
A proof-theoretic foundation for tabled
higher-order logic programming

Brigitte Pientka?

Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

bp@cs.cmu.edu

Abstract. Higher-order logic programming languages such as Elf ex-
tend first-order logic programming in two ways: first-order terms are
replaced with (dependently) typed λ-terms and the body of clauses may
contain implication and universal quantification. In this paper, we de-
scribe tabled higher-order logic programming where some redundant com-
putation is eliminated by memoizing sub-computation and re-using its
result later. This work extends Tamaki and Sato’s search strategy based
on memoization to the higher-order setting. We give a proof-theoretic
characterization of tabling based on uniform proofs and prove sound-
ness of the resulting interpreter. Based on it, we have implemented a
prototype of a tabled logic programming interpreter for Elf.

1 Introduction

Tabled first-order logic programming has been successfully applied to solve com-
plex problems such as implementing recognizers and parsers for grammars [25],
representing transition systems CCS and writing model checkers [6]. The idea be-
hind it is to eliminate redundant computation by memoizing sub-computation
and re-using its results later. The resulting search procedure is complete and
terminates for programs with the bounded-term size property. The XSB sys-
tem [22], a tabled logic programming system, demonstrates impressively that
tabled together with non-tabled programs can be executed efficiently.

Higher-order logic programming languages such as Elf [14] extend first-order
logic programming in two ways: first-order terms are replaced with dependently
typed λ-terms and the body of clauses may contain implication and universal
quantification. It offers a generic framework for 1) implementing logical systems
as Elf programs, 2) executing them and generating a certificate for each execu-
tion via an interpreter 3) checking certificates via type-checking and 4) reasoning
with and about logical systems via a meta-level theorem prover Twelf [19]. One
of its applications lies in “certifying code” where programs are equipped with a
certificate (proof) that asserts certain safety properties. The safety policy can be
represented as a higher-order logic program in Elf. Appel and Felty [1] use the
? This work was partially supported by NSF Grant CCR-9988281.

logic programming interpreter to execute the specification and generate a certifi-
cate that a given program fulfills a specified safety policy. Necula and Rahul [12]
use a logic programming interpreter for checking the correctness of a certificate.
In their case, the certificate is a bit-string that guides the logic programming
interpreter to resolve non-deterministic choices. Representing and executing dif-
ferent safety policies using Elf reduces the effort required for each specific policies
and offers an ideal environment for experimenting and combining safety policies.
Proof search based on logic programs plays a central role in this setting, but re-
dundant computation may hamper the performance and computation may not
terminate, although the underlying domain is finite.

In this paper, we present tabled higher-order logic programming where some
redundant computation is eliminated by memoizing sub-computation and re-
using its result later. As higher-order logic programming allows nested implica-
tions and universal quantification in the body of clauses, goals might depend
on a context of assumptions. We also have dependencies among terms, as the
term language is derived from the dependently typed λ-calculus. The combina-
tion of both requires careful design of the table and table operations. We give a
proof-theoretic characterization of tabled higher-order logic programming based
on uniform proofs [10] and show soundness of the resulting interpreter. This
work forms the basis of the implemented tabled interpreter for the language Elf.
Although we concentrate on the logical framework LF, which is the basis of Elf,
it seems possible to apply the presented approach to λProlog [11] or Isabelle [13],
which are based on hereditary Harrop formulas and simply typed terms.

The paper is organized as follows: In Sec. 2 we introduce a type system for
Mini-ML including subtyping. Using this example, we review briefly tabled logic
programming and discuss higher-order tabled computation in Sec. 3. In Sec. 4
we review uniform proofs and then develop a tabled uniform proof system and
prove soundness. In Sec. 5 we discuss related work and summarize the results.

2 A motivating example: subtyping

2.1 Background

As a running example we consider a type system for a restricted functional lan-
guage Mini-ML, which includes subtyping. We only consider a small set of ex-
pressions, negative numbers n(e), natural numbers z and s(e), functions lam x.e,
function application app e1 e2. The type zero contains only the number z, the
type pos represents all positive natural number and the type nat describes all
natural numbers; the type neg denotes the negative numbers and the type int
describes all numbers.

e ::= n(e) | z | s(e) | lam x.e | app e1 e2

τ :: = neg | zero | pos | nat | int | τ1 → τ2

The specification of the subtyping relation using reflexivity and transitivity and
the typing rules are straightforward (see Fig. 1). For a full description we refer
the reader to [20].

