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Abstract
Indexed data types allow us to specify and verify many interesting
invariants about finite data in a general purpose programming lan-
guage. In this paper we investigate the dual idea: indexed codata
types, which allow us to describe data-dependencies about infinite
data structures. Unlike finite data which is defined by constructors,
we define infinite data by observations. Dual to pattern matching on
indexed data which may refine the type indices, we define copattern
matching on indexed codata where type indices guard observations
we can make.

To illustrate the effectiveness of this idea, we describe several
properties about infinite data such as the number of bits form-
ing a message in a stream, fair streams, and streams of increas-
ing numbers. Our key technical contributions are two-fold: first,
we extend Levy’s call-by-push value language with support for
indexed (co)data and deep (co)pattern matching. Second, we de-
scribe a small-step semantics using a continuation-based abstract
machine, define coverage for indexed (co)patterns, and prove type
safety.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

Keywords Dependent Types; Coinduction; Functional Program-
ming; Logical Frameworks

1. Introduction
Indexed data types as proposed by Zenger (1997) and Xi and Pfen-
ning (1999) allow us to specify and verify many interesting invari-
ants about finite data in a general purpose programming language.
In particular, indexed types allow us to avoid run-time checks for
cases which cannot happen (for example, we can never ask for the
head of an empty list) and eliminate static array bounds checks (Xi
and Pfenning 1998). Indexed types also integrate easily with ef-
fects (e.g. state, exceptions, non-termination). The idea is simple,
yet powerful: we index types with objects from a decidable domain.
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For example, we can define a recursive type Msg which describes a
message encoded using bits and tracks its length by declaring its
kind to be [nat] → type.

data Msg: [nat] → type =
| Nil : Msg [z]
| Cons: Bit → Msg [N] → Msg [s N]
;

We separate here the definitions of the index domain from
recursive types defined on the computation level and embed index
objects inside computation-level expressions using []. Following
Cave and Pientka (2012) we chose as an index domain contextual
LF (Nanevski et al. 2008) which gives us the flexibility to not only
describe simple domains such as natural numbers but also more
powerful domains such as logics and proofs.

In this paper we extend the idea of indexing types to codata
types. This allows us to describe interesting invariants about infinite
data and track data-dependencies. Following Abel et al. (2013),
we define infinite data via observations. As an example, consider
reading messages which are sent via a network protocol. Network
protocols often send along with the data stream the size N of the
message to be read and we want to ensure we read exactly N bits
from a stream. To model a stream of bits which keeps track of
how many bits belong to one message we define three different
observations as follows:

codata Str: [nat] → type =
| GetBit : Str [s N] → Bit
| NextBits: Str [s N] → Str [N]
| Done : Str [z] → NextMsg

and data NextMsg: type =
| NextMsg : {N : [nat]} Str [N] → NextMsg
;

Given Str [s N] we can either read a bit using the observation
GetBit or obtain the remaining bits belonging to the message using
the observation NextBits. If we encounter Str [z], we know we
have finished reading the message and begin reading the next one.
Using the observation Done, we obtain the next message which
consists of the size of the next message and the remaining input
stream. Thus indexed codata types allow us to enforce that we read
the correct number of bits belonging to a message. To illustrate
the elegance and power of indexing codata types, we also describe
streams of increasing numbers and implement a fair merge where
we alternate selecting elements from two streams.

Fundamentally, our approach follows the tradition of indexed
types and extends these ideas to indexed codata types building on
work by Levy (2001). While our examples can also be modelled in
more powerful dependently typed languages such as the Calculus
of Construction (Paulin-Mohring 1993) or Martin Löf type theory
using large eliminations, our approach is more light-weight and
extends the duality of finite and infinite data already present in the



work by Levy (2001), Zeilberger (2008) or Licata, Zeilberger, and
Harper (2008) to capturing dependencies. Proof-theoretically, our
work extends this latter line of research to first-order logic.

From a more practical point of view, our computation lan-
guage can easily be combined with imperative features, allows non-
terminating computation, and requires fewer annotations to make
type checking decidable. The main technical contributions are:

• We present a core ML-like language with indexed (co)data
types which supports both programming with finite data via pat-
tern matching and infinite data using copattern matching. One
can think of this core language as the target of elaborating a
surface language where we may omit implicit indices via type
reconstruction. Following Levy (2001), our language exploits
the duality of positive types which we interpret as values and
negative types which we take as computations. We define ob-
servations about infinite data using function definitions using
simultanous (co)patterns and make observations by function ap-
plication. On the one hand our work is a novel reformulation of
ideas first presented by Abel et al. (2013) based on Levy’s work
and on the other it significantly extends this previous work to
support simultaneous deep (co)pattern matching and track data
dependencies using indexed (co)data types. Proof-theoretically,
our language provides a proof term assignment for first-order
logic with (co)fix points over a user-defined domain.
• We model dependently typed (co)data types as (co)fixpoints

with explicit equality constraints on objects from our domain
following Cave and Pientka (2012). When defining an indexed
recursive type, equality constraints impose further constraints
on the index. In contrast, in indexed corecursive types equality
constraints guard the observations we can make. We require that
equality on domain objects must be decidable. Unlike the work
of Cave and Pientka (2012) where equality was treated silently,
equality has a first-class status in our core language making the
core language more uniform. As a consequence equality proofs
are explicit in our core language. Since we require that equality
on our domain is decidable, we can expect such proofs to be
reconstructed during elaboration of a source language to the
given core.
• We describe a small-step semantics using a continuation-based

abstract machine for our language. It accommodates both call-
by-value and call-by-need evaluation strategies. This is in con-
trast to Abel et al. (2013) which gives a high-level declarative
rewriting semantics. We describe coverage and prove both type
preservation and progress for our language.

The proposed programming language extends the idea of in-
dexed types to verify invariants about and dependencies in infi-
nite data. Choosing as an index domain contextual objects makes
the language a prime candidate for defining coinductive predicates
such as bisimulation relations as codata types. It hence is a signifi-
cant step towards mechanizing coinductive proofs about LF encod-
ings where total programs about such codata type definitions then
correspond to coinductive proofs.

The remainder of this paper is organized as follows. We illus-
trate the usefulness of indexed codata types through three examples
(Section 2): reasoning about the size of messages in a bit streams,
modelling fair merge of streams where we alternate between ele-
ments of two streams, and describing a stream of increasing num-
bers. Then, we introduce in Section 3 our language supporting
both indexed data types and codata types, together with pattern and
copattern matching in a symmetric way. We describe the typing
rules together with a small-step semantics. We then define a sound
coverage algorithm for indexed patterns and copatterns, and prove
preservation and progress.

2. Motivation
To illustrate how and why we want to track data dependencies in
infinite data structures, we present here several examples. We start
by expanding upon indexed streams and their use. Our second ex-
ample enforces a fairness property about streams. Our last example
models a stream of increasing natural numbers.

2.1 Message processing
Interactions of a system with input/output devices or other systems
are performed through a series of queries and responses which are
represented using a stream of bits that can be read by the system.
Processing requests over those streams can be error prone. If one
reads too many or not enough bits, then there is a disconnect be-
tween the information a program reads and the one that was sent
which potentially could be exploited by an attacker. To avoid such
problem, we propose to use indexed codata types to parametrize a
stream with a natural number indicating how many bits we are en-
titled to read until the next message starts. Thus, one can guarantee
easily that a program will not leave parts of a message on top of the
stream but that they consume all of it. To illustrate how to program
with indexed streams, we write several programs. First, we want to
read a message from the stream Str [N] and return the message
together with the remaining stream. This is enforced in the type of
the function readMsg below. The type can be read informally as:
For all N given Str [N] we return a message together with Str [z]

which indicates we are done reading the entire message.

rec readMsg: {N: [nat]} Str [N] → Msg [N] * Str [z] =
fn [z] s ⇒ (Nil, s)
| [s M] s ⇒

let c = s.GetBit in
let (w, s’) = readMsg [M] s.NextBits in
(Cons c w, s’);

We write curly braces for universally quantifying over N in the
type of readMsg. In the program, we use anonymous functions
which abstract and pattern match on multiple arguments using fn.
We use a notation similar to ML-like languages, but we wrap index
objects in [ ] to clearly distinguish them from computation-level
data and terms. If N is zero, then we are finished reading all bits
belonging to the message and we simply return the empty message
together with the remaining stream s. If N is not zero but of the form
s M, we observe the first element c, the bit at position s M, in the
stream using the observation .GetBit. We then read the rest of the
message w by making the recursive call readMsg [M] s.NextBits

and then build the actual message by consing c to the front of w.
Note that we omitted passing some implicit arguments which can
be expected to be inferred.

