
Lincx: A Linear Logical Framework with
First-class Contexts

Aina Linn Georges1, Agata Murawska?2, Shawn Otis1, and Brigitte Pientka1

1 McGill University, Montreal, QC, Canada,
{aina.georges, shawn.otis}@mail.mcgill.ca

bpientka@cs.mcgill.ca
2 IT University of Copenhagen, Denmark,

agmu@itu.dk

Abstract. Linear logic provides an elegant framework for modelling
stateful, imperative and concurrent systems by viewing a context of as-
sumptions as a set of resources. However, mechanizing the meta-theory
of such systems remains a challenge, as we need to manage and reason
about mixed contexts of linear and intuitionistic assumptions.
We present Lincx, a contextual linear logical framework with first-class
mixed contexts. Lincx allows us to model (linear) abstract syntax trees
as syntactic structures that may depend on intuitionistic and linear as-
sumptions. It can also serve as a foundation for reasoning about such
structures. Lincx extends the linear logical framework LLF with first-
class (linear) contexts and an equational theory of context joins that
can otherwise be very tedious and intricate to develop. This work may
be also viewed as a generalization of contextual LF that supports both
intuitionistic and linear variables, functions, and assumptions.
We describe a decidable type-theoretic foundation for Lincx that only
characterizes canonical forms and show that our equational theory of
context joins is associative and commutative. Finally, we outline how
Lincx may serve as a practical foundation for mechanizing the meta-
theory of stateful systems.

1 Introduction

Logical frameworks make it easier to mechanize formal systems and proofs about
them by providing a single meta-language with abstractions and primitives for
common and recurring concepts, like variables and assumptions in proofs. This
can have a major impact on the effort and cost of mechanization. By factor-
ing out and abstracting over low-level details, it reduces the time it takes to
mechanize formal systems, avoids errors in manipulating low-level operations,
and makes the mechanizations themselves easier to maintain. It can also make
an enormous difference when it comes to proof checking and constructing meta-
theoretic proofs, as we focus on the essential aspect of a proof without getting
bogged down in the quagmire of bureaucratic details.
? Supported by grant 10-092309 from the Danish Council for Strategic Research to
the Demtech project.

The contextual logical framework [20, 21], an extension of the logical frame-
work LF [14], is designed to support a broad range of common features that are
needed for mechanizations of formal systems. To model variables, assumptions
and derivations, programmers can take advantage of higher-order abstract syntax
(HOAS) trees; a context of assumptions together with properties about unique-
ness of assumptions can be represented abstractly using first-class contexts and
context variables [21]; single and simultaneous substitutions together with their
equational theory are supported via first-class substitutions [7, 8]; finally, deriva-
tion trees that depend on a context of assumption can be precisely described via
contextual objects [20]. This last aspect is particularly important. By encapsu-
lating and representing derivation trees together with their surrounding context
of assumptions, we can analyze and manipulate these rich syntactic structures
via pattern matching, and can construct (co)inductive proofs by writing recur-
sive programs about them [24, 6]. This leads to a modular and robust design
where we cleanly separate the representation of formal systems and derivations
from the (co)inductive reasoning about them.

Substructural frameworks such as the linear logical framework LLF [9] pro-
vide additional abstractions to elegantly model the behaviour of imperative oper-
ations such as updating and deallocating memory [30, 12] and concurrent compu-
tation (see for example session types [5]). However, it has been very challenging
to mechanize proofs about LLF specifications as we must manage mixed contexts
of unrestricted and linear assumptions. When constructing a derivation tree, we
must often split the linear resources and distribute them to the premises relying
on a context join operation, written as Ψ = Ψ1 ./ Ψ2. This operation should be
commutative and associative. Unrestricted assumptions present in Ψ should be
preserved in both contexts Ψ1 and Ψ2. The mix of unrestricted and restricted
assumptions leads to an intricate equational theory of contexts that often stands
in the way of mechanizing linear or separation logics in proof assistants and has
spurred the development of specialized tactics [16, 2].

Our main contribution is the design of Lincx (read: “lynx”), a contextual
linear logical framework with first-class contexts that may contain both intu-
itionistic and linear assumptions. On the one hand our work extends the linear
logical framework LLF with support for first-class linear contexts together with
an equational theory of context joins, contextual objects and contextual types;
on the other we can view Lincx as a generalization of contextual LF to model
not only unrestricted but also linear assumptions. Lincx hence allows us to ab-
stractly represent syntax trees that depend on a mixed context of linear and
unrestricted assumptions, and can serve as a foundation for mechanizing the
meta-theory of stateful systems where we implement (co)inductive proofs about
linear contextual objects by pattern matching following the methodology out-
lined by Cave and Pientka [6] and Thibodeau et.al. [29]. Our main technical
contributions are:

1) A bi-directional decidable type system that only characterizes canonical
forms of our linear LF objects. Consequently, exotic terms that do not represent
legal objects from our object language are prevented. It is an inherent property

2

of our design that bound variables cannot escape their scope, and no separate
reasoning about scope is required. To achieve this we rely on hereditary sub-
stitution to guarantee normal forms are preserved. Equality of two contextual
linear LF objects reduces then to syntactic equality (modulo α-renaming).

2) Definition of first-class (linear) contexts together with an equational theory
of context joins. A context in Lincx may contain both unrestricted and linear
assumptions. This not only allows for a uniform representation of contexts, but
also leads to a uniform representation of simultaneous substitutions. Context
variables are indexed and their indices are freely built from elements of an in-
finite, countable set through a context join operation (./) that is associative,
commutative and has a neutral element. This allows a canonical representation
of contexts and context joins. In particular, we can consider contexts equivalent
modulo associativity and commutativity. This substantially simplifies the meta-
theory of Lincx and also directly gives rise to a clean implementation of context
joins which we exploit in our mechanization of the meta-theoretic properties of
Lincx.

3) Mechanization of Lincx together with its meta-theory in the proof assis-
tant Beluga [23]. Our development takes advantage of higher-order abstract
syntax to model binding structures compactly. We only model linearity con-
straints separately. We have mechanized our bi-directional type-theoretic foun-
dation together with our equational theory of contexts. In particular, we mech-
anized all the key properties of our equational theory of context joins and the
substitution properties our theory satisfies.

We believe that Lincx is a significant step towards modelling (linear) deriva-
tion trees as well-scoped syntactic structures that we can analyze and manip-
ulate via case-analysis and implementing (co)inductive proofs as (co)recursive
programs. As it treats contexts, where both unrestricted and linear assumptions
live, abstractly and factors out the equational theory of context joins, it elim-
inates the need for users to explicitly state basic mathematical definitions and
lemmas and build up the basic necessary infrastructure. This makes the task
easier and lowers the costs and effort required to mechanize properties about
imperative and concurrent computations.

2 Motivating Examples

To illustrate how we envision using (linear) contextual objects and (linear) con-
texts, we implement two program transformations on object languages that ex-
ploit linearity. We first represent our object languages in Lincx and then write
recursive programs that analyze the syntactic structure of these objects by pat-
tern matching. This highlights the role that contexts and context joins play.

2.1 Example: Code Simplification

To illustrate the challenges that contexts pose in the linear setting, we implement
a program that translates linear Mini-ML expressions that feature let-expression

3

into a linear core lambda calculus. We define the linear Mini-ML using the linear
type ml and our linear core lambda calculus using the linear type lin as our target
language. We introduce a linear LF type together with its constructors using the
keyword Linear LF.

Linear LF ml : type =
| lam : (ml -o ml) -o ml
| app : ml -o ml -o ml
| letv : ml -o (ml -o ml) -o ml;

Linear LF lin: type =
| llam : (lin -o lin) -o lin
| lapp : lin -o lin -o lin
;

We use the linear implication -o to describe the linear function space and
we model variable bindings that arise in abstractions and let-expressions using
higher-order abstract syntax, as is common in logical frameworks. This encoding
technique exploits the function space provided by LF to model variables. In linear
LF it also ensures that bound variables are used only once.

Our goal is to implement a simple translation of Mini-ML expressions to the
core linear lambda calculus by eliminating all let-expressions and transforming
them into function applications. We thus need to traverse Mini-ML expressions
recursively. As we go under an abstraction or a let-expression, our sub-expression
will not, however, remain closed. We therefore model a Mini-ML expression
together with its surrounding context in which it is meaningful. Our function
trans takes a Mini-ML expression in a context γ, written as [γ ` ml], and returns a
corresponding expression in the linear lambda calculus in a context δ, an object
of type [δ ` lin]. More precisely, there exists such a corresponding context δ.
Due to linearity, the context of the result of translating a Mini-ML term has
the same length as the original context. This invariant is however not explicitly
tracked.