2

tp zz
Γ ` z : zero

tp negz
Γ ` n(z) : neg

Γ ` e : nat
tp sp

Γ ` s(e) : pos

Γ ` e : neg
tp neg

Γ ` n(e) : neg

Γ ` e : τ ′ τ ′ � τ
tp sub

Γ ` e : τ

Γ, x : τ1 ` e : τ2
tp lam

Γ ` lam x.e : τ1 → τ2

Γ ` e1 : τ2 → τ Γ ` e2 : τ2
tp app

Γ ` (app e1 e2) : τ

refl
T � T

T � R R � S
tr

T � S

S1 � T1 T2 � S2
arr

(T1 → T2) � (S1 → S2)

zn
zero � nat

pn
pos � nat

nati
nat � int

negi
neg � int

Fig. 1. Typing rules including subtyping relation

The subtyping relation is directly translated into Elf using logic programming
notation. Constants neg, zero, pos, nat and int represent the basic types and
the function type is denoted by T1 => T2. Throughout this example, we reverse
the arrow A1 → A2 writing instead A2 ← A1. From a logic programming point
of view, it might be more intuitive to think of the clause H ← A1 ← . . . ← An
as H ← A1 , . . . , An.

refl : sub T T. zn : sub zero nat. arr : sub (T1 => T2) (S1 => S2)

tr : sub T S pn : sub pos nat. <- sub S1 T1

<- sub T R negi : sub neg int. <- sub T2 S2

<- sub R S. nati : sub nat int.

tp sub : of E T tp lam : of (lam ([x] E x)) (T1 => T2)

<- of E T’ <- ({x:exp} of x T1 -> of (E x) T2).

<- sub T’ T.

For implementing the subtyping relations logic programming based on Horn
clauses suffices. However, Elf is much richer than first-order logic programming
and also supports elegant encodings based on higher-order abstract syntax [18].
Variables bound in constructors such as lam will be bound with λ in Elf. The
binding described by λ-expression λx.Ex is denoted by [x] E x using Elf syntax
and the Mini-ML expression lam x.e is represented as lam [x] E x in Elf. Sub-
stitution is modeled via application and β-reduction. In addition to the variable
binding construct, Elf supports reasoning from hypotheses and handling param-
eters. The premise of typing rule for lam depends on the new parameter x and
the hypothesis that x is of type τ1. Moreover, we assume that it is possible to re-
name all variables in e, if necessary. In Elf this is represented by ({x:exp} of x

3

T1 -> of (E x) T2) where {x:exp} denotes the universal quantifier Πx: exp.
We can show of (lam ([x] E x)) (T1 => T2), if we can prove that for a new
variable x, if x has type T1 then the body of the function (E x) has type T2.
For a more detailed discussion see [16]

Higher-order logic programming suffers from the same problems as first-order
logic programming: computation may be trapped in infinite paths and perfor-
mance may be hampered by redundant computation. For example, the execution
of the query sub zero T will end in an infinite branch trying to apply the tran-
sitivity rule. Similarly, the execution of the query of (lam [x] x) T will not
terminate and fail to enumerate all possible types. In addition, we repeatedly
type-check sub-expressions, which occur more than once. To eliminate redun-
dancy, some sophisticated type checkers for example for refinement types mem-
oize the result of sub-computations to obtain more efficient implementations. In
this paper, we extend higher-order logic programming languages such as Elf with
generic memoization techniques, called tabled higher-order logic programming.
This has several advantages. Although it is possible to derive an algorithmic
subtyping relation for the given example, this might not be trivial in general.
To refine the implementation further by adding explicit support for memoiza-
tion, complicates the type checker. As a consequence, the certificates, which are
produced as a result of the execution, are larger and contain references to the
explicit memoization data-structure. This is especially undesirable in the context
of certified code where certificates are transmitted to and checked by a consumer,
as sending larger certificates takes up more bandwidth and checking them takes
more time. Moreover, proving the correctness of the type-checker with special
memoization support will be hard, because we need to reason explicitly about
the structure of memoization. As tabled logic programming terminates for pro-
grams with the bounded term-size property, we are also able to disprove certain
statements. This in turn helps the user to debug the specification and imple-
mentations. In this paper, we propose to extend higher-order logic programming
with memoization techniques.

2.2 Tabled logic programming: review

Tabling methods evaluate programs by maintaining tables of subgoals and their
answers and by resolving repeated occurrences of subgoals against answers from
the table. We review briefly Tamaki and Sato’s multi-stage strategy [23], which
differs only insignificantly from SLG resolution [5] for programs without nega-
tion. To demonstrate tabled computation, we consider the evaluation of the
query sub zero T in more detail.

The search proceeds in multiple stages. The table serves two purposes: 1) We
record all sub-goals encountered during search. If the current goal is not in the
table, then we add it to the table and proceed with the computation. Computa-
tion at a node is suspended, if the current goal is a variant of a table entry. 2)
In addition to the sub-goals we are trying to solve, we also store the results of
computation in the table as a list of answers to the sub-goals. To simplify the
table in this presentation, we do not record the certificate (proof term) explicitly

4

in the table, although we do record it in the actual implementation. In each stage
we apply program clauses and answers from the table. Figure 2 illustrates the
search process.

sub zero A

A = zero

A = nat

sub zero R ,

sub R A.

sub nat A

sub zero A

A = zero

A = nat

A = nat

A = int

A = int

A = int
sub int R ,

sub R A.

refl

tr

sub nat A

sub int A

sub int A

sub int A

A = nat
A = int

A = int

A = int

sub zero A
Entry Answers

A = zero
A = nat

sub nat A A = nat
A = int

Entry Answers
A A = zero

A = nat
int

sub zero

A =

A = intsub int A

Entry Answers
A A = zero

A = nat
sub zero

A = int
sub nat A A = nat

A = int

refl

tr

zn

Stage 1

refl

tr

nai

sub R A.

