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1 INTRODUCTION

A fundamental question when defining, implementing, and working with languages and logics is:
How do we represent and analyse syntactic structures? Higher-order abstract syntax [Pfenning
and Elliott 1988] (or lambda-tree syntax [Miller and Palamidessi 1999]) provides a deceptively
simple answer to this question. The basic idea to represent syntactic structures is to map uniformly
binding structures in our object language (OL) to the function space in a meta-language thereby
inheriting α-renaming and capture-avoiding substitution. In the logical framework LF [Harper
et al. 1993], for example, we can define a small functional programming language consisting of
functions, function application, and let-expressions using a type tm as follows:

lam : (tm → tm) → tm. letv: tm → (tm → tm) → tm. app : tm → tm → tm.
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The object-language term (lam x . lam y. let w = x y in w y) is then encoded as lam λx.lam λy.
letv (app x y) λw.app w y using the LF abstractions to model binding. Object-level substitution is
modelled through LF application; for instance, the fact that ((lam x .M ) N ) reduces to [N /x]M in
our object language is expressed as (app (lam M) N) reducing to (M N).
This approach is elegant and can offer substantial benefits: we can treat objects equivalent

modulo renaming and do not need to define object-level substitution.
However, we not only want to just construct HOAS trees, but also to analyse them and to select

sub-trees. This is challenging, as sub-trees are context sensitive. For example, the term letv (app

x y) λw.app w y only makes sense in a context x:tm,y:tm. Moreover, one cannot simply extend LF
to allow syntax analysis. If one simply added a recursion combinator to LF, then it could be used
to define many functions M: tm → tm for which lam M would not represent an object-level syntax
term [Hofmann 1999].
Contextual types [Gabbay and Nanevski 2013; Nanevski et al. 2008; Pientka 2008] offer a type-

theoretic solution to these problems by reifying the typing judgement, i.e. that letv (app x y) λw.
app w y has type tm in the context x:tm,y:tm, as a contextual type ⌈x :tm,y:tm ⊢ tm⌉. The contextual
type ⌈x :tm,y:tm ⊢ tm⌉ describes a set of terms of type tm that may contain variables x and y. In
particular, the contextual object ⌈x ,y ⊢ letv (app x y) λw .appw y⌉ has the given contextual type.
By abstracting over contexts and treating contexts as first-class, we can now recursively analyse
HOAS trees [Pientka 2008; Pientka and Abel 2015; Pientka and Dunfield 2008]. Recently, Pientka
et al. [2019] further generalised these ideas and presented a contextual modal type theory, Cocon,
where we can mix HOAS trees and computations, i.e. we can use (recursive) computations to analyse
and traverse (contextual) HOAS trees and we can embed computations within HOAS trees. This line
of work provides a syntactic perspective to the question of how to represent and analyse syntactic
structures with binders, as it focuses on decidability of type checking and normalisation. However,
its semantics remains not well-understood. What is the semantic meaning of a contextual type?
Can we semantically justify the given induction principles? What is the semantics of a first-class
context?
While a number of closely related categorical models of abstract syntax with bindings [Fiore

et al. 1999; Gabbay and Pitts 1999; Hofmann 1999] were proposed around 2000, the relationship
of these models to concrete type-theoretic languages for computing with HOAS structures was
tenuous. In this paper, we give a category-theoretic semantics for Cocon. This provides semantic
perspective of contextual types and first-class contexts. Maybe surprisingly, the presheaf model
introduced by Hofmann [1999] already provides the necessary structure to also model contextual
modal type theory. Besides the standard structure of this model, we only rely on two key concepts:
a box (necessity) modality which is the same modality discussed by Hofmann [1999, Section 6] and
a cartesian closed universe of representables. In the first half of this paper, we focus on the special
case of Cocon where the HOAS trees are simply-typed. Concentrating on the simply-typed setting
allows us to introduce the main idea without the additional complexity that type dependencies
bring with them. The dependently-typed case is reserved in Section 6, in which we study the
semantics using a categorical framework for dependent types, categories with families (CwFs). We
extend the model in the simply typed case such that the domain category is a CwF, the structure
of which is preserved by the Yoneda embedding. In Section 7, we study Cocon’s relation with a
Fitch-style system and show their similarity.

Our work provides a semantic foundation to Cocon and can serve as a starting point to investigate
connections to similar work. First, our work connects Cocon to other work on internal languages
for presheaf categories with a ♭-modality, such as spatial type theory [Shulman 2018] or crisp
type theory [Licata et al. 2018]. Second, it may help to understand the relations of Cocon to type
theories that use a modality for metaprogramming and intensional recursion, such as [Kavvos
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2017]. While Cocon is built on the same general ideas, a main difference seems to be that Cocon
distinguishes between HOAS trees and computations, even though it allows mixed use of them.
We hope to clarify the relation by providing a semantical perspective.

This paper is an extended version of the conference paper [Pientka and Schöpp 2020].

2 PRESHEAVES FOR HIGHER-ORDER ABSTRACT SYNTAX

Our work begins with the presheaf models for HOAS of Fiore et al. [1999]; Hofmann [1999].
The key idea of those approaches is to integrate substitution-invariance in the computational
universe in a controlled way. For the representation of abstract syntax, one wants to allow only
substitution-invariant constructions. For example, lam M represents an object-level abstraction if and
only if M is a function that uses its argument in a substitution-invariant way. For computation with
abstract syntax, on the other hand, one wants to allow non-substitution-invariant constructions
too. Presheaf categories allow one to choose the desired amount of substitution-invariance.
Let D be a small category. The presheaf category D̂ is defined to be the category SetDop . Its

objects are functors F : Dop → Set, which are also called presheaves. Such a functor F is given by
a set F (Ψ) for each object Ψ of D together with a function F (σ ) : F (Φ) → F (Ψ) for any object Φ
and σ : Ψ → Φ in D, subject to the functor laws. The intuition is that F defines sets of elements
in various D-contexts, together with a D-substitution action. A morphism f : F → G is a natural
transformation, which is a family of functions fΨ : F (Ψ) → G (Ψ) for any Ψ. This family of functions
must be natural, i.e. commute with substitution fΨ ◦ F (σ ) = G (σ ) ◦ fΦ.

For the purposes of modelling higher-order abstract syntax, D will typically be the term model
of some domain-level lambda-calculus. By domain-level, we mean the calculus that serves as the
meta-level for object-language encodings. It is the calculus that contains constants like lam and
app from the Introduction. We call it domain-level to avoid possible confusion between different
meta-levels later. For simplicity, let us for now use a simply-typed lambda-calculus with functions
and products as the domain language. It is sufficient to encode the example from the Introduction
and allows us to explain the main idea underlying our approach.
The term model of the simply-typed domain-level lambda-calculus forms a cartesian closed

category D. The objects of D are contexts x1:A1, . . . ,xn :An of simple types. We use Φ and Ψ
to range over such contexts. A morphism from x1:A1, . . . ,xn :An to x1:B1, . . . ,xm :Bm is a tuple
(t1, . . . , tm ) of terms x1:A1, . . . ,xn :An ⊢ ti : Bi for i = 1, . . . ,m. A morphism of type Ψ → Φ in D
thus amounts to a (domain-level) substitution that provides a (domain-level) term in context Ψ for
each of the variables in Φ. Terms are identified up to αβη-equality. One may achieve this by using
a de Bruijn encoding, for example, but the specific encoding is not important for this paper. The
terminal object is the empty context, which we denote by ⊤, and the product Φ × Ψ is defined by
context concatenation. It is not hard to see that any object x1:A1, . . . ,xn :An is isomorphic to an
object that is given by a context with a single variable, namely x1: (A1 × · · · ×An ). This is to say
that contexts can be identified with product types. In view of this isomorphism, we shall allow
ourselves to consider the objects of D also as types and vice versa. The category D is cartesian
closed, the exponential of Φ and Ψ being given by the function type Φ→ Ψ (where the objects are
considered as types).

The presheaf category D̂ is a computational universe that both embeds the term modelD and that
can represent computations about it. Note that we cannot just enrichDwith terms for computations
if we want to use HOAS. In a simply-typed lambda-calculus with just the constant terms app: tm

→ tm → tm and lam: (tm → tm) → tm, each term of type tm represents an object-level term. This
would not be the true anymore, if we were to allow computations in the domain language, since
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one could define M to be something like (λx. if x represents an object-level application then M1

else M2) for distinct M1 and M2. In this case, lam M would not represent an object-level term anymore.
If we want to preserve a bijection between the object-level terms and their representations in the
domain-language, we cannot allow case-distinction over whether a term represents an object-level
an application.

The category D̂ unites syntax with computations by allowing one to enforce various degrees of
substitution-invariance. By choosing objects with different substitution actions, one can control
the required amount of substitution-invariance.

In one extreme, a set S can be regarded as a constant presheaf. Define the constant presheaf ΩS
by ΩS (Ψ) = S and ΩS (σ ) = id for all Ψ and σ . Since the substitution action is trivial, a morphism
ΩS → ΩT in D̂ amounts to just a function from set S to set T . Since ΩS is thus essentially just the
set S , we shall write just S both for the set S and the presheaf ΩS .
The Yoneda embedding represents the other extreme. For any object Φ of D, the presheaf

y(Φ) : Dop → Set is defined by y(Φ)(Ψ) = D(Ψ,Φ), which is the set of morphisms from Ψ to Φ
in D. The functor action is pre-composition. The presheaf y(Φ) should be understood as the type
of all domain-level substitutions with codomain Φ. An important example is y (tm). In this case,
y(tm) (Ψ) is the set of all morphisms of type Ψ → tm in D. By the definition of D, these correspond
to domain-level terms of type tm in context Ψ. In this way, the presheaf y(tm) represents the
domain-level terms of type tm.
The Yoneda embedding does in fact embed D into D̂ fully and faithfully, where the action on

morphisms is post-composition. This means that y maps a morphism σ : Ψ → Φ in D to the natural
transformation y(σ ) : y(Ψ) → y(Φ) that is defined by post-composing with σ . This definition
makes y into a functor y : D→ D̂ that is moreover full and faithful: its action on morphisms is a
bijection from D(Ψ,Φ) to D̂(y(Ψ), y(Φ)) for any Ψ and Φ. This is because a natural transformation
f : y(Ψ) → y(Φ) is, by naturality, uniquely determined by fΨ (id), where id ∈ D(Ψ,Ψ) = y(Ψ)(Ψ),
and fΨ (id) is an element of y (Φ)(Ψ) = D(Ψ,Φ).
Since D embeds into D̂ fully and faithfully, the term model of the domain language is available

in D̂. Consider for example y(tm). Since y is full and faithful, the morphisms from y(tm) to y(tm)
in D̂ are in one-to-one correspondence with the morphisms from tm to tm in D. These, in turn,
are defined to be substitutions and correspond to simply-typed (domain-level) lambda terms with
one free variable. This shows that substitution invariance cuts down the morphisms from y(tm) to
y(tm) in D̂ just as much as one would like for HOAS encodings.