We first define the structure of such contexts using context schema declara-
tions. The tag l ensures that any declaration of type ml in a context of schema
ml_ctx must be linear. Similarly, any declaration of type lin in a context of schema
core_ctx must be linear.
schema ml_ctx = l (ml);
schema core_ctx = l (lin);

To characterize the result of this translation, we define a recursive type:
inductive Result: type = Return : (δ:core_ctx) [δ ` lin] → Result;

By writing round parenthesis in (δ:core_ctx) we indicate that we do not pass
δ explicitly to the constructor Return, but it can always be reconstructed. It is
merely an annotation declaring the schema of δ.

We now define a recursive function trans using the keyword rec (see Fig. 1).
First, let us highlight some high level principles and concepts that we use. We
write [Ψ ` N] to describe an expression N that is meaningful in the context Ψ. For
example, [γ ` lam ^ (λ̂x. M)] denotes a term of type ml in the context γ where γ is a
context variable that describes contexts abstractly. We call M a meta-variable. It
stands for a ml term that may depend on the context γ,x:ml. In general, all meta-
variables are associated with a stuck substitution, written N[σ] or M[σ]. We usually
omit the substitution σ, if it is the identitiy substitution. One substitution that

4

rec trans : (γ:ml_ctx)[γ ` ml] → Result =
fn e ⇒ case e of
| [x̂:ml ` x] ⇒ Return [x̂:lin ` x]

| [γ ` lam ^ (λ̂x. M)] ⇒
let Return [δ, x̂:lin ` M’] = trans [γ, x̂:ml ` M] in
Return [δ ` llam ^ (λ̂x. M)]

| [γ(1./2) ` app ^ M ^ N] where M:[γ1 ` ml] and N:[γ2 ` ml] and γ(1./2) = γ1 ./ γ2⇒
let Return [δ1 ` M’] = trans [γ1 ` M] in
let Return [δ2 ` N’] = trans [γ2 ` N] in

Return [δ(1./2) ` lapp ^ M’ ^ N’] where δ(1./2) = δ1 ./ δ2

| [γ(1./2) ` let ^ M ^ (λ̂x. N)] where M:[γ1` ml] and N:[γ2, x̂:ml ` ml]
and γ(1./2) = γ1 ./ γ2 ⇒

let Return [δ1 ` M’] = trans [γ1 ` M] in
let Return [δ2, x̂:lin ` N’] = trans [γ2, x̂:ml ` N] in

Return [δ(1./2) ` lapp ^ (llam ^ (λ̂x. N’)) ^ M’] where δ(1./2) = δ1 ./ δ2;

Fig. 1. Translation of linear ML-expressions to a linear core language

frequently arises in practice is the empty substitution that is written as [] and
maps from the empty context to an unrestricted context Ψ. It hence acts as a
weakening substitution.

Our simplification is implemented by pattern matching on [γ ` ml] objects
and specifying constraints on contexts. In the variable case, since we have a linear
context, we require that x be the only variable in the context3. In the lambda
case [γ ` lam ^(λ̂x.M)] we write ^ for linear application and linear abstraction. We
expect the type of M to be inferred as [γ,x̂:ml ` ml], since we interpret every pattern
variable to depend on all its surrounding context unless otherwise specified. We
now recursively translate M in the extended context γ, x̂:ml, unpack the result and
rebuild the equivalent linear term. Note that we pattern match on the result
translating M by writing Result [δ, x̂:lin ` M’]. However, we do not necessarily know
that the output core_ctx context is of the same length as the input ml_ctx context
and hence necessarily has the shape [δ, x̂:lin], as we do not track this invariant
explicitly. To write a covering program we would need to return an error, if we
would encounter Return [` M’], i.e. a closed term where δ is empty. We omit this
case here.

The third and fourth cases are the most interesting ones, as we must split
the context. When we analyze for example [γ(1./2) ` app ^ M ^N], then M has some
type [γ1 ` ml] and N has some type [γ2 ` ml] where γ(1./2) = γ1 ./ γ2. We specify
these type annotations and context constraints explicitly. Note that we overload
the ./ symbol in this example: when it occurs as a subscript it is part of the
name, while when we write γ1 ./ γ2 it refers to the operation on contexts. Then
we can simply recursively translate M and N and rebuild the final result where

3 In case we have a mixed context, we could specify instead that the rest of the context
is unrestricted, using the keywords where and unr.

5

we explicitly state δ1./2 = δ1 ./ δ2. We proceed similarly to translate recursively
every let-expression into a function application.

Type checking verifies that a given object is well-typed modulo context joins.
This is non-trivial. Consider for example [δ(1./2) ` lapp ^ (llam ^(λ̂x. N’)) ^ M’] where
δ(1./2) = δ1 ./ δ2. Clearly, we should be able to type check such an example also if
the user wrote δ = δ2 ./ δ1. Hence we want our underlying type theory to reason
about context constraints modulo associativity and commutativity.

As the astute reader will have noticed, we only allow one context variable in
every context, i.e. writing [δ1,δ2 ` lapp ^ (llam ^ (λ̂x. N’)) ^ M’] is illegal. Further-
more, we have deliberately chosen the subscripts for our context variables to
emphasize their encoding in our underlying theory. Note that all context vari-
ables that belong to the same tree of context splits have the same name, but
differ in their subscripts. The context variables γ1 and γ2 are called leaf-level
context variables. The context variable γ(1./2) is their direct parent and sits at
the root of this tree. One can think of the tree of context joins as an abstraction
of the typing derivation. To emphasize this idea, let us consider the following
deeply nested pattern: [γ((11./12)./2) ` lapp ^ (lapp ^ (llam ^ (λ̂x. M)) ^ N’) ^ K] where
M : [γ11, x̂: ml ` ml], N : [γ12 ` ml], and K : [γ2 ` ml], and where we again encode
the splitting of γ in its subscript. Our underlying equational theory of context
joins treats γ(11./(12./2)) as equivalent to γ((11./12)./2) or γ((12./11)./2) as it takes into
account commutativity and associativity. However, it may require us to gener-
ate a new intermediate node γ(1./21) and eliminate intermediate nodes (such as
γ21./22).

γ1./(21./22)

γ1 γ21./22

γ21 γ22

./

./

equivalent to

γ(1./21)./22

γ1./21

γ1 γ21

γ22./

./

Fig. 2. Context Joins

Our encoding of context variables is hence crucial to allow the rearrange-
ment of context constraints, but also to define what it means to instantiate a
given context variable such as γ21 with a concrete context Ψ. If Ψ contains also
unrestricted assumptions then instantiating γ21 will have a global effect, as un-
restricted assumptions are shared among all nodes in this tree of context joins.
This latter complication could possibly be avoided if we separate the context of
intuitionistic assumptions and the context of linear assumptions. However, this
kind of separation between intuitionistic and linear assumptions is not trivial
in the dependently typed setting because linear assumptions may depend on
intuitionistic assumptions.

This design of context variables and capturing their dependency is essential
to Lincx and to the smooth extension of contextual types to the linear setting.
As the leaf-level context variables uniquely describe a context characterized by a

6

tree of context joins, we only track the leaf-level context variables as assumptions
while type checking an object, but justify the validity of context variables that
occur as interior nodes through the leaf-level variables. We want to emphasize
that this kind of encoding of context variables does not need to be exposed to
programmers.

2.2 Example: CPS translation

As a second example, we implement the translation of programs into continuation
passing style following Danvy and Filinski [11]. Concretely, we follow closely
the existing implementation of type-preserving CPS translation in Beluga by
Belanger et.al [1], but enforce that the continuations are used linearly, an idea
from Berdine et.al [3]. Although context splits do not arise in this example, as we
only have one linear variable (standing for the continuation) in our context, we
include it, to showcase the mix and interplay of intuitionistic and linear function
spaces in encoding program transformations.

Our source language is a simple language consisting of natural numbers, func-
tions, applications and let-expressions. We only model well-typed expressions by
defining a type source that is indexed by types tp.

Linear LF tp : type =
| nat : tp
| arr : tp → tp → tp
;

Linear LF source : tp → type =
| app : source (arr S T) → source S → source T
| lam : (source S → source T) → source (arr S T)
| z : source nat
| s : source nat → source nat;

In our target language we distinguish between expressions, characterized by
the type exp and values, defined by the type value. Continuations take values as
their argument and return an exp. We ensure that each continuation itself is used
exactly once by abstracting exp over the linear function space.

Linear LF exp : type =
| kapp : value (arr S T) → value S → (value T → exp) -o exp
| halt : value S → exp
and value : tp → type =
| klam : (value S → (value T → exp) -o exp) → value (arr S T)
| kz : value nat
| ksuc : value nat → value nat ;

We can now define our source and value contexts as unrestricted contexts by
marking the schema element with the tag u.

schema sctx = u (source T);
schema vctx = u (value T);

To guarantee that the resulting expression is well-typed, we define a context
relation Ctx_Rel to relate the source context to the value context (see Fig. 3). Notice
that we explicitly state that the type S of a source and target expression is
closed; it does not depend on γ or δ. To distinguish between objects that depend
on their surrounding context and objects that do not, we associate every index
and pattern variable with a substitution (the identity substitution by default);
if we want to state that a given variable is closed, we associate it with the empty
substitution [].