sub nat R ,

refl
zn

(tr zn nai)

refl

nai

refl

zn

Stage 2

refl

nai

(tr zn nai)

Stage 3

refl

refl refl

Stage 4

Entry Answers
A A = zero

A = nat
sub zero

A = int
sub nat A A = nat

A = int

intsub int A A =

Fig. 2. Staged computation

The root of the search tree is labeled with the goal sub zero A. Each node
is labeled with a goal statement and each child node is the result of applying
a program clause or an answer from the table to the leftmost atom of the par-
ent node. Applying a clause H ← A1 ← A2 . . . ← An results in the subgoals
A1, A2, . . . , An where all of these subgoals need to be satisfied. We will then
expand the first subgoal A1 carrying the rest of the subgoals A2, . . . , An along.
If a branch is successfully solved, we show the obtained answer. To distinguish
between program clause resolution and re-using of answers, we have two different
kinds of edges in the tree. The edges obtained by program clause resolution are
solid while edges obtained by reusing answers from the table are dashed. Both
are labeled with the clause name that was used to derive the child node. Using
the labels at the edges we can reconstruct the proof term for a given query. In
general, we will omit the actual substitution under that the parent node unifies
with the program clause to avoid cluttering the example. To ensure we generate
all possible answers for the query, we restrict the re-use of answers from the ta-
ble. In each stage, we are only allowed to re-use answers that were generated in
previous stages. Answers from previous stages (available for answer resolution)
are marked gray, while current answers (not available yet) are black.

3 Tabled higher-order logic programming

In tabled higher-order logic programming, we extend tabling to handle sub-
goals that may contain implications and universal quantification and our term
language is the dependently typed λ-calculus. The table entries are no longer

5

atomic goals, but atomic goals A together with a context Γ of assumptions. In
addition, terms might depend on assumptions on Γ . To highlight some of the
challenges we present the evaluation of the query of (lam [x] x) T in Fig. 3.

tp_sub

tp_lam u:of x T1 of x T2

u:of x P sub P T2u:of x T1 of x R,

u

tp_sub

sub R T2

T1 = P, T2 = P, T = P => P

u:of x T1 of x T2

sub R1 P.
sub P R2

T = P => T

sub R T
sub (P => P) R,

. . .

refl

tr

arr

R1 = zero, P = nat

R1 = nat, P = int

R1 = pos, P = nat
R1 = neg, P = int

T = P => P

T1 = P, T2= P

of (lam [x] x) T T = P => P

u:of x T1 of x T2

R1 = S, P = S

sub (P => P) T

sub R1 P.

Entry Answers

of (lam [x] x) T

of (lam [x] x) R,
sub R T

Stage 1 Stage 2

(tp_lam [u] u)

u

sub (P => P) T

of (lam [x] x) T T = P => P

T1 = P, T2= P

Entry Answers

Fig. 3. Staged computation for identity function

The possibility of nested implications and universal quantifiers adds a new
degree of complexity to memoization-based computation. Retrieval operations on
the table need to be redesigned. One central question is how to look up whether
a goal Γ ` a is already in the table. There are two options: In the first option we
only retrieve answers for a goal a given a context Γ , if the goal together with the
context matches an entry Γ ′ ` a′ in the table. In the second option we match the
subgoal a against the goal a′ of the table entry Γ ′ ` a′, and treat the assumptions
in Γ ′ as additional subgoals, thereby delaying satisfying these assumptions. We
choose the first option of retrieving goals together with their dynamic context
Γ ′. One reason is that it restricts the number of possible retrievals early on
in the search. For example, to solve subgoal u:of x T1 ` of x R, sub R T2, we
concentrate on solving the left-most goal u:of x T1 ` of x R keeping in mind
that we still need to solve u:of x T1 ` sub R T2. As there exists a table entry
u:of x T1 ` of x T2, which is a variant of the current goal u:of x T1 ` of x R,
computation is suspended.

Due to the higher-order setting, the predicates and terms might depend on
Γ . Virga [24] developed in his PhD thesis techniques, called subordination, to
analyze dependencies in Elf programs statically before execution. In the Mini-
ML example, the terms of type exp and tp are independent of each other. On
the level of predicates, the type checker of depends on the subtyping relation
sub, but not vice versa. When checking whether a subgoal Γ ` a is already in
the table, we exploit the subordination information in two ways. First, we use
it to analyze the context Γ and determine which assumptions might contribute
to the proof of a. For example the proof for u:of x T1 ` of x T2 depends on
the assumption u. However, the proof for u:of x P ` sub P T2 cannot depend
on the assumption u, as the predicate sub does not refer to the predicate of .
Therefore, when checking whether u:of x P ` sub P T2 is already in the table,

6

it suffices to look for a variant of sub P T2. In the given example, computation
at subgoal u:of x P ` sub P T2 is suspended during stage 2 as the table already
contains sub R1 P . If we for example first discover u:of x P ` sub P T2, then we
store the strengthened goal sub P T2 in the table with an empty context.

