
Termination and Reduction Checking for
Higher-Order Logic Programs

Brigitte Pientka

Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

bp@cs.cmu.edu

Abstract. In this paper, we present a syntax-directed termination and
reduction checker for higher-order logic programs. The reduction checker
verifies parametric higher-order subterm orderings describing relations
between input and output of well-moded predicates. These reduction con-
straints are exploited during termination checking to infer that a specified
termination order holds. To reason about parametric higher-order sub-
term orderings, we introduce a deductive system as a logical foundation
for proving termination. This allows the study of proof-theoretical prop-
erties, such as consistency, local soundness and completeness and decid-
ability. We concentrate here on proving consistency of the presented in-
ference system. The termination and reduction checker are implemented
as part of the Twelf system and enable us to verify proofs by complete
induction.

1 Introduction

One of the central problems in verifying specifications and checking proofs about
them is the need to prove termination. Several automated methods to prove
termination have been developed for first-order functional and logic programs
in the past years (for example [15, 1]). One typical approach is to transform the
program into a term rewriting system (TRS) such that the termination property
is preserved. A set of inequalities is generated and the TRS is terminating if
there exists no infinite chain of inequalities. This is usually done by synthesizing
a suitable measure for terms. To show termination in higher-order simply-typed
term rewriting systems (HTRS) mainly two methods have been developed (for a
survey see [13]): the first approach relies on strict functionals by van de Pol [12],
and the second one is a generalization of recursive path orderings to the higher
order case by Jouannaud and Rubio [4].

In this paper, we present a syntax-directed method for proving termination
of higher-order logic programs. First, the reduction checker verifies properties
relating input and output of higher-order predicates. Using a deductive system
to reason about reduction constraints, the termination checker then proves that
the inputs of the recursive call are smaller than the inputs of the original call
with respect to higher-order subterm orderings. Our method has been developed

for the higher-order logic programming language Twelf [8] which is based on
the logical framework LF [3]. Although Twelf encompasses pure Prolog, it has
been designed as a meta-language for the specification of deductive systems and
proofs about them. In addition to Prolog it allows hypothetical and parametric
subgoals. As structural properties play an important role in this setting, higher-
order subterm orderings have been proven to be very powerful (see Section 5).

The principal contributions of this paper are two-fold: 1) We present a logical
foundation for proving termination which is of interest in proving termination
of first-order and higher-order programs. The logical perspective on reasoning
about orders allows the study of proof-theoretical properties, such as consistency,
local soundness and completeness and decidability. In this paper, we concentrate
on proving consistency of the presented reasoning system by showing admissi-
bility of cut. This implies soundness and completeness of the reasoning system.
2) We describe a practical syntax-directed system for proving termination of
higher-order logic programs. Unlike most other approaches, we are interested
in checking a given order for a program and not in synthesizing an order for a
program. The advantage is that checking whether a given order holds is more
efficient than synthesizing orders. In the case of failure, we can provide detailed
error messages. These help the user to revise the program or to refine the speci-
fied order. The termination checker is implemented as part of the Twelf system
and has been used successfully on examples from compiler verification (soundness
and completeness proofs for stack semantics and continuation-based semantics),
cut-elimination and normalization proofs for intuitionistic and classical logic,
soundness and completeness proofs for the Kolmogorov translation of classical
into intuitionistic logic (and vice versa).

The paper is organized as follows: In Section 2 we give a representative Twelf
program taken from the domain of compiler verification. Using this example we
illustrate the basic idea of the termination checker. We review the background
(see Section 3) In Section 4 we outline the deductive system for reasoning about
orders and prove consistency of the system. Finally, in Section 5 we discuss
related work, summarize the results and outline future work.

2 Motivating Example

Our work on termination is motivated by induction theorem proving in the logi-
cal framework and its current limitations to handle proofs by complete induction.
In this section, we consider a typical example from compiler verification [2] to
illustrate our approach.

Compilation is the automatic transformation of a program written in a source
language to a program in a target language. Typically, there are several stages of
compilation. Starting with a high-level language, the computational description
is refined in each step into low-level machine language. To prove correctness of
a compiler, we need to show the correspondence between the source and target
language. In this example, we consider Mini-ML as the source language, and the

language of the abstract machine as the target language. We only consider a
small subset of a programming language in this paper.

Mini-ML Syntax Abstract Machine Syntax

expressions e ::= e1e2|lam x.e instructions I ::= ret v|ev e|app1 v e|app2 v1v2

values v ::= x|Lam x.e stack S ::= nil |S;λv.I

The Mini-ML language consists of lambda-abstraction and application. To
evaluate an application e1 e2, we need to evaluate e1 to some value Lam x.e′,
e2 to some value v2 and [v2/x]e′ to the final value of the application. Note, the
order of evaluation of these premises is left unspecified. The abstract machine
has a more refined computation model which is reflected in the instruction set.
We not only have instructions operating on expressions and values, but also
intermediate mixed instructions such as app1 v1 e2 and app2 v1 v2. Computation
in an abstract machine can be represented as a sequence of states. Each state
is characterized by a stack S representing the continuation and an instruction
I and written as S#I. In contrast to the big-step semantics for Mini-ML, the
small-step transition semantics precisely specifies that an application is evaluated
from left to right.