7

We can now define the translation itself (see Fig. 3). The function cpse takes in
a context relation Ctx_Rel [γ] [δ] and a source term of type source S[] that depends
on context γ. It then returns the corresponding expression of type exp, depending
on context δ extended by a continuation from value S to exp. The fact that the
continuation is used only once in exp is enforced by declaring it linear in the
context. The translation proceeds by pattern matching on the source term. We
concentrate here on the interesting cases.

data Ctx_Rel: {γ:sctx}{δ:vctx} type =
Nil : Ctx_Rel [] []
Cons : Ctx_Rel [γ] [δ] → Ctx_Rel [γ, x:source S[]] [δ, v:value S[]] ;

rec cpse:(γ:sctx)(δ:vctx)(S:[` tp])
Ctx_Rel [γ] [δ] → [γ ` source S[]] → [δ, k̂:value S[] → exp ` exp] =

fn r, e ⇒ case e of
| [γ ` #p] ⇒

let [δ` #q] = lookup r [γ ` #p] in
[δ, k̂:value _ → exp ` k #q]

| [γ ` z] ⇒ let (r : Ctx_Rel [γ] [δ]) = r in [δ,k̂:value nat → exp ` k kz]

| [γ ` suc N] ⇒
let [δ,k̂:value nat → exp ` P] = cpse r [γ ` N] in
[δ,k̂:value nat → exp ` P[λp. k (ksuc p)]]

| [γ ` lam λx. M] ⇒
let [δ, v:value S[], k̂:value T[] → exp ` P] = cpse [Cons r] [γ, x:source _ ` M] in

[δ, k^:value (arr S[] T[]) → exp ` k (klam (λx.λ̂c. P))]

| [γ ` app M N] ⇒
let [δ, k1̂:value (arr S[] T[]) → exp ` P] = cpse r [γ ` M] in
let [δ, k2̂:value S[] → exp ` Q] = cpse r [γ ` N] in

[δ,k̂:value T[] → exp ` P[λf. Q[λx. kapp f x ^ k]]];

Fig. 3. CPS Translation

Parameter Variable If we encounter a variable from the context γ, written as
#p, we look up the corresponding variable #q in the target context δ by using the
context relation and we pass it to the continuation k. We omit here the definition
of the lookup function which is straightforward. We use _ where we believe that
the omitted object can reasonably be inferred. Finally, we note that k #q is well-
typed in the context δ, k̂:value _ → exp, as k is well-typed in the context that only
contains the declaration k̂:value _ → exp and #q is well-typed in the context δ.

Constant z We first retrieve the target context δ to build the final expression by
pattern matching on the context relation r. Then we pass kz to the continuation
k in the context δ,k̂:value nat → exp. Note that an application k kz is well-typed in
δ,k̂:value nat → exp, as kz is well-typed in δ, i.e. its unrestricted part.

Lambda Abstraction To convert functions, we extend the context γ and the
context relation r and convert the term M recursively in the extended context

8

to obtain the target expression P. We then pass to the continuation k the value
klam λx.λ̂c.P.

Application Finally, let us consider the the source term app M N. We translate
both M and N recursively to produce the target terms P and Q respectively. We
then substitute for the continuation variable k2 in Q a continuation consuming
the local argument of an application. A continuation is then built from this,
expecting the function to which the local argument is applied and substituted
for k1 in P producing a well-typed expression, if a continuation for the resulting
type S is provided.

We take advantage of our built-in substitution here to reduce any administra-
tive redexes. The term (λx. kapp f x ^ k) that we substitute for references to k2 in Q

will be β-reduced wherever that k2 appears in a function call position, such as the
function calls introduced in the variable case. We hence reduce administrative
redexes using the built-in (linear) LF application.

3 Lincx: A Linear Logical Framework with First-Class
Contexts

Throughout this section we gradually introduce Lincx, a contextual linear log-
ical framework with first-class contexts (i.e. context variables) that generalizes
the linear logical framework LLF [9] and contextual LF [6]. Fig. 4 presents both
contextual linear LF (see Sect. 3.1) and its meta-language (see Sect. 3.6).

3.1 Syntax of Contextual Linear LF

Lincx allows for linear types, written A (B, and dependent types Πx:A.B
where x may be unrestricted in B. We follow recent presentations where we only
describe canonical LF objects using hereditary substitution.

As usual, our framework supports constants, (linear) functions, and (linear)
applications. We only consider objects in η-long β-normal form, as these are
the only meaningful terms in a logical framework. While the grammar charac-
terizes objects in β-normal form, the bi-directional typing rules will also ensure
that objects are η-long. Normal canonical terms are either intuitionistic lambda
abstractions, linear lambda abstractions, or neutral atomic terms. We define
(linear) applications as neutral atomic terms using a spine representation [10],
as it makes the termination of hereditary substitution easier to establish. For ex-
ample, instead of x M1 . . .Mn, we write x ·M1; . . . ; Mn; ε. The three possible
variants of a spine head are: a variable x, a constant c or a parameter variable
closure p[σ].

Our framework contains ordinary bound variables x which may refer to a
variable declaration in a context Ψ or may be bound by either the unrestricted
or linear lambda-abstraction, or by the dependent type Πx:A.B. Similarly to
contextual LF, Lincx also allows two kinds of contextual variables as terms.
First, the meta-variable u of type (Ψ ` P) stands for a general LF object of

9

Contextual Linear LF

Kinds K ::= type | Πx:A.K

Types A,B ::= P | Πx:A.B | A(B

Atomic Types P,Q ::= a · S
Heads H ::= x | c | p[σ]

Spines S ::= ε | M ;S | M ;̂S

Atomic Terms R ::= H · S | u[σ]

Canonical Terms M,N ::= R | λx.M | λ̂x.M
Variable Declarations D ::= x:A | x̂:A | x̌:A

Contexts Ψ,Φ ::= · | ψm | Ψ,D
Substitutions σ, τ ::= · | idψ | σ,M

Meta-Language

Meta-Variables X ::= u | p | ψi
Meta-Objects C ::= Ψ̃ .R | Ψ̃ .H | Ψ
Context Schema Elem. E ::= λ(

−−−→
xi:Ai).A | λ(

−−−→
xi:Ai).Â

Context Schemata G ::= E | G+ E

Context Var. Indices m ::= ε | i | m ./ n

Meta Types U ::= Ψ ` P | Ψ ` #A | G
Meta-Contexts ∆ ::= · | ∆,X : U

Meta-Substitutions Θ ::= · | Θ,C/X

Fig. 4. Contextual Linear LF with first-class contexts

atomic type P and uses the variables declared in Ψ . Second, the parameter vari-
able p of type (Ψ ` #A) stands for a variable object of type A from the context
Ψ . These contextual variables are associated with a postponed substitution σ
representing a closure. The intention is to apply σ as soon as we know what u
(or p resp.) stands for.

The system has one mixed context Ψ containing both intuitionistic and lin-
ear assumptions: x:A is an intuitionistic assumption in the context (also called
unrestricted assumption), x̂:A represents a linear assumption and x̌:A stands for
its dual, an unavailable assumption. It is worth noting that we use ̂ throughout
the system description to indicate a linear object – be it term, variable, name
etc. Similarly, q always denotes an unavailable resource.

In the simultaneous substitution σ, we do not make the domain explicit.
Rather, we think of a substitution together with its domain Ψ ; the i-th element
in σ corresponds to the i-th declaration in Ψ . The expression idψ denotes the
identity substitution with domain ψm for some index m; we write · for the empty
substitution. We build substitutions using normal terms M . We must however
be careful: note that a variable x is only a normal term if it is of base type. As

10

we push a substitution σ through a λ-abstraction λx.M , we need to extend σ
with x. The resulting substitution σ, x might not be well-formed, since x might
not be of base type and, in fact, we do not know its type. This is taken care of
in our definition of substitution, based on contextual LF [7]. As we substitute
and replace a context variable with a concrete context, we unfold and generate
an (η-expanded) identity substitution for a given context Ψ .

3.2 Contexts and Context Joins

Since linearity introduces context splitting, context maintenance is crucial in
any linear system. When we allow for first-class contexts, as we do in Lincx,
it becomes much harder: we now need to ensure that, upon instantiation of
the context variables, we do not accidentally join two contexts sharing a linear
variable. To enforce this in Lincx, we allow for at most one (indexed) context
variable per context and use indices to abstractly describe splitting. This lets us
generalize the standard equational theory for contexts based on context joins to
include context variables.

