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Abstract. We present a general methodology for adding support for
higher-order abstract syntax definitions and first-class contexts to an
existing ML-like language. As a consequence, low-level infrastructure
that deals with representing variables and contexts can be factored out.
This avoids errors in manipulating low-level operations, eases the task of
prototyping program transformations and can have a major impact on
the effort and cost of implementing such systems.
We allow programmers to define syntax in a variant of the logical frame-
work LF and to write programs that analyze these syntax trees via pattern
matching as part of their favorite ML-like language. The syntax defini-
tions and patterns on syntax trees are then eliminated via a translation
using a deep embedding of LF that is defined in ML. We take advantage
of GADTs which are frequently supported in ML-like languages to ensure
our translation preserves types. The resulting programs can be type
checked reusing the ML type checker, and compiled reusing its first-order
pattern matching compilation. We have implemented this idea in a pro-
totype written for and in OCaml and demonstrated its effectiveness by
implementing a wide range of examples such as type checkers, evaluators,
and compilation phases such as CPS translation and closure conversion.

Keywords: Higher-Order Abstract Syntax, Programming with Binders,
Functional Programming, ML

1 Introduction

Writing programs that manipulate other programs is a common activity for a
computer scientist, either when implementing interpreters, writing compilers, or
analyzing phases for static analysis. This is so common that we have programming
languages that specialize in writing these kinds of programs. In particular, ML-like
languages are well-suited for this task thanks to recursive data types and pattern
matching. However, when we define syntax trees for realistic input languages,
there are more things on our wish list: we would like support for representing
and manipulating variables and tracking their scope; we want to compare terms
up-to α-equivalence (i.e. the renaming of bound variables); we would like to
avoid implementing capture avoiding substitutions, which is tedious and error-
prone. ML languages typically offer no high-level abstractions or support for
manipulating variables and the associated operations on abstract syntax trees.

Over the past decade, there have been several proposals to add support for
defining and manipulating syntax trees into existing programming environments.



For example: FreshML [22], the related system Romeo [23], and Cαml [20] use
Nominal Logic [18] as a basis and the Hobbits library for Haskell [25] uses
a name based formalism. In this paper, we show how to extend an existing
(functional) programming language to define abstract syntax trees with variable
binders based on higher-order abstract syntax (HOAS) (sometimes also called
λ-trees [11]). Specifically, we allow programmers to define object languages in the
simply-typed λ-calculus where programmers use the intentional function space
of the simply typed λ-calculus to define binders (as opposed to the extensional
function space of ML). Hence, HOAS representations inherit α-renaming from
the simply-typed λ-calculus and we can model object-level substitution for HOAS
trees using β-reduction in the underlying simply-typed λ-calculus. We further
allow programmers to express whether a given sub-tree in the HOAS tree is
closed by using the necessity modality of S4 [6]. This additional expressiveness is
convenient to describe that sub-trees in our abstract syntax tree are closed.

Our work follows the pioneering work of HOAS representations in the logical
framework LF [9]. On the one hand we restrict it to the simply-typed setting
to integrate it smoothly into existing simply-typed functional programming
languages such as OCaml, and on the other hand we extend its expressiveness
by allowing programmers to distinguish between closed and open parts of their
syntax trees. As we analyze HOAS trees, we go under binders and our sub-trees
may not remain closed. To model the scope of binders in sub-trees we pair a
HOAS tree together with its surrounding context of variables following ideas
from Beluga [15,12]. In addition, we allow programmers to pattern match on
such contextual objects, i.e. an HOAS tree together with its surrounding context.

Our contribution is two-fold: First, we present a general methodology for
adding support for HOAS tree definitions and first-class contexts to an existing
(simply-typed) programming language. In particular, programmers can define
simply-typed HOAS definitions in the syntactic framework (SF) based on modal
S4 following [12,6]. In addition, programmers can manipulate and pattern match
on well-scoped HOAS trees by embedding HOAS objects together with their
surrounding context into the programming language using contextual types [15].
The result is a programming language that can express computations over open
HOAS objects. We describe our technique abstractly and generically using a
language that we call Core-ML. In particular, we show how Core-ML with first-
class support for HOAS definitions and contexts can be translated in into a
language Core-MLgadt that supports Generalized Abstract Data Types (GADTs)
using a deep (first-order) embedding of SF and first-class contexts (see Fig. 1 for
an overview). We further show that our translation preserves types.

Second, we show how this methodology can be realized in OCaml by describing
our prototype Babybel1. In our implementation of Babybel we take advantage of
the sophisticated type system, in particular GADTs, that OCaml provides to
ensure our translation is type-preserving. By translating HOAS objects together
with their context to a first-order representation in OCaml with GADTs we
can also reuse OCaml’s first-order pattern matching compilation allowing for

1 available at www.github.com/fferreira/babybel/

www.github.com/fferreira/babybel/
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Fig. 1. Adding Contextual Types to ML

a straightforward compilation. Programmers can also exploit OCaml’s impure
features such as exceptions or references when implementing programs that
manipulate HOAS syntax trees. We have used Babybel to implement a type-
checker, an evaluator, closure conversion (shown in Section 2.3 together with a
variable counting example and a syntax desugaring examples), and a continuation
passing style translation. These examples demonstrate that our approach allows
programmers to write programs that operate over abstract syntax trees in a
manner that is safe and effective.

Finally, we would like to stress that our translation which eliminates the
language extensions and permits programmers to define, analyze and manipulate
HOAS trees is not specific to OCaml or even to simple types in our implementation.
The same approach could be implemented in Haskell, and with some care (to be
really useful it would need an equational theory for substitutions) this technique
can be extended to a dependently typed language.

2 Main Ideas

In this section, we show some examples that illustrate the use of Babybel, our
proof of concept implementation where we embed the syntactic framework SF
inside OCaml. To smoothly integrate SF into OCaml, Babybel defines a PPX
filter (a mechanism for small syntax extensions for OCaml). In particular, we
use attributes and quoted strings to implement our syntax extension.

2.1 Example: Removing Syntactic Sugar

In this example, we describe the compact and elegant implementation of a
compiler phase that de-sugars programs functional programs with let-expressions
by translating them into function applications. We first specify the syntax of
a simple functional language that we will transform. To do this we embed the
syntax specification using this tag:

[@@@signature {def| ... |def}]

Inside the @@@signature block we will embed our SF specifications.



Our source language is defined using the type tm. It consists of constants
(written as cst), pairs (written as pair), functions (built using lam), applications
(built using app), and let-expressions.

[@@@signature {def|
tm : type.
cst : tm.

pair : tm → tm → tm.

lam : (tm → tm) → tm.

fst : tm → tm.

snd : tm → tm.

letpair : tm → (tm → tm → tm) → tm.

letv : tm → (tm → tm) → tm.

app : tm → tm → tm.

|def}]

Our definition of the source language exploits HOAS using the function space
of our syntactic framework SF to represent binders in our object language. For
example, the constructor lam takes as an argument a term of type tm → tm.
Similarly, the definition of let-expressions models variable binding by falling
back to the function space of our meta-language, in our case the syntactic
framework SF. As a consequence, there is no constructor for variables in our
syntactic definition and moreover we can reuse the substitution operation from
the syntactic framework SF to model substitution in our object language. This
avoids building up our own infrastructure for variables bindings.