Big step Mini-ML semantics:

lam x.e ↪→ Lam x.e
ev lam

e1 ↪→ Lam x.e′1 e2 ↪→ v2 [v2/x]e′1 ↪→ v
e1e2 ↪→ v

ev app

Small-step transition semantics (single step):

t lam : S#(ev lam x.e) 7−→ S#(ret Lam x.e)
t app: S#(ev e1e2) 7−→ (S;λv.app1 v e2)#(ev e1)
t app1: S#(app1 v1e2) 7−→ (S;λv2.app2 v1v2)#(ev e2)
t app2: S#(app2 (Lam x.e′)v2) 7−→ S#(ev [v2/x]e′)
t ret: (S;λv.I)#(ret v1) 7−→ S#[v1/v]I

A computation sequence

S#(ev e1e2)
t app7−→ (S;λv.app1 v e2)#(ev e1) ∗7−→ nil #(ret w)

is represented in Twelf as (t app @ D1) where t app represents the first step
of computation S#(ev e1e2)

t app7−→ (S;λv.app1 v e2)#(ev e1) while D1 describes
the tail of the computation (S;λv.app1 v e2)#(ev e1) ∗7−→ nil #(ret w). We will
sometimes mix multi-step transitions ∗7−→ with single step transitions 7−→ with
the obvious meaning.

An evaluation tree in the big step semantics

P1

e1 ↪→ Lam x.e′1

P2

e2 ↪→ v2

P3

[v2/x]e′1 ↪→ v

e1e2 ↪→ v
ev app

is implemented as (ev app P1 P2 P3). The leaves of the evaluation tree are
formed by applications of the ev lam axiom which is implemented as a constant
ev lam in Twelf.

To show that the compiler works correctly, we need to show soundness and
completeness of the two semantics. We will concentrate on the first property.
To prove soundness we show the following: if we start in an arbitrary state
S#(ev e) with a computation S#(ev e) ∗7−→ nil #(ret w) then there exists an
intermediate state S#(ret v) such that e ↪→ v in the Mini-ML semantics and
S#(ret v) ∗7−→ nil #(ret w).

Theorem 1 (Soundness).
For all computation sequences D : S#(ev e) ∗7−→ nil #(ret w) there exists an
evaluation tree P : e ↪→ v and a tail computation D′ : S#(ret v) ∗7−→ nil #(ret w)
such that D′ is smaller than D.

The proof follows by complete induction on D. We consider each computation
sequence D in the small step semantics and translate it into an evaluation tree
P in the Mini-ML semantics and some tail computation D′ which is a sub-
derivation of the original computation D. This translation can be described by a
meta-predicate sound which takes a computation sequence as input and returns
an evaluation tree and a tail computation sequence.

As a computation sequence can either start with t lam or t app transition,
we need to consider two cases. If the computation sequence starts with a t lam
transition (t lam @ D) then there exists an evaluation of lam x.e to Lam x.e
by the ev lam rule and a tail computation D. The interesting case is when the
computation sequence starts with an t app transition (t app @ D1).

S#(ev e1 e2)
t app7−→ (S;λv.app1 v e2)#(ev e1) ∗7−→ nil #(ret w)︸ ︷︷ ︸

D1

We recursively apply the translation to D1 and obtain P1 which represents an
evaluation starting in e1 ↪→ v1 and (S;λv.app1 v e2)#(ret v1) ∗7−→ nil #(ret w)
as the tail computation sequence D′. By inversion using the t ret and t app1
transition rules, we unfold D′ and obtain the following tail computation sequence

(S;λv.app1 v e2)#(ret v1) t ret7−→ S#(app1 v1e2)
t app17−→

(S;λv.app2 v1v)#(ev e2) ∗7−→ nil #(ret w)︸ ︷︷ ︸
D2

which is represented as (t ret @ t app1 @ D2). By applying the translation
again to D2, we obtain an evaluation tree for e2 ↪→ v2 described by P2 and
some computation sequence D′′ : (S;λv.app2 v1v)#(ret v2) ∗7−→ nil #(ret w).
By inversion using rules t ret and t app2, we know that the value v1 represents
some function Lam x.e′ and D′′ can be unfolded to obtain the tail computation

(S;λv.app2 (Lam x.e′)v)#(ret v2) t ret7−→ S#(app2 (Lam x.e′)v2)
t app27−→

S#(ev [v2/x]e′) ∗7−→ nil #(ret w)︸ ︷︷ ︸
D3

which is represented as (t ret @ t app2 @ D3). Now we apply the translation
for a final time to D3 and obtain an evaluation tree P3 starting in [v2/x]e′ ↪→ v

and some tail computation S#(ret v) ∗7−→ nil #(ret w) which we refer to as
D4. The final results of translating a computation sequence (t app @ D1) are
the following: The first result is an evaluation tree for e1e2 ↪→ v which can be
constructed by using the ev app rule and the premises e1 ↪→ (Lam x.e′), e2 ↪→ v2

and [v2/x]e′ ↪→ v. This step is represented in Twelf by (ev app P1 P2 P3). As
a second result, we return the tail computation sequence D4.