As mentioned above, contexts in Lincx are mixed. Besides linear and intu-
itionistic assumptions, we allow for unavailable assumptions following the ap-
proach of Schack-Nielsen and Schürmann [27], in order to maintain symmetry
when splitting a context: if Ψ = Ψ1 ./ Ψ2, then Ψ1 and Ψ2 both contain all the
variables declared in Ψ ; however, if Ψ1 contains a linear assumption x̂:A, Ψ2 will
contain its unavailable counterpart x̌:A (and vice-versa).

To account for context splitting in the presence of context variables, we index
the latter. The indices are freely built from elements of an infinite, countable set
I, through a join operation (./). It is associative and commutative, with ε as its
neutral element. In other words, (I∗, ./, ε) is a (partial) free commutative monoid
over I. For our presentation it is important that no element of the monoid is
invertible, that is if m ./ n = ε then m = n = ε. In the process of joining
contexts, it is crucial to ensure that each linear variable is used only once: we do
not allow a join of Ψ, x̂:A with Φ, x̂:A. To express the fact that indices m and n
share no elements of I and hence the join of ψm with ψn is meaningful, we use the
notation m⊥n. In fact we will overload ./, changing it into a partial operation
m ./ n that fails when m 6 ⊥n. This is because we want the result of joining
two context variables to continue being a correct context upon instantiation. We
will come back to this point in Sect. 3.6, when discussing meta-substitution for
context variables.

To give more intuition, the implementation of the indices in our formalization
of the system is using binary numbers, where I contains powers of 2, ./ is defined
as a binary OR and ε = 0 . m⊥n holds when m and n use different powers of 2
in their binary representation. We can also simply think of indices m as sets of
elements from I with ./ being ∪ for sets not sharing any elements.

The only context variables tracked in the meta-context ∆ are the leaf-level
context variables ψi. We require that these use elements of the carrier set i ∈ I
as indices. To construct context variables for use in contexts, we combine leaf-
level context variables using ./ on indices. Consider again the tree describing

11

the context joins (see Fig. 2). In this example, we have the leaf-level context
variables γ1, γ21, and γ22. These are the only context variables we track in the
meta-context ∆. Using a binary encoding we would use the subscripts 100, 010
and 001 instead of 1, 21, and 22.

Rules of constructing a well-formed context (Fig. 5) describe four possible
initial cases of context construction. First, the empty context, written simply as
·, is well-formed. Next, there are two possibilities why a context denoted by a
context variable ψi is well-formed. If the context variable ψi is declared in the
meta-context∆, then it is well-formed and describes a leaf-variable. To guarantee
that also context variables that describe intermediate nodes in our context tree
are well-formed, we have a composition rule that allows joining two well-formed
context variables using ./ operation on indices; the restriction we make on ./
ensures that they do not share any leaf-level variables. ψε forms a well-formed
context as long as there is some context variable ψi declared in ∆. This is an
abstraction that allows us to describe the intuitionistic variables of a context.
Finally, the last case for context extensions is straightforward.

∆ ` Ψ ctx Ψ is a valid context under meta-context ∆

∆ ` · ctx
ψi ∈ dom(∆)

∆ ` ψε ctx
ψi ∈ dom(∆)

∆ ` ψi ctx
∆ ` ψk ctx ∆ ` ψl ctx m = k ./ l

∆ ` ψm ctx

∆ ` Ψ ctx ∆;Ψ ` A type D ∈ {x:A, x̂:A, x̌:A}
∆ ` Ψ,D ctx

Fig. 5. Well-formed contexts

In general we write Γ for contexts that do not start with a context variable
and Ψ, Γ for the extension of context Ψ by the variable declarations of Γ .

When defining our inference rules, we will often need to access the intuition-
istic part of a context. Much like in linear LF [9], we introduce the function Ψ
which is defined as follows:

Ψ Intuitionistic part of Ψ
· = ·
ψm = ψε
Ψ, x:A = Ψ, x:A

Ψ, x̂:A = Ψ, x̌:A

Ψ, x̌:A = Ψ, x̌:A

Note that this function does not remove any variable declarations from Ψ , it
simply makes them unavailable. Further, when applying this function to a con-
text variable, it drops all the indices, indicating access to only the shared part

12

of the context variable. After we instantiate ψm with a concrete context, we
will apply the operation. Extracting the intuitionistic part of a context is hence
simply postponed.

Further, we define notation unr(Ψ) to denote an unrestricted context, i.e. a
context that only contains unrestricted assumptions; while Ψ drops all linear
assumptions, unr(Ψ) simply verifies that Ψ is a purely intuitionistic context. In
other words, unr(Ψ) holds if and only if Ψ = Ψ . We omit here its (straightforward)
judgmental definition.

Ψ = Ψ1 ./ Ψ2 Context Ψ is a join of Ψ1 and Ψ2

· = · ./ ·
m = k ./ l

ψm = ψk ./ ψl

Ψ = Ψ1 ./ Ψ2

Ψ, x:A = Ψ1, x:A ./ Ψ2, x:A

Ψ = Ψ1 ./ Ψ2

Ψ, x̌:A = Ψ1, x̌:A ./ Ψ2, x̌:A

Ψ = Ψ1 ./ Ψ2

Ψ, x̂:A = Ψ1, x̂:A ./ Ψ2, x̌:A

Ψ = Ψ1 ./ Ψ2

Ψ, x̂:A = Ψ1, x̌:A ./ Ψ2, x̂:A

Fig. 6. Joining contexts

The rules for joining contexts (see Fig. 6) follow the approach presented by
Schack-Nielsen in his PhD dissertation [26], but are generalized to take into
account context variables. Because of the monoid structure of context variable
indices, the description can be quite concise while still preserving the desired
properties of this operation. For instance the expected property Ψ = Ψ ./ Ψ
follows, on the context variable level, from ε being the neutral element of ./.
Indeed, for any ψm, we have that ψm = ψm ./ ψε.

It is also important to note that, thanks to the determinism of ./, context
joins are unique. In other words, if Ψ = Ψ1 ./ Ψ2 and Φ = Ψ1 ./ Ψ2, Ψ = Φ.
On the other hand, context splitting is non-deterministic: given a context Ψ we
have numerous options of splitting it into Ψ1 and Ψ2, since each linear variable
can go to either of the components.

We finish this section by describing the equational theory of context joins. We
expect joining contexts to be a commutative and associative operation, and the
unrestricted parts of contexts in the join should be equal. Further, it is always
possible to extend a valid join with a ground unrestricted context, and Ψ can
always be joined with Ψ without changing the result.

Lemma 1 (Theory of context joins).

1. (Commutativity) If Ψ = Ψ1 ./ Ψ2 then Ψ = Ψ2 ./ Ψ1.
2. (Associativity 1) If Ψ = Ψ1 ./ Ψ2 and Ψ1 = Ψ11 ./ Ψ12 then there exists a

context Ψ0 s.t. Ψ = Ψ11 ./ Ψ0 and Ψ0 = Ψ12 ./ Ψ2.
3. (Associativity 2) If Ψ = Ψ1 ./ Ψ2 and Ψ2 = Ψ21 ./ Ψ22 then there exists a

context Ψ0 s.t. Ψ0 = Ψ1 ./ Ψ21 and Ψ = Ψ0 ./ Ψ22.

13

4. If Ψ = Ψ1 ./ Ψ2 then Ψ = Ψ1 = Ψ2.
5. If unr(Γ) and Ψ = Ψ1 ./ Ψ2 then Ψ, Γ = Ψ1, Γ ./ Ψ2, Γ .
6. For any Ψ , Ψ = Ψ ./ Ψ .

We will need these properties to prove lemmas about typing and substitution,
specifically for the cases that call for specific context joins.

3.3 Typing for Terms and Substitutions

We now describe the bi-directional typing rules of Lincx terms (see Fig. 7). All
typing judgments have access to the meta-context ∆, context Ψ , and to a fixed
well-typed signature Σ where we store constants c together with their types
and kinds. Lincx objects may depend on variables declared in the context Ψ
and a fixed meta-context ∆ which contains contextual variables such as meta-
variables u, parameter variables p, and context variables. Although the rules
are bi-directional, they do not give a direct algorithm, as we need to split a
context Ψ into contexts Ψ1 and Ψ2 such that Ψ = Ψ1 ./ Ψ2 (see for example
the rule for checking H · S against a base type P). This operation is in itself
non-deterministic, however since our system is linear there is only one split that
makes the components (for example H and S in H · S) typecheck.

Typing rules presented in Fig. 7 are, perhaps unsurprisingly, a fusion between
contextual LF and linear LF. As in contextual LF, the typing for meta-variable
closures and parameter variable closures is straightforward. A meta-variable u :
(Ψ ` P) represents an open LF object (a “hole” in a term). As mentioned earlier
it has, associated with it, a postponed substitution σ, applied as soon as u is
made concrete. Similarly, a parameter variable p : (Ψ ` #A) represents an LF
variable – either an unrestricted or linear one.