But D̂ contains not just a term model of the domain language. It can also represent computations
about the domain-level syntax and computations that are not substitution-invariant. For exam-
ple, arbitrary functions on terms can be represented as morphisms from the constant presheaf
Ω(y(tm) (⊤)) to y(tm). Recall that ⊤ is the empty context, so that y(tm) (⊤) is the set D(⊤, tm), by
definition, which is isomorphic to the set of closed domain-level terms of type tm. The morphisms
from Ω(y(tm) (⊤)) to y(tm) in D̂ correspond to arbitrary functions from closed terms to closed
terms, without any restriction of substitution invariance.

The restriction to the constant presheaf of closed terms can be generalised to arbitrary presheaves.
Define a functor ♭ : D̂ → D̂ by letting ♭F be the constant presheaf Ω(F (⊤)), i.e. ♭F (Ψ) = F (⊤)
and ♭F (σ ) = id. Thus, ♭ restricts any presheaf to the set of its closed elements. The functor ♭
defines a comonad where the counit εF : ♭F → F is the obvious inclusion and the comultiplication
νF : ♭F → ♭♭F is the identity. The latter means that the comonad ♭ is idempotent.

The category D̂ not only embeds D and allows control over how much substitution invariance is
wanted in various constructions, it also is very rich in structure, not least because it also embeds
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Set . We will show that D̂ models contextual types and computations about them. We will gradually
introduce the structure of D̂ that we need to this end. We begin here by noting that D̂ is cartesian
closed, in order to introduce the notation for this structure.

Finite products exist in D̂ and are constructed pointwise.

⊤(Γ) = {∗} (X × Y ) (Γ) = X (Γ) × Y (Γ)

The Yoneda embedding preserves finite products, i.e. y(X × Y ) � y(X ) × y(Y ).
The category D̂ has exponentials. The exponential (X ⇒ Y ) can be calculated using the Yoneda

lemma. We recall that the Yoneda lemma states that Z (Γ) is naturally isomorphic to D̂(y(Γ),Z ).
With this, we have:

(X ⇒ Y ) (Γ) � D̂(y(Γ),X ⇒ Y ) � D̂(y(Γ) × X ,Y )

Since y preserves finite products, we have in particular (y(A) ⇒ y(B)) (Γ) � D̂(y(Γ)×y(A), y(B)) �
D̂(y(Γ × A), y(B)) � D(Γ × A,B). In the case where A = B = tm, this shows that the exponential
tm ⇒ tm represents terms with an additional bound variable. Given exponentials in D̂, y also
preserves exponentials, i.e. y(X ⇒ Y ) � y(X ) ⇒ y(Y ).

3 INTERNAL LANGUAGE

To explain how D̂ models higher-order abstract syntax and contextual types, we need to expose
more of its structure. Presenting it directly in terms of functors and natural transformations is
somewhat laborious and the technical details may obscure the basic idea of our approach. We
therefore use dependent types as an internal language for working with D̂.

It is well-known that presheaf categories like D̂ furnish a model of a dependent type theory that
supports dependent products, dependent sums and extensional identity types, among others, see
e.g. [Jacobs 1993]. In this section we outline this dependent type theory and how it is related to D̂.
Since the constructions are largely standard, our aim here is mainly to fix the notation for the later
sections.

With the cartesian closed structure defined above, it is already possible to use the simply-typed
lambda-calculus for working with D̂. Morphisms of typeX1×· · ·×Xn → Y in D̂ can be considered as
terms x1:X1, . . . ,xn :Xn ⊢ t :Y of the simply-typed lambda calculus. The cartesian closed structure
of D̂ is enough to interpret abstraction and application terms. With this correspondence, the
simply-typed lambda calculus may be used as a language for defining morphisms D̂. Notice in
particular that morphisms X1 × · · · × Xn → Y1 × · · · × Ym correspond to a list of terms (t1, . . . , tm )
of type x1:X1, . . . ,xn :Xn ⊢ ti :Yi for all i . Thus, morphisms X1 × · · · × Xn → Y1 × · · · × Ym can
be considered as substitutions (t1/y1, . . . , tm/ym ) of terms in context x1:X1, . . . ,xn :Xn for the
variables in y1:Y1, . . . ,ym :Ym .

The category D̂ has enough structure to extend this idea to a dependently-typed lambda-calculus
in a similar way. Let us first explain how contexts, types and terms relate to the structure of D̂.

• Contexts: Typing contexts Γ, ∆ still correspond to objects of D̂. Also, the morphisms Γ → ∆

in D̂ still correspond to substitutions, just like in the simply-typed case.
• Types: Due to type dependencies, the types are not simply objects anymore. For each context Γ,
the set of types in context Γ is specified by a set T̂y(Γ). The elements of T̂y(Γ) do not directly
appear in D̂, but they induce morphisms in D̂. Each type X ∈ T̂y(Γ) determines an object Γ.X
and a projection map pX : Γ.X → Γ. The intention is that Γ.X represents the context Γ,x :X
and that the projection maps represent the weakening substitution Γ,x :X → Γ.
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• Terms: A term Γ ⊢m:X appear as morphismsm : Γ → Γ.X in D̂with the property id = pX ◦m.
In essence it is a substitution for the variables in Γ,x :X that is the identity on all variables
other than x .

Concretely, we define the set T̂y(Γ) to consist of presheaves ∫ Γop → Set , where ∫ Γ is the category
of elements of Γ, which is defined as follows: the objects of ∫ Γ are the set {(Ψ,д) | д ∈ Γ(Ψ)} and
the morphisms σ between (Ψ,д) → (Φ,д′) are induced from σ : Ψ → Φ subject to д = Γ(σ ,д′). We
can show that this construction does form a category. Intuitively, this construction use morphisms
in D as coherence conditions, which are respected in all other constructions in the presheaf model.

For a presheaf X : ∫ Γop → Set in T̂y(Γ), we define the presheaf Γ.X in D̂ by (Γ.X ) (Φ) = {(д,x ) |
д ∈ Γ(Φ), x ∈ X (Φ,д)} with the canonical action on morphisms. The projection map pX is just the
first projection.

This interpretation of types generalizes the simply-typed case. Any object X of D̂ can be seen as
a simple type. It can be lifted to a presheaf in X : ∫ Γop → Set in T̂y(Γ) by letting X (Φ,д) = X (Φ).
Note that with this choice, Γ.X is identical to Γ × X , as one would expect from the simply-typed
case.

With type dependencies, one needs a substitution operation on types. For any σ : ∆ → Γ, there
is a type substitution function (−){σ } from T̂y(Γ) to T̂y(∆). It maps X : T̂y(Γ) to

X {σ }(Φ : D,d : ∆(Φ)) := X (Φ,σ (Φ,d ))

The definition of T̂y(Γ) justifies the intuition of contexts as types of tuples as in the simply-
typed case. Consider, for example, a context of the form (⊤.X ).Y for some types X ∈ T̂y(⊤) and
Y ∈ T̂y(⊤.X ). The presheaf (⊤.X ).Y is defined such that the elements of ((⊤.X ).Y ) (Φ) have the
form ((∗,x ),y) for some x and y. ∗ is the only element of a uniquely chosen singleton set in Set .
One should think of them as representing values of the variables of the context x :X ,y:Y .
All presheaf categories also support dependent function spaces [Hofmann 1997]. For X : T̂y(Γ)

and Y : T̂y(Γ.X ), we write Π̂(X ,Y ) : T̂y(Γ) for the dependent function space. This is defined to be

Π̂(X ,Y ) (Φ : D,d : Γ(Φ)) := { f : (Ψ : D) (δ : Ψ → Φ)(x : X (Ψ, Γ(δ ,d ))) → Y (Ψ, (Γ(δ ,d ),x ))

| ∀Ψ,δ ,x ,Ψ′,δ ′ : Ψ′ → Ψ. f (Ψ′,δ ◦ δ ′,X (δ ′,x )) = Y (δ ′, f (Ψ,δ ,x )) }

Π̂(X ,Y ) is a set of functions the values of which are coherent under the morphisms of the base
category D. We can show that this definition of Π̂ types respect type substitutions.
This outlines how the structure of D̂ relates to dependent type theory, see e.g. [Jacobs 1993]

for more details. We will use this type theory as a convenient internal language to work with
the structure of D̂. It is well-known that D̂ has enough structure to support dependent sums and
extensional identity types, among others in its internal dependent type theory, see e.g. [Jacobs
1993]. We do not need to spell out the details of their interpretation.

We use Agda notation for the types and terms of this internal dependent type theory. We write
(x : S ) → T for a dependent function type and write ⋋x : S .m andm n for the associated lambda-
abstractions and applications. As usual, we will sometimes also write S → T for (x : S ) → T if x
does not appear inT . However, to make it easier to distinguish the function spaces at various levels,
we will write (x : S ) → T by default even when x does not appear in T . We use let x =m in n as
an abbreviation for (⋋x :T .n) m, as usual. For two termsm:T and n:T , we writem =T n or just
m = n for the associated identity type.

In the spirit of Martin-Löf type theory, we will identify the basic types and terms needed for
our constructions successively as they are needed. In the following sections, we will expose the
structure of D̂ step by step until we have enough to interpret contextual types.
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While much of the structure of D̂ can be captured by adding rules and constants to standard
Martin-Löf type theory, for the comonad ♭ such a formulation would not be very satisfactory. The
issues are discussed by Shulman [2018, p.7], for example. To obtain a more satisfactory syntax for
the comonad, we refine the internal type theory into a modal type theory in which ♭ appears as
a necessity modality. This approach goes back to Barber and Plotkin [1996]; Benton et al. [1993];
Davies and Pfenning [2001] and is also used by recent work of Licata et al. [2018]; Shulman [2018]
and others on working with the ♭-modality in type theory.
We summarise here the typing rules for the ♭-modality which we will rely on. To control the

modality, one uses two kinds of variables. In addition to standard variables x :T , one has a second
kind of so-called crisp variables x ::T . Typing judgements have the form ∆ | Θ ⊢ m:T , where ∆
collects the crisp variables and Θ collects the ordinary variables. In essence, a crisp variable x ::T
represents an assumption of the form x : ♭T . The syntactic distinction is useful, since it leads to a
type theory that is well-behaved with respect to substitution [Davies and Pfenning 2001; Shulman
2018].

The typing rules are closely related to those in modal type systems [Davies and Pfenning 2001;
Nanevski et al. 2008], where ∆ is the typing context for modal (global) assumptions and Θ for (local)
assumptions, and type systems for linear logic [Barber and Plotkin 1996], where ∆ is the typing
context for non-linear assumptions and Θ for linear assumptions.