The following Twelf program implements the described translation. Through-
out this example, we reverse the function arrows writing A2 <- A1, instead of
A1 -> A2 following logic programming notation. Since -> is right associative, <-
is left associative. A more detailed discussion of this example is given in [7].

sound : S # (ev E) =>* nil # (ret W) ->

eval E V -> S # (ret V) =>* nil # (ret W) -> type.

%mode sound +D -P -D’.

s lam : sound (t lam @ D) ev lam D.

s app : sound (t app @ D1) (ev app P3 P2 P1) D4

<- sound D1 P1 (t ret @ t app1 @ D2)

<- sound D2 P2 (t ret @ t app2 @ D3)

<- sound D3 P3 D4.

First the type of the meta-predicate sound is defined. It has three arguments:
the computation S#(ev E) ∗7−→ nil #(ret W) which is described as S # (ev E)
=>* nil # (ret W), the evaluation e ↪→ v which is represented as eval E V and
the tail computation sequence S#(ret E) ∗7−→ nil #(ret W) which is defined as
S # (ret V) =>* nil # (ret W).

The mode declaration %mode sound +D -P -D’ specifies inputs and outputs
of the defined predicate. When executed this program translates computations
on the abstract machine into Mini-ML evaluations. Dependent types underly-
ing this implementation guarantee that only valid computation sequences and
evaluations are generated. The mode checker [11] verifies that all inputs are
known when the predicate is called and all output arguments are known af-
ter successful execution of the predicate. To check that this program actually
constitutes a proof, meta-theoretic properties such as coverage and termination
need to be established. Termination guarantees that the input of each recur-
sive call (induction hypothesis) is smaller than the input of the original call
(induction conclusion). For termination checking the program needs to be well-
moded. In addition, the user specifies which input arguments to consider and
in which order they diminish. In the given example, we specify that the pred-
icate sound should terminate in the first argument by %terminates D (sound
D P D’). For reduction checking we specify an explicit order relation between
input and output elements. In the example we say %reduces D’ < D (sound
D E D’). In general, we allow atomic, lexicographic ({Arg1, Arg2}) or simul-
taneous ([Arg1, Arg2]) subterm orderings. To show that a given program sat-
isfies a given reduction constraint pattern, we proceed for each clause in two
stages: First we extract a set ∆ of reduction constraints from the recursive calls
which can be assumed and the reduction constraint P of the whole clause which
needs to be satisfied. Second, we prove that the set ∆ implies the reduction
constraint P . For proving termination of a given program, we also proceed in

two stages: For each clause, and for each recursive call we first extract a set ∆
of reduction constraints which are valid and a termination constraint P which
characterizes the relation between the recursive call and the original call. Sec-
ond, we prove that the set ∆ implies the termination constraint P . For example,
to show that the predicate sound terminates, we show the following properties:

Reduction: %reduces D’ < D (sound D P D’)
if D4 ≺ D3, (t ret @ t app2 @ D3) ≺ D2 and (t ret @ t app1 @ D2) ≺ D1 then

D4 ≺ (t app @ D1).

Termination: %terminates D (sound D P D’)
1. D1 ≺ (app @ D1)

2. if (ret @ app1 @ D2) ≺ D1 then D2 ≺ (app @ D1)

3.if (ret @ app2 @ D3) ≺ D2 and (ret @ app1 @ D2) ≺ D1 then D3 ≺ (app @ D1).

We use ≺ to represent the subterm order relation. In general we might have
nested clauses which need to be checked recursively. Moreover, we generate para-
metric reduction constraints for parametric sub-clauses. In Section 5 we give
another example for checking termination and reduction. A more detailed expla-
nation for extracting the termination and reduction properties can be found in
[9]. In the remainder of the paper we will briefly explain the background theory
and then discuss a deductive system for reasoning about structural orderings.

3 Background

The higher-order logic programming language we are working with is based on
the logical framework LF [3]. The meta-language of LF is the λΠ-calculus. It
is a three-level hierarchical calculus for objects, families, and kinds. Families are
classified by kinds, and objects are classified by types, that is, families of kind
type.

Kinds K := type |Πx : A.K Signatures Σ := ·|Σ, h : K|Σ, c : A
Types A := hM1 . . .Mn|Πx : A1.A2 Context Γ := ·|Γ, x : A
Objects M := c|x|λx : A.M |M1M2

We will use h for type family constants, c for object constants, and x for
variables. Constants are introduced through a signature. Πx : A1.A2 denotes
the dependent function type or dependent product: the type A2 may depend on
an object x of type A1. Whenever x does not occur free in A2 we may abbreviate
Πx : A1.A2 as A1 → A2. Below we assume a fixed signature Σ. The types of
free variables in a term M are provided by a context Γ . The equivalence ≡ is
equality modulo βη-conversion. We will rely on the fact that canonical (i.e. long
βη-normal) forms of LF object are computable and that equivalent LF objects
have the same canonical form up to α-conversion. We assume that constants and
variables are declared at most once in a signature and context, respectively. As
usual we apply tacit renaming of bound variables to maintain this assumption
and to guarantee capture-avoiding substitutions.