As in linear LF, we have two lambda abstraction rules (one introducing in-
tuitionistic, the other linear assumptions) and two corresponding variable cases.
Moreover, we ensure that types only depend on the unrestricted part of a context
when checking that two types are equal. As we rely on hereditary substitutions,
this equality check ends up being syntactic equality. Similarly, when we consider
a spine M ;S and check it against the dependent type Πx:A.B, we make sure
that M has type A in the unrestricted context before continuing to check the
spine S against [M/x]AB. When we encounter a spineM ;̂S and check it against
the linear type A(B in the context Ψ , we must show that there exists a split
s.t. Ψ = Ψ1 ./ Ψ2 and then check that the term M has type A in the context Ψ1

and the remaining spine S is checked against B to synthesize a type P .
Finally, we consider the typing rules for substitutions, presented in Fig. 8. We

exercise care in making sure the range context in the base cases, i.e. where the
substitution is empty or the identity, is unrestricted. This guarantees weakening
and contraction for unrestricted contexts.

The substitution σ,M is well-typed with domain Φ, x:A and range Ψ , if σ is
a substitution from Φ to the context Ψ and in addition M has type [σ]ΦA in the
unrestricted context Ψ . The substitution σ,M is well-typed with domain Φ, x̂:A
and range Ψ , if there exists a context split Ψ = Ψ1 ./ Ψ2 s.t. σ is a substitution

14

∆;Ψ `M ⇐ A Term M checks against type A

∆;Ψ, x:A `M ⇐ B

∆;Ψ ` λx.M ⇐ Πx:A.B

∆;Ψ, x̂:A `M ⇐ B

∆;Ψ ` λ̂x.M ⇐ A(B

u : (Φ ` P) ∈ ∆ ∆;Ψ ` σ ⇐ Φ ∆;Ψ ` [σ]ΦP = Q

∆;Ψ ` u[σ] ⇐ Q

∆;Ψ1 ` H ⇒ A ∆;Ψ2 ` S > A ⇒ P ∆;Ψ ` P = Q Ψ = Ψ1 ./ Ψ2

∆;Ψ ` H · S ⇐ Q

∆;Ψ ` H ⇒ A Head H synthesizes a type A

c:A ∈ Σ unr(Ψ)

∆;Ψ ` c ⇒ A

p : (Φ ` #A) ∈ ∆ ∆;Ψ ` σ ⇐ Φ

∆;Ψ ` p[σ] ⇒ [σ]ΦA

unr(Ψ) x:A ∈ Ψ
∆;Ψ ` x ⇒ A

unr(Ψ1) unr(Ψ2)

∆;Ψ1, x̂:A,Ψ2 ` x ⇒ A

∆;Ψ ` S > A ⇒ P Spine S synthesizes type P

unr(Ψ)

∆;Ψ ` ε > P ⇒ P

∆;Ψ `M ⇐ A ∆;Ψ ` S > [M/x]AB ⇒ P

∆;Ψ `M ;S > Πx:A.B ⇒ P

∆;Ψ1 `M ⇐ A ∆;Ψ2 ` S > B ⇒ P Ψ = Ψ1 ./ Ψ2

∆;Ψ `M ;̂S > A(B ⇒ P

Fig. 7. Typing rules for terms

with domain Φ and range Ψ1 and M is a well-typed term in the context Ψ2.
The substitution σ,M is well-typed with domain Φ, x̌:A and range Ψ , if σ is a
substitution from Φ to Ψ and for some context Ψ ′, Ψ = Ψ ′, M is a well-typed
term in the context Ψ ′. This last rule, extending the substitution domain by an
unavailable variable, is perhaps a little surprising. Intuitively we may want to
skip the unavailable variable of a substitution. This would however mean that we
have to perform not only context splitting, but also substitution splitting when
defining the operation of simultaneous substitution. An alternative is to use an
arbitrary term M to be substituted for this unavailable variable, as the typing
rules ensure it will never actually occur in the term in which we substitute.
When establishing termination of type-checking, it is then important that M
type checks in a context that can be generated from the one we already have.
We ensure this with a side condition Ψ = Ψ ′. By enforcing that the unrestricted
parts of Ψ and Ψ ′ are equal we limit the choices that we have for Ψ ′ deciding
which linear variables to take (linear) and which to drop (unavailable), and
deciding on the index of context variable.

15

∆;Ψ ` σ ⇐ Φ Substitution σ maps variables in Φ to variables in Ψ

unr(Ψ)

∆;Ψ ` · ⇐ ·
unr(Γ)

∆;ψm, Γ ` idψ ⇐ ψm

∆;Ψ ` σ ⇐ Φ ∆;Ψ `M ⇐ [σ]ΦA

∆;Ψ ` σ,M ⇐ Φ, x:A

∆;Ψ1 ` σ ⇐ Φ ∆;Ψ2 `M ⇐ [σ]ΦA Ψ = Ψ1 ./ Ψ2

∆;Ψ ` σ,M ⇐ Φ, x̂:A

∆;Ψ ` σ ⇐ Φ Ψ = Ψ ′ ∆;Ψ ′ `M ⇐ [σ]ΦA

∆;Ψ ` σ,M ⇐ Φ, x̌:A

Fig. 8. Typing rules for substitutions

When considering an identity substitution idψ, we allow for some ambigu-
ity: we can use any ψm for both the domain and range of idψ. Upon meta-
substitution, all instantiations of ψm will have the same names and types of
variables; the only thing differentiating them will be their status (intuitionis-
tic, linear or unavailable). Since substitutions do not store information about
the status of variables they substitute for (this information is available only in
the domain and range), the constructed identity substitution will be the same
regardless of the initial choice of ψm – it will however have a different type.

The observation above has a more general consequence, allowing us to avoid
substitution splits when defining the operation of hereditary substitution: if a
substitution in Lincx transforms context Φ to context Ψ , it does so also for their
unrestricted fragments.

Lemma 2. If ∆;Ψ ` σ ⇐ Φ then ∆;Ψ ` σ ⇐ Φ.

3.4 Hereditary Substitution

Next we will characterise the operation of hereditary substitution, which allows
us to consider only normal forms in our grammar and typing rules, making the
decidability of type-checking easy to establish.

As usual, we annotate hereditary substitutions with an approximation of the
type of the term we substitute for to guarantee termination.

Type approximations α, β ::= a | α→ β | α(β

We then define the dependency erasure operator (−)
− as follows:

16

A− = α α is a type approximation of A
(a · S)− = a

(Πx:A.B)− =A− → B−

(A(B)− =A− (B−

We will sometimes tacitly apply the dependency erasure operator (−)
− in the

following definitions. Hereditary single substitution for Lincx is standard and
closely follows [7], since linearity does not induce any complications. When exe-
cuting the current substitution would create redexes, we proceed by hereditarily
performing another substitution. This reduction operation is defined as:

reduce(M : α, S) = N N is the result of reducing M applied to the spine S

reduce(λx.M : α→ β, (N ;S)) = reduce([N/x]αM : β, S)

reduce(λ̂x.M : α(β, (N ;̂S)) = reduce([N/x]αM : β, S)

reduce(R : a, ε) = R

reduce(M : α, S) = ⊥

Termination can be readily established:

Theorem 1 (Termination of hereditary single substitution).
The hereditary substitutions [M/x]α(N) and reduce(M : α, S) terminate,

either by failing or successfully producing a result.

The following theorem provides typing for the hereditary substitution. We
use J to stand for any of the forms of judgments defined above.

Theorem 2 (Hereditary single substitution property).

1. If ∆;Ψ `M ⇐ A and ∆;Ψ, x:A ` J then ∆;Ψ ` [M/x]AJ .
2. If ∆;Ψ1 `M ⇐ A, ∆;Ψ2, x̂:A ` J and Ψ = Ψ1 ./ Ψ2 then ∆;Ψ ` [M/x]AJ
3. If ∆;Ψ1 ` M ⇐ A, ∆;Ψ2 ` S > A ⇒ B, Ψ = Ψ1 ./ Ψ2 and reduce(M :

A−, S) = M ′ then ∆;Ψ `M ′ ⇐ B

We can easily generalize hereditary substitution to simultaneous substitution.
We focus here on the simultaneous substitution in a canonical terms (see Fig. 9).
Hereditary simultaneous substitution relies on a lookup function that is defined
below. Note that (σ,M)Ψ,x̌:A(x) = ⊥, since we assume x to be unavailable in
the domain of σ.