∆,u::T ,∆′ | Θ ⊢ u:T ∆ | Θ,x :T ,Θ′ ⊢ x :T
∆ | · ⊢m : T

∆ | Θ ⊢ boxm : ♭T

∆ | Θ ⊢m : ♭T ∆,x ::T | Θ ⊢ n : S
∆ | Θ ⊢ let box x =m in n : S

Given any termm : T which only depends on modal variable context ∆, we can form the term
boxm : ♭T . We have a let-term let box x =m in n that takes a termm : ♭T and binds it to a variable
x ::T . The rules maintain the invariant that the free variables in a type ♭T are all crisp variables
from the crisp context ∆.

The model has other structures. For example, the rules for dependent products are:

∆ | Θ,x :T ⊢m: S
∆ | Θ ⊢ ⋋x :T .m : (x :T ) → S

∆ | Θ ⊢m: (y:T ) → S ∆ | Θ ⊢ n:T
∆ | Θ ⊢m n: [n/y]S

Though the dependent function space is supported by the model, in our interpretation, we only
use the simple function space. It is also convenient to have a crisp variant of abstractions and
applications [Nanevski et al. 2008]:

∆,u::T | Θ ⊢m: S

∆ | Θ ⊢ ⋋♭u::T .m : (u::T ) →♭ S

∆ | Θ ⊢m: (u::T ) →♭ S ∆ | · ⊢ n:T
∆ | Θ ⊢m n: [n/u]S

The superscripts ♭ of ⋋ and→ indicate that we are referring to the crisp variant. Notice that in the
application rule, n is necessarily closed, i.e. the local context of n is empty. These rules allow us to
directly operate on crisp variables, and we will interpret computation-level functions of Cocon to
this crisp function space. Despite its convenience, the full effect of introducing crisp functions to a
comonadic modality type theory is still unclear and we leave its investigation to the future. In this
paper, however, we do not make use of its full strength, but just use the syntax as a notation for the
semantic interpretation.

When ∆ is empty, we shall write just Θ ⊢m:T for ∆ | Θ ⊢m:T .
Let us outline the categorical interpretation of the modality rules. First recall from above that ♭ is

a comonad on D̂. For any type X ∈ T̂y(∆) we define the type ♭X ∈ T̂y(♭∆) by (♭X ) (Φ,d ) = X (⊤,d ).
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Notice that this is well-defined, since d ∈ (♭∆)(Ψ) implies d ∈ ∆(⊤) for all Ψ, by definition of ♭.
Notice that the definition of ♭X makes ♭(∆.X ) the same as ♭∆.♭X .

Since ∆ only contains crisp variables, types in it are represented as ♭X . In general, when a type
T appears in a context ∆ | Θ, it is a type in T̂y(()♭∆.Θ).

A variable lookup into the crisp context requires application of the counit ϵ . Consider

v : ♭∆→ ♭∆.♭T

which is the variable projection of the crisp context. We further need to unwrap ♭T using ϵ : ♭T → T .
Thus we need another natural transformation:

h : ♭∆.♭T → ♭∆.T
h(Ψ) = (id♭∆, ϵΨ)

Thus we have h ◦v : ♭∆→ ♭∆.T . We can show that this natural transformation is a section of the
projection map, due to the first component in h is an identity morphism. General variable lookups
in the crisp context can then be obtained by weakening.
To model box, let us first consider a section natural transformation ♭∆→ ♭∆.♭T given another

sectionm : ♭∆ → ♭∆.T . Though there might be a more general formulation, we take advantage
of the fact that ♭ is idempotent in our model, and we can immediately have ♭m to be the desired
natural transformation, because ♭♭∆ = ♭∆. The general box with Θ can be obtained by weakening.
The interpretation of let box x = m in n is relatively easier. We consider as an example the

special case where Θ is empty. Givenm : ♭∆→ ♭∆.♭T and n : ♭∆.♭T → ♭∆.♭T .S , we can just apply
m as a substitution to n: n{m} : ♭∆→ ♭∆.S {m}.

Thus we see that the syntax can be interpreted as categorical constructs. In the rest of the paper,
we use syntactic translations to simplify our presentation.

4 FROM PRESHEAVES TO CONTEXTUAL TYPES

Armed with the internal type theory, we can now explore the structure of D̂.

4.1 A Universe of Representables

For our purposes, the main feature of D̂ is that it embeds D fully and faithfully via the Yoneda
embedding. In the type theory for D̂, we may capture this embedding by means of a Tarski-style
universe. Such a universe is defined by a type of codes Obj for the objects of D together with a
decoding function that maps these codes into types of the type theory for D̂.

Let Obj be the set of objects of D. Recall from above, that any set can be considered as a constant
presheaf with the trivial substitution action, and thus as a type in the internal type theory of D̂. The
terms of this type Obj represent objects of D. The cartesian closed structure of D gives us terms
unit, times, arrow for the terminal object ⊤, finite products × and the exponential (function type).
We also have a term for the domain-level type tm.

⊢ Obj type ⊢ tm : Obj ⊢ times : (a: Obj) → (b: Obj) → Obj

⊢ unit : Obj ⊢ arrow : (a: Obj) → (b: Obj) → Obj

Subsequently, we sometimes talk about objects of D when we intend to describe terms of type Obj
(and vice versa).

The morphisms of D could similarly be encoded as a presheaf with many term constants, but
this is in fact not necessary. Instead, we can use the Yoneda embedding to decode elements of Obj
into actual types. To this end, we use the following:

x : Obj ⊢ Elx type
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The type El is almost direct syntax for the Yoneda embedding. The interpretation of El in D̂, given
in detail below, is such that, for any object A of D, the type ElA is interpreted by the presheaf y(A).
Such a presheaf is called representable. One can think of ElA as the type of all morphisms of
type Ψ → A in D for arbitrary Ψ. Recall from above that a morphism of type Ψ → A in D amounts
to a domain-level term of type A that may refer to variables in Ψ. In this sense, one should think of
ElA as a type of domain-level terms of type A, both closed and open ones.
That ElA is interpreted by yAmeans that all constructions on ElA in the internal type theory

are guaranteed to be substitution invariant. In particular, since the Yoneda embedding is full and
faithful, recall Section 2, the type of functions (x : ElA) → ElB corresponds to the morphisms
of type A→ B in D. Any closed term of type (x : ElA) → ElB corresponds to such a morphism
A → B in D and vice versa. This is because ElA and ElB correspond to yA and yB respectively
and the naturality requirements in D̂ enforce substitution-invariance, as outlined in Section 2. The
type (x : ElA) → ElB thus does not represent arbitrary functions from terms of type A to terms of
type B, but only substitution-invariant ones. If a function of this type maps a domain-level variable
x :A (encoded as an element of ElA) to some term M :B (encoded as an element of ElB), then it
must map any other N :A to [N /x]M .
In more detail, the interpretation of Obj ∈ T̂y(⊤) and El ∈ T̂y(Obj) of the above types in the

internal type theory of D̂ is given by:

Obj(Ψ, ∗) = {Φ | Φ is an object of D} El (Ψ,Φ) = D(Ψ,Φ)

Obj(σ ) : Φ 7→ Φ El (σ ) : f 7→ f ◦ σ

Notice in particular that (Obj.El ) (Ψ) = {(Φ, f ) | Φ is object of D, f ∈ D(Ψ,Φ)}. If, for any objectA
in D, we substitute along the corresponding constant function A : ⊤ → Obj, then we obtain
(⊤.El {A}) (Φ) = {(A, f ) | f ∈ D(Φ,A)}. This presheaf is isomorphic to yA.
We note that, while type dependencies often make it difficult to spell out types directly in terms

of the categorical structure of D̂, type dependencies on constant presheaves like Obj are relatively
easy to work with. This is because Obj is just a set, so that the naturality constraints of D̂ are
vacuous for functions out of Obj. Instead of working with the dependent type directly, we can just
work with all its instances. For example, a term of type (a: Obj) → (b: Obj) → (x : Ela) → Elb is
uniquely determined by a family of terms (x : ElA) → ElB indexed by objects A and B in D. We
have the following lemma, which states that functions out of Obj have independent values for all
arguments.

Lemma 4.1. In the internal type theory of D̂, a closed term t : (a: Obj) → X is in one-to-one
correspondence with a family of closed terms (tA)A∈Obj such that tA : X [A/a]. In particular, there is
no uniformity condition on this family, i.e. for different objects A and B, the terms tA and tB may be
arbitrary unrelated terms of types X [A/a] and X [B/a].

Notice that such a lemma would not be true, e.g., with ElA instead of Obj. We have seen above
that functions of type ElA→ ElB correspond to morphisms of type A→ B in D. By definition
of D, a morphism A → B corresponds to a domain-level term x :A ⊢ t : B. Such terms are not in
one-to-one correspondence with families of closed terms of type B indexed by closed terms of
type A.

To summarise this section, by considering the Yoneda embedding as a decoding function El of a
universe á la Tarski, we get access to D in the internal type theory of D̂. Since the universe consists
of the representable presheaves, we call it the universe of representables.

The following lemmas state that the embedding preserves terminal object, binary products and
the exponential.
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Lemma 4.2. The internal type theory of D̂ has a term ⊢ terminal : El unit, such that x =
terminal holds for any x : El unit.

Lemma 4.3. The internal type theory of D̂ justifies the terms below, such that fst (pair x y) = x ,
snd (pair x y) = y, z = pair (fst z) (snd z) for all x ,y, z.

c: Obj, d : Obj ⊢ fst : (z : El (times c d )) → El c

c: Obj, d : Obj ⊢ snd : (z : El (times c d )) → Eld

c: Obj, d : Obj ⊢ pair : (x : El c ) → (y : Eld ) → El (times c d )

Lemma 4.4. The internal type theory of D̂ justifies the terms below such that arrow-i (arrow-e f ) =
f and arrow-e (arrow-i д) = д for all f ,д.

c: Obj, d : Obj ⊢ arrow-e : (x : El (arrow c d )) → (y: El c ) → Eld

c: Obj, d : Obj ⊢ arrow-i : (y: (El c → Eld )) → El (arrow c d )

Proof. Lemmas 4.2 and 4.3 are consequences of the preservation of limits of the Yoneda embed-
ding.
For Lemma 4.4, it suffices, by Lemma 4.1, to establish an isomorphism between El (arrow A B)

and (y: ElA) → ElB for all objects A and B of D. By definition of El , this amounts to preservation
of exponentials by y. The goal follows because we have the following isomorphisms, which are
natural in Γ:

(yA⇒ yB) (Γ) � D̂(yΓ, yA⇒ yB) � D̂(yΓ × yA, yB)

� D̂(y(Γ ×A), yB) � D(Γ ×A,B)

� D(Γ,A⇒ B) � D̂(yΓ, y(A⇒ B)) � y(A⇒ B) (Γ)

□

4.2 Higher-Order Abstract Syntax

The last lemma in the previous section states that ElA → ElB is isomorphic to El (arrow A B).
This is particularly useful to lift HOAS-encodings from D to D̂. For instance, the domain-level term
constant lam: (tm → tm) → tm gives rise to an element of El (arrow (arrow tm tm) tm). But this
type is isomorphic to (El tm→ El tm) → El tm, by the lemma.