So far we have seen how to make observations about streams
and use them. Next, we show how to build a stream which is aware
of how many bits belong to a message effectively turning it into a
stream of messages. This is accomplished via two mutually recur-
sive functions: the first marshals the size of the message with the
message stream and the second one continues to create the message
stream. We assume that we have polymorphism here (which we do
not treat in our foundation).

codata ’a Stream : type =
| Head : ’a Stream → ’a
| Tail : ’a Stream → ’a Stream;

rec getMsg: Bit Stream → [nat] Stream → NextMsg =
fn s ns ⇒ let [N] = .Head ns in
NextMsg [N] (MsgStr [N] s ns.Tail)

and MsgStr:{N:[nat]} Bit Stream→ [nat] Stream→ Str [N] =
fn [z] s ns .Done ⇒ getMsg s ns.Tail
| [s N] s ns .GetBit ⇒ s.Head
| [s N] s ns .NextBits ⇒ MsgStr [N] s.Tail ns.Tail;



Unlike Abel et al. (2013), we write observations in postfix and
we exploit here pattern matching on the index N as well as on the
different observations. We hence mix pattern and copatterns.

Last, we show how to generate a bit stream where every mes-
sage contains two random bits. This illustrates deep copattern
matching.

rec genBitStr : Str [2] =
fn .GetBit ⇒ RandomBitGenerator ()
| .NextBits .GetBit ⇒ RandomBitGenerator ()
| .NextBits .NextBits .Done ⇒ NextMsg [2] genBitStr;

2.2 Fair scheduling
We define here the fair interleavings of two streams using a predi-
cate flip. We define the predicate flip in LF, our domain language
together with a type Bit which encodes 0 and 1. Our syntax is taken
from the BELUGA system (Pientka and Cave 2015).

LF bool: type = tt : bool | ff : bool ;

LF flip: bool → bool → type =
| flip0: flip ff tt
| flip1: flip tt ff;

data Bit: [bool] → type=
| 0: Bit [ff]
| 1: Bit [tt];

We want to implement a fair merge of two streams. Here we zip
a stream of zeroes and a stream of ones together and return a stream
that alternates between zeroes and ones. We describe the type of the
alternating bit stream as follows:

codata Alt : [bool] → type =
| Zero: Alt [ff] → Bit [ff]
| One : Alt [tt] → Bit [tt]
| Next: Alt [B] → {B’:[bool]} [flip B B’] → Alt [B’];

We index the fair bit stream Alt with a boolean flag. If the flag
is false (i.e. ff), we can observe a zero; if the flag is true (i.e. tt),
we can observe a one. In both situations we can also always ask
for the next bit using the observation Next, but we flip the boolean
flag before proceeding to return more bits. Let us see how we zip a
stream of zeroes and ones together to an alternating bit stream that
starts with a zero. It essentially produces a stream

0 1 0 1 0 1 0 1 0 1 ...

rec merge:(Bit[ff])Stream→ (Bit[tt])Stream→ Alt[ff] =
fn s0 s1 .Zero ⇒ s0.Head
| s0 s1 .Next [tt] [flip0] .One ⇒ s1.Head
| s0 s1 .Next [tt] [flip0] .Next [ff] [flip1] ⇒

merge s0.Tail s1.Tail;

merge s0 s1 will produce a stream upon which we can make
different observations. If we ask for .Zero, we simply return the
head of the first stream s0. Note that we cannot ask for .One

immediately, since we are making observations about Alt [ff].
We hence must first ask for the next element using the observation
.Next and provide a witness that we can flip ff to tt. Providing
tt and flip0 as such a witness, we obtain a stream Alt [tt] upon
which we can now ask for .One. We can however also ask for more
bits, by now flipping tt to ff again via the witness flip1, and
merging the s0.Tail and s1.Tail.

This example illustrates the power of mixing pattern and copat-
tern matching. If we think of the streams s0 and s1 as streams of
requests, zipping both streams together guarantees that we alter-
nate between requests from stream s0 and s1, hence guaranteeing
fairness. We chose to define the flip predicate on the level of LF;
this is not necessary, but it emphasizes that such definitions and
proof obligations are strictly important when reasoning about the
computation and are irrelevant during runtime.

Another scheduling example is the following: given three
streams, the first one sends a’s, the second one b’s, and the third
one c’s, we want to first serve c, followed by b followed by a and
then restart with c.

c b a c b a c b a ...

This can be viewed as a variation of the alternating bit stream
where we cycle between the three streams. We write 0 for z and 2

for suc (suc z)). First, we define values a, b, c of priority 1, 2,
and 3 resp. The stream that cycles between elements of priority 1,
priority 2, and priority 3 is defined as a codata type CycStr.
data Val: [nat] → type =
| a: Val 0
| b: Val 1
| c: Val 2;

codata CycStr : [nat] → type =
| GetVal : cycStr [N] → Val [N]
| Reset : cycStr [0] → cycStr [2]
| Next : cycStr [suc N] → cycStr N;

rec cycle:(Val [0]) Stream → (Val [1]) Stream
→ (Val [2]) Stream → CycStr [2] =

fn sA sB sC .GetVal ⇒ c
| sA sB sC .Next .GetVal ⇒ b
| sA sB sC .Next .Next .GetVal ⇒ a
| sA sB sC .Next .Next .Reset ⇒

cycle sA.Tail sB.Tail sC.Tail;

Finally, we merge three streams of different priority such that
we cycle between them and treat each stream fairly.

2.3 Increasing streams
As a last example, we describe how to generate a stream of increas-
ing numbers. We can define such a stream as follows:
LF lt: nat → nat → type =
| lt_z: lt z (suc N)
| lt_s: leq N M → lt N (suc M)

LF leq: nat → nat → type =
| eq : eq N M → leq N M
| less : lt N M → leq N M;

LF eq: nat → nat → type =
| ref: eq N N;

codata IncStr : [nat] → type =
| Head : IncStr [N] → Val N
| Tail : IncStr [N] → {M:[nat]} [lt N M] → IncStr [M]

Here we guard the generation of the next elements with the
fact that it must be bigger. We can then write a simple program
that generates natural numbers using deep pattern and copattern
matching as follows:
rec natStr: {N:[nat]} IncStr [N] =
fn natStr [K] .Head ⇒ gen_value [K]
| natStr [K] .Tail [suc K] [lt_s (eq ref)] ⇒

natStr [suc K];

Note that the index allows us to save the state, i.e. what natural
number we have already computed. Similarly, we can construct
a stream of ever doubling numbers by simply replacing [lt N M

] with the definition of [double N M]. More generally using this
methodology we can construct streams where the next element is
guarded by a condition.

3. Theory
We present in this section a general purpose programming language
which supports defining finite data using indexed recursive types
and infinite data using indexed corecursive types. To analyze and
manipulate finite and infinite data, we support simultaneous pattern
and copattern matching. We omit polymorphism which is largely an
orthogonal issue.



3.1 Index domain
Our programming language is parametric over the index domain
which we describe abstractly with U . This index domain can be
natural numbers, strings, or (contextual) LF which we used in the
examples. Index objects are abstractly referred to by C.

We make a few assumptions about our index domain: first, we
assume that equality is decidable; second, we assume that unifica-
tion in the index domain, i.e. solving equations, is decidable; third,
we assume that there is a notion of coverage, i.e. given a type U , we
can always get a complete non-redundant set of covering patterns
for U . In particular, we define below several judgements which
characterize the desired properties of our index domain and which
we will be using in defining the static and operational semantics
of our programming language. These judgments refer to variables
from the index domain; such variables are for example introduced
during (co)pattern matching when we write (co)recursive functions.