σΨ (x) Variable lookup

(σ,M)Ψ,x:A(x) = M : A−

(σ,M)Ψ,x̂:A(x) = M : A−

(σ,M)Ψ,y:A(x) = σΨ (x) where y 6= x

(σ,M)Ψ,y̌:A(x) = σΨ (x) where y 6= x

σΨ (x) = ⊥

17

[σ]Φ̃ΨM
Substitution of the variables of Ψ in a canonical term

(leaving elements of Φ̃ unchanged)
[σ]Φ̃Ψ (λy.N) = λy.N ′ where [σ]Φ̃,yΨ N = N ′, choosing y 6∈ Ψ, y 6∈ FV(σ)

[σ]Φ̃Ψ (λ̂y.N) = λ̂y.N ′ where [σ]Φ̃,ỹΨ N = N ′, choosing y 6∈ Ψ, y 6∈ FV(σ)

[σ]Φ̃Ψ (u[τ]) = u[τ ′] where [σ]Φ̃Ψτ = τ ′

[σ]Φ̃Ψ (c · S) = c · S′ where [σ]Φ̃ΨS = S′

[σ]Φ̃Ψ (x · S) = reduce(M : α, S′) where Ψ = Ψ1 ./ Ψ2 and x 6∈ Φ̃
and σΨ1(x) = M : α and [σ]Φ̃Ψ2

S = S′

[σ]Φ̃Ψ (y · S) = y · S′ where y ∈ Φ̃ and [σ]Φ̃ΨS = S′

[σ]Φ̃Ψ (y · S) = y · S′ where ỹ ∈ Φ̃, and [σ]
Φ̃\ỹ
Ψ S = S′

[σ]Φ̃Ψ (p[τ] · S) = p[τ ′] · S′ where Ψ = Ψ1 ./ Ψ2, and Φ̃ = Φ̃1 ./ Φ̃2

and [σ]Φ̃1
Ψ1
τ = τ ′ and [σ]Φ̃2

Ψ2
S = S′

Fig. 9. Simultaneous substitution

Unlike many previous formulations of contextual LF, we do not allow substi-
tutions to be directly extended with variables. Instead, following Cave and Pien-
tka’s more recent approach [7], we require that substitutions must be extended
with η-long terms, thus guaranteeing unique normal forms for substitutions. For
this reason, we maintain a list of variable names and statuses which are not to
be changed, Φ̃ in [σ]Φ̃Ψ . This list gets extended every time we pass through a
lambda expression. We use it when substituting in y · S – if y ∈ Φ̃ or ŷ ∈ Φ̃ we
simply leave the head unchanged. It is important to preserve not only the name
of the variable, but also its status (linear, intuitionistic or unavailable), since we
sometimes have to perform a split on Φ̃. Such split works precisely like one on
complete contexts, since types play no role in context splitting.

As simultaneous substitution is a transformation of contexts, it is perhaps
not surprising that it becomes more complex in the presence of context splitting.
Consider for instance the case where we push the substitution σ through an
expression p[τ] · S. While σ has domain Ψ (and is ignoring variables from Φ̃)
and p[τ] · S is well-typed in (Ψ,Φ), the closure p[τ] is well-typed in a context
(Ψ1, Φ1) and the spine S is well-typed in a context (Ψ2, Φ2) where Ψ = Ψ1 ./ Ψ2

and Φ = Φ1 ./ Φ2. As a consequence, [σ]Φ̃Ψτ and [σ]Φ̃ΨS would be ill-typed,
however [σ]Φ̃1

Ψ1
τ and [σ]Φ̃2

Ψ2
S will work well. Notice that it is only the domain of

the substitution that we need to split, not the substitution itself.
Similarly to the case for hereditary single substitution, the theorem below

provides typing for simultaneous substitution.

Theorem 3 (Simultaneous substitution property).
If ∆;Ψ ` J and ∆;Φ ` σ ⇐ Ψ then ∆;Φ ` [σ]ΨJ .

18

3.5 Decidability of Type Checking in Contextual Linear LF

In order to establish a decidability result for type checking, we observe that the
typing judgments are syntax directed. Further, when a context split is necessary
(e.g. when checking ∆,Ψ ` σ,M ⇐ Φ, x̂:A), it is possible to enumerate all the
possible correct splits (all Ψ1, Ψ2 such that Ψ = Ψ1 ./ Ψ2). For exactly one of
them it will hold that ∆;Ψ1 ` σ ⇐ Φ and ∆;Ψ2 ` M ⇐ [σ]ΦA. Finally, in
the ∆,Ψ ` σ,M ⇐ Φ, x̌:A case, thanks to explicit mention of all the variables
(including unavailable ones), we can enlist all possible contexts Ψ ′ well-formed
under ∆ and such that Ψ = Ψ ′.

Theorem 4 (Decidability of type checking). Type checking is decidable.

3.6 Lincx’s Meta-Language

To use contextual linear LF as an index language in Beluga, we have to be
able to lift Lincx objects to meta-types and meta-objects and the definition
of the meta-substitution operation. We are basing our presentation on one for
contextual LF [6].

Fig. 4 presents the meta-language of Lincx. Meta-objects are either contex-
tual objects or contexts. The former may be instantiations to parameter variables
p : (Ψ ` #A) or meta-variables u : (Ψ ` P). These objects are written Ψ̃ .R where
Ψ̃ denotes a list of variables obtained by dropping all the type information from
the declaration, but retaining the information about variable status (intuition-
istic, linear or unavailable).

Ψ̃ Name and status of variables from Ψ

·̃ = ·
ψ̃m = ψm

Ψ̃, x:A = Ψ̃ , x

Ψ̃, x̂:A = Ψ̃ , x̂

Ψ̃, x̌:A = Ψ̃ , qx

Contexts as meta-objects are used to instantiate context variables ψi : G.
When constructing those we must exercise caution, as we need to ensure that no
linear variable is used in two contexts that are, at any point, joined. At the same
time, instantiations for context variables differing only in the index (ψi and ψj)
have to use precisely the same variable names and their unrestricted fragments
have to be equal. It is also important to ensure that the constructed context is
of a correct schema G. Schemas describe possible shapes of contexts, and each
schema element can be either linear (λ(

−−−→
xi:Ai).Â) or intuitionistic (λ(

−−−→
xi:Ai).A).

This can be extended to also allow combinations of linear and intuitionistic
schema elements.

We now give rules for a well-formed meta-context∆ (see Fig. 10). It is defined
on the structure of ∆ and is mostly straightforward. As usual, we assume the

19

` ∆ mctx ∆ is a valid meta-context

` · mctx

` ∆ mctx ∆;Ψ ` P type

` ∆,u : (Ψ ` P) mctx

` ∆ mctx ∆;Ψ ` A type

` ∆, p : (Ψ ` #A) mctx
` ∆ mctx i ∈ I
` ∆,ψi : G mctx

?

Fig. 10. Well-formed meta-contexts

names we choose are fresh. The noteworthy case arises when we extend ∆ with
a context variable ψi. Because all context variables ψj will describe parts of the
same context, we require their schemas to be the same. This side condition (?)
can be formally stated as: ∀j.ψj ∈ dom(∆) → ψj : G ∈ ∆. Moreover, to avoid
manually ensuring that indices of context variables do not cross, we require that
leaf context variables use elements of the carrier set i ∈ I (i.e. they are formed
without using the ./ operation).

Typing of meta-terms is straightforward and follows precisely the schema
presented in previous work.

Ψ ⊥ψ Θ Context Ψ is linearly disjoint from the range of Θ for ψj

Ψ ⊥ψ (·)
Ψ ⊥ψ Θ Ψ ′ = Ψ ./ Ψj

Ψ ⊥ψ (Θ,Ψj/ψj)

Ψ ⊥ψ Θ X 6= ψj

Ψ ⊥ψ (Θ,C/X)

∆ ` Θ ⇐ ∆′ Θ has domain ∆′ and range ∆

∆ ` · ⇐ ·
∆ ` Θ ⇐ ∆′ ∆ ` Ψi ⇐ G Ψi ⊥ψ Θ

∆ ` Θ,Ψi/ψi ⇐ ∆′, ψi : G

∆ ` Θ ⇐ ∆′ ∆ ` C ⇐ JΘK∆′U

∆ ` Θ,C/X ⇐ ∆′, X : U

Fig. 11. Typing rules for meta-substitutions

Because of the interdependencies when substituting for context variables, we
diverge slightly from standard presentations of typing of meta-substitutions.

First, we do not at all consider single meta-substitutions, as they would be
limited only to parameter and meta-variables. In the general case it is impossible
to meaningfully substitute only one context variable, as this would break the
invariant that all instantiations of context variables share variable names and
the intuitionistic part of the context.

20

Second, the typing rules for the simultaneous meta-substitution (see Fig. 11)
are specialized in the case of substituting for a context variable. When extending
Θ with an instantiation Ψi for a context variable ψi : G, we first verify that
context Ψi has the required schema G. We also have to check that Ψi can be
joined with any other instantiation Ψj for context variable ψj already present
in Θ (that is, Ψi ⊥ψ Θ). This is enough to ensure the desired properties of
meta-substitution for context variables.