We now show how to simplify programs written in our source language by
replacing uses of letpair in terms with projections, and uses of letv by β reduc-
tion. Note how we use higher-order abstract syntax to represent let-expressions
and abstractions.

letv M (λx.N) ≡ N[M/x]

letpair M (λx.λy. N) ≡ N[(fst M )/x,(snd M)/y]

To implement this simplification phase we implement an OCaml program
rewrite: it analyzes the structure of our terms, calls itself on the sub-terms, and
eliminates the use of the let-expressions into simpler constructs. As we traverse
terms, our sub-terms may not remain closed. For simplicity, we use the same
language as source and target for our transformation. We therefore specify the
type of the function rewrite using contextual types pairing the type tm together
with a context γ in which the term is meaningful inside the tag [@type .... ].

rewrite[@type γ.[γ ` tm]→[γ ` tm]]

The type can be read: for all contexts γ, given a tm object in the context γ,
we return a tm object in the same context. In general, contextual types associate
a context and a type in the syntactic framework SF. For example if we want
to specify a term in the empty context we would write [ ` tm] or for a term
that depends on some context with at least one variable and potentially more we
would write [γ,x:tm ` tm].



We now implement the function rewrite by pattern matching on the structure
of a contextual term. In Babybel, contextual terms are written inside boxes
(L...M) and contextual patterns inside (L...Mp).

let rec rewrite[@type γ.[γ ` tm]→[γ ` tm]]

= function
| L cst Mp → LcstM
| L pair ’m ’n Mp → let mm, nn = rewrite m, rewrite n

in Lpair ’mm ’nnM
| L fst ’m Mp → let mm = rewrite m in Lfst ’mmM
| L snd ’m Mp → let mm = rewrite m in Lsnd ’mmM
| L app ’m ’n Mp → let mm,nn = rewrite m, rewrite n in

Lapp ’mm ’nnM
| L lam (λx. ’m) Mp → let mm = rewrite m in Llam (λx. ’mm)M
| L #x Mp → L#xM
| L letpair ’m (λf.λs. ’n) Mp → let mm = rewrite m in

rewrite L’n [snd ’mm;fst ’mm]M
| L letv ’m (λx. ’n) Mp → rewrite L’n[’m]M

Note that we are pattern matching on potentially open terms. Although we do
not write the context γ explicitly, in general patterns may mention their context
(i.e.: L_ ` cstMp2. As a guiding principle, we may omit writing contexts, if they
do not mention variables explicitly and are irrelevant at run-time. Inside patterns
or terms, we specify incomplete terms using quoted variables (e.g.: ’m). Quoted
variables are an ’unboxing’ of a computational expression inside the syntactic
framework SF. The quote signals that we are mentioning the computational
variable inside SF.

The interesting cases are the let-expressions. For them, we perform the rewriting
according to the two rules given earlier. The syntax of the substitutions puts in
square brackets the terms that will be substituted for the variables. We consider
contexts and substitutions ordered, this allows for efficient implementations and
more lightweight syntax (e.g.: substitutions omit the name of the variables because
contexts are ordered). Importantly, the substitution is an operation that is eagerly
applied during run-time and not part of the representation. Consequently, the
representation of the terms remains normal and substitutions cannot be written
in patterns. We come back to this design decision later.

To translate contextual SF objects and contexts, Babybel takes advantage
of OCaml’s advanced type system. In particular, we use Generalized Abstract
Data Types [4,26] to index types with the contexts in which they are valid. Type
indices, in particular contexts, are then erased at run-time.

2.2 Finding the Path to a Variable

In this example, we compute the path to a specific variable in an abstract syntax
tree describing a lambda-term. This will show how to specify particular context

2 The underscore means that there might be a context but we do not bind any variable
for it because contexts are not available at run-time.



shapes, how to pattern match on variables, how to manage our contexts, and
how the Babybel extensions interact seamlessly with OCaml’s impure features.
For this example, we concentrate on the fragment of terms that consists only of
abstractions and application which we repeat here.

[@@@signature {def|
tm : type.
app : tm → tm → tm.

lam : (tm → tm) → tm.

|def}]

To find the first occurrence of a particular variable in the HOAS tree, we
use backtracking that we implement using the user-defined OCaml exception
Not_found. To model the path to a particular variable occurrence in the HOAS
tree, we define an OCaml data type step that describes the individual steps we
take and finally model a path as a list of individual steps.

exception Not_found

type step

= Here (*the path ends here*)

| AppL (*take left on app*)

| AppR (*take right on app*)

| InLam (*go inside the body of the term*)

type path = step list

The main function path_aux takes as input a term that lives in a context
with at least one variable and returns a path to the occurrence of the top-most
variable or an empty list, if the variable is not used. Its type is:

[@type γ. [γ, x:tm ` tm] → path].

We again quantify over all contexts γ and require that the input term is meaningful
in a context with at least one variable. This specification simply excludes closed
terms since there would be no top-most variable. Note also how we mix in the
type annotation to this function both contextual types and OCaml data types.

let rec path_aux [@type γ.[γ, x:tm ` tm] → path]

= function
| L_, x ` xMp→ [Here]

| L_, x ` #yMp→ raise Not_found

| L_, x ` lam (λy. ’m)Mp→ InLam::(path_auxL_,x,y ` ’m[_;y;x]M)
| L_, x ` app ’m ’nMp→ try AppL::(path_aux m)

with _ → AppR::(path_aux n)

All patterns in this example make the context explicit, as we pattern match on
the context to identify whether the variable we encounter refers to the top-most
variable declaration in the context. The underscore simply indicates that there
might be more variables in the context. The first case, matches against the bound
variable x. The second case has a special pattern with the sharp symbol, the
pattern #y matches against any variable in the context _, x. Because of the first



pattern if it had been x it would have matched the first case. Therefore, it simply
raises the exception to backtrack to the last choice we had.

The case for lambda expressions is interesting because the recursive call happens
in an extended context. Furthermore, in order to keep the variable we are searching
for on top, we need to swap the two top-most variables. For that purpose, we
apply the [_ ; y; x] substitution. In this substitution the underscore stands
for the identity on the rest of the context, or more precisely, the appropriate shift
in our internal representation that relies on de Bruijn encoding. Once elaborated,
this substitution becomes [↑2 ; y; x] where the shift by two arises, because
we are swapping variables as opposed to instantiating them.

The final case is for applications. We first look on the left side and if that raises
an exception we catch it and search again on the right. We again use quoted
variables (e.g.: ’m) to bind and refer to ML variables in patterns and terms of the
syntactic framework and more generally be able to describe incomplete terms.

let get_path [@type γ.[γ, x:tm ` tm] → path]

= fun t → try path_aux t with _ → []

The get_path function has the same type as the path_aux function. It simply
handles the exception and returns an empty path in case that variable x is not
found in the term.

2.3 Closure Conversion

In the final example, we describe the implementation of a naive algorithm for
closure conversion for untyped λ-terms following [3]. We take advantage of the
syntactic framework SF to represent source terms (using the type family tm)
and closure-converted terms (using the type family ctm). In particular, we use
SF’s closed modality box to ensure that all functions in the target language are
closed. This is impossible when we simply use LF as the specification framework
for syntax as in [3]. We omit here the definition of lambda-terms, our source
language, that was given in the previous section and concentrate on the target
language ctm.

