero : nat↘ ∆

Trivially, ∆1 ` zero : nat↘ ∆1 and ∆1 ` θ : ∆.

Case
∆ ` C : nat↘ ∆′

∆ ` suc C : nat↘ ∆′

By induction hypothesis, we have ∆′1 such that
∆1 ` C : nat↘ ∆′1 and ∆′1 ` θ : ∆′.

Hence, ∆1 ` suc C : nat↘ ∆′1.

Case
X 6∈ ∆

∆ ` X : U ↘ ∆, X:U

Then, ∆1 ` X : U ↘ ∆1, X:U and ∆1, X:U ` θ : ∆, X:U .

Requirement 5 (Adequacy of Pattern Matching for Index Terms).
Suppose · ` C : U . If ` C′ : U ↘ ∆ and C = C′[θ]. Then
· ` θ : ∆.

Proof. By induction on the derivation · ` C′ : U ↘ ∆.

short description of paper 19 2016/3/17

split(∆ ` X) = {∆i ` Ci}i∈I

split(∆, X:nat,∆′ ` X) = {(∆, Y :nat,∆′[suc Y/X] ` suc Y), (∆,∆′[zero/X] ` zero)}

split(∆, X:U ` X) = {∆i ` Ci}i∈I for each i, ∆i ` Ci = C ↘ ∆̂i

split(∆, X:=C:U,∆′ ` X) = {∆̂i,∆
′[C/X] ` Ci}i∈I

Figure 17. Splitting of index domain

Case ` zero : nat↘ ·
Then · ` θ : ·.

Case
` C : nat↘ ∆

` suc C : nat↘ ∆
By induction hypothesis, ` θ : ∆.

Case ` X : U ↘ X:U
Then · ` θ : (X:U), since θ(X) = C.

The definition of the splitting algorithm for our index domain
appears in Figure 5. Here we prove the requirements.

Requirement 6 (Coverage of splitting for index objects).
Suppose · ` θ : ∆ and split(∆ ` X) = (∆i, Ci)∀i∈I , then there
is an i and θi such that θ ≺ θi such that ` θi : ∆i such that
θ(X) = Ci[θi].

Proof. By induction on the judgment

split(∆ ` X) = {∆i ` Ci}i∈I

Case:

split(∆,X:nat,∆′`X)=

{
∆,Y :nat,∆′[suc Y/X] ` suc Y,
∆,∆′[zero/X] ` zero

}
Then ` θ : ∆ and ` θ(X) : nat and ` θ : ∆′[θ]. We examine

the possible forms of ` θ(X) : nat
Subcase θ(X) = zero:

Then ∆′[zero/X][θ] = ∆′[θ] so ` θ : ∆,∆′[zero/X] as
required.

Subcase θ(X) = suc C with ` C : nat:
Then ∆′[sucY/X][θ,C/Y] = ∆′[θ]
So ` θ,C/Y : ∆′[sucY/X][θ,C/Y]
Then ` θ,C/Y : ∆,Y :nat,∆′[sucY/X] as required.

Case:

split(∆,X:U`X) = {∆i`Ci}i∈I ∀i.∆i ` Ci = C ↘ ∆̂i

split(∆, X:=C:U,∆′ ` X) = {∆̂i,∆
′[C/X] ` Ci}i∈I

Then ` θ : ∆ and ` θ(X) : U and ` θ(X) = C[θ] and
` θ : ∆′[θ]

Then there exists i and ` θ′ : ∆i such that θ ≺ θ′ and
θ(X) = Ci[θ

′] by induction hypothesis.
We have ` Ci[θ′] = C[θ′] since θ(X)=Ci[θ

′] and θ ≺ θ′.
So ` θ′ : ∆̂i by Req. 3.
Note that ∆′[C/X][θ′] = ∆′[θ′] so ` θ′ : ∆′[C/X][θ′]

Hence ` θ′ : ∆̂i,∆
′[C/X] as required.

Requirement 7 (Preservation of splitting under substitution).
Suppose ∆′ ` θ : ∆ and split(∆ ` X) = (∆i ` Ci)∀i∈I , then
there are {∆′i}i∈I such that split(∆′ ` X) = (∆′i ` Ci)∀i∈I and
for all i ∈ I , ∆′i ` θ : ∆i.

Proof. Implicitly here we assume that X or the variables bound in
Ci are fresh for dom(θ).

By induction on the judgment

split(∆ ` X) = {∆i ` Ci}i∈I

Case:

split(∆0,X:nat,∆1`X)=

{
∆0,Y :nat,∆1[suc Y/X] ` suc Y,
∆0,∆1[zero/X] ` zero

}
Subcase: ∆′ = ∆2, X:nat,∆3

Since ∆2, X:nat,∆3 ` θ : ∆0, X:nat,∆1, we have
∆2, X:nat,∆3 ` θ : ∆0 and ∆2, X:nat,∆3 ` θ : ∆1

Then, by substitution [zero/X], we have
∆2, [zero/X]∆3 ` θ : ∆0 and ∆2, [zero/X]∆3 ` θ : [zero/X]∆1.

Thus, ∆2, [zero/X]∆3 ` θ : ∆0, [zero/X]∆1.
Then, by substitution [suc Y/X], we have

∆2, Y :nat, [suc Y/X]∆3 ` θ : ∆0 and
∆2, Y :nat, [suc Y/X]∆3 ` θ : [suc Y/X]∆1.

Thus, ∆2, Y :nat, [suc Y/X]∆3 ` θ : ∆0, Y :nat, [suc Y/X]∆1.

The other cases follow from this one.

short description of paper 20 2016/3/17