As we want to allow nested function definitions, pattern match-
ing on arguments that depend on variables introduced by the outer
functions may refine and restrict index variables. We therefore al-
low a meta-context ∆ of index variables to contain unrestricted in-
dex variables X : U and index variables that are already instan-
tiated and bound to a particular object, written as X := C : U .
This allows us to track the refinement of index variables using con-
straints in the meta-context ∆. As we will see this has two main
advantages: 1) we can elegantly enforce linearity in patterns and
moreover pattern matching on a linear pattern reduces to assigning
values to variables. 2) we can support nested function definitions
where inner functions may refine indices that were introduced in
an outer function.

Meta-Context ∆ ::= · | ∆, X : U | ∆, X := C : U
Meta-Substitution θ ::= · | θ, C/X

Typing judgements for meta-contexts, meta-substitutions, terms,
and equality We define here some preliminaries that characterize
our index domain and play a key role in the typing rules of our core
language (see Sec. 3.2 and Sec. 3.3). In particular, we assume that
index types are well-kinded and index terms are well-typed.

` ∆ mctx Meta-context ∆ is well-formed
∆ ` U : Type Index type U is well-kinded in ∆
∆ ` C : U Term C is of type U in meta-context ∆.
∆ ` C = C′ Term C and C′ are equal
∆ ` U = U ′ Type U and U ′ are equal
∆′ ` θ : ∆ θ maps index variables from ∆ to ∆′

Equality on index objects stands for structural equality of two
index objects and is defined as the least congruence using congru-
ence rules for all the constructors closed under

(X := C : U) ∈ ∆ ∆ ` C : U

∆ ` X = C

We define in Fig. 1 in more detail when a meta-context ∆
and meta-substitution θ are well-formed and meaningful, as their
definition may not be obvious due to our use of constraints in the
meta-context. We assume that our typing rules for index objects
satisfy the substitution property.

Requirement 1 (Meta-Substitution Lemma ).
If ∆ ` θ : ∆′ and ∆′ ` C : U then ∆ ` C[θ] : U [θ].

Typing judgement for terms and equality in patterns Our typing
rules for simultaneous (co)patterns synthesize the type of pattern
variables and rely on being able to synthesize the type of index
variables occurring in the index object C (see also Fig. 6) together
with possible constraints. As we process the (co)pattern spine we

` ∆ mctx well-formed meta-context ∆

` ∆ mctx ∆ ` U : Type ∆ ` C : U

` ∆, X := C : U mctx

` · mctx

∆ ` U : Type ` ∆ mctx

` ∆, X : U mctx

∆ ` θ : ∆′ θ maps index variables from ∆′ to ∆

∆ ` · : ·
∆ ` θ : ∆′ ∆ ` C : U [θ]

∆ ` θ, C/X : ∆′, X : U

∆ ` θ : ∆′ ∆ ` C : U [θ] ∆ ` C = C′[θ]

∆ ` θ, C/X : ∆′, X := C′ : U

Figure 1. Meta-Contexts and Meta-Substitution

thread through a context ∆ and accumulate index variables and
constraints. As subsequent index patterns may depend on variables
appearing earlier in the (co)pattern spine, we extend and refine ∆
by imposing constraints on existing variable declarations. Hence
the resulting meta-context ∆′ is an extension of ∆, written as
∆ ≺ ∆′.

∆ ≺ ∆′ ∆′ is an extension of ∆

· ≺ ∆′
∆ ≺ ∆′ X:U ∈ ∆′

∆, X:U ≺ ∆′
∆ ≺ ∆′ X:=C:U ∈ ∆′

∆, X:U ≺ ∆′

∆ ≺ ∆′ X:=C′:U ′ ∈ ∆′ ∆′ ` C = C′ ∆′ ` U = U ′

∆, X:=C:U ≺ ∆′

Figure 2. Extension of Meta-Context

We use the following judgments to synthesize the index vari-
ables occurring in C. We assume that C only contains fresh vari-
ables, i.e. any variable in C does not already occur in ∆. We carry
∆ which may contain variables introduced by a previous pattern
match for two reasons: first, U may depend on ∆ and second, vari-
ables occurring inC may be added together with constraints setting
them equal to a variable already in ∆.

∆ ` C : U ↘ ∆′ pattern C of type U in the meta-context
∆ synthezises a meta-context ∆′ s.t.
∆ ≺ ∆′ and ∆′ ` C : U

∆ ` C1 = C2 ↘ ∆′ Given two terms C1 and C2 synthesize
a meta-context ∆′ s.t. ∆ ≺ ∆′ and
∆′ ` C1 = C2.

As pattern matching on dependently typed objects may refine
the indices, the meta-context ∆ may be updated, when type check-
ing a pattern, to reflect these constraints. A typical example is the
following: we pattern match on a vector, [vec N] after having in-
troduced N, i.e. in the context ∆ =N:nat. When considering the
case nil : vec 0, we learn that N must be 0 and we update ∆ to
N:=0:nat which is the new ∆′ that is returned. We come back to
this issue in Sec. 3.2.

Type checking of (co)pattern spines will need to solve equations
C1 = C2 using unification on our index domain, and thus introduce
term assignments to variables in ∆, yielding ∆′. This will become
clear in Sec. 3.2.



Pattern matching for index objects Our operational semantics
for our language relies on (co)pattern matching. As index terms
appear in (co)patterns, we rely on pattern matching on index terms.
Our pattern matching judgment for index terms corresponds closely
to typing equalities appearing in patterns.

θ ` C =? C′ ↘ θ′ Term C matches against C′ s.t C = C′[θ′]
and θ ≺ θ′ (θ′ extends θ).

We note that · ` θ : ∆. Further, C is closed (i.e. · ` C : [θ]U )
and C′ describes a well-typed pattern (i.e. ∆ ` C′ : U ↘ ∆′).
Adequacy of pattern matching then guarantees that · ` θ′ : ∆′ and
∆′ ` C = C′[θ].

Requirement 2 (Adequacy of pattern matching for index objects).
Suppose · ` θ : ∆ and · ` C : U [θ]. If ∆ ` C′ : U ↘ ∆′ and
θ ` C =? C′ ↘ θ′ then · ` θ′ : ∆′.

Splitting algorithm split(∆ ` U) = (∆i, Ci)∀i∈I splits on a
type U yielding a complete non-redundant set of covering patterns
∆ ` Ci : U ↘ ∆i. The set I denote simply a subset of the natural
numbers and thus i ranges from 0 to some n ∈ N.

Requirement 3 (Coverage of splitting for index objects).
Suppose · ` θ : ∆ and ` C : U [θ] and ∆ ` X : U ↘ ∆′.
If θ ` C =? X ↘ θ′ and split(∆ ` U) = (∆i, Ci)∀i∈I , then
there is an i such that θ ` C =? Ci ↘ θi.

3.2 Types and Kinds
Following Levy (2001) we distinguish between positive types (1,
ΣX:U.P , P1 × P2) which characterize finite data and negative
types (P → N , ΠX:U.N ) which describes infinite data. We allow
negative types to be embedded into positive types and vice versa
using explicit coercions written as ↓N and ↑P respectively. Our
language also supports indexed recursive and indexed corecursive
types. The recursive type written as µY.λ ~X.D is a positive type, as
it allows us construct finite data using labelled sums D (written as
〈
−→
c P 〉). While Y denotes a type variable, λ ~X.D describes a type-

level function which expects index objects and returns a labelled
sum D. Dually, in the corecursive type, written as νZ.λ ~X.R,
the type-level function λ ~X.R expects index objects and returns
a record of indexed observations. Corecursive types are negative
types, as they describe infinite data using records R (standing for
{
−−→
d:N}).

Kinds K ::= type | ΠX:U.K

Positive Types P ::= Y | 1 | [U ] | P1 × P2 | C1 = C2 | ↓N
| µY.λ

−→
X.D | P ~C | ΣX:U.P

Negative Types N ::= Z | P → N | ↑P
| νZ.λ

−→
X.R | N ~C | ΠX:U.N

Variant D ::= 〈c1 P1 | · · · | cn Pn〉
Record R ::= {d1 : N1, . . . , dn : Nn}

Figure 3. Types

Index objects from our index domain U can be embedded into
computations via the box modality written as [U ]; this allows us in
general to work directly with domain-specific index objects which
is particularly convenient if our index domain not only defines for
example natural numbers but also predicates about them. As a con-
sequence, index-objects can be directly analyzed and manipulated

by our computation language. This is convenient in our setting,
however, it also prevents a naive erasure of all the index objects.
We note that we only allow dependencies on objects from our de-
cidable domain not on arbitrary computation-level expressions.