Second, subordination provides information about terms. As we are work-
ing in a higher-order setting, solutions to new existential variables, which are
introduced during execution, might depend on assumptions from Γ . For exam-
ple, applying the subtyping rule to u:of x T1 ` of x T2 yields the new goal
u:of x T1 ` of x (R x u) , sub (R x u) T2 where the solution for the new vari-
able R might depend on the new variable x: exp and the assumptions u:of x T1.
However, we know that the solution must be an object of tp and that objects of
tp are independent of Mini-ML expressions exp and the Mini-ML typing rules
of. Hence, we can omit x and u and write u:of x T1 ` of x R, sub R T2. Before
comparing goals with table entries and adding new table entries, we eliminate
unnecessary dependencies from the subgoal Γ ` a. This allows us to detect more
loops in the search tree and eliminate more redundant computation. For further
discussion issues in higher-order tabling, we refer the interested reader to [20].

4 A foundation for tabled higher-order logic programming

4.1 Uniform proofs

Computation in logic programming is achieved through proof search. Given a
goal (or query) A and a program Γ , we derive A by successive application of
clauses of the program Γ . Miller et al [10] propose to interpret the connectives
in a goal A as search instructions and the clauses in Γ as specifications of how
to continue the search when the goal is atomic. A proof is goal-oriented if every
compound goal is immediately decomposed and the program is accessed only
after the goal has been reduced to an atomic formula. A proof is focused if
every time a program formula is considered, it is processed up to the atoms it
defines without need to access any other program formula. A proof having both
these properties is uniform and a formalism such that every provable goal has a
uniform proof is called an abstract logic programming language.

Elf is one example of an abstract logic programming language, which is based
on the LF type theory. Π-quantifier and→ suffice to describe LF. In this setting
types are interpreted as clauses and goals and typing context represents the store
of program clauses available. We will use types and formulas interchangeably.
Types and programs are defined as follows;

Types A ::= a | A1 → A2 | Πx : A1.A2 Terms M ::= H · S | λx : A.M
Programs Γ ::= · | Γ, x : A Spines S ::= nil |M ;S

Heads H ::= c | x

a ranges over atomic formulas. The function type A1 → A2 corresponds to
an implication. The Π-quantifier, denoting dependent function type, can be in-
terpreted as the universal ∀-quantifier. The clause tr:sub T S <- sub T R <-

7

sub R S. is interpreted as tr:Πt:tp.Πs:tp.Πr:tp. sub r s → (sub t r → sub t s).
Every type has a corresponding proof term M and we assume that all proof terms
are in normal form. In the example from Sec. 2, the proof term corresponding
to sub zero int is given as tr zn refl. Note that we actually omitted the implicit
arguments zero and nat, which denote the instantiation of transitivity rule. In
the following discussion, we will include implicit arguments in the proof term
representation. To represent proof terms, we use the spine notation [4]. To give
an intuition for this notation we give a few examples. tr zero nat nat zn refl
is denoted using spine notation by tr · zero ; nat ; nat ; zn ; refl ; nil.
The proof term tp lam T (λx: exp .x) T (λx: exp .λu:of x T. u) is denoted by
tp lam · T ; (λx: exp .x · nil) ; T ; (λx: exp .λu:of x T. u · nil) ; nil.

Γ, x : A,Γ ′ � A
f−→ S : a

u atom
Γ, x : A,Γ ′

u−→ x · S : a

f atom

Γ � a
f−→ nil : a

Γ, c : A1
u−→ [c/x]M : [c/x]A2

u∀c
Γ

u−→ λx : A1.M : Πx : A1.A2

Γ � [M/x]A2
f−→ S : a Γ

u−→M : A1

f∀
Γ � Πx : A1.A2

f−→M ;S : a

Γ, x : A1
u−→M : A2

u→u

Γ
u−→ λx : A1.M : A1 → A2

Γ � A1
f−→ S : a Γ

u−→M : A2
f→

Γ � A2 → A1
f−→M ;S : a

Fig. 4. Uniform deduction system for L

We can characterize uniform proofs by two main judgments: Γ u−→ M : A
says there is a uniform proof M for A from the program Γ and Γ � A

f−→ S : a
there exists a focused proof S for the atom a by focusing on program clause
A. Taking a type-theoretic view, we can interpret the first judgment as M has
type A in the context Γ and the later as S has type a in context Γ . Inference
rules describing uniform and focused proofs are given in Fig. 4. In the rule f∀,
we instantiate the bound variable x with a term M . As x has type A1, we
check that M has type A1 in Γ . Miller [9] shows for the simply-typed λ-calculus
that if M is a solution for x in the context Γ then there exists a solution M ′

of type ΠΓ.A1 such that M ′ · Γ is also a solution for x and M ′ is well-typed
in the empty context. We write ΠΓ.A1 for the type Πx1:B1. . . . Πxn:Bn.A1

where Γ is a context x1:B1, . . . , xn:Bn and M ′ · Γ as an abbreviation for M ′ ·
x1; . . . ;xn; nil. Moreover, there is a one-to-one correspondence between these
two solutions, as M ′ ·Γ reduces to M . Following Miller’s terminology, we say M ′

is the result of raising M . Pfenning [15] investigated this notion in the setting of
the calculus of construction, which includes LF. Intuitively, M depends globally
on the assumptions in Γ . Raising allows us to localize dependencies by replacing
M with M ′ · Γ . This step becomes important when we want to compute the
instantiation of x in the f∀ rule by introducing a existential variable X and