We can now define the simultaneous meta-substitution. The operation itself
is straightforward, as linearity does not complicate things on the meta-level.
What is slightly more involved is the variable lookup function.

Θ∆(X) Contextual variable lookup

(Θ,Ψ/ψi)∆,ψi:G(ψε) = Ψ

(Θ,Ψ/ψi)∆,ψi:G(ψi) = Ψ

(Θ,Ψ/ψi)∆,ψi:G(ψm) = Φ where Φ = Ψ ./ Ψ ′ and m = i ./ n
and Θ∆(ψn) = Ψ ′

(Θ,Ψ/ψi)∆,ψi:G(ψm) = Θ∆(ψm) where i ⊥ψ m
(Θ,C/X)∆,X:U (X) = C : U

(Θ,C/Y)∆,Y :_(X) = Θ∆(X) where Y 6= X

Θ∆(X) = ⊥

On parameter and meta-variables it simply returns the correct meta-object,
to which the simultaneous substitution from the corresponding closure is then
applied. The lookup is a bit more complicated for context variables, since Θ only
contains substitutions for leaf context variables ψi. For arbitrary ψm we must
therefore deconstruct the index m = i1 ./ · · · ./ ik and return Θ∆(ψi1) ./ · · · ./
Θ∆(ψik). Finally, for ψε we simply have to find any Ψ/ψi in Θ and return Ψ – the
typing rules for Θ ensure that the choice of ψi is irrelevant, as the unrestricted
part of the substituted context is shared.

Theorem 5 (Simultaneous meta-substitution property).
If ∆ ` Θ ⇐ ∆′ and ∆′;Ψ ` J , then ∆; JΘK∆′Ψ ` JΘK∆′J .

3.7 Writing Programs about Lincx Objects

We sketch here why Lincx is a suitable index language for writing programs
and proofs. In [29], Thibodeau et.al describe several requirements for plugging
in an index language into the (co)inductive foundation for writing programs and
proofs about them. They fall into three different classes. We will briefly touch
on each one.

First, it requires that the index domain satisfies meta-substitution properties
that we also prove for Lincx. Second, comparing two objects should be decidable.
We satisfy this criteria, since we only characterize βη-long canonical forms and
equality reduces to syntactic equality. The third criterion is unification of index

21

objects. While we do not describe a unification algorithm for Lincx objects, we
believe it is a straightforward extension of A. Schack-Nielsen and C. Schürmann’s
work [27]. Finally, we require a notion of coverage of Lincx objects which is a
straightforward extension of B. Pientka and A. Abel’s approach [22].

4 Mechanization of Lincx

We have mechanized key properties of our underlying theory in the proof as-
sistant Beluga. In particular, we encoded the syntax, typing rules of Lincx
together with single and simultaneous hereditary substitution operations in the
logical framework LF relying on HOAS encodings to model binding. Our en-
coding is similar to C. Martens and K. Crary’s [15] of LF in LF, but we also
handle meta-variables and simultaneous substitutions. Since Beluga only in-
trinsically supports intuitionistic binding structures and contexts, linearity must
be enforced separately. We do this through an explicit context of variable decla-
rations, connecting each variable to a flag and a type. To model contexts with
context variable indices we use a binary encoding. The implementation of Lincx
in Beluga was crucial to arrive at our understanding of modelling context vari-
ables using commutative monoids.

As mentioned in Section 3.2, the context variable indices take context split-
ting into account by describing elements from a countably infinite set I, along
with a neutral element and a join operation that is commutative and associative.
We implement these indices using binary strings, where ε is the empty string,
and a string with a single positive bit represents a leaf-level variable. In other
words, through this abstraction, every context variable in ∆ is a binary string
with a single positive bit. A. Schack-Nielsen [26] uses a similar encoding for
managing flags for linear, unrestricted, and unavailable assumptions in concrete
contexts. Our encoding lifts these ideas to modelling context variables. We then
implement the ./ operation as a binary OR operation which fails when the two
strings have a common positive (for instance a join between 001 and 011 would
fail). The following describes the join of M and N, forming K.

LF bin_or : bin → bin → bin → type =
| bin_or_nil_l : bin_or nil M M
| bin_or_nil_r : bin_or M nil M
| bin_or_l : bin_or M N K → bin_or (cons one M) (cons zero N) (cons one K)
| bin_or_r : bin_or M N K → bin_or (cons zero M) (cons one N) (cons one K)
| bin_or_zero : bin_or M N K → bin_or (cons zero M) (cons zero N) (cons zero K)

;

We then proceed to prove commutativity, associativity and uniqueness of
bin_or. Finally, we mechanized the proofs of the properties about our equational
theory of context joins as total functions in Beluga. In particular, we mecha-
nized proofs of lemma 1 and 2. Here we take advantage of Beluga’s first-class
contexts and in the base cases rely on the commutativity and associativity prop-
erties of the binary encoding of context variable indices. We note that context
equality is entirely syntactic and can thus be defined simply in terms of reflection.

Although we had to model our mixed contexts of unrestricted and linear
assumptions explicitly, Beluga’s support for encoding formal systems using

22

higher-order abstract syntax still significantly simplified our definitions of typ-
ing rules and hereditary substitution operation. In particular, it allowed us to
elegantly model variable bindings in abstractions and Π-types.

Inductive properties about typing and substitution are implemented as re-
cursive functions in Beluga. Many of the proofs in this paper become fairly
tedious and complex on paper and mechanizing Lincx therefore helps us build
trust in our foundation. Given the substantial amount of time and lines of code
we devote to model contexts and context joins, our mechanization also demon-
strate the value Lincx can bring to mechanizing linear systems or more generally
systems that work with resources. 4

5 Related Work

The idea of using logical framework methodology to build a specification lan-
guage for linear logic dates back three decades, beginning with Cervesato’s and
Pfenning’s linear logical framework LLF [9] providing (, & and > operators
from intuitionistic linear logic, the maximal set of connectives for which unique
canonical forms exist. The idea was later expanded to the concurrent logical
framework CLF [31], which uses a monad to encapsulate less well-behaved op-
erators. The quest to design meta-logics that allow us to reason about linear
logical frameworks has been marred with difficulties in the past.

In proof theory, McDowell and Miller [18, 19] and later Gacek et.al. [13]
propose a two-level approach to reason about formal systems where we rely on
a first-order sequent calculus together with inductive definitions and induction
on natural numbers as a meta-reasoning language. We encode our fomal system
in a specification logic that is then embedded in the first-order sequent calculus,
the reasoning language. The design of the two-level approach is in principle
modular and in fact McDowell’s PhD thesis [18] describes a linear specification
logic. However the context of assumptions is encoded as a list explicitly in this
approach. As a consequence, we need to reason modulo the equational properties
of context joins and we may need to prove properties about the uniqueness of
assumptions. Such bureaucratic reasoning then still pollutes our main proof.

In type theory, McCreight and Schürmann [17] give a tailored meta-logic L+
ω

for linear LF, which is an extension of the meta-logic for LF [28]. While L+
ω

also characterize partial linear derivations using contextual objects that depend
on a linear context, the approach does not define an equational theory on con-
texts and context variables. It also does not support reasoning about contextual
objects modulo such an equational theory. In addition L+

ω does not cleanly sep-
arate the meta-theoretic (co)inductive reasoning about linear derivations from
specifying and modelling the linear derivations themselves. We believe the mod-
ular design of Beluga, i.e. the clean separation of representing and modelling
specifications and derivations on one hand and reasoning about such derivations

4 Lincx Mechanization: https://github.com/Beluga-lang/Beluga/tree/master/
examples/lincx_mechanization

23

on the other, offers many advantages. In particular, it is more robust and also
supports extensions to (co)inductive definitions [6, 29].

The hybrid logical framework HLF by Reed [25] is in principle capable to
support reasoning about linear specifications. In HLF, we reason about objects
that are valid at a specific world, instead of objects that are valid within a con-
text. However, contexts and worlds seem closely connected. Most recently Bock
and Schürmann [4] propose a contextual logical framework XLF. Similarly to
Lincx, it is also based on contextual modal type theory with first-class con-
texts. However, context variables have a strong nominal flavor in their system.
In particular, Bock and Schürmann allow multiple context variables in the con-
text and each context variable is associated with a list of variable names (and
other context variable domains) from which it must be disjoint – otherwise the
system is prone to repetition of linear variables upon instantiation.