Our language also supports equality constraints following pre-
vious work by Cave and Pientka (2012). They typically are used in-
side (co)recursive type definitions. When defining a recursive type,
the equality constraints impose additional constraints on the type
index, while in a corecursive type, the equality constraint guards the
observations we can make (see examples). Unlike Cave and Pientka
(2012), we give equality a first-class status which leads to a more
uniform and general foundation. In practice, we mostly use equali-
ties in two forms: constrained products (written as C1 = C2 × P )
and constrained (or guarded) function (written as C1 = C2 → N ).
As we require that our index domain comes with decidable equality,
we believe the equality proofs can always be reconstructed when
elaborating source level programs into our core language.

Our computation-level types can directly refer to index types.
In this article, both µY.λ ~X.D and νZ.λ ~X.R are just recursive
types rather than inductive and coinductive types resp. SinceD and
R are not checked for functoriality and programs are not checked
for termination or productivity, resp., there are no conditions that
ensure µY.λ ~X.D to be a least fixed-point inhabited only by finite
data, and νZ.λ ~X.R to be a greatest fixed-point that hosts infinite
objects which are productive. However, we keep the notational
distinction to allude to the intended interpretation as least and
greatest fixed-points in a total setting.

Examples 1: Indexed recursive type Datatypes C = µY.λ ~X.D
for D = 〈c1 P1 | · · · | cn Pn〉 describe least fixed point. As in
SML, a constructor that requires no argument formally takes an
argument of the unit type 1. Choosing as index domain natural
numbers, we can model our previous definition of Msg as follows
in our core language.

µMsg.λX.〈Nil : X = 0× Unit ,
Cons : ΣY :nat.X = s Y × (Bit×Msg Y )〉

Example 2: Indexed corecursive types Record types C =
νZ.λ ~X.R with R = {d1 : N1, . . . , dn : Nn} are recursive la-
beled products and describe infinite data. As for data, non-recursive
record types are encoded by a void ν-abstraction ν .λ ~X.R. Con-
sider our previous codata type definition for indexed streams, i.e.
Str, with the three observations, GetBit, NextBits, and Done. De-
pending on the index N we choose the corresponding observation.

We can make explicit the fact that GetBit, NextBit and NextMsg

all define ways of observing objects of type Str [M] by using
equality constraints. We emphasize that the index M is shared among
all records. Our source level syntax is logically equivalent to this
reformulated definition of the stream codata type. To make more
explicit the relation between positive and negative types, we define
here the core representation of both Str and NextMsg.

νStr.λM. { Done : M = 0 → ↑NextMsg ,
NextBits : ΠN :nat.M = s N→ Str N ,
GetBit : ΠN :nat.M = s N→ ↑Bit }

µNextMsg. 〈 NextMsg : ΣN :nat.↓ Str N 〉

Dually to data types where we employ Σ and product types, we
use Π and simple function types when defining codata types.

3.3 Terms and typing
In our core language, we distinguish between terms which have
negative type and values which have positive type (see Fig. 4). Val-



ues include unit (written as ()), pairs (written as (e1, e2)), depen-
dent pairs (written as pack 〈C, e〉). We also include data built using
constructors (written as c v) and allow index objects (written as
[C]) as first-class values. Finally we can embed computation into
values using thunk t. A thunk represents a term which is suspended
and may produce a value at a later stage. Last but not least, we in-
clude the witness for equality between two index objects, written
as refl, in our values.

Values v ::= x | () | [C] | (v1, v2) | refl | thunk t
| c p | pack 〈C, p〉

Terms t ::= rec f.t | fn ~u | t v | t C | produce v
| t .d | t1 to x.t2 | force v

Branch u ::= q 7→ t
Pattern p ::= x | () | [C] | (p1, p2) | refl | c p | pack 〈C, p〉
Copattern q ::= · | p q | C q | .d q

Figure 4. Values, Terms, (Co)patterns

Computations (or terms) correspond to negative types. Compu-
tations include recursion (written as rec f.e) and functions (written
as fn ~u) which are defined by (co)pattern matching. In addition, we
have application (written as t v), index domain application (written
as t C) and destructor applications (written as t .d); given a term
t describing infinite data we unfold its corresponding corecursive
type to a record and select the component d of the record. Finally,
we can force a suspended computation v using force v and produce
a value (written as produce v). We also include a sequencing term
which is written as (t1 to x.t2).

We eliminate expressions of positive type such as recursive
types via pattern matching; dually, we make observations about
expression of negative types such as corecursive types by making
observations. Unlike the language described by Abel et al. (2013)
which presented programs as rewrite rules, we choose to describe
our programs in a more traditional functional programming style
supporting simultaneous (co)pattern matching. We might view this
language as a core language into which we can compile programs
given as rewrite rules to. It also illustrates how to extend more
traditional ML-like languages with copattern matching.

Simultaneous (co)patterns are described using a spine that is
built out of patterns (written as p), an index object pattern (also
called copattern instance and written asC), or observations (written
as .d). Patterns themselves are derived from values and can be
defined using pattern variables x, embedded index object (written
as [C]), pairs (written as (p1, p2), pattern instances (written as
pack 〈C, e〉) and patterns formed with a data constructor c.

Branches in case-expressions are modelled by q 7→ t.
The typing rules for terms and values are mostly straightfor-

ward (see Fig. 5). We highlight here a few. Typing of embed-
ded index objects (written as [C]) refers to typing of index terms
as described in Section 3.1. A constructor takes a term of type
Dc[µY.λ ~X.D/Y, ~C/ ~X], yielding a term of type (µY.λ ~X.D) ~C.
A thunk of a computation is well typed, if the computation itself
is. The witness for an equality C1 = C2 is simply refl (reflexivity)
provided C1 and C2 are equal in our index domain. As we have
constraints in ∆ we also include type conversion rules (TPConv and
TNConv). ∆ ` P = P ′ (and resp. ∆ ` N = N ′) is defined in-
ductively on the structure of positive and negative types. When we
compare ∆ ` (P ~C) = (P ′ ~C′), we simply compare ∆ ` P = P ′

and for all i we have ∆ ` Ci = C′i falling back to the compari-
son on index terms. We proceed similarly when comparing negative
types.

A rec-expression introduces a variable of type ↓N in the type
t. Dual to constructor, an observation .d takes a term of type

(νZ.λ ~X.R) ~C yielding a term of type Rd[νZ.λ ~X.R/Z, ~C/ ~X].
For applications we ensure that we applyg a term of function type
to a value. The operational reading of t1 to x.t2 is that we first
evaluate the computations of t1 to a value v1 of type ↑P , and then
evaluate the term t2 where we replace x by the value v1. This is
captured in the typing rule for to-statements.

The function abstraction (written as fn ~u) introduces branches u
of the form q 7→ t. A branch is well typed, if the copattern q checks
against the overall typeN of the function synthesizing a new meta-
context ∆′ together with a new context Γ′ describing the types of
the variables occurring in the pattern together with an output type
N ′ against which the term t is checked.

It might also be the case that the copattern spine q does not
eliminate elements of type N ; in particular, N might contain some
equality constraints that q does satisfy. This is modelled by return-
ing ⊥ when checking the copattern spine q against N . In this case,
we know that the branch q 7→ t cannot be taken during runtime; it
is essentially dead-code and we simply succeed.

The typing rules for (co)patterns (see Fig. 6) are defined using
the following two judgments:

∆; Γ ` p : P ↘ ∆′; Γ′ Typing for pattern p
∆; Γ;N ` q ↘ ∆′; Γ′;N ′ Typing for copattern q

In both typing judgments, the meta-context ∆ and the context Γ
contain variable declarations that were introduced at the outside.
We assume that all variables occurring in the (co)pattern are fresh
with respect to ∆ and Γ and occur linearly, although this is not ex-
plicitly enforced in our rules. When we check a pattern p against
a positive type P in the meta-context ∆ and context Γ, we synthe-
size a meta-context ∆′ s.t. ∆′ is an extension of ∆ (i.e. ∆ ≺ ∆′)
and Γ′ is an extension of Γ. We note that as we check the pat-
tern p we may update and constrain some of the variables already
present in ∆. This happens in the rule Pcon where we fall back to
type checking patterns in our domain and in the rule PEq where we
unify two index objects C1 and C2, and return a new meta-context
∆′ s.t. ∆′ ` C1 = C2. For simplicity, we thread through both the
meta-context ∆ and the context Γ, although only ∆ may actually
be refined.