8

instantiating X by unification. We come back to it in the next section. To reflect
raising, we rewrite the f∀ rule to:

Γ � [M ′ · Γ/x]A2
f−→ S : a · u−→M ′ : ΠΓ.A1

f∀
Γ � Πx : A1.A2

f−→ (M ′ · Γ);S : a

The proof term represents the witness of the proof. When searching for a
uniform proof, the proof term is constructed simultaneously. In the following
discussion, we will not mention proof terms explicitly, but keep in mind that
they are silently generated as a result of the proof.

4.2 Uniform proofs with answer substitutions

The result of a computation in logic programming is generally an answer sub-
stitution θ for the existentially quantified variables in a goal A. To obtain an
algorithm that computes answer substitutions, we substitute existential vari-
ables X for the bound variable x in the f∀ rule. In fact, we replace M ′ with
X in the raised version of f∀ rule. Note that X does not globally depend on Γ
anymore as raising allowed us to rotate the existentially quantified variables to
the outside. As all dependencies are local, we can model dependencies between
parameters and existential variables by annotating existential variables X with
their type. Existential variables are instantiated later during unification yielding
a substitution θ. An alternative would be to use mixed-prefixes [9] to model
dependencies. However this would complicate the presentation further. We view
the answer substitution θ as a collection of constraints to the existential variables
in a goal A. In general, unification for higher-order terms is undecidable, however
Pfenning showed that unification of higher-order patterns in the context of LF
type theory is decidable and unitary[15]. Many programs fall into the decidable
fragment and we concentrate on this case.

Substitution θ ::= · | θ,XA = M
Composition · ◦ θ = θ

(θ1, XA = M) ◦ θ2 = (θ1 ◦ θ2), XA[θ2] = M [θ2]

We require that all free (existential) variables X defined by a substitution
are distinct. We write dom(θ) for the free variables defined by a substitution
and codom(θ) for all the free variables occurring in the term M . For a ground
substitution codom(θ) is empty. We write M [θ], A[θ], and Γ [θ] for the application
of a substitution to a term, proposition or context. Composition, written as θ1◦θ2,
has the property that M [θ1 ◦θ2] = (M [θ1])[θ2] and similarly for propositions and
contexts. In order for composition of substitutions to be well-defined and have
the desired properties we require that dom(θ1) and dom(θ2) are disjoint, but of
course variables in the co-domain of θ1 can be defined by θ2. Moreover, we require
that θ◦θ = θ. As an existential variable is annotated with its type A and A might
itself contain existential variables, we need to apply the substitution θ2 to M

9

and to the type A during composition of substitutions. The two main judgments
for computing answer substitutions are Γ u−→ A/θ and Γ � A

f−→ a/θ.
The inference rules are given in Fig. 5. To obtain an algorithm, we impose

left-to-right order on the solution of the fs → rule. This matches our intuitive
understanding of computation in logic programming. In the fs→ rule for example
we first decompose the focused clause until we reach the head of the clause. After
we unified the head of the clause with our goal A on the right-hand side of the
sequent and completed this branch, we proceed proving the subgoals. This left-
to-right evaluation strategy only fixes a don’t care non-deterministic choice in the
inference system. In the fs∀ rule we delay the instantiation of x by introducing a
new existential variable X. In the fs atom rule the instantiation for existentially
quantified variables is obtained by unifying a with a′ in the context Γ . θ is a
solution to the unification problem Γ ` a ·= a′ where a and a′ are higher-order
patterns.

Γ, x : A,Γ ′ � A
f−→ a/θ

us atom
Γ, x : A,Γ ′

u−→ a/θ

Γ ` a′ ·= a/θ
fs atom

Γ � a′
f−→ a/θ

Γ, c : A1
u−→ [c/x]A2/θ

us∀c
Γ

u−→ Πx : A1.A2/θ

Γ � [XΠΓ.A1 · Γ/x]A2
f−→ a/θ XΠΓ.A1 is new

fs∀
Γ � Πx : A1.A2

f−→ a/θ

Γ, u : A1
u−→ A2/θ

us→u

Γ
u−→ A1 → A2/θ

Γ � A1
f−→ a/θ1 Γ [θ1]

u−→ A2[θ1]/θ2

fs→
Γ � A2 → A1

f−→ a/θ1 ◦ θ2

Fig. 5. Uniform deduction system for Lθ with substitutions

There is still some non-determinism left in Lθ, which needs to be resolved
in an actual implementation. In the us atom rule, we do not specify which
clause from Γ we pick and focus on. Logic programming interpreter usually
try the clauses in the order they occur as backtracking over different choices is
considered too expensive. This choice renders the search strategy incomplete in
practice. However, the presented deductive system Lθ, which generates answer
substitutions, is sound and complete, as expressed by the following two theorems.