This means that the higher-order abstract syntax constants lift to D̂:
app : (m: El tm) → (n: El tm) → El tm lam : (m: (El tm→ El tm)) → El tm

Once one recognises ElA as y(A), the adequacy of this higher-order abstract syntax encoding lifts
from D to D̂ as in Hofmann [1999]. For example, an argumentM to lam has type El tm→ El tm,
which is isomorphic to El (arrow tm tm). But this type represents (open) domain-level terms
t : tm→ tm. The term lamM : El tm then represents the domain-level term lam t : tm, so it just lifts
the domain-level.

4.3 Closed Objects

One should think of ♭T as the type of ‘closed’ elements of T . In particular, ♭(ElA) represents
morphisms of type ⊤ → A in D, recall the definition of ♭ from Section 2 and that ElA corresponds
to yA. In the term model D, the morphisms ⊤ → A correspond to closed domain-language terms of
type A. Thus, while ElA represents both open and closed domain-level terms, ♭(ElA) represents
only the closed ones.
This applies also to the type ElA→ ElB. We have seen above that ElA→ ElB is isomorphic

to El (arrow A B) and may therefore be thought of as containing the terms of type B with a
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distinguished variable of typeA. But, these terms may contain other free domain language variables.
The type ♭(ElA→ ElB), on the other hand, contains only terms of type B that may contain (at
most) one variable of type A.

Restricting to closed objects with themodality is useful because it disables substitution-invariance.
For example, the internal type theory for D̂ justifies a function is-lam : (x :♭(El tm)) → bool that
returns true if and only if the argument represents an object language lambda abstraction. We shall
define it in the next section. Such a function cannot be defined with type El tm→ bool, since it
would not be invariant under substitution. Its argument ranges over terms that may be open; which
particularly includes domain-level variables. The function would have to return false for them,
since a domain-level variable is not a lambda-abstraction. But after substituting a lambda-abstraction
for the variable, it would have to return true, so it could not be substitution-invariant.

We note that the type Obj consists only of closed elements and that Obj and ♭Obj happen to be
definitionally equal types (an isomorphism would suffice, but equality is more convenient).

4.4 Contextual Objects

Using function types and the modality, it is now possible to work with contextual objects that
represent domain level terms in a certain context, much like in Pientka [2008]; Pientka and Abel
[2015]. A contextual type ⌈Ψ ⊢ A⌉ is a boxed function type of the form ♭(ElΨ → ElA). It represents
domain-level terms of type A with variables from Ψ. Here, we consider the domain-level context Ψ
as a term that encodes it. The interpretation will make this precise.

For example, domain-level terms with up to two free variables now appear as terms of type

♭(El ((times (times unit tm) tm) → El tm),

as the following example illustrates.

box (⋋u: El ((times (times unit tm) tm). let x1 = snd (fst u) in
let x2 = snd u in
app (lam (⋋x : El tm. app x1 x )) x2 )

Here, the variables x1 and x2 are bound at the meta level, i.e. the internal language. As we will see
in the next section, the example interprets the open domain-level term app (lam (λx .app x1 x )) x2
with domain-level variables x1:tm and x2:tm.

This representation integrates substitution as usual. For example, given crisp variablesm::El (times c tm) →
tm and n::El c → tm for contextual terms, the term box (⋋u: El c .m (pair u (n u))) represents
substitution of n for the last variable in the context ofm.

For working with contextual objects, it is convenient to lift the constants app and lam to contex-
tual types.

c: Obj ⊢ app′ : ♭(El c → El tm) → ♭(El c → El tm) → ♭(El c → tm)

c:Obj ⊢ lam′ : ♭(El (times c tm) → El tm) → ♭(El c → El tm)

These terms are defined by:

app′ := ⋋m,n. let boxm′ =m in let box n′ = n in
box (⋋u: El c . app (m′ u) (n′ u))

lam′ := ⋋m. let boxm′ =m in box (⋋u: El c . lam (⋋x : El tm. m′ (pair u x )))

A contextual type for domain-level variables (as opposed to arbitrary terms) can be defined by
restricting the function space in ♭(ElΨ → ElA) to consist only of projections. Projections are
functions of the form snd◦fstk , where we write fstk for the k-fold iteration fst◦ · · · ◦fst. Let us
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write ElΨ →v ElA for the subtype of ElΨ → ElA consisting only of projections. The contextual
type ♭(ElΨ →v ElA) is then a subtype of ♭(ElΨ → ElA).
With these definitions, we can express a primitive recursion scheme for contextual types. We

write it in its general form where the result type A can possibly depend on x . This is only relevant
for the dependently typed case; in the simply typed case, the only dependency is on c .

Lemma 4.5. Let c: Obj, x : ♭(El c → El tm) ⊢ A c x type and define:
Xvar := (c: Obj) → (x : ♭(El c →v El tm)) → A c x

Xapp := (c: Obj) → (x ,y: ♭(El c → El tm)) → A c x → A c y → A c (app′ x y)

Xlam := (c: Obj) → (x : ♭(El (times c tm) → El tm)) → A (times c tm) x → A c (lam′ x )

Then, D̂ justifies a term
⊢ rec : Xvar → Xapp → Xlam → (c: Obj) → (x : ♭(El c → El tm)) → A c x

such that the following equations are valid.
rec tvar tapp tlam c x = tvar c x if x : ♭(El c →v El tm)
rec tvar tapp tlam c (app′ s t ) = tapp c s t
rec tvar tapp tlam c (lam′ s ) = tlam c s

outline. To outline the proof idea, note first that a function of type (c: Obj) → (x : ♭(El c →
El tm)) → Ac x in D̂, corresponds to an inhabitant ofAΦ t for each concrete object Φ ofD and each
inhabitant t : ♭(ElΦ→ El tm). This is because naturality constraints for boxed types are vacuous
(and Obj = ♭Obj). Next, note that inhabitants of ♭(ElΦ→ El tm) correspond to domain-level terms
of type tm in context Φ up to αβη-equality. We can perform a case-distinction on whether it is a
variable, abstraction or application and depending on the result use tvar, tapp or tlam to define the
required inhabitant of A Φ t . □

As a simple example for rec, we can define the function is-lam discussed above by
rec (⋋c,x . false) (⋋c,x ,y, rx , ry . false) (⋋c,x , rx . true).

5 SIMPLE CONTEXTUAL MODAL TYPE THEORY

We have outlined informally how the internal dependent type theory of D̂ can model contextual
types. In this section, wemake this precise by giving the interpretation of Cocon [Pientka et al. 2019],
a contextual modal type theory where we can work with contextual HOAS trees and computations
about them, into D̂. We will focus here on a simply-typed version of Cocon where we use a simply-
typed domain-language with constants app and lam and also only allow computations about HOAS
trees, but do not consider, for example, universes. Concentrating on a stripped down, simply-typed
version of Cocon allows us to focus on the essential aspects, namely how to interpret domain-
level contexts and domain-level contextual objects and types semantically. The generalisation to
a dependently typed domain-level such as LF in Section 6 will be conceptually straightforward,
although more technical. Handling universes is an orthogonal issue.

We first define our simply-typed domain-level with the type tm and the term constants lam and
app (see Fig. 1). Following Cocon, we allow computations to be embedded into domain-level terms
via unboxing. The intuition is that if a program t promises to compute a value of type ⌈x :tm,y:tm ⊢
tm⌉, then we can embed t directly into a domain-level object writing lam λx .lam λy.app ⌊t⌋ x ,
unboxing t . Domain-level objects (resp. types) can be packaged together with their domain-level
context to form a contextual object (resp. type). Domain-level contexts are formed as usual, but
may contain context variables to describe a yet unknown prefix. Last, we include domain-level
substitutions that allow us to move between domain-level contexts. The compound substitution
σ ,M extends the substitution σ with domain Ψ̂ to a substitution with domain Ψ̂,x , whereM replaces
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Domain-level types A,B ::= tm | A→ B
Domain-level terms M,N ::= λx .M | M N | x | lam | app | ⌊t⌋σ
Domain-level contexts Ψ,Φ ::= · | ψ | Ψ,x :A
Domain-level context (erased) Ψ̂, Φ̂ ::= · | ψ | Ψ̂,x
Domain-level substitutions σ ::= · | wk

Ψ̂
| σ ,M

Contextual types T ::= Ψ ⊢ A | Ψ ⊢v A

Contextual objects C ::= Ψ̂ ⊢ M

Domain of discourse τ̆ ::= τ | ctx
Types and Terms τ ,I ::= ⌈T ⌉ | (y : τ̆1) ⇒ τ2

t , s ::= y | ⌈C⌉ | recI B⃗ Ψ t | fn y ⇒ t | t1 t2
Branches B ::= Γ 7→ t
Contexts Γ ::= · | Γ,y : τ̆

Fig. 1. Syntax of Cocon with a fixed simply-typed domain tm

x . Following Nanevski et al. [2008]; Pientka et al. [2019], we do not store the domain (like Ψ̂) in the
substitution, it can always be recovered before applying the substitution. We also include weakening
substitution, written as wkΨ̂, to describe the weakening of the domain Ψ to Ψ,

−−→
x :A. Weakening

substitutions are necessary, as they allow us to express the weakening of a context variable ψ .
Identity is a special form of the wkΨ̂ substitution, which follows immediately from the typing rule
of wkΨ̂. Composition is admissible.

We summarise the typing rules for domain-level terms and types in Fig. 2. We also include typing
rules for domain-level contexts. Note that since we restrict ourselves to a simply-typed domain-level,
we simply check that A is a well-formed type. We remark that equality for domain-level terms and
substitution is modulo βη. In particular, ⌊⌈Φ̂ ⊢ N ⌉⌋σ reduces to [σ ]N .

