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Higher-order logic programming

What means higher-order?
» Terms: (dependently) typed A-calculus
- Clauses: implication, universal quantification

Framework for specifying and implementing
* logical systems (safety logics, type system .. .)
» proofs about them (correctness, soundness .. .)

Languages:
» AProlog[Miller91], Isabelle[Paulson86]

 EIf [Pfenning91]
/]



Proof search via logic programming

Generic proof search over logical systems
- factor effort for each particular logical system

Infinite computation leads to non-termination.
» Many specifications are not executable.

Redundant computation hampers performance.

» Sub-proofs may be repeated.
- There may be many ways to prove a query.
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First-order tabled computation

» Resolution with memoization [Tamaki,Sato86]

- Memoize atomic subgoals and re-use results
» Finds all possible answers to a query

» Terminates for programs in a finite domain

« Combine tabled and non-tabled execution

» Very successful: XSB system [Warren et.al.]



Thistalk

1. Tabled higher-order logic programming
» Term: (dependently) typed A-calculus
- Clauses: universal quantification, implication

2. High-level description based on uniform proofs
3. Soundness proof
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Declar ative description of subtyping

types 7 = zero |pos |nat |bit| T =Ty |...

Example: 6 = 110 and 110 € nat

Zn pn nb
zero — nat pos = nat nat = bit

T <R R=<S
refl tr
T <T T<S5




Typing rulesfor Mini-ML

expressions e = e€|e0|el|lamx.e|appe; e

F'Fe: 7 =<7 e:mbe:n
— — tp-sub tp-lam®
I'Fe:T I'Flamx.e : 74 =
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Zn: sub zero nat.
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]



| mplementation of subtyping

Zn:
pn:
nb:
refl:
tr:

sub zero nat.
sub pos nat.
sub nat bit.
sub T T. Not executable!
sub T S
<- sub T R
<- sub R S.
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| mplementation of typing rules

tpsub: of ET
<- of ET
<- sub T T.

tplam of (lamAx.E x) (Tl => T2)
<-(IIx:exp.of x Tl -> of (E x) T2).
“forall x: exp, assume of x T1
and show of (E x) T27

Redundancy: t p_sub Is always applicable!
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Tabled higher-order logic programming

- Eliminate redundant and infinite paths from
proof search using a memo-table

- Table entry: (I' — a , A)
- I' : context of assumptions (I.e.x:exp, u:of x T1)
- a . atomic goal (i.e. of (lam Ax. x) T)

- A : list of answer substitutions for all free
variables in I" and «

» Depth-first multi-stage strategy
adopted from first-order strategy [Tamaki,Sato89]
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How higher-order tabling works...

Stage 1

- — of (lam Ax.x) T
‘ tp_sub

> of (lam Ax.X) R,
SUbRT

Entry Answers
- — of lam Ax.x) T
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- — of (lam Ax.x) T

tp_sub

> of (lam Ax.x) R, |Suspend
SUbRT
tp_la

Pam o exp, u0f X TL — of x T2~ T1=5,T2=S,T=(S=9)

tp_sub_Ix-exp, u:of X T1 — of X R,

SUbR T2
Entry | Answers Suspend
- — of lam AxX) T| T=(S = 9)
x:exp, u:of x T1 — of x T2 T1=5,T2=S5
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_ A proof-theoretic foundation for tabled higher-order logic programming — p.14/31



How higher-order tabling works...

Stage 1

- — of (lam Ax.x) T

tp_sub

> of (lam Ax.x) R, |Suspend
SUbRT
tp_la

Pam o exp, u0f X TL — of x T2~ T1=5,T2=S,T=(S=9)

tp_sub_Ix-exp, u:of X T1 — of X R,

SUbR T2
Entry | Answers Suspend
- — of lam AxX) T| T=(S = 9)
x:exp, u:of x T1 — of x T2 T1=5,T2=S5
Stage 1 finished

_ A proof-theoretic foundation for tabled higher-order logic programming — p.14/31
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- — of (lam Ax.x) T

tp_sub

> of (lam Ax.x) R, |Suspend
SUbRT
tp_la

Pam o exp, u0f X TL — of x T2~ T1=5,T2=S,T=(S=9)

t_sub_ y-exp, usof x TL — of x R, |JESUME

RN ——

SUbR T2
Entry | Answers Suspend
- — of lam AxX) T| T=(S = 9)
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Higher-order issues

- Dependencies among propositions
x.exp, u.of x P — sub P R
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Higher-order issues

- Dependencies among propositions
x.exp, u:.of x P — sub P R,
strengthen: — sub PR

- Dependencies among terms
x.exp, u:of x T1 — of x (R x u),
strengthen x:exp, u:of x T1 — of xR

» Subordination analysis [Virga99]
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Types and Programs

Types A = a| Ay — Ay | TIw 0 Ay A
ProgramsIT' = - |[z: A

Logic programming view:
tr:sub T S <- sub T R<- sub R S.