On a more fundamental level the difference between HLF and XLF on the
one hand and our approach on the other is how we think about encoding meta-
theoretic proofs. HLF and XLF follow the philosophy of Twelf system and en-
coding proofs as relations. This makes it sometimes challenging to establish that
a given relation constitutes an inductive proof and hence both systems have
been rarely used to establish such meta-theoretic proofs. More importantly, the
proof-theoretic strength of this approach is limited. For example, it is challeng-
ing to encode formal systems and proofs that rely on (co)inductive definitions
such as proofs by logical relations and bisimulation proofs within the logical
framework itself. We believe the modular design of separating cleanly between
Lincx as a specification framework and embedding Lincx into the proof and
programming language Beluga provides a simpler foundation for representing
the meta-theory of linear systems. Intuitively, meta-proofs about linear systems
only rely on linearity to model the linear derivations – however the reasoning
about these linear derivation trees is not linear, but remains intuitionistic.

6 Conclusion and Future Work

We have presented Lincx, a linear contextual modal logical framework with
first-class contexts as a foundation to model linear systems and derivations. In
particular, Lincx satisfies the necessary requirements to serve as a specification
and index language for Beluga and hence provides a suitable foundation for
implementing proofs about (linear) derivation trees as recursive functions. We
have also mechanized the key equational properties of context joins in Beluga.
This further increases our confidence in our development.

There is a number of research questions that naturally arise and we plan
to pursue in the future. First, we plan to extend Lincx with additional linear
connectives such as > and A&B. These additional connectives are for example
present in [9]. We omitted them here to concentrate on modelling context joins
and their equational theory, but we believe it is straightforward to add them.

Dealing with first-class contexts in the presence of additive operators is more
challenging, as they may break canonicity. We plan to follow the approach in CLF

24

[31] enclosing them into a monad to control their behaviour. Having also additive
operators would allow us to for example model the meta-theory of session type
systems [5] and reason about concurrent computation. Further we plan to add
first-class substitution variables [7] to Lincx. This woud allow us to abstractly
describe relations between context. This seems particularly important as we
allow richer schemas definitions that model structured sequences.

Last but not least, we would like to implement Lincx as a specification
language for Beluga to enable reasoning about linear specifications in practice.

References

1. Belanger, O.S., Monnier, S., Pientka, B.: Programming type-safe transformations
using higher-order abstract syntax. In: Gonthier, G., Norrish, M. (eds.) 3rd In-
ternational Conference on Certified Programs and Proofs (CPP’13). pp. 243–258.
Lecture Notes in Computer Science (LNCS 8307), Springer (2013)

2. Bengtson, J., Jensen, J.B., Birkedal, L.: Charge! - A framework for higher-order
separation logic in Coq. In: Beringer, L., Felty, A.P. (eds.) Third International
Conference on Interactive Theorem Proving (ITP’12). pp. 315–331. Lecture Notes
in Computer Science (LNCS 7406), Springer (2012)

3. Berdine, J., O’Hearn, P.W., Reddy, U.S., Thielecke, H.: Linear continuation-
passing. Higher-Order and Symbolic Computation 15(2-3), 181–208 (2002)

4. Bock, P.B., Schürmann, C.: A contextual logical framework. In: 20th Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reason-
ing (LPAR‘15). pp. 402–417. Lecture Notes in Computer Science (LNCS 9450),
Springer (2015)

5. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) 21th International Conference on Concurrency
Theory (CONCUR’10). pp. 222–236. Lecture Notes in Computer Science (LNCS
6269), Springer (2010)

6. Cave, A., Pientka, B.: Programming with binders and indexed data-types. In: 39th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’12). pp. 413–424. ACM (2012)

7. Cave, A., Pientka, B.: First-class substitutions in contextual type theory. In:
8th ACM SIGPLAN International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice (LFMTP’13). pp. 15–24. ACM (2013)

8. Cave, A., Pientka, B.: A case study on logical relations using contextual types. In:
Cervesato, I., K.Chaudhuri (eds.) 10th International Workshop on Logical Frame-
works and Meta-Languages: Theory and Practice (LFMTP’15). pp. 18–33. Elec-
tronic Proceedings in Theoretical Computer Science (EPTCS) (2015)

9. Cervesato, I., Pfenning, F.: A linear logical framework. In: Clarke, E. (ed.) 11th
Annual Symposium on Logic in Computer Science. pp. 264–275. IEEE Press, New
Brunswick, New Jersey (1996)

10. Cervesato, I., Pfenning, F.: A linear spine calculus. Journal of Logic and Compu-
tation 13(5), 639–688 (2003)

11. Danvy, O., Filinski, A.: Representing control: A study of the CPS transformation.
Mathematical Structures in Computer Science 2(4), 361–391 (1992)

12. Fluet, M., Morrisett, G., Ahmed, A.J.: Linear regions are all you need. In: Sestoft,
P. (ed.) 15th European Symposium on Programming (ESOP’06). pp. 7–21. Lecture
Notes in Computer Science (LNCS 3924), Springer (2006)

25

13. Gacek, A., Miller, D., Nadathur, G.: A two-level logic approach to reasoning about
computations. Journal of Automated Reasoning 49(2), 241–273 (2012)

14. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of
the ACM 40(1), 143–184 (January 1993)

15. Martens, C., Crary, K.: LF in LF: Mechanizing the metatheories of LF in Twelf. In:
7th International Workshop on Logical Frameworks and Meta-languages:Theory
and Practice (LFMTP’12). pp. 23–32. ACM (2012)

16. McCreight, A.: Practical tactics for separation logic. In: Berghofer, S., Nipkow, T.,
Urban, C., Wenzel, M. (eds.) 22nd International Conference on Theorem Proving
in Higher Order Logics (TPHOLs’09). pp. 343–358. Lecture Notes in Computer
Science (LNCS 5674), Springer (2009)

17. McCreight, A., Schürmann, C.: A meta-linear logical framework. In: 4th Interna-
tional Workshop on Logical Frameworks and Meta-Languages (LFM’04) (2004)

18. McDowell, R.: Reasoning in a Logic with Definitions and Induction. Ph.D. thesis,
University of Pennsylvania (1997)

19. McDowell, R.C., Miller, D.A.: Reasoning with higher-order abstract syntax in a
logical framework. ACM Transactions on Computational Logic 3(1), 80–136 (2002)

20. Nanevski, A., Pfenning, F., Pientka, B.: Contextual modal type theory. ACM
Transactions on Computational Logic 9(3), 1–49 (2008)

21. Pientka, B.: A type-theoretic foundation for programming with higher-order ab-
stract syntax and first-class substitutions. In: 35th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL’08). pp. 371–382. ACM
(2008)

22. Pientka, B., Abel, A.: Structural recursion over contextual objects. In: Altenkirch,
T. (ed.) 13th International Conference on Typed Lambda Calculi and Applications
(TLCA’15). pp. 273–287. Leibniz International Proceedings in Informatics (LIPIcs)
of Schloss Dagstuhl (2015)

23. Pientka, B., Cave, A.: Inductive Beluga:Programming Proofs (System Description).
In: Felty, A.P., Middeldorp, A. (eds.) 25th International Conference on Automated
Deduction (CADE-25). pp. 272–281. Lecture Notes in Computer Science (LNCS
9195), Springer (2015)

24. Pientka, B., Dunfield, J.: Beluga: a framework for programming and reasoning
with deductive systems (System Description). In: Giesl, J., Haehnle, R. (eds.) 5th
International Joint Conference on Automated Reasoning (IJCAR’10). pp. 15–21.
Lecture Notes in Artificial Intelligence (LNAI 6173), Springer (2010)

25. Reed, J.: A hybrid logical framework. Ph.D. thesis, Carnegie Mellon (2009)
26. Schack-Nielsen, A.: Implementing Substructural Logical Frameworks. Ph.D. thesis,

IT University of Copenhagen (2011)
27. Schack-Nielsen, A., Schürmann, C.: Pattern unification for the lambda calcu-

lus with linear and affine types. In: Crary, K., Miculan, M. (eds.) International
Workshop on Logical Frameworks and Meta-Languages: Theory and Practice
(LFMTP’10). Electronic Proceedings in Theoretical Computer Science (EPTCS),
vol. 34, pp. 101–116 (Jul 2010)

28. Schürmann, C.: Automating the Meta Theory of Deductive Systems. Ph.D. thesis,
Department of Computer Science, Carnegie Mellon University (2000), CMU-CS-
00-146

29. Thibodeau, D., Cave, A., Pientka, B.: Indexed codata. In: Garrigue, J., Keller,
G., Sumii, E. (eds.) 21st ACM SIGPLAN International Conference on Functional
Programming (ICFP’16). pp. 351–363. ACM (2016)

26

30. Walker, D., Watkins, K.: On regions and linear types. In: Pierce, B.C. (ed.) 6th
ACM SIGPLAN International Conference on Functional Programming (ICFP’01).
pp. 181–192. ACM (2001)

31. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical frame-
work I: Judgments and properties. Tech. Rep. CMU-CS-02-101, Department of
Computer Science, Carnegie Mellon University (2002)

27