Γ;Ψ ⊢ M : A TermM has type A in domain-level context Ψ and context Γ

Γ ⊢ Ψ : ctx x :A ∈ Ψ
Γ;Ψ ⊢ x : A

Γ ⊢ Ψ : ctx
Γ;Ψ ⊢ lam : (tm→ tm) → tm

Γ ⊢ Ψ : ctx
Γ;Ψ ⊢ app : tm→ tm→ tm

Γ;Ψ ⊢ M : A→ B Γ;Ψ ⊢ N : A
Γ;Ψ ⊢ M N : B

Γ;Ψ,x :A ⊢ M : B
Γ;Ψ ⊢ λx .M : A→ B

Γ ⊢ t : ⌈Φ ⊢ A⌉ or Γ ⊢ t : ⌈Φ ⊢v A⌉ Γ;Ψ ⊢ σ : Φ
Γ;Ψ ⊢ ⌊t⌋σ : A

Γ;Φ ⊢ σ : Ψ Substitution σ provides a mapping from the (domain) context Ψ to Φ

Γ ⊢ Ψ,
−−→
x :A : ctx

Γ;Ψ,−−→x :A ⊢ wk
Ψ̂

: Ψ
Γ ⊢ Φ : ctx
Γ;Φ ⊢ · : ·

Γ;Φ ⊢ σ : Ψ Γ;Φ ⊢ M : A
Γ;Φ ⊢ σ ,M : Ψ,x :A

Γ ⊢ Ψ : ctx Domain-level context Ψ is well-formed

Γ ⊢ · : ctx
Γ(y) = ctx

Γ ⊢ y : ctx
Γ ⊢ Ψ : ctx

Γ ⊢ Ψ,x :A : ctx

Fig. 2. Typing Rules for Domain-level Terms, Substitutions, Contexts

In our grammar, we distinguish between the contextual type Ψ ⊢ A and the more restricted
contextual type Φ ⊢v A which characterises only variables of type A from the domain-level context
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Φ. We give here two sample typing rules for Φ ⊢v A which are the ones used most in practice
to illustrate the main idea. We embed contextual objects into computations via the modality.
Computation-level types include boxed contextual types, ⌈Φ ⊢ A⌉, and function types, written as
(y : τ̆1) ⇒ τ2. We overload the function space and allow as domain of discourse both computation-
level types and the schema ctx of domain-level contexts, although only in the latter case y can occur
in τ2. We use fn y ⇒ t to introduce functions of both kinds. We also overload function application
t s to eliminate function types (y : τ1) ⇒ τ2 and (y : ctx) ⇒ τ2, although in the latter case s stands
for a domain-level context. We separate domain-level contexts from contextual objects, as we do
not allow functions that return a domain-level context.

The recursor is written as recI B⃗ Ψ t . Here, t describes a term of type ⌈Ψ ⊢ tm⌉ that we recurse
over and B⃗ describes the different branches that we can take depending on the value computed by
t . As is common when we have dependencies, we annotate the recursor with the typing invariant
I. Here, we consider only the recursor over domain-level terms of type tm. Hence, we annotate
it with I = (ψ : ctx) ⇒ (y : ⌈ψ ⊢ tm⌉) ⇒ τ . To check that the recursor recI B Ψ t has type
[Ψ/ψ ]τ , we check that each of the three branches has the specified type I. In the base case, we
may assume in addition toψ : ctx that we have a variable p : ⌈ψ ⊢v tm⌉ and check that the body
has the appropriate type. If we encounter a contextual object built with the domain-level constant
app, then we choose the branch bapp. We assumeψ : ctx,m: ⌈ψ ⊢ tm⌉, n: ⌈ψ ⊢ tm⌉, as well as fn and
fm which stand for the recursive calls onm and n respectively. We then check that the body tapp is
well-typed. If we encounter a domain object built with the domain-level constant lam, then we
choose the branch blam. We assume ψ : ctx andm: ⌈ψ ,x :tm ⊢ tm⌉ together with the recursive call
fm onm in the extended LF contextψ ,x :tm. We then check that the body tlam is well-typed. The
typing rules for computations are given in Fig. 3. We omit the reduction rules here for brevity.

Γ ⊢ C : T Contextual object C has contextual type T

Γ;Ψ ⊢ M : A
Γ ⊢ (Ψ̂ ⊢ M ) : (Ψ ⊢ A)

Γ ⊢ Ψ : ctx x :A ∈ Ψ
Γ ⊢ (Ψ̂ ⊢ x ) : (Ψ ⊢v A)

x :⌈Φ ⊢v A⌉ ∈ Γ Γ;Ψ ⊢ wk
Ψ̂

: Φ

Γ ⊢ (Ψ̂ ⊢ ⌊x⌋
wkΨ̂

) : (Ψ ⊢v A)

Γ ⊢ t : τ Term t has computation type τ

y : τ̆ ∈ Γ
Γ ⊢ y : τ̆

Γ ⊢ C : T
Γ ⊢ ⌈C⌉ : ⌈T ⌉

Γ ⊢ t : (y : τ̆1) ⇒ τ2 Γ ⊢ s : τ̆1
Γ ⊢ t s : [s/y]τ2

Γ,y : τ̆1 ⊢ t : τ2 Γ ⊢ (y : τ̆1) ⇒ τ2 : type
Γ ⊢ fn y ⇒ t : (y : τ̆1) ⇒ τ2

Recursor over domain-level terms I = (ψ : ctx) ⇒ (y : ⌈ψ ⊢ tm⌉) ⇒ τ

Γ ⊢ t : ⌈Ψ ⊢ tm⌉ Γ ⊢ I : type Γ ⊢ bv : I Γ ⊢ bapp : I Γ ⊢ b
lam

: I

Γ ⊢ recI (bv | bapp | blam) Ψ t : [Ψ/ψ ]τ

Branch for Variable (bv )
Γ,ψ : ctx,p : ⌈ψ ⊢v tm⌉ ⊢ tv : τ

Γ ⊢ (ψ ,p 7→ tv ) : I

Branch for Application app (bapp)
Γ,ψ : ctx,m:⌈ψ ⊢ tm⌉,n:⌈ψ ⊢ tm⌉, fm :τ , fn :τ ⊢ tapp : τ

Γ ⊢ (ψ ,m,n, fn , fm 7→ tapp) : I

Branch for Function lam (b
lam

) Γ,ϕ : ctx,m:⌈ϕ,x :tm ⊢ tm⌉, fm :[(ϕ,x :tm)/ψ ]τ ⊢ t
lam

: [ϕ/ψ ]τ
Γ ⊢ ψ ,m, fm 7→ t

lam
: I

Fig. 3. Typing Rules for Contextual Objects and Computations
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We now give an interpretation of simply-typed Cocon in a presheaf model with a cartesian closed
universe of representables. Let us first extend the internal dependent type theory with the constant
tm for modelling the domain-level type constant tm and with the constants app : El tm→ El tm→
El tm and lam : (El tm→ El tm) → El tm to model the corresponding domain-level constants app
and lam.

Interpretation of domain-level types

JtmK =tm

JA→ BK =arrow JAK JBK

Interpretation of domain-level contexts

JΓ ⊢ ψ : ctxK =ψ

JΓ ⊢ · : ctxK =unit

JΓ ⊢ (Ψ,x :A) : ctxK =times e JAK where JΓ ⊢ Ψ : ctxK = e

Interpretation of domain-level terms, where JΓ ⊢ Ψ ctxK = e

JΓ;Ψ ⊢ x : AK =⋋ u : El e .snd (fstk u) where Ψ = Ψ0,x :A,yk :Ak , . . . ,y1:A1

JΓ;Ψ ⊢ λx .M : A→ BK =⋋ u : El e .arrow-i (⋋x :El JAK.e ′ (pair u x ))
where JΓ;Ψ,x :A ⊢ M : BK = e ′

JΓ;Ψ ⊢ M N : BK =⋋ u : El e .arrow-e (e1 u) (e2 u) where JΓ;Ψ ⊢ M : A→ BK = e1

and JΓ;Ψ ⊢ N : AK = e2

JΓ;Ψ ⊢ ⌊t⌋σ : AK =let box x = e1 in ⋋ u : El e .x (e2 u) where JΓ ⊢ t : ⌈Φ ⊢ A⌉K = e1

and JΓ;Ψ ⊢ σ : ΦK = e2

JΓ;Ψ ⊢ app : tm→ tm→ tmK =⋋ u : El e .arrow-i(⋋x :El tm. arrow-i (⋋y:El tm. app x y))
JΓ;Ψ ⊢ lam : (tm→ tm) → tmK=⋋ u : El e .arrow-i(⋋f :El (arrow tm tm). lam (⋋x :El tm. arrow-e f x ))

Interpretation of domain-level substitutions, where JΓ ⊢ Ψ ctxK = e

JΓ;Ψ ⊢ · : ·K =⋋ u : El e .terminal
JΓ;Ψ ⊢ (σ ,M ) : Φ,x :AK =⋋ u : El e .pair (e1u) (e2u)

where JΓ;Ψ ⊢ σ : ΦK = e1 and JΓ;Ψ ⊢ M : AK = e2

JΓ;Ψ,−−→x :A ⊢ wk
Ψ̂

: ΨK =⋋ u : El e .fstn u where n = |−−→x :A|

Fig. 4. Interpretation of Domain-level Types and Terms

We can now translate domain-level and computation-level types of Cocon into the internal
dependent type theory for D̂. We do so by interpreting the domain-level terms, types, substitutions,
and contexts (see Fig. 4). All translations are on well-typed terms and types. Domain-level types
are interpreted as the terms of type Obj in the internal dependent type theory that represent them.
Domain-level contexts are also interpreted as terms of type Obj by JΓ ⊢ Ψ : ctxK. For example, a
domain-level context x :tm,y:tm is interpreted as times (times unit tm) tm : Obj. A domain-level
substitution with domain Ψ and codomain Φ becomes a function from El e ′ to El e , where e ′ =
JΓ ⊢ Ψ : ctxK and e = JΓ ⊢ Φ : ctxK. Thus we use a semantic function to interpret a simultaneous
substitution as usual. As e is some product, for example times (times unit tm) tm, the domain-
level substitution is translated into a function returning an n-ary tuple. A weakening substitution
Γ;Ψ,x :tm ⊢ wkΨ : Ψ is interpreted as fst u where u: El (times e tm) and e = JΓ ⊢ Ψ : ctxK. More
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Interpretation of contextual objects (C)
JΓ ⊢ (Φ̂ ⊢ M ) : (Φ ⊢ A)K = JΓ;Φ ⊢ M : AK

JΓ ⊢ (Φ̂ ⊢ M ) : (Φ ⊢v A)K = JΓ;Φ ⊢ M : AK

Interpretation of contextual types (T )
JΓ ⊢ (Φ ⊢ A)K = (u:El e ) → El JAK where JΓ ⊢ Φ : ctxK = e

JΓ ⊢ (Φ ⊢v A)K = (u:El e ) →v El JAK where JΓ ⊢ Φ : ctxK = e

Fig. 5. Interpretation of Contextual Objects and Types

generally, when we weaken a context Ψ by n declarations, i.e. −−→x :A, we interpret wkΨ as fstn u. A
well-typed domain-level term, Γ;Ψ ⊢ M : A, is mapped to a function from u:El JΓ ⊢ Ψ : ctxK to
El JAK.
Hence the translation of a well-typed domain-level term eventually introduces via a ⋋ u that

stands for the term-level interpretation of a domain-level context Φ. Most cases in the interpretation
just pass u along. The exceptional case is Γ;Φ ⊢ λx .M : A→ B, because the bodyM is translated
into a function from an extended domain-level context Ψ,x :A. In this case, we need to pair u with
the variable x obtained from the constructor of the domain-level function. When we translate a
variable x where Φ = Φ0,x :A,yk :Ak , . . . ,y1:A1, we return snd (fstk u). We translate Γ;Φ ⊢ ⌊t⌋σ : A
directly using let box-construct. Intuitively, a substitution of terms is morphism composition. The
interpretation of the domain-level substitution σ has given one morphism. The computation term t
should give the other morphism. Since it has the contextual type ⌈Φ ⊢ tm⌉ its translation will be
of type ♭(El e → El tm) where e ′ = JΓ ⊢ Φ : ctxK. We thus can obtain a El e → El tm from let
box, in which we can compose e2 to obtain the final morphism. The translation of domain-level
applications and domain-level constants app and lam is straightforward.
The interpretation of a contextual type (Φ ⊢ A) makes explicit the fact that they correspond to

functions El e → El JAK where e = JΓ ⊢ Φ : ctxK (see Fig. 5). Consequently, the corresponding
contextual object (Φ̂ ⊢ M ) is interpreted as a function which is already the case by just taking the
interpretation of domain-level terms. The case of (Ψ ⊢v A) requires the contextual object to be
interpreted to the restricted function space denoted by→v , which is the case by looking at the
variable case of the domain-level interpretation.