Type-theoretic view:
tr: 117 :tp I1S:tp. ITR:tp. sub R .S — (subT R — sub 1" 5)



Uniform ProofgMiller et al.91]

Two judgements
r— A uniform proof
decompose goal A until atomic

> A —a focused proof
pick a program clause A and
decompose A until atomic



Uniform Proofs

F,ZUZA1L>A2

uv?

' L Iz : Al.AQ
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' L Iz : Al.AQ
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Uniform Proofs

F,.CL'IA1L>A2

uv?

' L Iz : Al.AQ

F,U:A1$A2
FLA1—>A2

u

u—

Tou:AD>A—"a
Fu: AT —a

UAtom
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Uniform Proofs

oA - A, ['> [M/z]Ay — a M hastype 4; inT
uv® fv
FLHZE'ZALAQ F>> HCC:Al.AQ %CL
F,’LL . Al L AQ
u—"
I’ L Al — A2

Tou:AD>A—"a
Fu: AT —a

UAtom
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Computing answer substitutions

['> [M/z]As —a M hastype A, inT

fv/
F>> HmlAl.AQ %CL

+ |ldea: replace M with an existential variable X,
which Is instantiated using unification
» Problem

- Higher-order unification is undecidable
restriction to higher-order patterns
[Miller92,Pfenning91]

- Instantiation for X may only depend on I'
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Computing answer substitutions

['> [M/z]As —a M hastype A, inT

fv/
F>> HCL’ZAl.AQ %CL

1. Raise M [Miller92,Pfenning91]

> replace M with (A\I''M) I’
* (AI'.M) has type III". A4

2. Replace (AI'. M) with existential variable Xt 4,



Computing answer substitutions

I'> [ Xy, I'/z]As , a/0 Xur.a, IS hew

[>> [z : A1.Ay — a/f

Unify(T", d', a) =0

I'>d —a/0

- Annotate existential variables X with its type A
« Compute answer substitution ¢ as a result
 Substitution: 0 ::=- |0, X4 =M
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Uniform Proofswith substitutions

T,x: A - Ay /0
' L Iz : AlAQ/(g

F,u:A1 L>./42/(9
FLAl —>A2/9

T,z: AT > A—>a/l

D,x: AT —a/0
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Uniform Proofswith substitutions

D,o: Al — Ay/0 I'> [Xpuroa, - T'/z]A; —~a/0 Xur.a, is new

FLHI'AlAQ/Q I'> H.TAlAQ%CL/Q

Tou: A =5 Ay /0 T A ——a/0 T[0)] = As[0,]/0-

FLA1—>A2/9 F>>A2%A1L>CL/(910(92

Do AT > A-sa/  Unify(l, o, a) =0
F,x:A,F/La/Q F>>a’$a/9
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Uniform Proofswith Tables

- Table 7 to store conjectures and their answers

- Main judgments:
1. ;T — A/(0,T")
2. T:T'> A —a/(8,T.
» Toprove: 7;(I',z : A) — a/(0,T")
- Pick program clause A from I
- Retrieve answers from 7, if there are any



extend add I' — a to 7,
If it is not already in 7

insert insert answer substitution § to A of ' — a,
If 0 1s not already in A.

retrieve © retrieve an answer substitution § forT' — a
from its answer list A In 7T
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Extensions

extend(7, (I, u: A, 1) — a) =T,

T:(Tou: AT) > A — a/(0,T5)

insert(75, (I, u : A,T") — a,0) = T3
T:T,u: AT — a/(0,T3)

extend

retrieve(7 ;' — a) = 0

T;FLML/(H,T)

retrieve
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Soundness Any uniform proof with answer substitution
has a uniform proof.

Completeness Any uniform proofs has a uniform proofs
with answer substitution.

Soundness Any tabled uniform proof with an answer
substitution has a uniform proof with the same
answer substitution.
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Contributions

- Tabled higher-order logic programming
Memoize and retrieve goals together with context

- High-level description of tabling
based on uniform proofs

» Soundness of higher-order tabled search

» Implementation of a prototype

- Tabeling offers a more efficient and flexible proof
search engine (see experiments [Pientka02])
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Related wor k

- Tabled search is incomplete:

- With tabelling we find only one proof for ' — A
- Proof irrelevance[Pfenning01]: all proofs for
[' — q are considered equivalent

» Other higher-order logic programming languages:
- AProlog[Miller91]
- |Isabelle[Paulson86]




» Implementation issues:
- Higher-order indexing
- Different tabled search strategies

» Apply tabelling to linear logic programming:
- LollijMiller,Hodas91]
- LLF[Cervesato,Pfenning96]




Finally ...

Acknowledgements: Frank Pfenning

If you want to find out more:

http://www.cs.cmu.edu/"bp
emaill: bp@cs.cmu.edu
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