[@@@signature {def|
ctm: type. % closed term

btm: type. % binder term

sub: type. % environment

capp : ctm → ctm → ctm.

clam : {btm} → ctm.

clo : ctm → sub → ctm.

embed : ctm → btm.

bind : (ctm → btm) → btm.

empty : sub.

dot : sub → ctm → sub.

|def}]



Applications in the target language are defined using the constructor capp

and simply take two target terms to form an application. Functions (constructor
clam), however, take a btm object wrapped in {} braces. This means that the
object inside the braces is closed. The curly braces denote the internal closed
modality of the syntactic framework. As the original functions may depend on
variables in the environment, we need closures where we pair a function with
a substitution that points to the appropriate environment. We define our own
substitutions explicitly, because they are part of the target language and the
built-in substitution is an operation on terms that is eagerly computed away.
Inside the body of the function, we need to bind all the variables from the
environment that the body uses such that later we can instantiate them applying
the substitution. This is achieved by defining multiple bindings using constructors
bind and embed inside the term.

When writing a function that translates between representations, their open
terms depend on contexts that store assumptions of different representations and
it is often the case that one needs to relate these contexts. In our example here
we define a context relation that keeps the input and output contexts in sync
using a GADT data type rel in OCaml where we model contexts as types. The
relation statically checks correspondence between contexts, but it is also available
at run-time (i.e. after type-erasure).

type (_ , _) rel =

Empty : ([.], [.]) rel

| Both : ([γ], [δ]) rel → ([γ, x:tm], [δ, y:ctm]) rel

exception Error of string

let rec lookup [@type γ δ.[γ ` tm]→(γ, δ) rel→[δ ` ctm]] =

fun t → function
| Both r’ → begin match t with

| L _,x ` x Mp → L_,x ` xM
| L _,x ` ##v Mp → let v1 = lookup L#vM r’

in L_, x ` ’v1 [_]M
| _ → raise Error (‘‘Term that is not a variable’’)

| Empty → raise Error (‘‘Term is not a variable’’)

end

The function lookup searches for related variables in the context relation. If
we have a source context γ,x:tm and a target context δ,y:ctm, then we consider
two variable cases: In the first case, we use matching to check that we are indeed
looking for the top-most variable x and we simply return the corresponding target
variable. If we encounter a variable from the context, written as ##v, then we
recurse in the smaller context stripping off the variable declaration x. Note that
##v denotes a variable from the context _, that is not x, while #v describes a
variable from the context _, x, i.e. it could be also x. The recursive call returns
the corresponding variable v1 in the target context that does not include the
variable declaration x. We hence need to weaken v1 to ensure it is meaningful in



the original context. We therefore associate ’v1 with the identity substitution
for the appropriate context, namely: [_]. In this case, it will be elaborated into
a one variable shift in the internal de Bruijn representation that is used in our
implementation. The last case returns an exception whenever we are trying to
look up in the context something that is not a variable.

As we cannot express at the moment in the type annotation that the input
to the lookup function is indeed only a variable from the context γ and not an
arbitrary term, we added another fall-through case for when the context is empty.
In this case the input term cannot be a variable, as it would be out of scope.

Finally, we implement the function conv which takes an untyped source term in
a context γ and a relation of source and target variables, described by (γ, δ) rel

and returns the corresponding target term in the target context δ.

let rec close [@type γ δ. (γ, δ) rel→[δ ` btm]→[btm]]

= fun r m → match r with

| Empty → m

| Both r → close r Lbind (λx. ’m)M

let rec envr [@type γ δ. (γ, δ)rel→[δ ` sub]]

= fun r → match r with

| Empty → LemptyM
| Both r →

let s = envr r in L_, x ` dot (’s[_]) xM

let rec conv [@type γ δ.(γ, δ)rel→[γ ` tm]→[δ ` ctm]]
= fun r m → match m with

| L lam (λx. ’m) Mp →
let mc = conv (Both r) m in

let mb = close r Lbind(λx. embed ’mc)M
in let s = envr r in Lclo (clam {’mb}) ’sM

| L#xMp → lookup L#xM r

| Lapp ’m ’nMp → let mm, nn = conv r m, conv r n in

Lcapp ’mm ’nnM

The core of the translation is defined in functions conv, envr, and close. The
main function is conv. It is implemented by recursion on the source term. There
are three cases: i) source variables simply get translated by looking them up in the
context relation, ii) applications just get recursively translated each term in the
application, and iii) lambda expressions are translated recursively by converting
the body of the expression in the extended context (notice the recursive call with
Both r) and then turning the lambda expression into a closure.

In the first step we generate the closed body by the function close that adds
the multiple binders (constructors bind and embed) and generates the closed
term. Note that the return type [btm] of close guarantees that the final result
is indeed a closed term, because we omit the context. For clarity, we could have
written [ ` btm].



Finally, the function envr computes the substitution (represented by the type
sub) for the closure.

The implementation of closure conversion shows how to enforce closed terms
in the specification, and how to make contexts and their relationships explicit at
run-time using OCaml’s GADTs. We believe it also illustrates well how HOAS
trees can be smoothly manipulated and integrated into OCaml programs that
may use effects.

3 Core-ML: A Functional Language with Pattern
Matching and Data Types

We now introduce Core-ML, a functional language based on ML with pattern
matching and data types. In Section 5 we will extend this language to also
support contextual types and terms in our syntactic framework SF.

We keep the language design of Core-ML minimal in the interest of clarity.
However, our prototype implementation which we describe in Section 9 supports
interaction with all of OCaml’s features such as exceptions, references and
GADTs.

Types τ ::= D | τ1 → τ2

Expressions e ::= i | fun f(x) = e | letx = i in e | match i with
−→
b

Neutral Exp. i ::= i e | C −→e | x | e : τ

Patterns pat ::= C
−→
pat | x

Branches b ::= | pat 7→ e

Contexts Γ ::= · | Γ, x : τ
Signature Ξ ::= · | Ξ,D | Ξ,C : −→τ → D

In Core-ML, we declare data-types by adding type formers (D) and type
constructors (C) to the signature (Ξ). Constructors must be fully-applied. In
addition all functions are named and recursive. The language supports pattern
matching with nested patterns where patterns consist of just variables and fully
applied constructors. We assume that all patterns are linear (i.e. each variable
occurs at most once) and that they are covering.

The bi-directional typing rules for Core-ML have access to a signature Ξ and
are standard (see Fig. 2). For lack of space, we omit the operational semantics
which is standard. We also will not address the details of pattern matching
compilation but merely state that it is possible to implement it in an efficient
manner using decision trees [1].

4 A Syntactic Framework

In this section we describe the Syntactic Framework (SF) based on S4 [6]. Our
framework characterizes only normal forms. All computation is delegated to the
ML layer, that will perform pattern matching and substitutions on terms.