Last, we give the interpretation of computation-level types, contexts and terms (see Fig. 6). It is
mostly straightforward. We simply map ⌈T ⌉ in context Γ to ♭JΓ ⊢ T K and ⌈C⌉ is simply interpreted
as a boxed term. Since we intend to keep all variables on the computation level crisp, we interpret
function types to the crisp function space. As a consequence, the argument in a function application
must be closed. This is true because all computation-level terms should only use crisp variables,
and it is justified by the soundness theorem. When translating a computation-level function, we
use ⋋♭ for abstraction, so that we create a crisp function. We then recursively interpret the function
body.

The interpretation of the recursor is straightforward now (see Fig. 7). In Lemma 4.5, we expressed
a primitive recursion scheme in our internal type theory and defined a term rec together with its
type. We now interpret every branch of our recursor in the computation-level as a function of the
required type in our internal type theory. While this is somewhat tedious, it is straightforward.
When interpreting the branches, we again use the crisp function space, which allows us to push
the parameters to the crisp context and simulate the behavior of Cocon. The branch body is then
interpreted recursively.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2022.



A Category Theoretic View of Contextual Types: from Simple Types to Dependent Types 1:17

Interpretation of computation-level types (τ̆ )
JΓ ⊢ ⌈T ⌉K = ♭JΓ ⊢ T K
JΓ ⊢ (x :τ̆1) ⇒ τ2K = (x ::JΓ ⊢ τ̆1K) →♭ JΓ,x : τ̆1 ⊢ τ2K
JΓ ⊢ ctxK = Obj

Computation-level typing contexts (Γ)
J·K = ·

JΓ, x : τ̆ K = JΓK, x :: JΓ ⊢ τ̆ K

Interpretation of computations (Γ ⊢ t : τ ; without recursor)
JΓ ⊢ ⌈C⌉ : ⌈T ⌉K = box e where JΓ ⊢ C : T K = e

JΓ ⊢ t1 t2 : τ K = e1 e2 where JΓ ⊢ t1 : (x :τ̆2) ⇒ τ K = e1
and JΓ ⊢ t2 : τ̆2K = e2

JΓ ⊢ fn x ⇒ t : (x :τ̆1) ⇒ τ2K = ⋋♭x ::JΓ ⊢ τ̆1K. e where JΓ,x :τ̆1 ⊢ t : τ2K = e

JΓ ⊢ x : τ K = x

Fig. 6. Interpretation of Computation-level Types and Terms – without recursor

Interpretation of recursor for I = (ψ : ctx) ⇒ (y : ⌈ψ ⊢ tm⌉) ⇒ τ :
JΓ ⊢ recI (bv | bapp | blam) Ψ t : [Ψ/ψ , t/y]τ K = rec ev eapp elam ec e

where JΓ ⊢ bv : IK = ev , JΓ ⊢ bapp : IK = eapp, JΓ ⊢ blam : IK = elam,
JΓ ⊢ Ψ : ctxK = ec and JΓ ⊢ t : ⌈Ψ ⊢ tm⌉K = e

Interpretation of Variable Branch
JΓ ⊢ (ψ ,p 7→ tv ) : IK = ⋋♭ψ ::Obj. ⋋♭ p::♭(Elψ →v El tm).e
where JΓ,ψ : ctx,p : ⌈ψ ⊢v tm⌉ ⊢ tv : [p/y]τ K = e

Interpretation of Application Branch
JΓ ⊢ (ψ ,m,n, fn , fm 7→ tapp) : IK = ⋋♭ψ ::Obj. ⋋♭ m,n::♭(Elψ → El tm).

⋋♭ fm ::JΓ ⊢ [ψ ,m/ψ ,y]τ K. ⋋♭ fn ::JΓ ⊢ [ψ ,n/ψ ,y]τ K.e
where JΓ,ψ :ctx,m:⌈ψ ⊢ tm⌉,n:⌈ψ ⊢ tm⌉, fm : [m/y]τ , fn : [n/y]τ ⊢ tapp : [⌈ψ ⊢ app ⌊m⌋ ⌊n⌋⌉/y]τ K = e

Interpretation of Lambda-Abstraction Branch
JΓ ⊢ (ψ ,m, fm 7→ t

lam
) : IK = ⋋♭ψ :: Obj. ⋋♭ m :: ♭(El (timesψ tm) → El tm). ⋋♭ fm ::τm .e

where JΓ ⊢ [(ψ ,x :tm), m/ψ ,y]τ K = τm ,
JΓ,ψ :ctx,m:⌈ψ ,x :tm ⊢ tm⌉, fm : [(ψ ,x : tm),m/ψ ,y]τ ⊢ tapp : [⌈ψ ⊢ lam λx .⌊m⌋⌉/y]τ K = e

Fig. 7. Interpretation of Recursor

We can now show that all well-typed domain-level and computation-level objects are translated
into well-typed constructions in our internal type theory. As a consequence, we can show that
equality in Cocon implies the corresponding equivalence in our internal type theoretic interpreta-
tion.

Lemma 5.1. The interpretation maintains the following typing invariants:

• If Γ ⊢ Ψ : ctx then JΓ ⊢ Ψ : ctxK : Obj.
• If Γ; Ψ ⊢ M : A then JΓK | · ⊢ JΓ;Ψ ⊢ M : AK : (u : El JΓ ⊢ Ψ : ctxK) → El JAK.
• If Γ; Ψ ⊢ σ : Ψ then JΓK | · ⊢ JΓ;Ψ ⊢ σ : ΨK : (u: El JΓ ⊢ Ψ : ctxK) → El JΨK.
• If Γ ⊢ C : T then JΓK | · ⊢ JΓ ⊢ C : T K : JΓ ⊢ T K.
• If Γ ⊢ t : τ then JΓK | · ⊢ JΓ ⊢ t : τ K : JΓ ⊢ τ K.
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The proof goes by induction on derivations. Next we show that equivalence in Cocon is preserved
by the interpretation.

Proposition 5.2 (Soundness). The following are true.

• If Γ; Ψ ⊢ M ≡ N : A then
JΓK | · ⊢ JΓ; Ψ ⊢ M : AK = JΓ; Ψ ⊢ N : AK : (u: El JΨK) → El JAK.
• If Γ;Ψ ⊢ σ ≡ σ ′ : Φ then

JΓK | · ⊢ JΓ;Ψ ⊢ σ : ΦK = JΓ;Ψ ⊢ σ ′ : ΦK : (u: El JΨK) → El JΦK.
• If Γ ⊢ t1 ≡ t2 : τ̆ then JΓK | · ⊢ JΓ ⊢ t1 : τ̆ K = JΓ ⊢ t2 : τ̆ K : JΓ ⊢ τ̆ K.

The proof in the β and η equivalence cases of contextual types is interesting. In the case of β
equivalence, we have

Γ;Φ ⊢ M : A Γ;Ψ ⊢ σ : Φ
Γ;Ψ ⊢ ⌊⌈M⌉⌋σ ≡ [σ ]M : A

The right hand side is easy; substitution in terms is just composition of morphisms:

JΓ;Ψ ⊢ [σ ]M : AK = e1 ◦ e2 where JΓ;Φ ⊢ M : AK = e1 and JΓ;Ψ ⊢ σ : ΦK = e2

On the left hand side, we have

JΓ;Ψ ⊢ ⌊⌈M⌉⌋σ : AK = let box x = box e1 in ⋋ u : El e .x (e2 u) where JΓ ⊢ Ψ ctxK = e ,
JΓ;Φ ⊢ M : AK = e1 and JΓ;Ψ ⊢ σ : ΦK = e2

= ⋋u : El e .e1 (e2 u) due to the β rule of ♭

Thus the β equivalence of contextual types is sound semantically.
The following rule expresses the η equivalence of contextual types:

Γ ⊢ t : ⌈Ψ ⊢ A⌉
Γ ⊢ t ≡ ⌈⌊t⌋wkΨ̂⌉ : ⌈Ψ ⊢ A⌉

We reason as follows:

JΓ ⊢ ⌈⌊t⌋wkΨ̂⌉ : ⌈Ψ ⊢ A⌉K = box let box x = e ′ in ⋋ u : El e .x u

where JΓ ⊢ Ψ ctxK = e and JΓ ⊢ t : ⌈Ψ ⊢ A⌉K = e ′

= box let box x = JΓ ⊢ t : ⌈Ψ ⊢ A⌉K in x η equivalence of ⋋
= JΓ ⊢ t : ⌈Ψ ⊢ A⌉K

The last equation requires a second thought. Indeed, this equation does not normally hold. In
fact, box let box x = t in x = t is equivalent to requiring ♭ to be idempotent. In our model, this
turns out to be true, as we can see from

♭♭F (Ψ) = ♭F (⊤) = F (⊤) = ♭F (Ψ)

That is, ♭ is definitionally idempotent, which allows us to conclude the equation. The fact that we
rely on the idempotency of the ♭ modality implies that the model can only support a two-level
modal system.
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Domain-level types A,B ::= ty | trm M | Πx : A.B
Domain-level terms M,N ::= λx .M | M N | x | ⌊t⌋σ | c
Domain-level Constants c ::= o | arr | lam | app

Fig. 8. Syntax of dependent Cocon

6 DEPENDENTLY TYPED CASE

In the previous sections, we outlined the interpretation of a simply typed variant of Cocon to a
presheaf model. In this section, we demonstrate how the idea can be extended to the dependently
typed case. In the dependently typed case, both domain level and computation level have dependent
function spaces. This can be used to model intrinsically simply typed languages in the domain
level.

ty : type. trm : ty → type.
o : ty. lam : Π a : ty, Π b : ty, (trm a → trm b) → trm (arr a b).

arr : ty → ty → ty. app : Π a : ty, Π b : ty, trm (arr a b) → trm a → trm b.