Theorem 1 (Soundness). If D : Γ u−→ A/θ then for any grounding substitu-
tion σ′ which grounds Γ u−→ A/θ we have E :Γ [θ ◦ σ′] u−→ A[θ ◦ σ′].

Theorem 2 (Completeness). If E : Γ u−→ A[σ] for a grounding substitution
σ then D : Γ u−→ A/θ for some θ and σ = θ ◦ σ′ for some σ′.

10

The proof requires a more general statement that also includes focused proofs,
but otherwise is straightforward. In the next section, we extend this system Lθ
to include memoization.

4.3 Tabled uniform proofs

The idea behind tabled uniform proofs is to extend our two basic judgments
with a table T in which we record atomic sub-goals and the corresponding an-
swer substitutions and proof terms. A subgoal is a sequent Γ u−→ a where Γ is
a program context and a is an atomic goal, which we need to derive from Γ .
When we discover the sub-goal Γ u−→ a for the first time, we memoize this goal
in the table. Note that the sequent Γ u−→ a might potentially contain existen-
tial variables. Once we have proven the sub-goal Γ u−→ a, we add the answer
substitution θ to the table. We keep in mind that we are silently generating
proof terms together with answer substitution. We assume that some predicates
are designated as tabled predicates where we record subgoals and corresponding
answers. For predicates not designated as tabled the us atom rule still applies.

Definition 1 (Table). A table T is a collection of table entries. A table entry
consists of two parts: a goal Γ u−→ a and a list A of pairs, answer substitutions
θ and proof terms M , such that Γ [θ] u−→M [θ] : a[θ] is a solution.

The table is a store of proven and still open conjectures. The open con-
jectures are the table entries that have an empty list of answers. The proven
conjectures (lemmas) are the table entries that have a list of answer substitu-
tions associated with them. As proof terms are generated and stored together
with answer substitutions, we also have the actual proof for the given conjecture.
We will design the inference rules in such a way that for any solution in the table
Γ [θ] u−→M [θ] : a[θ] there exists a derivation Γ u−→M : a/θ. We will keep all the
previous inference rules, but keep in mind that we are silently passing around a
table T . Any substitution we apply to Γ and a (see for example the fs → rule)
will not effect the table. This is important because we do want to have explicit
control over the table. The application of inference rules should not have any
undesired effects on the table. The main judgments are T ;Γ u−→M : A/(θ, T ′)
and T ;Γ � A

f−→ S : a/(θ, T ′).
In addition to the us atom inference rule, we will have the rules extend and

retrieve. The extend rule adds a subgoal and its answer to the table. When we
encounter a new subgoal, we add a new entry with an empty answer list to the
table. Once we have proven this subgoal, we add the answer substitution and
proof term to its answer list, and we can later use it as a lemma. retrieve allows
us to close a branch by applying a lemma from the table. If we are proving
Γ

u−→ a, where Γ and a may contain existential variables and we have a proof
for Γ [θ] u−→ M [θ] : a[θ] in the table then we can just re-use it by substituting
the proof term M [θ]for it. Applying the retrieve rule corresponds to introducing
a cut in the proof using a lemma from the table. However, this cut application

11

extend(T , (Γ, x : A,Γ ′)
u−→ a) = T1

T1; (Γ, x : A,Γ ′) � A
f−→ S : a/(θ, T2)

insert(T2, (Γ, x : A,Γ ′)
u−→ a,M, θ) = T3

T ; (Γ, x : A,Γ ′)
u−→ x · S : a/(θ, T3)

extend
retrieve(T ;Γ

u−→ a) = (θ,M)
retrieve

T ;Γ
u−→M : a/(θ, T)

Fig. 6. Memoization extensions

is restricted to using only lemmas that are an instance of the sequent we are
trying to prove.

We consider Γ u−→ a a variant of Γ ′ u−→ a′ if there exists a renaming of the
bound and existential variables such that Γ u−→ a is equal to a′.

Definition 2 (Variant). The goal Γ u−→ a is a variant of Γ ′ u−→ a′ if
– there exists a bijection between the free variables in Γ

u−→ a and Γ ′ u−→ a′

– there exists a bijection between the bound variables in Γ
u−→ a and Γ ′ u−→ a′

such that such that Γ u−→ a is α-convertible to Γ ′ u−→ a′.

Now we can define the three main operations on the table, extending the
table, inserting an answer in the table and retrieving an answer from the table.

Definition 3 (extend). extend(T , Γ u−→ a) = T ′
Let T be a table, Γ u−→ a be a goal.
– If there exists a table entry (Γ ′ u−→ a′,A) in T and A is non-empty such

that Γ ′ u−→ a′ is a variant of Γ u−→ a then return T .
– If there exists no table entry (Γ ′ u−→ a′,A) in T such that Γ ′ u−→ a′ is a

variant of Γ u−→ a, then we obtain the extended table T ′ by renaming all the
existential variables in Γ

u−→ a and adding the renamed goal to the table T
with an empty solution list.