Γ ` e⇐ τ : Expression e checks against type τ in context Γ

Γ, f : τ → τ ′, x : τ ` e⇐ τ ′

Γ ` fun f(x) = e⇐ τ → τ ′
t-rec

Γ ` i⇒ τ ′ Γ, x : τ ′ ` e⇐ τ

Γ ` letx = i in e⇐ τ
t-let

Γ ` i⇒ τ ′ ∀bk ∈
−→
b . Γ ` bk ⇐ τ ′ → τ

Γ ` match i with
−→
b ⇐ τ

t-match Γ ` i⇒ τ ′ τ = τ ′

Γ ` i⇐ τ
t-emb

Γ ` i⇒ τ : Neutral expr. i synthesizes type τ in context Γ

Γ ` e⇐ τ
Γ ` e : τ ⇒ τ

t-ann
Ξ(C) = −→τ → D ∀τi ∈ −→τ . ∀ei ∈ −→e . Γ ` ei ⇐ τi

Γ ` C −→e ⇒ D
t-constr

Γ ` i⇒ τ ′ → τ Γ ` e⇐ τ ′

Γ ` i e⇒ τ
t-app

Γ (x) = τ

Γ ` x⇒ τ
t-var

Γ `| pat 7→ e⇐ τ1 → τ2 : Branch | pat 7→ e checks against types τ1 and τ2 in Γ

` pat : τ ′ ↓ Γ ′ Γ, Γ ′ ` e⇐ τ

Γ `| pat 7→ e⇐ τ ′ → τ
t-branch

` pat : τ ↓ Γ : Pattern pat is of type τ and binds variables in context Γ

` x : τ ↓ x : τ
t-pat-var

Ξ(C) = −→τ → D ∀τi ∈ −→τ . ∀pati ∈
−→
pat . ` pati : τi ↓ Γi

` C −→pat : D ↓ Γ1, ..., Γi

t-pat-con

Fig. 2. Core-ML Typing Rules

4.1 The definition of SF

The Syntactic Framework (SF) is a simply typed λ-calculus based on S4 where
the type system forces all variables to be of base type, and all constants declared
in a signature Σ to be fully applied. This simplifies substitution, as variables of
base type cannot be applied to other terms, and in consequence, there is no need
for hereditary substitution in the specification language. Finally, the syntactic
framework supports the box type to describe closed terms [13]. It can also be
viewed as a restricted version of the contextual modality in [12] which could be
an interesting extension to our work.

Having closed objects enforced at the specification level is not strictly necessary.
However, being able to state that some objects are closed in the specification
has two distinct advantages: first, the user can specify some objects as closed so
their contexts are always empty. This removes the need for some unnecessary
substitutions. Second, it allows us to encode more fine-grained invariants and is
hence an important specification tool (i.e. when implementing closure conversion



in Section 2.3).

Types A,B ::= a | A→ B | �A
Terms M,N ::= c

−→
M | λx.M | {M} | x

Contexts Ψ, Φ ::= · | Ψ, x : a
Signature Σ ::= · | Σ,a : K | Σ, c : A

Fig. 3 shows the typing rules for the syntactic framework. Note that constructors
always are fully applied (as per rule t-con), and that all variables are of base
type as enforced by rules t-var and t-lam.

Ψ `M : A : M has type A in context Ψ

Ψ, x : a `M : A

Ψ ` λx.M : a→ A
t-lam

· `M : A
Ψ ` {M} : �A

t-box
Ψ(x) = a

Ψ ` x : a
t-var

Σ(c) = A Ψ `
−→
M : A/a

Ψ ` c
−→
M : a

t-con

Ψ `
−→
M : A/a : spine

−→
M checks against type A and has target type a

Ψ ` · : a/a
t-sp-em

Ψ ` N : A Ψ `
−→
M : B/a

Ψ ` N,
−→
M : A→ B/a

t-sp

Fig. 3. Syntactic Framework Typing

4.2 Contextual Types

We use contextual types to embed possibly open SF objects in Core-ML and
ensure that they are well-scoped. Contextual types pair the type A of an SF
object together with its surrounding context Ψ in which it makes sense. This
follows the design of Beluga [15,3].

Contextual Types U ::= [Ψ ` A]

Type Erased Contexts Ψ̂ ::= · | Ψ̂ , x
Contextual Objects C ::= [Ψ̂ `M ]

Contextual objects, written as [Ψ̂ ` M ] pair the term M with the variable
name context Ψ̂ to allow for α-renaming of variables occurring in M . Note how
the Ψ̂ context just corresponds to the context with the typing assumptions erased.

When we embed contextual objects in a programming language we want to
refer to variables and expressions from the ambient language, in order to support
incomplete terms. Following [12,15], we extend our syntactic framework SF with



two ideas: first, we have incomplete terms with meta-variables to describe holes in
terms. As in Beluga, there are two different kinds: quoted variables ’u represent
a hole in the term that may be filled by an arbitrary term. In contrast, parameter
variables v represent a hole in a term that may be filled only with some bound
variable from the context. Concretely, a parameter variable may be #x and
describe any concrete variable from a context Ψ . We may also want to restrict
what bound variables a parameter variable describes. For example, if we have two
sharp signs (i.e. ##x) the top-most variable declaration is excluded. Intuitively,
the number of sharp signs, after the first, in front of x correspond to a weakening
(or in de Bruijn lingo the number of shifts). Second, substitution operations allow
us to move terms from one context to another.

We hence extend the syntactic framework SF with quoted variables, parameter
variables and closures, written as M [σ]ΦΨ . We annotate the substitution with its
domain and range to simplify the typing rule, however our prototype omits these
typing annotations and lets type inference infer them.

Parameter Variables v ::= #x | #v
Terms M ::= · · · | ’u | v |M [σ]ΦΨ
Substitutions σ ::= · | σ,M/x
Ambient Ctx. Γ ::= · · · | Γ, u : [Ψ ` a]

In addition, we extend the context Γ of the ambient language Core-ML to
keep track of assumptions that have a contextual type.

Finally, we extend the typing rules of the syntactic framework SF to include
quoted variables, parameter variables, closures, and substitutions. We keep all
the previous typing rules for SF from Section 4 where we thread through the
ambient Γ , but the rules remain unchanged otherwise.

Γ ;Ψ `v v : a : Parameter Variable v has type a in contexts Ψ and Γ

Γ (x) = [Ψ ` a]

Γ ;Ψ `v #x : a
t-pvar-v

Γ ;Ψ `v v : a

Γ ;Ψ, y : `v #v : a
t-pvar-#

Γ ;Ψ `M : A : Term M has type A in contexts Ψ and Γ

Γ (u) = [Ψ ` a]

Γ ;Ψ ` ’u : a
t-qvar

Γ ;Ψ `v v : a

Γ ;Ψ ` v : a
t-pvar

Γ ;Ψ ` σ : Φ Γ ;Φ `M : A

Γ ;Ψ `M [σ]ΦΨ : A
t-sub

Γ ;Ψ ` σ : Ψ ′ : Substitution σ has domain Ψ ′ and range Ψ in the amb. ctx. Γ

Γ ;Ψ ` · : ·
t-empty-sub

Γ ;Ψ ` σ : Ψ ′ Γ ;Ψ `M : a

Γ ;Ψ ` σ,M/x : (Ψ ′, x : a)
t-dot-sub

The rules for quoted variables (t-qvar) and parameter variables (t-pvar) might
seem very restrictive as we can only use a meta-variable of type Ψ ` a in the
same context Ψ . As a consequence meta-variables often occur as a closure paired



with a substitution (i.e.: ’u [σ]ΦΨ ). This leads to the following admissible rule:

Γ (u) = [Φ ` a] ∆;Ψ ` σ : Φ

Γ ;Ψ ` ’u [σ]ΦΨ : a
t-qvar-adm

The substitution operation is straightforward to define and we omit it here.
The next step is to define the embedding of this framework in a programming
language that will provide the computational power to analyze and manipulate
contextual objects.