In trm, we use the type parameter to keep track of the object-level type of an object-level term. We
still use HOAS to encode the case of lambda abstraction. As in the simply typed case, we have two
distinct function spaces in dependently typed Cocon as well: the weak space that is used in the
domain level and is used for HOAS, and the strong space that is used in the computation level and
supports induction.

6.1 A Simplified Cocon

To model a dependently typed variant of Cocon capable of encoding this object language, we
present the modification to the syntax of the simply typed Cocon in Fig. 8. In the syntax for
domain-level types, we add the types for the domain language as well as turn the simple function
space into a dependent one. For the terms, we add the corresponding constructors of domain
level types, trm and ty. Compared to Pientka et al. [2019], this version of Cocon is simplified by
removing the full hierarchy of universes; as a consequence, types and terms are separated.

The typing rules are shown in Fig. 9 and are changed more significantly. Since domain-level terms
can appear in types now, we need to add well-formedness condition for domain-level contexts,
Γ ⊢ Ψ ctx, and types, Γ;Ψ ⊢ A type. In particular, trm M is well-formed only ifM has type ty. In
the typing rules, the application rule and the unbox rule shows how dependent types are involved.
In particular, in the unbox case, the substitution σ is applied to A as the resulting type. Without
loss of generality, we require object-level constructors to be fully applied, e.g. arr a is not a valid
domain-level term. It helps to simplify the semantic interpretation and allows us to focus on the
essential idea of the development.
The computation-level judgments are shown in Fig. 10. Similar to the domain level, we also

need well-formedness judgments for computation-level contexts and types. Unlike Cocon defined
in Pientka et al. [2019], we need a separate judgment for well-formed types because we do not
have universes here. The computation-level language is also dependently typed, as shown in the
application rule. We also formulate the induction principle for trm and ty. The case for ty is
straightforward as it is a normal algebraic data type. For trm, in addition to the cases of lam and
app, we need a case for variables as in the simply typed settings.
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Γ ⊢ Ψ : ctx The domain-level context Ψ is well-formed

Γ ⊢ · : ctx
Γ(ψ ) = ctx

Γ ⊢ ψ : ctx
Γ ⊢ Φ : ctx Γ;Ψ ⊢ A type

Γ ⊢ Φ,x : A : ctx

From now on, whenever Ψ presents, Γ ⊢ Ψ : ctx is assumed.

Γ;Ψ ⊢ A type The domain-level type A is well-formed

Γ;Ψ ⊢ ty type

Γ;Ψ ⊢ M : ty
Γ;Ψ ⊢ trm M type

Γ;Ψ ⊢ A type Γ;Ψ,x : A ⊢ B type

Γ;Ψ ⊢ Πx : A.B type

Γ;Ψ ⊢ M : A TermM has type A in domain-level context Ψ and context Γ

x : A ∈ Ψ
Γ;Ψ ⊢ x : A

Γ;Ψ,x : A ⊢ M : B
Γ;Ψ ⊢ λx .M : Πx : A.B

Γ;Ψ ⊢ M : Πx : A.B Γ;Ψ ⊢ N : A
Γ;Ψ ⊢ M N : [N /x]B

Γ ⊢ t : ⌈Φ ⊢ A⌉ or Γ ⊢ t : ⌈Φ ⊢v A⌉ Γ;Ψ ⊢ σ : Φ
Γ;Ψ ⊢ ⌊t⌋σ : [σ ]A

Γ;Ψ ⊢ M : A Γ;Ψ ⊢ A ≡ B type

Γ;Ψ ⊢ M : B Γ;Ψ ⊢ o : ty

Γ;Ψ ⊢ a : ty Γ;Ψ ⊢ b : ty
Γ;Ψ ⊢ arr a b : ty

Γ;Ψ ⊢ a : ty Γ;Ψ ⊢ b : ty Γ;Ψ ⊢ f : trm a → trm b

Γ;Ψ ⊢ lam a b f : trm (arr a b)

Γ;Ψ ⊢ a : ty Γ;Ψ ⊢ b : ty Γ;Ψ ⊢m : trm (arr a b) Γ;Ψ ⊢ n : trm a
Γ;Ψ ⊢ app a b m n : trm b

Γ;Ψ ⊢ σ : Φ Substitution σ provides a mapping from the (domain) context Φ to Ψ

Γ ⊢ Ψ ctx

Γ;Ψ ⊢ · : ·
Γ;Ψ ⊢ σ : Φ Γ;Ψ ⊢ M : [σ ]A

Γ;Ψ ⊢ σ ,M : Φ,x : A

Γ ⊢ Ψ,
−−−→
x : A ctx

Γ;Ψ,−−−→x : A ⊢ wk
Ψ̂

: Ψ

Fig. 9. Domain-level judgments

6.2 Categories with Families

In the previous section, we showed that we can regard the domain-level language as a cartesian
closed category D and use the Yoneda embedding to embed the domain level into the presheaf
category D̂, which is regarded as the computation-level language. Interestingly, this model can be
extended to the case of dependently typed domain languages. In this case, D needs to have enough
structure to model dependent types, and the model we consider here is categories with families
(CwFs) [Dybjer 1995; Hofmann 1997].

Definition 6.1. A category with families C consists of the following data:
(1) a terminal object ⊤,
(2) a functor Ty : Cop → Set , whose action on morphisms we denote as −{σ } : Ty(Φ) → Ty(Ψ)

for σ : Ψ → Φ,
(3) for Φ ∈ C and A ∈ Ty(Φ), a set Tm(Φ,A), such that:
• for σ : Ψ → Φ and t ∈ Tm(Φ,A), t {σ } ∈ Tm(Ψ,A{σ }), and
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⊢ Γ Γ is a well-formed context

⊢ ·

⊢ Γ Γ ⊢ τ̆ type

⊢ Γ,x : τ̆

Γ ⊢ τ̆ type τ̆ is a well-formed type in context Γ

Γ ⊢ ctx type

Γ ⊢ τ̆1 type Γ,y : τ̆1 ⊢ τ2 type

Γ ⊢ (y : τ̆1) ⇒ τ2 type

Γ;Ψ ⊢ A type

Γ ⊢ ⌈Ψ ⊢ A⌉ type

Γ;Ψ ⊢ A type

Γ ⊢ ⌈Ψ ⊢v A⌉ type

Γ ⊢ C : T Contextual object C has contextual type T

Γ ⊢ (Ψ̂ ⊢ M ) : (Ψ ⊢ A)

x : A ∈ Ψ

Γ ⊢ (Ψ̂ ⊢ x ) : (Ψ ⊢v A)

x : ⌈Φ ⊢v A⌉ ∈ Γ Γ;Ψ ⊢ wk
Ψ̂

: Φ

Γ ⊢ (Ψ̂ ⊢ ⌊x⌋
wkΨ̂

) : (Ψ ⊢v A)

Γ ⊢ t : τ̆ Term t has computation type τ̆

y : τ̆ ∈ Γ
Γ ⊢ y : τ̆

Γ ⊢ C : T
Γ ⊢ ⌈C⌉ : ⌈T ⌉

Γ,y : τ̆1 ⊢ t : τ2

Γ ⊢ fn y ⇒ t : (y : τ̆1) ⇒ τ2

Γ ⊢ t : (y : τ̆1) ⇒ τ2 Γ ⊢ s : τ̆1

Γ ⊢ t s : [s/y]τ2

Γ ⊢ t : τ̆1 Γ ⊢ τ̆1 ≡ τ̆2 type

Γ ⊢ t : τ̆2

Recursor over ty: I = (ψ : ctx) ⇒ (y : ⌈ψ ⊢ ty⌉) ⇒ τ

Γ ⊢ t : ⌈Ψ ⊢ ty⌉ Γ ⊢ bo : I Γ ⊢ barr : I

Γ ⊢ recI (bo | barr) Ψ t : [Ψ, t/ψ ,y]τ

Branch for the o case
Γ,ψ : ctx ⊢ to : [⌈ψ ⊢ o⌉/y]τ

Γ ⊢ (ψ 7→ to) : I

Branch for the arr case
Γ,ψ : ctx,m,n : ⌈ψ ⊢ ty⌉, fm : [m/y]τ , fn : [n/y]τ ⊢ tarr : [⌈ψ ⊢ arr⌊m⌋ ⌊n⌋⌉/y]τ

Γ ⊢ (ψ ,m,n, fm , fn 7→ tarr) : I

Recursor over trm: I = (ψ : ctx) ⇒ (z : ⌈⊢ ty⌉) ⇒ (y : ⌈ψ ⊢ trm ⌊z⌋·⌉) ⇒ τ

Γ ⊢ t : ⌈⊢ ty⌉ Γ ⊢ t ′ : ⌈Ψ ⊢ trm[⌊t⌋·]⌉ Γ ⊢ bv : I Γ ⊢ blam : I Γ ⊢ bapp : I

Γ ⊢ recI (bv | blam | bapp) Ψ t t ′ : [Ψ, t , t ′/ψ , z,y]τ

Branch for the variable case
Γ,ψ : ctx,a : ⌈⊢ ty⌉, t : ⌈ψ ⊢v trm ⌊a⌋·⌉ ⊢ tv : [a, t/z,y]τ

Γ ⊢ (ψ ,a, t 7→ tv ) : I

Branch for the lam case

Γ,ψ : ctx,a,b : ⌈⊢ ty⌉,m : ⌈ψ ,x : trm ⌊a⌋· ⊢ trm ⌊b⌋·⌉,
fm : [(ψ , trm ⌊a⌋· ),b,m/ψ ,x ,y]τ ⊢ tlam : [⌈⊢ arr⌊a⌋ ⌊b⌋⌉, ⌈ψ ⊢ lam⌊a⌋· ⌊b⌋· (λx .⌊m⌋)⌉/z,y]τ

Γ ⊢ (ψ ,a,b,m, fm 7→ tlam) : I

Branch for the app case

Γ,ψ : ctx,a,b : ⌈⊢ ty⌉,m : ⌈ψ ⊢ trm(arr⌊a⌋· ⌊b⌋· )⌉,n : ⌈ψ ⊢ trm⌊a⌋·⌉,
fm : [⌈⊢ arr⌊a⌋ ⌊b⌋⌉,m/z,y]τ , fn : [a,n/z,y]τ ⊢ tapp : [b, ⌈ψ ⊢ app⌊a⌋· ⌊b⌋· ⌊m⌋ ⌊n⌋⌉/z,y]τ

Γ ⊢ (ψ ,a,b,m,n, fm , fn 7→ tapp) : I

Fig. 10. Judgments in the computation level
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• the equations t {idΦ} = t and t {σ }{δ } = t {σ ◦ δ } are valid.
(4) a context comprehension −.− so that given Φ ∈ C and A ∈ Ty(Φ), Φ.A ∈ C,
(5) for Φ ∈ C and A ∈ Ty(Φ), a projection morphism of context comprehension p (A) : Φ.A→ Φ,
(6) for Φ ∈ C and A ∈ Ty(Φ), a variable projection vA ∈ Tm(Φ.A,A{p (A)}), and
(7) for σ : Ψ → Φ, A ∈ Ty(Φ), and t ∈ Tm(Ψ,A{σ }), a unique extension morphism ⟨σ , t⟩ : Ψ →

Φ.A.
The following equations hold:
(1) p (A) ◦ ⟨σ , t⟩ = σ ,
(2) vA{⟨σ , t⟩} = t , and
(3) σ = ⟨p (A) ◦ σ ,vT {σ }⟩ where σ : Φ→ Ψ.A.