To illustrate the use of basic notation, we consider the representation of
the abstract machine which was introduced in the last section. The operations
application and lambda abstraction can be represented as canonical LF objects
of type exp. Values, continuations, instructions and states are defined in a similar
fashion. The evaluation derivation e ↪→ v is represented by the judgement eval :
exp -> val -> type. in Twelf. Similarly, we can encode the one-step transition
relation and the multi-step transition relation as a judgements in Twelf.

exp: type. eval: exp -> val -> type.

lam: (val -> exp) -> exp. ev lam : eval (lam E) (lam* E).

app: exp -> exp -> exp. ev app : eval (app E1 E2) V

<- eval E1 (lam* E1’)

val: type. <- eval E2 V2

lam*: (val -> exp) -> val. <- eval (E1’ V2) V.

The capitalized identifiers that occur free in each declaration are implicitly
Π-quantified. The appropriate type is deduced from the context during type
reconstruction. The fully explicit form of the first declaration would be ev lam:
Π E: val -> exp. eval (lam E) (lam* E).

4 A logical approach to termination

4.1 Reasoning about higher-order subterm orderings

In Section 2 we sketched the analysis of higher-order logic programs for termina-
tion and reduction properties. Termination and reduction analysis is separated
from reasoning about higher-order subterm relations. The analysis collects valid
reduction properties as assumptions and states the ordering which needs to be
satisfied under the assumptions. In this section we develop a formal inference
system to check whether a set of valid reduction constraints implies an ordering
constraint. For now, we consider only first-order subterm reasoning. An ordering
constraint is either the ≺ subterm relation, the � subterm relation or structural
equivalence relation ≡. A context ∆ is a set of ordering constraints.

Context ∆ := ·|∆,P
Ordering constraints P := Arg1 ≺ Arg2|Arg1 � Arg2|Arg1 ≡ Arg2

Arg Arg := M |{Arg1, Arg2}|[Arg1, Arg2]

The reasoning system should exhibit a minimal set of desired properties such
as transitivity reasoning, congruence closure for structural equality reasoning,
and reasoning about λ-terms. The system for first-order subterm reasoning is
given in Figure 1. It is similar to the sequent calculus formulation with right and
left rules for each ordering relation. � is defined in terms of ≺ and ≡. If the rule
L≺ has no premises, i.e., N is a constant c with no arguments, the hypothesis
is contradictory and the conclusion ∆,M ≺ c −→ P is trivially true. Reasoning
about structural orderings is inherently different from the usual reasoning with
equality and inequality. Usually when reasoning about equalities/inequalities, we
reason about the value of a term. For example, the value of hM1 . . .Mn can be

∆,P −→ P
id

∆ −→M ≡M
refl ∆,M ′ ≡M −→ P

∆,M ≡M ′ −→ P
sym

∆ −→M1 ≡ N1 . . . ∆ −→Mn ≡ Nn
∆ −→ hM1 . . .Mn ≡ hN1 . . . Nn

R≡
∆,M1 ≡ N1, . . . ,Mn ≡Mn −→ P

∆, hM1 . . .Mn ≡ hN1 . . . Nn −→ P
L≡1

∆[M], X ≡M −→ P

∆[X], X ≡M −→ P
Lsubst

h 6= g

∆, hM1 . . .Mn ≡ gN1 . . . Nk −→ P
L≡2

∆ −→M ≺M1 ∆ −→M1 ≺M ′

∆ −→M ≺M ′
t≺

∆ −→M ≺M1 ∆ −→M1 ≡M ′

∆ −→M ≺M ′
t≺≡

∆ −→M ≡M1 ∆ −→M1 ≺M ′

∆ −→M ≺M ′
t≡≺

∆ −→M ≡M1 ∆ −→M1 ≡M ′

∆ −→M ≡M ′
t≡≡

∆ −→M � Ni
∆ −→M ≺ hN1 . . . Nn

R≺i
∆,M � N1 −→ P . . . ∆,M � Nn −→ P

∆,M ≺ hN1 . . . Nn −→ P
L≺

∆ −→M ≺ N
∆ −→M � N

R�1
∆ −→M ≡ N
∆ −→M � N

R�2

∆,M ≺ N −→ P ∆,M ≡ N −→ P

∆,M � N −→ P
L�

Fig. 1. First-order Subterm Relations (≺, �)

equal to the value of gN1 . . . Nk where h and g denote different function symbols.
When reasoning about subterms, we are only interested in the syntactic structure
of a term. Therefore, a term hM1 . . .Mn can never be structurally equivalent to
gN1 . . . Nk, if g 6= h. If hM1 . . .Mn ≡ gN1 . . . Nk occurs in our assumptions, we
can infer anything (L≡2). This system is already expressive enough to prove
termination of the translation of small-step semantics into big-step Mini-ML
semantics which is implemented by the sound predicate (see p. 4). One of the
claims we need to prove during termination checking is the following:

(ret @ app1 @ D2) ≺ D1 −→ D2 ≺ (app @ D1)

The proof written in a bottom-up linear notation is as follows:

2. (ret @ app1 @ D2) ≺ D1 −→ (ret @ app1 @ D2) ≺ D1 id
(ret @ app1 @ D2) ≺ D1 −→ D2 ≡ D2 refl
(ret @ app1 @ D2) ≺ D1 −→ D2 � D2 R�2

(ret @ app1 @ D2) ≺ D1 −→ D2 ≺ (app1 @ D2) R≺2

(ret @ app1 @ D2) ≺ D1 −→ D2 � (app1 @ D2) R�1

1. (ret @ app1 @ D2) ≺ D1 −→ D2 ≺ (ret @ app1 @ D2) R≺2

(ret @ app1 @ D2) ≺ D1 −→ D2 ≺ D1 t≺ using 1,2
(ret @ app1 @ D2) ≺ D1 −→ D2 � D1 R�1

(ret @ app1 @ D2) ≺ D1 −→ D2 ≺ (app @ D1) R≺2

∆ −→ O1 ≺ O1
′

∆ −→ {O1, O2} ≺ {O1
′, O2

′}
RLex≺1

∆ −→ O1 ≡ O1
′ ∆ −→ O2 ≺ O2

′

∆ −→ {O1, O2} ≺ {O1
′, O2

′}
RLex≺2

∆ −→ {O1, O2} ≺ {O1
′, O2

′}
∆ −→ {O1, O2} � {O1

′, O2
′}

RLex�1
∆ −→ {O1, O2} ≡ {O1

′, O2
′}

∆ −→ {O1, O2} � {O1
′, O2

′}
RLex�2

∆ −→ O1 ≡ O1
′ ∆ −→ O2 ≡ O2

′

∆ −→ {O1, O2} ≡ {O1
′, O2

′}
RLex≡

∆,O1 ≺ O1
′ −→ P ∆,O1 ≡ O1

′, O2 ≺ O2
′ −→ P

∆, {O1, O2} ≺ {O1
′, O2

′} −→ P
LLex≺

∆, {O1, O2} ≺ {O1
′, O2

′} −→ P ∆, {O1, O2} ≡ {O1
′, O2

′} −→ P

∆, {O1, O2} � {O1
′, O2

′} −→ P
LLex�

∆,O1 ≡ O1
′, O2 ≡ O2

′ −→ P

∆, {O1, O2} ≡ {O1
′, O2

′} −→ P
LLex≡

Fig. 2. Lexicographic Extensions

We can extend the system with rules for lexicographic orderings by defining
left and right rules (see Figure 2). O1 and O2 are considered to be lexicographi-
cally smaller than O′1 and O′2 if either O1 is smaller than O′1 or O1 is structurally
equivalent to O′1 and O2 is smaller than O′2. This disjunctive choice is reflected in
the two rules RLex≺1 and RLex≺2. If we assume O1 and O2 to be lexicograph-
ically smaller than O′1 and O′2, then we need to be able to prove some ordering
P under the assumption O1 is smaller than O′1 and under the assumptions O1

is structurally equivalent to O′1 and O2 is smaller than O′2 (see LLex≺). The
rules for � and ≡ are straightforward. Similarly, we can define extensions for
simultaneous orderings. Although we do not pursue other more complex struc-
tural orderings for now, in general this approach can be also applied to define
extensions for simplification orderings, multi-set orderings or recursive path or-
derings. In this paper, we focus on extending the system to higher-order subterm
relations.

In the setting of a dependently typed calculus, we face two challenges: First,
we need to reason about orders involving higher-order terms. Second, we might
synthesize parametric order relations due to parametric subgoals. When con-
sidering higher-order terms, we need to find an appropriate interpretation for
lambda-terms. This problem is illustrated by the following example. Assume the
constructor lam is defined as lam: (exp -> exp) -> exp. We want to show
that E a is a subterm of lam λx.E x where a is a parameter. In the informal
proof we might count the number of constructors and consider E a an instance
of λx.E x. Therefore we consider a term M a subterm of λx.N x if there exists
a parameter instantiation a for x s.t. M is smaller than [a/x]N . We will use the
convention that a will represent a new parameter, while a stands for an already
defined parameter. To adopt a logical point of view, the λ-term on the left of a

subterm relation can be interpreted as universally quantified and the λ-term on
the right as existentially quantified.

Another example is taken from the representation of first-order logic [6]. We
can represent formulas by the type family o. Individuals are described by the
type family i. The constructor ∀ can be defined as forall: (i -> o) -> o.
We might want to show that A T (which represents [t/x]A) is smaller than
forall λx.Ax (which represents ∀x.A). Similarly, we might count the number
of quantifiers and connectives in the informal proof, noting that a term t in
first-order logic cannot contain any logical symbols. Thus we may consider AT
a subterm of forall λx.Ax as long as there is no way to construct an object
of type i from objects of type o. A term M is smaller than a λ-term (λx.N) if
there exists an instantiation T for x s.t. M is smaller than [T/x]N and the type
of T is a subordinate to N . For a more detailed development of mutual recursion
and subordination we refer the reader to R. Virga’s PhD thesis [14].