5 Core-ML with Contextual Types

To embed contextual SF objects into Core-ML, we extend the syntax of Core-ML
as follows:

Types τ ::= · · · | [Ψ ` a]

Expressions e ::= · · · | [Ψ̂ `M ] | cmatch e with −→c
Patterns pat ::= · · · | [Ψ̂ ` R]
Contextual Branches c ::= · · · || [Ψ ` R] 7→ e

In particular, we allow programmers to directly pattern match on the syntactic
structures they define in SF using the case-expression cmatch e with −→c .

5.1 SF Objects as SF Patterns

The grammar of SF patterns follows the grammar of SF objects.

SF Parameter Pattern w ::= #p | #w
SF Patterns R ::= λx.R | {R} | x | c

−→
R | ’u | w

However, there is an important restriction: closures are not allowed in SF
patterns. Intuitively this means that all quoted variables are associated with the
identity substitution and hence depend on the entire context in which they occur.
Parameter variables may be associated with weakening substitutions. This allows
us to easily infer the type of quoted variables and parameter variables as we type
check a pattern. This is described by the judgment

Ψ ` R : A ↓ Γ : Pattern R has type A in Ψ and binds Γ

We omit these rules as they follow closely the typing rules for SF terms that
are given in the previous section. We only show here the interesting rules for
parameter patterns. They illustrate the built-in weakening.

Ψ `v w : a ↓ Γ : Parameter Pattern w has type a in Ψ and binds Γ

Ψ `v #p : a ↓ p : [Ψ ` a]
tp-pvar

Ψ `v w : a ↓ Γ
Ψ, y : `v #w : a ↓ Γ

tp-pvar-#



Further, the matching algorithm for SF patterns degenerates to simple first-
order matching [17] and can be defined straightforwardly. Because of space
constraints, we only describe the successful matching operation. However, it is
worth considering the matching rules for parameter patterns. As matching will
only consider well-typed terms, we know that in the rules m-pv and m-pv-# the
variable x is well-typed in the context Ψ̂ .

Γ ; Ψ̂ `v w
.
= x/ρ : Param. Pattern w matches var. x from Ψ̂ producing ρ.

p : [Ψ ` A]; Ψ̂ `v #p
.
= x/·, [Ψ̂ ` x]/p

m-pv
x 6= y Γ ; Ψ̂ `v w

.
= x/ρ

Γ ; Ψ̂, y `v #w
.
= x/ρ

m-pv-#

Γ ; Ψ̂ ` R .
= M/ρ : M matches pattern R with bound vars. in Ψ̂ producing ρ.

Γ ; Ψ̂ , x ` R .
= M/ρ

Γ ; Ψ̂ ` λx.R .
= λx.M/ρ

m-λ
·; Ψ̂ ` x .

= x/·
m-bv

Γ ; · ` R .
= M/ρ

Γ ; Ψ̂ ` {R} .= {M}/ρ
m-box

for all Ri ∈
−→
R such as Γ ; Ψ̂ ` Ri

.
= Mi/ρi

Γ ; Ψ̂ ` c
−→
R

.
= c
−→
M/ρ0, . . . , ρn

m-cc

u : [Ψ ` A]; Ψ̂ ` ’u .
= M/·, [Ψ̂ `M ]/u

m-cv
Γ ; Ψ̂ `v w

.
= x/ρ

Γ ; Ψ̂ ` w .
= x/ρ

m-pv

Finally, it has another important consequence: closures only appear in the
branches of case-expressions. As Core-ML has a call-by-value semantics, we know
the instantiations of quoted variables and parameter variables when they appear
in the body of a case-expression and all closures can be eliminated by applying
the substitution eagerly.

5.2 Typing Rules for Core-ML with Contextual Types

We now add the following typing rules for contextual objects and pattern matching
to the typing rules of Core-ML:

Γ ;Ψ `M : a

Γ ` [Ψ̂ `M ]⇐ [Ψ ` a]
t-ctx-obj

Γ ` i⇒ [Ψ ` a] ∀b ∈
−→
b . Γ ` b⇐ [Ψ ` a]→ τ

Γ ` cmatch i with
−→
b ⇐ τ

t-cm

Ψ ` R : a ↓ Γ ′ Γ, Γ ′ ` e⇐ τ

Γ ` [Ψ ` R] 7→ e⇐ [Ψ ` a]→ τ
t-cbranch

The typing rule for contextual objects (rule t-ctx-obj) simply invokes the
typing judgment for contextual objects. Notice, that we need the context Γ when
checking contextual objects, as they may contain quoted variables from Γ .

Extending the operational semantics to handle contextual SF objects is also
straightforward.



6 Core-ML with GADTs

So far we reviewed how to support contextual types and contextual objects in a
standard functional programming language. This allows us to define syntactic
structures with binders and manipulate them with the guarantee that variables
will not escape their scopes. This brings some of the benefits of the Beluga system
to mainstream languages focusing on writing programs instead of proofs. A naive
implementation of this language extension requires augmenting the type checker
and operational semantics of the host language. This is a rather significant task –
especially if it includes implementing a compiler for the extended language. In this
section, we describe how to embed Core-ML with contextual types in a functional
language with GADTs, called Core-MLgadt, based on λ2,Gµ by Xi et al. [26]. The
choice of this target language is motivated by the fact that it is close to what
realistic typed languages already offer (e.g.: OCaml and Haskell) and it directly
lends itself to an implementation.

Signatures Σ ::= · | Σ,D : (∗, . . . , ∗)→ ∗ | C : ∀−→α . τ → D[−→τ ]
Types τ ::= D[−→τ ] | ∀α . τ | τ1 → τ2 | α | τ1 × τ2
Expressions e ::= x | C[−→τ ] e | fix f : τ = e | e1 e2 | (e1, e2) | λx . e

| letx = e1 in e2 | match e with
−→
b | Λα . e | e[τ ] | (e1, e2)

Branch b ::= pat 7→ e
Pattern pat ::= x | C[−→α ] pat | (pat1, pat2)
Exp. Ctx. Γ ::= · | Γ, x : τ
Type Ctx. ∆ ::= · | ∆,α | ∆, τ1 ≡ τ2

Core-MLgadt contains polymorphism and GADTs, which makes it a good ersatz
OCaml that is still small and easy to reason about. GADTs are particularly
convenient, since they allow us to track invariants about our objects in a similar
fashion to dependent types. Compared to Core-ML, Core-MLgadt’s signatures
now store type constants and constructors that are parametrized by other types.
We show the typing judgments for the language in Fig. 4.

The operational semantics is fundamentally the same as the semantics for
Core-ML, after all, type information is irrelevant at run-time (i.e. Core-MLgadt

has strong type separation). The interested reader can find the operational
semantics in [26].

7 Deep Embedding of SF into Core-MLgadt

We now show how to translate objects and types defined in the syntactic frame-
work SF into Core-MLgadt using a deep embedding. We take advantage of the
advanced features of Core-MLgadt’s type system to fully type-check the result.
Our representation of SF objects and types is inspired by [2] but uses GADTs
instead of full dependent types. We add the idea of typed context shifts, that
represent weakening, to be able to completely erase types at run-time.