The typing rules for patterns are straightforward except for
equality. A pattern refl checks against C1 = C2 provided that C1

and C2 unify in our domain and ∆′ contains the solution which
makes C1 and C2 equal. It might also be the case that C1 does not
unify with C2, i.e. there is no instantiation for the meta-variables
in C1 and C2 that makes C1 and C2 equal. In this case unification
of C1 and C2 fails. This is described as ∆ ` C1 = C2 ↘ ⊥. We
omit here the rules that propagate⊥ due to space. Our treatment of
equality is inspired by work of Dunfield and Krishnaswami (2015).

Copattern spines allow us to make observations on a negative
type N in the meta-context ∆ and context Γ. As we process the
copattern spine from left to right, we synthesize a negative typeN ′.
Intuitively, N ′ is the suffix of N . As copattern spines also contain
patterns we also return a new meta-context ∆′ and context Γ′.

To illustrate we give the typing derivation for the copattern spine
[s N] s ns .GetBit that arises from the program MsgStr given in
Sec. 2.1. This copattern spine is represented in our core language
as (s N) s ns .GetBitM refl. We now show that it checks against
ΠN :nat. Bit Stream →[nat] Stream →Str [N]. After infer-
ring the type of N and introducing declarations for s and ns, we
need to show that .GetBitM refl has type Str [N] in the context
N : nat and the context Γ = s : Bit Stream, ns : [nat] Stream.
We show partial typing derivation in Fig. 6.

Example 3 Recall our previous program genBitStr which gen-
erated Str [2]. Abbreviating RandomBitGenerator simply by RBG,
this program can be elaborated into our core language straightfor-
wardly to a program of type Str 2.



∆; Γ ` v : P Value Typing: In meta-context ∆ and context Γ, value v has positive type P .

∆; Γ ` () : 1
TUnit

Γ(x) = P

∆; Γ ` x : P
TVar

∆; Γ ` v1 : P1 ∆; Γ ` v2 : P2

∆; Γ ` (v1, v2) : P1 × P2
TPair

∆ ` C : U ∆; Γ ` v : P [C/X]

∆; Γ ` pack 〈C, v〉 : ΣX:U.P
TPack

∆ ` C : U
∆; Γ ` [C] : [U ]

TDomain

∆; Γ ` v : Dc[µY.λ ~X.D/Y, ~C/ ~X]

∆; Γ ` c v : (µY.λ ~X.D) ~C
TConst

∆; Γ ` v : P ′ ∆ ` P = P ′

∆; Γ ` v : P
TPConv

∆ ` C1 = C2

∆; Γ ` refl : C1 = C2
TCProd

∆; Γ ` t : N

∆; Γ ` thunk t : ↓N TThunk

∆; Γ ` t : N Computation typing : In meta-context ∆ and context Γ, term t has negative type N .

∆; Γ, x : ↓N ` t : N

∆; Γ ` rec x.t : N
TRec

for each i ∆; Γ ` ui : N

∆; Γ ` fn ~u : N
TFn

∆; Γ ` t : (νZλ ~XR) ~C

∆; Γ ` t.d : Rd[νZ.λ ~X.R/Z, ~C/ ~X]
TDest

∆; Γ ` t : P → N ∆; Γ ` v : P

∆; Γ ` t v : N
TApp

∆; Γ ` t : ΠX:U.N ∆ ` C : U

∆; Γ ` t C : N [C/X]
TMApp

∆; Γ ` t : N ′ ∆ ` N = N ′

∆; Γ ` t : N
TNConv

∆; Γ ` v : ↓N
∆; Γ ` force v : N

TForce
∆; Γ ` v : P

∆; Γ ` produce v : ↑P TProduce
∆; Γ ` t1 : ↑P ∆; Γ, x : P ` t2 : N

∆; Γ ` t1 to x.t2 : N
TTo

∆; Γ ` ui : N In meta-context ∆ and context Γ, branch ui has negative type N .

∆; Γ;N ` q ↘ ∆′; Γ′;N ′ ∆′; Γ′ ` t : N ′

∆; Γ ` q 7→ t : N

∆; Γ;N ` q ↘ ⊥
∆; Γ ` q 7→ t : N

Figure 5. Typing rules for terms.

rec genBitStr.fn
| .GetBit 1 refl 7→ RBG ()
| .NextBits 1 refl .GetBit 0 refl 7→ RBG ()
| .NextBits 1 refl .NextBits 1 refl .Done refl 7→

NextMsg (pack 〈2, genBitStr〉)

Example 4 Next, we consider the translation of readMsg.

rec readMsg.fn
| [z] s 7→ produce (Nil (refl, () ), s)
| [s M] s 7→
(force s).GetBit to c.
(force readMsg) [M] (thunk (force s).NextBits) to x.
(fn(w, s′) 7→ produce (Cons (pack 〈M, (refl, (c, w))〉), s′)) x

This function deserves some explanation. The type of readMsg is
translated to ΠN :nat.(↓(Str N)) → ↑((Msg N) × ↓(Str z)).
Since Str N is in negative position, it needs to have positive
type (thus the ↓) and so the input s of the function is in fact a
thunk that needs to be forced before we can use the observations
.GetBit and .NextBits. The recursive call needs also to be forced
because the variable readMsg needs to be positive to live in the
context. Let-statements are defined as to-statements whose left-
hand side produces a value, that is then bound to the variable c and
x, respectively. Moreover, the second let-statement in the orignal
program also used pattern matching. We do not directly support
nested (co)pattern matching. Hence, we define a function to pattern
match on x. The output needs to be of negative type but we want
to return a product which is positive. It is thus embedded using a
produce-statement. This also allows the recursive call to be put on
the left-hand side of a to-statement.

4. Evaluation and type preservation
In this section, we present a small step operational semantics using
evaluation contexts (continuations) following Levy (2001). We also
define a non-deterministic coverage algorithm and prove that our
operational semantics satisfies subject reduction and progress.

4.1 Evaluation contexts
Evaluation contexts are defined inductively. We start from a hole
· and we accumulate values, index objects, observations, and sus-
pended to-bindings.

Evaluation Context K ::= · | v K | C K | .d K | ([] to x.t) K

We note that we only collect closed values, index objects, etc. in the
evaluation context and hence the typing judgment for them does not
carry any contexts. We use the following judgment to define well-
typed evaluation contexts:

N ` K ↘ N ′ Evaluation context K transforms N to N ′

The negative type N describes some computation t which when
used in the evaluation context K returns a computation of type
N ′. Intuitively, t stands for a function fn (

−−−−→
qi 7→ ti) and we match

the evaluation context K against the copattern spine qi and con-
sume part of K to take a step. As evaluation contexts closely cor-
respond to copattern spines, their typing rules follow the ones for
(co)patterns.

When the evaluation context is empty (rule KBase), we simply
return N . Intuitively, nothing is applied to the computation of type
N . If we have a computation of type P → N and our evaluation
context provides a value v of type P , then we check that given
a computation of type N applying the remaining evaluation con-
text takes us to N ′ (see KApp). If we have a computation of type
ΠX:U.N and the evaluation context supplies an index object C,



∆; Γ ` p : P ↘ ∆′; Γ′ Pattern p of positive type P extends contexts ∆; Γ into ∆′; Γ′.