∆,λx.M ≡ hN1 . . . Nn −→ P
L≡3

∆, a ≡ hN1 . . . Nn −→ P
L≡4

∆ −→ [a/x]M ≡ [a/x]N

∆ −→ λx.M ≡ λx.N R≡ λ
∆, [a/x]M ≡ [a/x]N −→ P

∆, λx.M ≡ λx.N −→ P
L≡ λ

∆ −→ [a/x]M ≺ N
∆ −→ λx : A.M ≺ N RL≺ λa

∆, [a/x]M ≺ N −→ P

∆, λx : A.M ≺ N −→ P
LL≺ λ

∆ −→M ≺ [a/x]N

∆ −→M ≺ λx : A.N
RR≺ λ

∆, M ≺ [a/x]N −→ P

∆,M ≺ λx : A.N −→ P
LR≺ λa

∆ −→ [a/x]M � N
∆ −→ λx : A.M � N

RL� λa
∆, [a/x]M � N −→ P

∆, λx : A.M � N −→ P
LL� λ

∆ −→M � [a/x]N

∆ −→M � λx : A.N
RR� λ

∆, M � [a/x]N −→ P

∆,M � λx : A.N −→ P
LR� λa

∆ −→ [a/x]P

∆ −→ Πx.P
RΠa

∆, [a/x]P −→ P ′

∆,Πx.P −→ P ′
LΠ

Fig. 3. Higher-order Extensions

Reasoning about λ-terms cannot be solely based≺ and≡, as neither [a/x]M ≡
λx.M nor [a/x]M ≺ λx.M is true. Therefore, we introduce a set of inference
rules to reason about � which are similar to the ≺ rules. Extensions to higher-
order subterm reasoning are presented in Figure 3. As we potentially need dif-
ferent instantiations of the relation λx.M ≺ N when reading the inference rules
bottom-up, we need to copy λx.M ≺ N in ∆ even after it has been instanti-
ated. For simplicity, we assume all assumptions persist. Note that we only show
the case for mutual recursive type families, but the case where type family a
is a subordinate to the type family a′ can be added in straightforward manner.
For handling parametric order relations we add RΠa and LΠ which are similar

to universal quantifier rules in the sequent calculus. Similar to instantiations of
λx.M ≺ N , we need to keep a copy of Πx.P after it has been instantiated. The
weakening and contraction property hold for the given calculus.

Reasoning about higher-order subterm relations is complex due to instanti-
ating λ-terms and parametric orderings. Although soundness and decidability of
the first-order reasoning system might still be obvious, this is non-trivial in the
higher-order case. In this paper, we concentrate on proving consistency of the
higher-order reasoning system. Consistency of the system implies soundness, i.e.
any step in proving an order relation from a set of assumptions is sound. The
proof also implies completeness i.e. anything which should be derivable from a
set of assumptions is derivable.

4.2 Consistency of higher-order subterm reasoning

In general, the consistency of a logical system can be shown by proving cut
admissible.

∆ −→ P ∆,P −→ P ′

cut
∆ −→ P ′

∆ usually consists of elements which are assumed to be true. Any P which can be
derived from ∆ is true and can therefore be added to ∆ to prove P ′. In our setting
∆ consists of reduction orderings which have already been established. Hence,
the reduction orderings are true independently from any other assumptions in
∆ and they are assumed to be valid. The application of the cut-rule in the proof
can therefore only introduce valid orderings as additional assumptions in ∆.

Theorem 2 (Admissibility of cut).

1. If D : . −→M ≡M ′ and E : ∆,M ≡M ′ −→ P ′ then F : ∆ −→ P ′.
2. If D : . −→ σM ≺M ′ and E : ∆,λ−→x .M ≺M ′ −→ P ′ then F : ∆ −→ P ′.
3. If D : . −→ σM �M ′ and E : ∆,λ−→x .M �M ′ −→ P ′ then F : ∆ −→ P ′.

The substitution σ maps free variables to new parameters. In general, we allow
the cut between σM ≺ N and λ−→x .M ≺ N where σM is an instance of λ−→x .M .

However, we will not be able to show admissibility of cut directly in the given
calculus due to the non-deterministic choices introduced by λ-terms. Consider,
for example, the cut between

D =

D1

. −→ σ ◦ [a/x]M ≺ N
RL≺λ

. −→ σλx.M ≺ N
.

E
∆,λx.M ≺ N −→ P

We would like to apply inversion on E ; therefore we need to consider all
possible cases of previous inference steps which lead to E . There are three possible
cases we need to consider: L≺, LR≺λa and LL≺λ. Unfortunately, it is not
possible to appeal to the induction hypothesis and finish the proof in the L≺
and LR≺λ case. This situation does not arise in the first order case, because all

the inversion steps were unique. In the higher-order case we have many choices
and we are manipulating the terms by instantiating variables in λ-terms.