∆;Γ ` e : τ : e is of type τ in contexts ∆ and Γ .

Σ(C) = ∀−→α . τ1 → D[−→τ ] ∆;Γ ` e : τ1[−→τ ] ∆ ` −→τ wf

∆;Γ ` C−→τ e : D[−→τ ]
g-con

∆;Γ ` e1 : τ1 → τ2 ∆;Γ ` e2 : τ1

∆;Γ ` e1 e2 : τ2
g-app

∆;Γ ` e1 : τ1 ∆;Γ ` e1 : τ2

∆;Γ ` (e1, e2) : τ1 × τ2
g-pair

Γ (x) = τ

∆;Γ ` x : τ
g-var

∆;Γ, f : τ ` e : τ

∆;Γ ` fix f : τ = e : τ
g-fix

∆;Γ, x : τ1 ` e : τ2

∆;Γ ` λx . e : τ1 → τ2
g-lam

∆;Γ ` e : ∀α . τ ∆;Γ ` τ wf
∆;Γ ` e[τ ] : τ1

g-tapp
∆;Γ ` e1 : τ1 ∆;Γ, x : τ1 ` e2 : τ

∆;Γ ` letx = e1 in e2 : τ
g-let

∆,α;Γ ` e : τ

∆;Γ ` Λα . e : τ
g-Lam

∆;Γ ` e : τ1 for all i.∆;Γ ` bi : τ1 → τ

∆;Γ ` match e with
−→
b : τ

g-match

∆;Γ ` pat : τ ↓ ∆′;Γ ′ ∆,∆′;Γ, Γ ′ ` e : τ2

∆;Γ ` pat 7→ e : τ1 → τ2
g-branch

∆o ` pat : τ ↓ ∆;Γ : pat is of type τ and binds variables in ∆ and Γ

∆0 ` τ wf
∆0 ` x : τ ↓ ·;x : τ

gp-var

∆0 ` pat1 : τ1 ↓ ∆1;Γ1 ∆0 ` pat2 : τ2 ↓ ∆2;Γ2

∆0 ` (pat1, pat2) : τ1 × τ2 ↓ ∆1,∆2;Γ1, Γ2

gp-pair

Σ(C) = ∀−→α . τ → D[−→τ1 ] ∆0,
−→α ,−→τ1 ≡ −→τ2 ` pat : τ ↓ ∆;Γ

∆o ` C[−→α ] pat : D[−→τ2 ] ↓ −→α ,−→τ1 ≡ −→τ2 ,∆;Γ
gp-con

Fig. 4. The typing of Core-MLgadt

To ensure SF terms are well-scoped and well-typed, we define SF types in
Core-MLgadt and index their representations by their type and context. The
following types are only used as indices for GADTs. Because of that, they do not
have any term constructors.

Σ = base : ∗ → ∗, arr : (∗, ∗)→ ∗, boxed : ∗ → ∗, prod : (∗, ∗)→ ∗, unit : ∗

We define three type families, one for each of SF’s type constructors. It is
important to note the number of type parameters they require. Base types take
one parameter: a type from the signature. Function types simply have a source
and target type. Finally, boxes contain just one type.

Terms are also indexed by the contexts in which they are valid. To this
effect, we define two types to statically represent contexts. Analogously to the
representation of types, these two types are only used statically and there will be
no instances at run-time. The type nil represents an empty context and thus
has no parameters. The constructor cons has two parameters, the first one is



the rest of the context and the second one is the type of the top-most variable.

Σ = . . . , nil : ∗, cons : (∗, ∗)→ ∗

We show the encoding of well-typed SF objects and types in Fig. 5. Every
declaration is parametrized with the type of constructors that the user defined
inside of the @@@signature blocks.

Σ = . . . , var : (∗, ∗)→ ∗,
Top : ∀γ, α . var[cons[γ, α], α],

Pop : ∀γ, α, β . var[γ, α]→ var[cons[γ, β], α],

tm : (∗, ∗)→ ∗, sp : (∗, ∗, ∗)→ ∗
Lam : ∀γ, α, τ . tm[cons[γ, base[α]], τ ]→ tm[γ, arr[base[α], τ ]],

Var : ∀γ, α . var[γ, α]→ tm[γ, base[α]],

Box : ∀γ, τ . tm[·, τ ]→ tm[γ, τ ],

C : ∀γ, τ, α . con[τ, α]× tm[γ, τ ]→ tm[γ, base[α]],

Empty : ∀γ, τ . sp[γ, τ, τ ],

Cons : ∀γ, τ1, τ2, τ3 . tm[γ, τ1]× sp[γ, τ2, τ3]→ sp[γ, arr[τ1, τ2], τ3],

shift : (∗, ∗)→ ∗,
Id : ∀γ . shift[γ, γ],

Suc : ∀γ, δ, α . shift[γ, δ]→ shift[cons[γ, base[α]], δ],

sub : (∗, ∗)→ ∗,
Shift : ∀γ, δ . shift[γ, δ]→ sub[γ, δ],

Dot : ∀γ, δ, τ . sub[γ, δ]× tm[γ, τ ]→ sub[γ, cons[δ, τ ]]

Fig. 5. Syntactic Framework Definition

The specification takes the form of the type con : (∗, ∗)→ ∗, where con is the
name of a constructor indexed by the type of its parameters and the base type
they produce.

Variables and terms are indexed by two types, the first parameter is always
their context and the second is their type. The type var represents variables
with two constructors: Top represents the variable that was introduced last in the
context and if Top corresponds to the de Bruijn index 0 then the constructor Pop
represents the successor of the variable that it takes as parameter. It is interesting
to consider the parameters of these constructors. Top is simply indexed by its
context and type (variables γ and α respectively). On the other hand, Pop requires
three type parameter: the first γ represents a context, α the resulting type of the
variable, and β the type of the extension of the context. These parameter make
it so that if we apply the constructor Pop to a variable of type α in context γ,
we obtain a variable of type α in the context γ extended with type β.

As mentioned, terms described by the type family tm are indexed by their
context and their type. It is interesting to check in some detail how the indices



of the term constructors follow the typing rules from Fig. 3. The constructor
for lambda terms (Lam), extends the context γ with base type α and then it
produces a term in γ of function type from the base type α to the type of the
body τ . The constructor for boxes simply forces its body to be closed by using
the context type nil. The constructor Var simply embeds variables as terms.
Finally the C constructor has two parameters, one is the name of the constructor
from the user’s definitions that constrains the type of the second parameter, the
other is the term of the appropriated type.

The definition of substitution is a modified presentation of the substitution
for well-scoped de Bruijn indices, as for example presented in [2]. We define
two types, sub and shift indexed by two contexts, the domain and the range
of the substitutions. Substitutions are either a shift (constructor Shift) or the
combination of a term for the top-most variable and the rest of the substitution
(constructor Dot).

Our implementation differs from Benton et al.[2] in the representation of
renamings. Benton et.al define substitutions and renamings, the latter as a way of
representing shifts. However to compute a shift, they need the context that they
use to index the data-types. Hence, contexts are not erasable during run-time.
As we do want contexts to be erasable at run-time, we cannot use renamings.
Instead, we replace renamings with typed shifts (defined in type shift), that
encode how many variables we are shifting over. This is encoded in the indices of
shifts.