By renaming all existential variables before adding a goal to the table, we
enforce a clear separation between the table and the goals discovered during the
application of inference rules.

Definition 4 (insert). insert(T , Γ u−→ a,M, θ) = T ′
Let T be a table, Γ u−→ a be a goal and θ be a corresponding answer substitution
and M the proof term. Let (Γi

u−→ ai,A) be in the table T and Γi
u−→ ai is a

variant of Γ u−→ a. If there exists θi in the answer substitution list A, such that
Γi[θi]

u−→ ai[θi] is a variant of Γ [θ] u−→ a[θ], then we fail otherwise we match
Γi

u−→ ai against Γ [θ] u−→ a[θ] and obtain the substitution θ′ where θ′ = σ ◦ θ.
Then we add (θ′,M [σ]) to A.

Note that the result of matching Γi
u−→ ai against Γ [θ] u−→ a[θ] is a substi-

tution θ′ such that Γi[θ′]
u−→ ai[θ′] is a variant of Γ [θ] u−→ a[θ]. If we discover

a sub-goal a in a context Γ , which is already in the table T but with an empty
answer substitution list, then we have discovered a loop in the computation. No
inference rule is applicable, and therefore computation fails. The definitions of
extend and insert also prevent us from inferring the same solution twice. If a
sub-goal a is already in the table, but has some answers in the answer list A,
then we retrieve the answers. As we might need additional answers for a which
are not already in the table yet, we need to still be able to apply extend rule.

12

Definition 5 (retrieve). retrieve(T , Γ u−→ a) = (θ,M)
Let T be a table and Γ u−→ a be a goal. If there exists a table entry (Γi

u−→ ai,Ai)
such that Γi

u−→ ai is variant of Γ u−→ a and (θi,M) is in Ai then match Γ u−→ a

against Γi[θi]
u−→ ai[θi] to obtain a substitution θ where θi = σ ◦ θ and return θ

and M = Mi[σ].

Theorem 3 (Soundness). If D : T ;Γ u−→ A/(θ, T ′) then for any substitution
σ which grounds T ;Γ u−→ A/(θ, T ′) we have E : Γ u−→ A/θ ◦ σ.

The proof requires again a generalization to include focused proofs, but is
otherwise straightforward.

The presented inference rules leave several choices undetermined. For exam-
ple, we do not specify the order in which we use program clauses. This choice
was already present in the non-tabled system. Similarly, the rules to allow mem-
oization leave open in what order we retrieve answers, when to retrieve answers
and when to apply program clauses. Although we used variant checking in the
definitions, it is possible to allow subsumption checking. In an actual implemen-
tation all these choices need to be resolved. The multi-stage strategy discussed
earlier is one possible solution. In this strategy we proceed in lock-steps. First,
we apply the extend rule until all clauses from Γ have been tried, and then al-
low the application of the retrieve rule. The strategy also restricts the retrieve
rule, i.e. only answers from previous stages can be retrieved. Alternatively, we
could use SCC scheduling (strongly connected components), which allows us to
consume answers as soon as they are available [22]. In a real implementation we
want to suspend goals and be able to later resume them. For example, if a vari-
ant of a previous subgoal with no answers is encountered, then search just fails
in the presented inference rules. A different combination of clause application
however might lead to success. Storing suspended avoids repeating partial work.
After some answers have been generated for the sequent Γ u−→ a, we awaken
the suspended goal and resume computation of the pending sub-goals.

5 Related Work and Conclusion

This proof-theoretic view on computation based on memoization provides a high-
level description of a tabled logic programming interpreter and separates logical
issues from procedural ones leaving maximum freedom to choose particular con-
trol mechanisms. In fact, it is very close to our prototype implementation for
Elf. So far all descriptions of tabling are highly procedural, either designed as
an extension of SLD resolution [23] or to the WAM abstract machine[22]. Cer-
tificates, which provide evidence for the existence of a proof, have been added
to tabled logic programming by Roychoudhury [21] and are called justifiers. The
relationship between the certificate and SLD resolution is extrinsic rather then
intrinsic and needs to be established separately. The proof-theoretical character-
ization offers a uniform framework for describing and reasoning about program
clauses, goals and certificates (proof terms). It seems possible to apply the tech-
niques described to other logic programming languages such as λProlog. Linear

13

logic programming [8, 2] has been proposed as an extension of higher-order logic
programming to model imperative state changes in a declarative (logical) way.
We believe our techniques can be extended to cover this case, but it requires
some new considerations. In particular, we plan to investigate the interaction
between resource management strategies [3] or constraints [7] with tabling.

With tabled uniform proof search we will find fewer proofs than with uni-
form proofs. For example in the subtyping example given in Sec. 2 the query
sub zero zero has infinitely many proofs under the traditional logic programming
interpretation while we find only one proof under the tabled logic programming
interpretation. However, we often do not want and need to distinguish between
different proofs for a formula A, but only care about the existence of a proof
for A together with a proof term. In [17] Pfenning develops a dependent type
theory for proof irrelevance and discusses potential applications in the logical
framework. This allows us to treat all proofs for A as equal if they produce
the same answer substitution. In this setting, it seems possible to show that
search based on tabled uniform proofs is also non-deterministically complete,
i.e. if computation fails, then there exists no proof.