The simplest remedy seems to restrict the calculus in such a way, that we
always first introduce all possible parameters, and then instantiate all Π quan-
tified orders and λx.M which occur on the left side of a relation. This means,
we push the instantiation with parameter variables as high as possible in the
proof tree. This way, we can avoid the problematic case above, because we only
instantiate a λ-term in λx.M ≺ N , if N is atomic.

Therefore, we proceed as follows: First, we define an inference system, in
which we first introduce all new parameters. This means we restrict the applica-
tion of the R�1, R�2, R≺i, RR≺λ, RR�λ to only apply if the left hand side of
the principal order relation ≺ or � is already of base type. Similarly, we restrict
the application of L�, LL�λ, LL≺λ, i.e. the rule only applies if the right hand
side of the principal ordering relation is of base type. In addition, we show that
the application of the identity rules can be restricted to atomic terms. Second,
we show this restricted system is sound and complete with respect to the original
inference system. Third, we show that cut is admissible in the restricted calculus.
This implies that cut is also admissible in the original calculus. The proof pro-
ceeds by nested induction on the structure of P , the derivation D and E . More
precisely, we appeal to the induction hypothesis either with a strictly smaller
order constraint P or P stays the same and one of the derivations is strictly
smaller while the other one stays the same. For a more detailed development of
the intermediate inference system and the proofs we refer to [9]

Using the cut-admissibility theorem, cut-elimination follows immediately.
Therefore, our inference system is consistent. This implies that all derivation
steps in the given reasoning system are sound. It also implies that the inference
rules are strong enough to deduce as much as possible from the assumptions and
hence the system is complete.

5 Related work and Conclusion

Most work in automating termination proofs has focused on first-order lan-
guages. The most general method for synthesizing termination orders for a given
term rewriting system (TRS) is by Arts and Giesl [1]. One approach to proving
termination of logic programs is to translate it into a TRS and show termination
of the TRS instead. However this approach has several drawbacks. In general,
a lot of information is lost during the translation. In particular, if termination
analysis fails for the TRS, it is hard to provide feedback and re-use this failure
information to point to the error in the logic program. Moreover important struc-
tural information is lost during the translation and constructors and functions
are indistinguishable. One of the consequences is that proving termination of the
TRS often requires more complicated orders. This is illustrated using an exam-
ple from arithmetic. Using logic programming we implement a straightforward
version of minus and the quotient predicate quot.

minus : nat -> nat -> nat -> type. quot : nat -> nat -> nat -> type.

%mode minus +X +Y -Z. %mode quot +X +Y -Z.

m z : minus X z X. q z : quot z (s Y) z.

m s : minus (s X) (s Y) Z q s : quot (s X) (s Y) (s Z)

<- minus X Y Z. <- minus X Y X’

<- quot X’ (s Y) Z.

%reduces Z <= X (minus X Y Z).

%terminates X (minus X Y Z). %terminates X (quot X Y Z).

Proving termination of quot is straightforward with the presented method.
We first prove termination of minus. In addition we show that minus X Y Z
satisfies the reduction constraint Z <= X. When we prove termination of quot,
we can assume the reduction constraint X ′ � X. As the reduction constraint
X ′ � X implies X ′ ≺ (sX), we proved termination of quot. Note that only
subterm reasoning is required to prove termination of quot while other methods
like Arts and Giesl’s method for proving the corresponding term rewrite system
needs a recursive path ordering. Another example is an algorithm to compute
the negation normal form of a first-order logical formula and uses higher-order
functions (see [9]). We implemented this algorithm using two mutual recursive
predicates. Termination of this algorithm can be proven based on subterm order-
ing, while the corresponding term rewriting system given in [5] requires a more
complicated ordering like recursive path ordering.

Although some of the underlying ideas in higher-order term rewriting system
(HTRS) are shared with the logical framework, there are two principal differ-
ences: First, all arguments of a predicate are in canonical form and therefore are
terminating. This additional restriction simplifies termination analysis in the
logical framework. On the other hand, the dependently typed λΠ calculus, on
which the logical framework LF is based, allows the representation of hypothet-
ical and parametric judgements which make termination and reduction analysis
more challenging. Hypothetical and parametric judgements have in general no
counterpart in HTRS and their translation to HTRS seems difficult.

One approach which analyzes logic programs directly has been developed by
Plümer [10]. The idea is to construct a subgoal dependency graph and then show
that this graph is acyclic according to some ordering. Although this approach
works well for Prolog programs, it is not obvious how to extend this method in a
higher-order setting with parametric and hypothetical subgoals. In this paper we
propose a proof-theoretical foundation for termination checking of higher-order
logic programs. To infer that a specified ordering holds under a set of assump-
tions, we introduced a deductive system to reason about structural orderings. We
focused on consistency of the presented reasoning system. Consistency implies
that anything we derive from the assumption is sound. Cut-elimination implies
that the reasoning system is complete, i.e. everything which should be derivable
from the assumptions is in fact derivable. A valuable advantage of this approach
is its extensibility and its modularity. Similar to lexicographic extensions we can
imagine extensions for simplification ordering, multi-set ordering and recursive

path orderings. In addition our method allows us to combine different structural
orderings for different predicates. This is unlike other termination methods which
require one ordering for the whole dependency graph.