Finally, we omit the function implementing the substitution as it is standard
We will simply mention that we implement a function apply sub of type:
∀γ, δ, τ . tm[γ, τ ]→ sub[γ, δ]→ tm[δ, τ ] that applies a substitution moving a term
from context γ to context δ.

8 From Core-ML with Contextual Types to Core-MLgadt

In this section, we translate Core-ML with contextual types into Core-MLgadt.
Because our embedding of the syntactic framework SF in Core-MLgadt is in-
trinsically typed, there is no need to extend the type-checker to accommodate
contextual objects. Further, recall that we restricted quoted variables and param-
eter variables such that the matching operation remains first order. In addition,
as our deep embedding uses a representation with canonical names (namely
de Bruijn indices), we are able to translate pattern matching into Core-MLgadt’s
pattern matching; thus there is no need to extend the operational semantics of
the language.

The translation we describe in this section provides the footprint of an im-
plementation to directly generate OCaml code, as Core-MLgadt is essentially a
subset of OCaml. It therefore shows how to extend a functional programming
language such as OCaml with the syntactic framework with minimal impact on
OCaml’s compiler.



We begin by translating SF types and contexts into Core-MLgadt types. These
types are used to index terms in the implementation of SF:

SF Types: pa→ Aq = arr[a, pAq]

p�Aq = boxed[pAq]

paq = a

SF Contexts: p·q = nil[]

pΨ, x : aq = cons[pΨq,a]

The translation of SF terms is directed by their contextual type Ψ ` A, because
it needs the context to perform the translation of names to de Bruijn indices and
the types to appropriately index the terms.

SF Terms: pλx.MqΨ`a→A = Lam[cons[pΨq,a], pAq]pMqΨ,a`A
p{M}qΨ`�A = Box[pΨq, pAq]pMq·`A

pxqΨ`a = Var[pΨq,a]pxqvΨ
pc
−→
MqΨ`a = C[pΨq, pAq,a](c, p

−→
MqΨ`A↓a)

with Σ(c) = A

pM [σ]ΦΨqΨ`A = apply subpMqΦ`ApσqΨ`Φ
p’uqΨ`A = u

p#vqΨ`a = Var[pΨq,a]pvqΨ`a

pN,
−→
MqΨ`A→B↓a = Cons[pΨq, arr[pAq, pBq],a]

(pNqΨ`A, p
−→
MqΨ`B↓a)

p·qΨ`a↓a = Empty[pψq,a,a]

Param. Vars: pxqΨ`a = x

p#vqΨ,y:a′`a = Pop[pΨq,a,a′]pvqΨ`a

There are are three kinds of variables in the syntactic framework SF: bound
variables, quoted variables and parameter variables. Each kind requires a different
translation strategy. Bound variables are translated into de Bruijn indices where
the numbers are encoded using the constructors Top and Pop. Quoted variables
are simply translated into the Core-MLgadt variables they quote. And finally the
parameter variables are translated into a Var constructor to indicate that the
resulting expression is an SF variable, and the shifts (indicated by extra ’#’) are
translated to applications of the constructor Pop.

Notice how substitutions are not part of the representation. They are translated
to the eager application of apply sub, an OCaml function that performs the
substitution. Before we call appy sub we translate the substitution. This amounts
to generating the right shift for empty substitutions and otherwise recursively
translating the terms and the substitution.

Translating variables requires computing the de Bruijn index with the appro-
priate type annotations.

We also need to translate SF patterns into Core-MLgadt expressions with the
right structure. The special cases are:



– Variables are translated to de Bruijn indexes.

– Quoted variables simply translate to Core-MLgadt variables.

– Parameter variables translate to a pattern that matches only variables by
specifying the Var constructor.

The translation of patterns follows the same line as the translation of terms,
however, we do not use the indices of type variables in Core-MLgadt patterns.
This is indicated by writing an underscore.

SF Patterns: pλx.RqΓΨ`a→A = Lam[ , , ]pRqΓΨ,a`A
p{R}qΓΨ`�A = Box[ , ]pRqΓ·`A

pxq·Ψ`a = Var[ , ]pxqpΨ
pc
−→
RqΓΨ`a = C[ , , ]p

−→
RqΓΨ`A↓a with Σ(c) = A

p’uqu:pΨ`AqΨ`A = u

p#xqx:pΨ`AqΨ`a = Var[ , ]x

p##xqx:pΨ,y: `AqΨ,y: `a = Var[ , ](Pop[ , , ]x)

pR,
−→
R′qΓ,Γ

′

Ψ`A→B↓a = Cons[ , , , ](pRqΓΨ`A, p
−→
R′qΓ

′

Ψ`B↓a)

p·q·Ψ`a↓a = Empty[ , ]

SF Variables: pxqpΨ,x:a = Top[ , ]

pyqpΨ,x:b = Pop[ , , ]pyqpΨ

Our main translation of Core-ML to Core-MLgadt uses the following main
operations:

pτq, pΞq, pΓq : Translate types, signatures and contexts.
peqΓ`τ : Type directed translation of expressions.

ppatqΓ
′

Γ`τ : Translates patterns and outputs Γ ′ the
context of the bound variables.

The translation of Core-ML expressions into Core-MLgadt directly follows the
structure of programs in Core-ML and is type directed to fill in the required



types for the Core-MLgadt representation. The translation is as follows:

pxqΓ`τ = x

pC −→e qΓ`D = C[ ] p−→e qΓ`−→τ with Ξ(C) = −→τ → D

pfun f(x) = eqΓ`τ1→τ2 = fix f : pτ1 → τ2q = λx . peqΓ,x:τ1`τ2
pi eqΓ`τ = piqΓ`τ1→τ peqΓ`τ1

with Γ ` i⇒ τ1 → τ

pletx = i in eqΓ`τ = letx = piqΓ`τ1 in peqΓ,x:τ1`τ
with Γ ` i⇒ τ1

pmatch i with
−→
b qΓ`τ = match piqΓ`τ1 with p

−→
b qΓ`τ1→τ

with Γ ` i⇒ τ1

pe1, . . . , enqΓ`−→τ = pe1qΓ`τ1 , . . . , penqΓ`τn
p[Ψ̂ `M ]qΓ`[Ψ`A] = pMqΨ`A

pcmatch i with −→c qΓ`τ = match piqΓ`[Ψ`A] with p
−→c qΓ`[Ψ`A]→τ

with Γ ` i⇒ [Ψ ` A]

Translating branches and patterns:

Branch: ppat 7→ eqΓ`τ1→τ2 = ppatqΓ
′

Γ`τ1 7→ peqΓ,Γ ′`τ2

Patterns: pxqx:τΓ`τ = x

pC
−→
patqΓ

′

Γ`D = C[] p
−→
patqΓ

′

Γ`−→τ with Ξ(C) = −→τ → D

Finally, we define the translation of branches for cmatch i with −→c . Note how
we use the context generated from the pattern to translate the body of the
branch.

p[Ψ ` R] 7→ eqΓ`[Ψ`A]→τ = pRqΓ
′

Ψ`A 7→ peqΓ,Γ ′`τ

Finally we show that the translation from Core-ML with contextual types into
Core-MLgadt preserves types.