∆; Γ ` x : P ↘ ∆; Γ, x:P
PVar

∆; Γ ` () : 1↘ ∆; Γ
PUnit

∆; Γ ` p : Dc[µY.λ ~X.D/Y, ~C/ ~X]↘ ∆′; Γ′

∆; Γ ` c p : (µY.λ ~X.D)~C ↘ ∆′; Γ′
PConst

∆ ` C : U ↘ ∆′

∆; Γ ` [C] : [U ]↘ ∆′; Γ
PCon

∆; Γ ` p1 : P1 ↘ ∆′; Γ′ ∆′; Γ′ ` p2 : P2 ↘ ∆′′; Γ′′

∆; Γ ` (p1, p2) : P1 × P2 ↘ ∆′′; Γ′′
PPair

∆ ` C : U ↘ ∆′ ∆′; Γ ` p : P [C/X]↘ ∆′′; Γ′

∆; Γ ` pack 〈C, p〉 : ΣX:U.P ↘ ∆′′; Γ′
PPack

∆ ` C1 = C2 ↘ ∆′

∆; Γ ` refl : C1 = C2 ↘ ∆′; Γ
PEq

∆ ` C1 = C2 ↘ ⊥
∆; Γ ` refl : C1 = C2 ↘ ⊥

PNEq

∆; Γ;N ` q ↘ ∆′; Γ′;N ′ Copattern q elimininates negative typeN into typeN ′ and extending contexts ∆; Γ into ∆′; Γ′.

∆; Γ;N ` · ↘ ∆; Γ;N
CPBase

∆; Γ ` p : P ↘ ∆′; Γ′ ∆′; Γ′;N ` q ↘ ∆′′; Γ′′;N ′

∆; Γ;P → N ` p q ↘ ∆′′; Γ′′;N ′
CPApp

∆ ` C : U ↘ ∆′ ∆′; Γ;N [C/X] ` q ↘ ∆′′; Γ′;N ′

∆; Γ; ΠX:U.N ` C q ↘ ∆′′; Γ′;N ′
CPMApp

∆; Γ;Rd[(νZ.λ ~X.R)/Z, ~C/ ~X] ` q ↘ ∆′; Γ′;N ′

∆; Γ; (νZ.λ ~X.R)~C ` .d q ↘ ∆′; Γ′;N ′
CPDest

Example:

...
N : nat `M : nat↘ ∆0

...
∆0 ` s M = s N ↘ ∆1 ∆1 = N : nat,M := N : nat

∆0 ` refl : s M = s N ↘ ∆1 ∆1; Γ; Str[M ] ` · ↘ ∆1; Γ; Str[M ]

∆0; Γ; s M = s N → Str[M ] ` refl · ↘ ∆1; Γ; Str[M ]

N : nat; Γ; ΠM :nat.s M = s N → Str[M ] `M refl · ↘ ∆1; Γ; Str[M ]

N : nat; Γ; Str[N ] ` .GetBitM refl · ↘ ∆1; Γ; Str[M ]

where Γ = s : Bit Stream, ns : [nat] Stream and ∆0 = N : nat,M : nat

Figure 6. Type checking for patterns.

then we verify that given a computation of type N [C/X] applying
the remaining evaluation context takes us to N ′. Similarly, given
a term of type (νZ.λ ~X.R)~C and an evaluation context that sup-
plies an observation .d, we verify that given a computation of type
Rd[(νZ.λ ~X.R)/Z, ~C/ ~X] applying the remaining evaluation con-
text takes us to N ′.

Finally, given a computation of type ↑P and an evaluation
context ([] to x.t) K, we check that once we are done evaluating
t and return a computation of type N , passing to it the remaining
evaluation context K yields a computation of type N ′.

N ` · ↘ N
KBase

Rd[(νZ.λ ~X.R)/Z, ~C/ ~X] ` K ↘ N

(νZ.λ ~X.R) ~C ` .d K ↘ N
KDest

` v : P N ` K ↘ N ′

P → N ` v K ↘ N ′
KApp

N [C/X] ` K ↘ N ′ ` C : U

ΠX:U.N ` C K ↘ N ′
KMApp

x : P ` t : N N ` K ↘ N ′

↑P ` ([] to x.t) K ↘ N ′
Kto

4.2 (Co)Pattern matching
We describe in Fig. 7 pattern and copattern matching using two
judgments:

θ;σ ` v =? p↘ θ′;σ′ Pattern matching
θ;σ ` K =? q ↘ θ′;σ′;K′ Copattern matching

Pattern matching the value v against the pattern p synthesizes
instantiations θ′ for index objects and instantiations σ′ for ordinary

pattern variables in p. Both, θ′ and σ′ are extensions of θ and σ
respectively, i.e. θ ≺ θ′ and σ ≺ σ′.

Dually, copattern matching matches an evaluation context K
against a copattern spine q extending θ to θ′ and σ to σ′. As
the evaluation context may be bigger than the copattern spine,
copattern matching may not consume all of K and return the
remaining evaluation context K′ (where K′ is a suffix of K).

For copattern matching to succeed, the evaluation context must
supply at least as many observations as required by the copattern
spine otherwise it will not succeed.

4.3 Small step operational semantics
The operational semantics is defined on configurations t;K which
contain a term and an evaluation context. Such pair is said to have
type N ′ (written ` t;K : N ′) if ` t : N and N ` K ↘ N ′. The
rules for the operational semantics on configurations are defined
in Fig. 8. To evaluate an expression t1 to x.t2, we evaluate t1
in the evaluation context extended with [] to x.t2. Once we have
a value v for t1 we pop off [] to x.t2 and continue evaluating
t2[v/x]. Forcing thunks continues the evaluation. When processing
applications (i.e. applications to a value, an index object or an
observation), we simply extend our evaluation context accordingly
until we step a configuration fn (

−−−−→
qi 7→ ti);K. In this case, we

match the evaluation context K against the copattern spine qi
yielding (θ;σ) and then step ti[θ;σ].

Next, we prove that types are preserved during evaluation (see
Theorem 3). This relies on substitution lemmas for values and com-
putations and adequacy of copattern matching. For convenience, we
describe below well-typed environments (θ, σ) and generalize the



θ;σ ` v =? p↘ θ′;σ′ Value v matches against pattern p extending environments θ;σ to θ′;σ′.

θ;σ ` v =? x↘ θ;σ, v/x
PMVar

θ;σ ` v =? p↘ θ′;σ′

θ;σ ` c v =? c p↘ θ′;σ′
PMConstr

θ;σ ` () =? ()↘ θ;σ
PMUnit

θ ` C =? C′ ↘ θ′

θ;σ ` [C] =? [C′]↘ θ′;σ
PMIndexObj

θ ` C =? C′ ↘ θ′ θ′;σ ` v =? p↘ θ′′;σ′

θ;σ ` pack 〈C, v〉 =? pack 〈C′, p〉 ↘ θ′′;σ′
PMPack

θ;σ ` v1 =? p1 ↘ θ′;σ′ θ′;σ′ ` v2 =? p2 ↘ θ′′;σ′′

θ;σ ` (v1, v2) =? (p1, p2)↘ θ′′;σ′′
PMPair

θ;σ ` refl =? refl↘ θ;σ
PMEq

θ;σ ` K =? q ↘ θ′;σ′;K′ K matches copattern q returning environment θ′;σ′ and evaluation context K′.

θ;σ ` K =? q ↘ θ′;σ′;K′

θ;σ ` .d K =? .d q ↘ θ′;σ′;K′
CPMDest

θ ` C =? C′ ↘ θ′ θ′;σ′ ` K =? q ↘ θ′′;σ′;K′

θ;σ ` C K =? C′ q ↘ θ′′;σ′;K′
CPMMApp

θ;σ ` K =? · ↘ θ;σ;K
CPMObs

θ;σ ` v =? p↘ θ′;σ′ θ′;σ′ ` K =? q ↘ θ′′;σ′′;K′

θ;σ ` v K =? p q ↘ θ′′;σ′′;K′
CPMApp

Figure 7. Rules for pattern matching.

t1;K1 −→ t2;K2 t1;K1 evaluates to t2;K2 in one step.

t1 to x.t2;K −→ t1; ([] to x.t2) K
produce v; ([] to x.t) K −→ t[v/x];K
force (thunk t);K −→ t;K
t.d;K −→ t; .d K
t v;K −→ t; v K
t C;K −→ t;C K
rec x.t;K −→ t[thunk (rec x.t)/x];K

·; · ` K =? qi ↘ θ;σ;K′

fn (
−−−−→
qi 7→ ti);K −→ ti[θ;σ];K′

Figure 8. Operational Semantics

relationship between the computation of the type N and an evalua-
tion contexts K that transforms N into N ′.