This paper builds on Rohwedder and Pfenning’s work on mode and termi-
nation checking for higher-order logic programs [11]. Their termination checker
requires a direct relationship between inputs of the recursive call and inputs of
the original call without taking into account input and output relations. Reason-
ing about orderings allows us to check proofs by complete induction such as the
soundness proof discussed in this paper. The emphasis of their work has been
the correctness of the termination checker with respect to the operational se-
mantics of Twelf programs. Although we have not proven the correctness of the
extended termination checker, we are expecting the proof to be a straightforward
extension of their proof.

One question not discussed in this paper is whether the system is decid-
able. This question is not trivial as we can potentially instantiate λ-terms and
Π-quantified order relations which occur in the context multiple times. One ap-
proach for proving decidability would be to show that we can bound the number
of instantiations needed.

Our system is implemented as part of Twelf, and efficiently checks programs
and proofs. Currently multiplicity is restricted to one, i.e. we instantiate Π-
quantified orderings and λ-terms occurring on the left hand side of a relation in
the hypothesis just once. Although we can artificially construct examples which
require multiplicity more than one, we have not encountered these cases in prac-
tice so far. If a higher multiplicity is needed, an appropriate warning is returned.
As our algorithm analyzes program clauses directly, its behaviour is easy to
understand. In the case of failure, our implementation will point to the clause
and argument where the error occurred. This enables the user to either revise
the program or strengthen the ordering. In practice we have used the termina-
tion and reduction checker on examples from compiler verification (soundness
and completeness proofs for stack semantics and continuation-based semantics),
cut-elimination and normalization proofs for intuitionistic and classical logic,
soundness and completeness proofs for the Kolmogorov translation of classical
into intuitionistic logic (and vice versa)1. Currently, Rohwedder and Pfenning’s
termination checker is used in the automatic induction theorem prover. In the
future, we plan to incorporate the extended termination checker.

Acknowledgements

The author gratefully acknowledges numerous fruitful discussions with Frank
Pfenning regarding the subject of this paper. His guidance and careful reading
of this paper contributed greatly to its clarity and correctness.

1 The code of all the examples mentioned in the paper can be found at
http://www.cs.cmu.edu/~bp/code.

References

1. Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency
pairs. Theoretical Computer Science, 236:133–178, 2000.

2. John Hannan and Frank Pfenning. Compiler verification in LF. In Andre Scedrov,
editor, Seventh Annual IEEE Symposium on Logic in Computer Science, pages
407–418, Santa Cruz, California, June 1992.

3. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, January 1993.

4. J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In
G. Longo, editor, Proceedings of the 14th Annual Symposium on Logic in Com-
puter Science (LICS’99), pages 402–411, Trento, Italy, July 1999. IEEE Computer
Society Press.

5. Olav Lysne and Javier Piris. A termination ordering for higher order rewrite
systems. In Jieh Hsiang, editor, Proceedings of the Sixth International Conference
on Rewriting Techniques and Applications, pages 26–40, Kaiserslautern, Germany,
April 1995. Springer-Verlag LNCS 914.

6. Frank Pfenning. Structural cut elimination. In D. Kozen, editor, Proceedings of
the Tenth Annual Symposium on Logic in Computer Science, pages 156–166, San
Diego, California, June 1995. IEEE Computer Society Press.

7. Frank Pfenning. Computation and Deduction. Cambridge University Press, 2000.
In preparation. Draft from April 1997 available electronically.

8. Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-
logical framework for deductive systems. In H. Ganzinger, editor, Proceedings
of the 16th International Conference on Automated Deduction (CADE-16), pages
202–206, Trento, Italy, July 1999. Springer-Verlag LNAI 1632.

9. Brigitte Pientka. Termination and reduction checking in the logical framework.
Technical report cmu-cs-01-115, Carnegie Mellon University, 2001.

10. Lutz Plümer. Termination Proofs for Logic Programs. LNAI 446. Springer-Verlag,
1990.

11. Ekkehard Rohwedder and Frank Pfenning. Mode and termination checking for
higher-order logic programs. In Hanne Riis Nielson, editor, Proceedings of the
European Symposium on Programming, pages 296–310, Linköping, Sweden, April
1996. Springer-Verlag LNCS 1058.

12. J. van de Pol and H. Schwichtenberg. Strict functionals for termination proofs.
In M. Dezani-Ciancaglini and G. Plotkin, editors, Proceedings of the International
Conference on Typed Lambda Calculi and Applications, pages 350–364, Edinburgh,
Scotland, April 1995. Springer-Verlag LNCS 902.

13. Femke van Raamsdonk. Higher-order rewriting. In Proceedings of the 10th Inter-
national Conference on Rewriting Techniques and Applications (RTA ’99), pages
220–239, Trento, Italy, July 1999. Springer-Verlag LNCS 1631.

14. Roberto Virga. Higher-Order Rewriting with Dependent Types. PhD thesis, De-
partment of Mathematical Sciences, Carnegie Mellon University, 2000.

15. Christoph Walther. On proving the termination of algorithms by machine. Artifi-
cial Intelligence, 71(1), 1994.