Thm. 1 (Main)

1. If Γ ` e⇐ τ then ·; pΓq ` peqΓ`τ : pτq.
2. If Γ ` i⇒ τ then ·; pΓq ` piqΓ`τ : pτq.

Our result relies on several lemmas that deal with the other judgments and
context lookups:

Lemma 1 (Ambient Context) If Γ (u) = [Ψ ` a] then pΓq(u) = tm[pΨq,a].

Lemma 2 (Terms)

1. If Γ ;Ψ `M : A then ·; pΓq ` pMqΨ`A : pΨ ` Aq.
2. If Γ ;Ψ ` σ : Φ then ·; pΓq ` pσqΨ`Φ : pΨ ` Φq

Lemma 3 (Pat.) If ` pat : τ ↓ Γ then · ` ppatqΓΨ`A : pτq ↓ Γ .

Lemma 4 (Ctx. Pat.) If Ψ ` R : A ↓ Γ then · ` pRqΓΨ`A : pΨ ` Aq ↓ Γ .

Given our set-up, the proofs are straightforward by induction on the typing
derivation.



9 A Proof of Concept Implementation

In this section, we describe the implementation3 of Babybel which uses the
ideas from previous sections. One major difference is that Babybel translates
OCaml programs that use syntax extensions for contextual SF types and terms
and translates them into pure OCaml with GADTs. In fact, even our input
OCaml programs may use GADTs to for example describe context relations on
SF contexts (see also our examples from Sec.2).

The presence of GADTs in our source language also means that we can specify
precise types for functions where we can quantify over contexts. Let’s revisit
some of the types of the programs that we wrote earlier in Sec.2:

– rewrite: γ. [γ ` tm]→[γ ` tm]: In this type we implicitly quantify
over all contexts g and then we take a potentially open term and return
another term in the same context. These constraints imposed in the types
are due to being able to index types with types thanks to GADTs.

– get_path: γ. [γ,x:tm ` tm]→path: In this case we quantify over all
contexts, but the input of the function is some term in a non-empty context.

– conv: γ δ.(γ, δ) rel→[γ ` tm]→[δ ` ctm]:
This final example shows that we can also use the contexts to index regular
OCaml GADTs. In this function we are translating between terms in differ-
ent representations.To be able to translate between these different context
representations, it is necessary to establish a relation between these contexts.
So we need to define a special OCaml type (i.e.:rel) that relates variable to
variable in each contexts.

By embedding the SF in OCaml using contextual types, we can combine and
use the impure features of OCaml. Our example, in Section 2.2 takes advantage
of them in our implementation of backtracking with exceptions. Additionally,
performing I/O or using references works seamlessly in the prototype.

The presence of GADTs in our target language also makes the actual im-
plementation of Babybel simpler than the theoretical description, as we take
advantage of OCaml’s built-in type reconstruction. In addition to GADTs, our
implementation depends on several OCaml extensions. We use Attributes from
Section 7.18 of the reference manual [10] and strings to embed the specification
of our signature. We use quoted strings from Section 7.20 to implement the
boxes for terms (L...M) and patterns (L...Mp). All these appear as annotations
in the internal Abstract Syntax Tree in the compiler implementation. To perform
the translation (based on Section 8) we define a PPX rewriter as discussed in
Section 23.1 of the OCaml manual. In our rewriter, we implement a parser for
the framework SF and translate all the annotations using our embedding.

10 Related Work

Babybel and the syntactic framework SF are derived from ideas that originated in
proof checkers based on the logical framework LF such as the Twelf system [14].

3 Available at www.github.com/fferreira/babybel/

www.github.com/fferreira/babybel/


In the same category are the proof and programming languages Delphin [19] and
Beluga [16] that offer a computational language on top of the LF. In many ways,
the work that we present in this paper and forms the foundation of Babybel are
a distillation of Beluga’s ideas applied to a mainstream programming language.
As a consequence, we have shown that we can get some of the benefits from
Beluga at a much lower cost, since we do not have to build a stand-alone system
or extend the compiler of an existing language to support contexts, contextual
types and objects.

Our approach of embedding an LF specification language into a host language
is in spirit related to the systems Abella [8] and Hybrid [7] that use a two-
level approach. In these systems we embed the specification language (typically
hereditary harrop formulas) in first-order logic (or a variant of it). While our
approach is similar in spirit, we focus on embedding SF specifications into a
programming language instead of embedding it into a proof theory. Moreover,
our embedding is type preserving by construction.

There are also many approaches and tools that specifically add support for
writing programs that manipulate syntax with binders – even if they do not
necessarily use HOAS. FreshML [22] and Cαml [20] extend OCaml’s data types
with the ideas of names and binders from nominal logic [18]. In these system,
name generation is an effect, and if the user is not careful variables may extrude
their scopes. Purity can be enforced by adding a proof system with a decision
procedure that statically guarantees that no variable escapes its scope [21]. This
adds some complexity to the system. We feel that Babybel’s contextual types offer
a simpler formalism to deal with bound variables. On the other hand, Babybel’s
approach does not try to model variables that do not have lexical scope, like
top-level definitions. Another related language is Romeo [23] that uses ideas from
Pure FreshML to represent binders. Where our system statically catches variables
escaping their scope, the Romeo system either throws a run time exception or
uses an SMT solver to prove the absence of scoping issues. The Hobbits system
for Haskell [25] is implemented in a similar way to ours, using quasi-quoting but
they use a different formalism based on the concepts of names and freshness.
Last but not least, approaches based on parametric HOAS (PHOAS) [5] also
model binding in the object language by re-using the function space of the
meta-language. In particular, Washburn and Weirich [24] propose a library that
uses catamorphisms to compute over a parametric HOAS representation. This
is a powerful approach but requires a different way of implementing recursive
functions. A fundamental difference between this line of work and ours, is that
in PHOAS functions are extensional, i.e. they are black box functions, while our
approach introduces a distinction between an intensional and extensional function
space. The intensional function space from SF allows us to model binding and
supports pattern matching. The extentional function space allows us to write
recursive functions.



11 Conclusion and Future Work

In this work, we describe the syntactic framework SF (a simply typed variant of
the logical framework LF with the necessity modality from S4) and explain the
embedding of SF into a functional programming language using contextual types.
This gives programmers the ability to write programs that manipulate abstract
syntax trees with binders while knowing at type checking time that no variables
extrude their scope. We also show how to translate the extended language back
into a first order representation. For this, we use de Bruijn indices and GADTs to
implement the SF in Core-MLgadt. Important characteristics of the embedding
are that it preserves the phase separation, making types (and thus contexts)
erasable at run-time. This allows pattern matching to remain first-order and thus
it is possible to compile with the traditional algorithms.

Finally, we describe Babybel an implementation of these ideas that embeds
SF in OCaml using Contextual Types. The embedding is flexible enough that
we can take advantage of the more powerful type system in OCaml to make
the extension more powerful. We use GADTs in our examples to express more
powerful invariants (e.g. that the translation preserves the context).

In the future, we plan to implement our approach also in other languages. In
particular, it would be natural to implement our approach in Haskell. We do not
expect that the the type system extensions to GHC pose any challenging issues.
Finally, it would be interesting to extend our approach to type systems with
dependent types (e.g. Coq or Agda) where we can reason about the programs we
write. This extension would require extending SF with theorems about substi-
tutions (e.g. proving that applying an identity substitution does not change a
term).
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