∆′ ` θ : ∆ ∆′; Γ′ ` σ : Γ[θ]

∆′; Γ′ ` (θ;σ) : (∆; Γ)

` (θ;σ) : (∆; Γ) N [θ] ` K ↘ N ′

` (θ;σ;K) : (∆; Γ;N)↘ N ′

Lemma 1 (Substitution lemmas). The following hold

1. If ∆; Γ ` v : P and ∆′; Γ′ ` (θ;σ) : (∆; Γ)
then ∆′; Γ′ ` v[θ;σ] : P [θ].

2. If ∆; Γ ` t : N and ∆′; Γ′ ` (θ;σ) : (∆; Γ)
then ∆′; Γ′ ` t[θ;σ] : N [θ].

Proof. Both statements are proved by induction on the typing
derivation. The case on index terms uses Req. 1.

Lemma 2 (Adequacy of copattern matching).

1. Suppose ` (θ;σ) : (∆; Γ) and ·; · ` v : [θ]P .
If ∆; Γ ` p : P ↘ ∆′; Γ′ and θ;σ ` v =? p ↘ θ′;σ′, then
` (θ′;σ′) : (∆′; Γ′).

2. Suppose ` (θ;σ;K) : (∆; Γ;N)↘ N ′′.
If ∆; Γ;N ` q ↘ ∆′; Γ′;N ′ and θ;σ` K =? q ↘ θ′;σ′;K′,
then ` (θ′;σ′;K′) : (∆′; Γ′;N ′)↘ N ′′.

Proof. Both statements are proved by induction on the copattern
matching derivation. The cases for matching on index objects make
use of Req. 2.

Theorem 3 (Type preservation).
If ·; · ` t;K : N and t;K −→ t′;K′, then ` t′;K′ : N .

Proof of theorem 3. The proof is done by case analysis on the step-
ping rule. The only interesting case is when dealing with function
abstraction.

·; · ` K =? qi ↘ θ;σ;K′

fn (
−−−−→
qi 7→ ti);K −→ ti[θ;σ];K′

By inversion on the derivation for ` fn (
−−−−→
qi 7→ ti);K : N , we have

that ` fn (
−−−−→
qi 7→ ti) : N ′ and N ′ ` K ↘ N .

By inversion on the derivation for fn (
−−−−→
qi 7→ ti), we have ·; ·;N ′ `

qi ↘ ∆i; Γi;Ni and ∆i; Γi ` ti : Ni.
By lemma 2, copattern matching yields substitutions ·;` θ;σ :

∆i; Γi together with continuation Ni ` K′ ↘ N . Thus, by
substitution lemma, we have ` ti[θ;σ] : Ni

Thus, ` ti[θ;σ];K′ : N . This concludes the proof.

4.4 Coverage
In this section, we define a notion of coverage for copatterns, which
allows us to prove a type safety result in the next section.

To define coverage, we need to take into account that a function
abstraction can be underapplied, i.e., it will not trigger a reduction
step unless we add more to the evaluation context. To take into
account such possibility, we need to introduce some notation. We
define the append operation of evaluation contexts, denoted K@k,
where k = .d | v | [] to x.n | C which adds to the end an
evaluation context. We also use this operation on copatterns.

We now define coverage. The main judgment ∆; Γ;N /| Q
defined in Figure 9 means that the (finite) setQ of copatterns covers
the typeN in context ∆; Γ. It is established by iteratively refining a
covering set, begining with the trivial copattern. It is easiest to read



the rules from the top to the bottom. A covering set Q is refined by
choosing a particular copattern q ↘ ∆′; Γ′;N ′ inQ and refining it
further into a (finite) set of copatterns. This is accomplished using
the auxiliary judgment (q ↘ ∆′; Γ′;N ′) =⇒ Q′, which states that
the copattern q refines into the set of copatterns Q′.

There are two different types of refinement which can be done.
The first one is introducing the result type. We look at the type
of a particular rule and we introduce it. If we have an arrow type
P → N , we introduce a variable of that type, yielding the copattern
q@x. If we have a corecursive type, for each observation d ∈ R,
we create a new copattern q@.d for each d ∈ R.

The second type of refinement is the splitting on a variable. We
expose a variable occuring in q, and its type in ∆ or Γ. We write
q[x] for a copattern q with a single distinguished position in which
the variable x occurs. We consider in this judgment the contexts to
be unordered, so the notation Γ, x : P (or ∆, X : U ) is simply to
expose any variable x ∈ Γ (X ∈ ∆, respectively), no matter its
actual position in the context. The splitting is done by examining
the type of the exposed variable. If x : P1 × P2, we introduce two
new variables x1 : P1 and x2 : P2 and perform the instantiation
q[(x1, x2)]. If the variable is of recursive type (µY.λ ~X.D)~C, we
introduce a new copattern for each constructor c ∈ D with the
variable replaced by c x′ where x′ : Dc[µY.λ

~X.D/Y , ~C/~X]. If we
have an equality constraint C1 = C2, we attempt to unify them.
If they cannot be unified, we record this copattern as unreachable,
marking it with ⊥. Again we omit for space reasons rules which
perform further refinements on unreachable copatterns.

When splitting on an index variable in ∆, we use the splitting
mechanism from the index domain, as discussed in Section 3.1
which produces a set of refined patterns {(∆i, Ci) | i ∈ I}. We
then return the refined set of copatterns q[Ci/X] for each i ∈ I .

Our coverage algorithm generates a covering set Q. However, it
does not account for writing overlapping and fall-through patterns.
In this sense, our notion of coverage is not complete: there are sets
Q of copatterns which a programmer might write in a program
and one would consider covering, but for which one cannot derive
∆; Γ;N /| Q. However, it would be possible to check that for all
copattern spines q in the generated covering set Q, there exists a
copattern spines q′ in a given program s.t. q is an instance of q′.
For simplicity, we omit this generalization.

As an intermediate technical device, we introduce a notion of
coverage of evaluation contexts. We write K / Q : N ′ to mean
that, eventually (i.e. if K is extended with sufficiently many appro-
priately typed observations), it will match one of the copatterns in
Q. This is necessary because the (deep) copatterns in Q may re-
quire several observations before they are able to fire. This notion
is defined in Figure 10.

With copattern refinement and coverage of evaluation contexts
defined, we are able to prove some technical results which justify
the soundness of the copattern refinement rules. The first of these
states that if a copattern q matches an evaluation context K, and q
refines in one step into the set Q of copatterns, then eventually K
will match one of the copatterns in Q.

Lemma 4. Soundness of copattern refinement
If ∆; Γ;N ` q ↘ ∆′; Γ′;N ′ and ` θ;σ;K : ∆; Γ;N ↘ N ′′ and
(q ↘ ∆′; Γ′;N ′) =⇒ Q and θ;σ ` K =? q ↘ θ′;σ′;K′ then
K / Q : N ′′

Proof. By cases on (q ↘ ∆′; Γ′;N ′) =⇒ Q and induction on
θ;σ ` K =? q ↘ θ′;σ′;K′. The case splitting on a variable in
∆′ requires us to use Req. 3.

Corollary 5. Soundness of copattern refinement
If ∆; Γ;N ` q ↘ ∆′; Γ′;N ′ and ` θ;σ;K : ∆; Γ;N ↘ N ′′ and

(q ↘ ∆′; Γ′;N ′) =⇒ Q Copattern q refines into copatterns Q

(q ↘ ∆′; Γ′; ΠX:U.N ′) =⇒ {q@X ↘ ∆′, X:U ; Γ′;N ′}
(q ↘ ∆′; Γ′;P → N ′) =⇒ {q@x↘ ∆′; Γ′, x:P ;N ′}

(q ↘ ∆′; Γ′; (νZ.λ ~X.R)~C)
=⇒ {q@.d↘ ∆′; Γ′;Rd[νZλ

~X.R/Z, ~C/~X] | d ∈ R}
∆′ ` C1 = C2 ↘ ∆′′

(q[x]↘ ∆′; Γ′, x : C1=C2;N ′) =⇒ {q[refl]↘ ∆′′; Γ′;N ′}
∆′ ` C1 = C2 ↘ ⊥

(q[x]↘ ∆′; Γ′, x : C1=C2;N ′) =⇒ {q[refl]↘ ⊥}
(q[x]↘ ∆′; Γ′, x : P1 × P2;N ′)