We have implemented the search strategy based on memoization for Elf. It
not only allows us to execute more specifications, but also execute implementa-
tions more efficiently. Preliminary experiments include type checking for subtyp-
ing and intersection types, parsing into higher-order abstract syntax, evaluation
based on rewriting. The most pressing issue seems to be to implement indexing
data-structures to reduce the overhead involved in managing the table1.
Acknowledgment: The author gratefully acknowledges numerous discussion
with Frank Pfenning and David S.Warren concerning this work. Thanks also for
many useful comments from C. Schürmann, R. Harper and K. Watkins.

References

1. W. Appel and A. P. Felty. A semantic model of types and machine instructions for
proof-carrying code. In 27th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’00), pages 243–253, 2000.

2. I. Cervesato. A Linear Logical Framework. PhD thesis, Dipartimento di Informat-
ica, Università di Torino, 1996.

3. I. Cervesato, J. S. Hodas, and F. Pfenning. Efficient resource management for
linear logic proof search. Theoretical Computer Science, 232(1–2):133–163, 2000.

4. I. Cervesato and F. Pfenning. A linear spine calculus. In submitted, 2001.
5. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic

programs. Journal of the ACM, 43(1):20–74, 1996.
6. B. Cui, Y. Dong, X. Du, K. N. Kumar, C.R. Ramakrishnan, I.V. Ramakrishnan,

A. Roychoudhury, S.A. Smolka, and D.S. Warren. Logic programming and model
checking. In Principles of Declarative Programming, volume 1490 of Lecture Notes
in Computer Science, pages 1–20. Springer-Verlag, 1998.

7. J. Harland and D. Pym. Resource-distribution via boolean constraints. In Proceed-
ings of the 14th International Conference on Automated Deduction (CADE-14),
pages 222–236, Townsville, Australia, 1997. Springer-Verlag LNAI 1249.

1 The code to examples can be found at http://www.cs.cmu.edu/~bp/tabling

14

8. J. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear
logic. Information and Computation, 110(2):327–365, 1994.

9. D. Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
14:321–358, 1992.

10. D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a founda-
tion for logic programming. Annals of Pure and Applied Logic, 51:125–157, 1991.

11. G. Nadathur and D. Miller. An overview of λProlog. In Fifth International Logic
Programming Conference, pages 810–827, Seattle, Washington, 1988. MIT Press.

12. G. Necula and S. Rahul. Oracle-based checking of untrusted software. In 28th
ACM Symposium on Principles of Programming Languages (POPL01), 2001.

13. L. C. Paulson. Natural deduction as higher-order resolution. Journal of Logic
Programming, 3:237–258, 1986.

14. F. Pfenning. Elf: A language for logic definition and verified meta-programming. In
Fourth Annual Symposium on Logic in Computer Science, pages 313–322, Pacific
Grove, California, 1989. IEEE Computer Society Press.

15. F. Pfenning. Unification and anti-unification in the Calculus of Constructions.
In Sixth Annual IEEE Symposium on Logic in Computer Science, pages 74–85,
Amsterdam, Netherlands, 1991.

16. F. Pfenning. Computation and Deduction. Cambridge University Press, 2000. In
preparation. Draft from April 1997 available electronically.

17. F. Pfenning. Intensionality, extensionality, and proof irrelevance in modal type
theory. In 16th Annual IEEE Symposium on Logic in Computer Science, Boston,
USA, 2001.

18. F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceedings of the
ACM SIGPLAN ’88 Symposium on Language Design and Implementation, pages
199–208, Atlanta, Georgia, 1988.

19. F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical frame-
work for deductive systems. In Proceedings of the 16th International Conference
on Automated Deduction (CADE-16), pages 202–206, Trento, Italy, 1999. Springer-
Verlag LNAI 1632.

20. B. Pientka. Tabled higher-order logic programming. Thesis proposal, Carnegie
Mellon University, 2002.

21. A. Roychoudhury, C. R. Ramakrishnan, and I. V. Ramakrishnan. Justifying proofs
using memo tables. In International Conference on Principles and Practice of
Declarative Programming(PPDP’00), pages 178–189, 2000.

22. K. Sagonas and T. Swift. An abstract machine for tabled execution of fixed-
order stratified logic programs. ACM Transactions on Programming Languages
and Systems, 20(3):586–634, 1998.

23. H. Tamaki and T. Sato. OLD resolution with tabulation. In E. .Shapiro, editor,
Proceedings of the 3rd International Conference on Logic Programming, volume
225 of Lecture Notes in Computer Science, pages 84–98. Springer, 1986.

24. R. Virga. Higher-Order Rewriting with Dependent Types. PhD thesis, Department
of Mathematical Sciences, Carnegie Mellon University, 2000.

25. D. S. Warren. Programming in tabled logic programming. draft available from
http://www.cs.sunysb.edu/ warren/xsbbook/book.html, 1999.

15