=⇒ {q[(x1, x2)]↘ ∆′; Γ′, x1:P1, x2:P2;N ′}
(q[x]↘ ∆′; Γ′, x : ΣX:U.P ;N ′)

=⇒ {q[pack 〈X,x′〉]↘ ∆′, X:U ; Γ′, x′:P ;N ′}

(q[x]↘ ∆′; Γ′, x : (µY.λ ~X.D)~C;N ′)
=⇒ {q[c x′]↘ ∆′; Γ′, x′:Dc[µY.λ

~X.D/Y , ~C/~X];N ′ | c ∈ D}
split(∆ ` U) = {(∆i, Ci)}i∈I

(q[X]↘ ∆′, X:U ; Γ′;N ′) =⇒ {q[Ci]↘ ∆i; (Γ′;N ′)[Ci/X]}i∈I

∆; Γ;N /| Q Copatterns Q cover type N in context ∆; Γ

∆; Γ;N /| {· ↘ ∆; Γ;N}

∆; Γ;N /| (Q ] {q ↘ ∆′; Γ′;N ′}) (q ↘ ∆′; Γ′;N ′) =⇒ Q′

∆; Γ;N /| Q ∪Q′

Figure 9. Coverage

K / Q : N ′ Evaluation contextK is covered by the copattern set
Q at N ′

q ∈ Q ` K =? q ↘ θ;σ;K′

K / Q : N ′

∀v : P K@v / Q : N ′

K / Q : P → N ′
∀C : U K@C / Q : N ′[C/X]

K / Q : ΠX : U.N ′

∀d ∈ R K@.d / Q : Rd[(νZ.λ ~X.R)/Z, ~C/ ~X]

K / Q : (νZ.λ ~X.R)~C

Figure 10. Coverage of evaluation contexts

(q ↘ ∆′; Γ′;N ′) =⇒ Q′ and K / (Q] {q ↘ ∆′; Γ′;N ′}) : N ′′

then K / (Q ∪Q′) : N ′′

Proof. By induction on K / (Q ] {q ↘ ∆′; Γ′;N ′}) : N ′′,
appealing to Lemma 4 in the base case.

The soundness of our notion of coverage now follows easily. It
states that if K is an evaluation context consuming type N , and Q
coversN , then eventuallyK will match one of the copatterns inQ.

Corollary 6. Soundness of coverage
If N ` K ↘ N ′ and ·; ·;N /| Q, then K / Q : N ′.



Proof. By induction on the derivation of ·; ·;N /| Q.

4.5 Progress
In this section, we assume that any copattern set Q used in a func-
tion abstraction is covering, according to the notion of coverage
defined in the previous section.

We define progress through a notion of safety denoted by the
judgment

t;K safe at N ′

This judgment means that either t;K is a terminal configuration
which exposes a value, or eventually (i.e. ifK is extended with suf-
ficiently many appropriately typed observations), the configuration
t;K will step. The definition is in Figure 11.

t;K safe at N ′ Configuration t;K is safe at type N ′.

produce v; · safe at ↑P
t;K −→ t′;K′

t;K safe at N ′

∀d ∈ R t;K@.d safe at Rd[νZ.λ ~X.R/Z, ~C/ ~X]

t;K safe at (νZ.λ ~X.R)~C

∀v ∈ P t;K@v safe at N ′

t;K safe at P → N ′

∀C ∈ U t;K@C safe at N ′[C/X]

t;K safe at ΠX:U.N ′

Figure 11. Progress judgement

Produce terms with empty evaluation contexts are terminal con-
figurations and thus are safe. Stepping configurations are also safe.
Configurations are safe at types (νZ.λ ~X.R) ~C, and P → N , and
ΠX:U.N if extensions of the evaluation context adequate for the
corresponding type are also safe. This captures the idea that partial
applications can occur if providing more to it eventually will make
it step.

In order to prove that every well typed term is safe, we need to
first introduce a lemma to handle the copattern abstraction case.

Lemma 7. If Q is the set of copatterns in ~u and K / Q : N ′, then
fn ~u;K safe at N ′.

Proof. Proof by induction on the derivation K / Q : N ′.

Theorem 8 (Progress theorem). If ` t;K : N ′, then t;K safe at N ′.

Proof. Proof by case analysis on t.
If t is of the form t′.d, or t′ v, or force thunk t′, or t′ to xt′′,

or rec f..t′, then there is a stepping rule. If t is produce v. Then
we do a nested case analysis on K. If K = ·, then it progresses by
assumption. If K = ([] to x.t′′) K′, then it steps to [v/x]t′′;K′.
Since ` produce v : ↑P , we cannot have K = .d K′, K = v K′,
or K = C K′.

The last case is t = fn ~u. By assumption, if ` fn ~u : N ′, then we
have N ′ /| Q where Q is the set of copatterns in ~u. By Lemma 6,
sinceN ` K : N ′, it follows thatK/Q : N . Hence, by Lemma 7,
fn ~u;K safe at N .

5. Related Work
As mentioned our work builds and extends directly the work by
Levy (2001) to track data-dependencies in finite and infinite data.
We model finite data using dependent sums and infinite data using
dependent records. Our language does not support full dependent
types, but only supports indexed types where indices are drawn
from a user-defined domain with a decidable equality theory. This
simplifies the development and allows the integration with effects.

Dependent type theories provide in principle similar support to
track data dependencies on infinite data, although this has not re-
ceived much attention in practice. Agda (Norell 2007), a depen-
dently typed proof and programming environment based on Martin
Löf’s type theory, has support for copatterns since version 2.3.4
(Agda team 2014). We can directly define equality guards and us-
ing large eliminations we can match on index arguments.

Extensions of Martin Löf’s type theory with dependent records
were investigated by Betarte (1998). In his work, a dependent
record is viewed as a sequence of fields where the type of a par-
ticular field may depend on previous ones. For example, a record
representing a vector could have fields list and length where the
type of list is indexed by the value of length. We do not allow
such dependencies between the fields but we rather distinguish be-
tween fields based on a shared index.

Our work builds on the distinction between finite data defined
by constructors and infinite data described by observations which
was pioneered by Hagino (1987). Hagino models finite objects via
initial algebras and infinite objects via final coalgebras in category
theory. This work, as others in this tradition such as Cockett and
Fukushima (1992) and Tuckey (1997), concentrates on the sim-
ply typed setting. Extensions to dependent types with weakly fi-
nal coalgebra structures have been explored Hancock and Setzer
(2005). In this line of work one programs directly with coiterators
and corecursors instead of using general recursion and deep copat-
tern matching.

Our approach of defining infinite data using records bears close
similarity to the treatment and definition of objects and methods
in foundations for object-oriented languages. To specify invariants
about objects and methods and check them statically, DeLine and
Fähndrich (2004) propose typestates. While this work focuses on
the integration of typestates with oriented object features such as
effects, subclasses, etc., we believe many of the same examples can
be modelled in our framework.

Our development of indexed patterns and copatterns builds on
the growing body of work (Zeilberger 2008; Licata et al. 2008)
which relates focusing and linear logic to programming language
theory via the Curry-Howard isomorphism. In particular, our work
takes some inspiration from the proof theory in Baelde (2012) and
Baelde et al. (2010) and the realization of this work in the Abella
system (Baelde et al. 2014). While this work supports coinductive
definitions and coinduction is defined by a non-wellfounded un-
folding of a coinductive definition, it does not describe programs
corresponding to proofs and does not support simultaneous deep
(co)pattern matching.

6. Conclusion
In this paper, we have presented an extension of a general purpose
programming language with support for indexed (co)datatype to
allow the static specification and verification of invariants of infinite
data such as streams. In our development we keep the index domain
abstract and clearly state structural requirements our index domain
must satisfy. Our language extends Levy (2001)’s call-by-push
value with indexed (co)datatypes and deep (co)pattern matching.
We prove that our language’s operational semantics preserves types
and provide a non deterministic algorithm to generate covering



sets of copatterns, ensuring that terms do not get stuck during
evaluation.

In the future, we plan to extend our language to a proof language
allowing inductive and coinductive definitions. Choosing contex-
tual LF as the index domain, this can then serve as a foundation
for developing coinductive proofs about LF specifications. Key to
this step is a notion of totality or productivity which we plan to
investigate building on work by Abel and Pientka (2013).
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