We regard the objects in C as contexts and the morphisms as substitutions of one context for
another. Based on this understanding, Ty(Φ) denotes the set of semantic types in context Φ. Given
a semantic type A ∈ Ty(Φ), A{σ } is thus applying the substitution σ to A given σ : Ψ → Φ. Based
on their definitions, we can prove the following properties of type and term substitutions. Given
A ∈ Ty(Φ), σ : Ψ → Φ, δ : Ψ′ → Ψ, t : Tm(Φ,A):

A{idΦ} = A

A{σ }{δ } = A{σ ◦ δ }

Tm(Φ,A) denotes the set of semantic terms of type A in context Φ. Given a term t ∈ Tm(Φ,A)
and a substitution σ : Ψ → Φ, t {σ } : Tm(Ψ,A{σ }) is the result of applying σ to t . Note that the
type of this term is A{σ }, so CwFs are capable of handling dependent types.
Sometimes, given a substitution σ : Ψ → Φ and A ∈ Ty(Φ), we would like to obtain another

substitutionq(σ ,A) : Ψ.A{σ } → Φ.A. This substitution is needed belowwhenwe define substitution
for Π types. We can define

q(σ ,A) := ⟨σ ◦ p (A{σ }),vA{σ }⟩

By applying the property of p (A{σ }), we can see that the following diagram is a pullback:

Ψ.A{σ } Φ.A

Ψ Φ

q (σ ,A)

p (A{σ }) p (A)

σ

We shall work with telescopes of types. A telescope of types in context Φ is a sequence of types
A1,A2, . . . ,An such that A1 ∈ Ty(Φ), A2 ∈ Ty(Φ.A1), . . . , An ∈ Ty(Φ.A1. . . .An−1). We write A⃗ to
range over telescopes and extend context comprehension, substitution and projection to telescopes
in the canonical way. That is, we write Φ.A⃗ for Φ.A1. . . . .An and p (A⃗) for p (A1) ◦ · · · ◦ p (An ).

Up until this point, we have obtained a generic categorical structure for dependent type theory.
In order to model the dependent function space, we need a semantic type former.

Definition 6.2. [Hofmann 1997] Semantic Π types in a CwF C have the following data:
(1) A semantic type Π(A,B) ∈ Ty(Φ) for each A ∈ Ty(Φ) and B ∈ Ty(Φ.A),
(2) a semantic term ΛA,B (M ) ∈ Tm(Φ,Π(A,B)) for eachM ∈ Tm(Φ.A,B), and
(3) a semantic term AppA,B (M,N ) ∈ Tm(Φ,B{⟨idΦ,N ⟩}) for each M ∈ Tm(Φ,Π(A,B)) and

N ∈ Tm(Φ,A).
so that the following axioms are satisfied:
(1) Π(A,B){σ } = Π(A{σ },B{q(σ ,A)}) ∈ Ty(Ψ) for σ : Ψ → Φ,
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(2) ΛA,B (M ){σ } = ΛA{σ },B {q (σ ,A) } (M {q(σ ,A)}) ∈ Tm(Ψ,Π(A,B){σ }) for M ∈ Tm(Φ.A,B) and
σ : Ψ → Φ,

(3) AppA,B (M,N ){σ } = AppA{σ },B {q (σ ,A) } (M {σ },N {σ }) ∈ Tm(Ψ,B{⟨idΦ,N ⟩}{σ }) = Tm(Ψ,B{⟨σ ,N {σ }⟩})
forM ∈ Tm(Φ,Π(A,B)), N ∈ Tm(Φ,A) and σ : Ψ → Φ,

(4) AppA,B (ΛA,B (M ),N ) = M {⟨idΦ,N ⟩} ∈ Tm(Φ,B{⟨idΦ,N ⟩}) for each M ∈ Tm(Φ.A,B) and
N ∈ Tm(Φ,A), and

(5) ΛA,B (AppA,B (M {p (A)},vA)) = M ∈ Tm(Φ,Π(A,B)).

We often omit the subscripts of Λ and App in favor of conciseness when they can be unambigu-
ously inferred. For example, the fourth axiom can be more concisely expressed as App(Λ(M ),N ) =
M {⟨idΦ,N ⟩}.
One characteristic of this framework is that the consistency of equations involves reasoning

about equality between sets. Consider the third equation above. We can transform the left hand
side as follows:

App(M,N ){σ } ∈ Tm(Φ,B{⟨idΨ,N ⟩}{σ })

= Tm(Φ,B{⟨idΨ,N ⟩ ◦ σ })

= Tm(Φ,B{⟨σ ,N {σ }⟩}) property of extension morphism

The right hand side has:

App(M {σ },N {σ }) ∈ Tm(Φ,B{q(σ ,A)}{⟨idΦ,N {σ }⟩})

= Tm(Φ,B{q(σ ,A) ◦ ⟨idΦ,N {σ }⟩})

= Tm(Φ,B{⟨σ ◦ p (A{σ }),vA{σ }⟩ ◦ ⟨idΦ,N {σ }⟩})

= Tm(Φ,B{⟨σ ,N {σ }⟩})

As both terms belong to the same set, the equation is well-defined.
Combining the definition of a CwF with Π types, we are able to capture the nature of dependent

types with dependent function spaces in both the domain level and the computation level. We can
also axiomatize other types like ty and trm and their constructors. However, we need more to
interpret Cocon:
(1) CwFs do not provide a direct connection between the domain and the computation level;
(2) the domain-level terms exhibit different substitution behavior from the computation terms.

To overcome these issues, we can extend the model presented in Section 2 by requiring the domain
category to possess structure of a CwF. We will expand our discussion in the next section.

6.3 Presheaves over a Small Category with Families

Having introduced an appropriate notion of model for dependent type theories, we can now
generalise the construction from Section 4 to the case of dependent domain languages.

As in the simply-typed case, we begin with a term model D of the domain-level type theory. The
main difference is that in the dependent case, this category has the structure of a CwF instead of
being just cartesian closed. In order to interpret the computation types of Cocon, we work in the
presheaf category D̂. This category has enough structure to interpret Cocon computations and
also embeds D fully and faithfully via the Yoneda embedding.

A Universe for a small CwF. For working with the internal type theory of D̂, it is again convenient
to capture the embedding ofD into D̂ in terms of a Tarski-style universe. It is given by the following
term and type constants in the internal type theory of D̂. The types Ctx and ElΦ generalize Obj
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and Ela from Section 4 to the dependent case:
· ⊢ Ctx type Φ : Ctx ⊢ El (Φ) type Φ : Ctx ⊢ Ty(Φ) type

Φ : Ctx, A : Ty(Φ) ⊢ Tm(Φ,A) type · ⊢ ⊤ : Ctx Φ : Ctx, A : Ty(Φ) ⊢ Φ.A : Ctx

Φ : Ctx ⊢ ! : El (Φ) → El (⊤) Φ : Ctx, A : Ty(Φ) ⊢ p : El (Φ.A) → El (Φ)

Φ : Ctx, A : Ty(Φ) ⊢ v : Tm(Φ.A,A{p})

Φ : Ctx, Ψ : Ctx, A : Ty(Ψ), σ : El (Φ) → El (Ψ) ⊢ A{σ } : Ty(Φ)

Φ,Ψ : Ctx, A : Ty(Ψ), M : Tm(Ψ,A), σ : El (Φ) → El (Ψ) ⊢ M {σ } : Tm(Φ,A{σ })

Ψ,Φ : Ctx, σ : El (Ψ) → El (Φ), A : Ty(Φ), M : Tm(Ψ,A{σ }) ⊢ ⟨σ ,M⟩ : El (Ψ) → El (Φ.A)

Let us outline the interpretation of these constants in D̂ next. Recall from Section 3 that contexts
are objects of D̂, types in context Γ are presheaves T̂y(Γ) = ∫ Γop → Set , and terms are sections of
the projections maps p : Γ.A→ Γ in D̂. We detail the required structure used in the interpretation.

The interpretation of the types Ctx and El (Φ) is as follows:

Ctx : T̂y(⊤)

Ctx(Ψ, ∗) = {A⃗ | A⃗ is a telescope of types in context Ψ}

Ctx(σ : (Ψ′, ∗) → (Ψ, ∗)) = A⃗ 7→ A⃗{σ }

El : T̂y(⊤.Ctx)

El (Ψ, (∗, A⃗)) = {σ ∈ D(Ψ,Ψ.A⃗) | p (A⃗) ◦ σ = idΨ}

El (σ : (Ψ′, (∗, A⃗{σ }) → (Ψ, (∗, A⃗))) = f ∈ D(Ψ,Ψ.A⃗) 7→ f {σ }

The types of the form Ty(Φ) in the internal type theory are interpreted as follows:

Ty : T̂y(⊤.Ctx)

Ty(Ψ, (∗, A⃗)) = Ty(Ψ.A⃗)

Ty(σ : (Ψ′, (∗, A⃗{σ }) → (Ψ, (∗, A⃗))) = B ∈ Ty(Ψ.A⃗) 7→ B{q(σ , A⃗)}

Here Ty on the right hand side is given by the CwF structure of the domain category D. That is, Ty
is defined in terms of Ty in the domain category, so all types of the domain level can be referred to
as terms in the presheaf category.

The types of the form Tm(Φ,A) are interpreted as follows.

Tm : T̂y(⊤.Ctx.Ty)

Tm(Ψ, (∗, A⃗,B)) = Tm(Ψ.A⃗,B)

Tm(σ ) = M 7→ M {q(σ , A⃗)}

Similar to Ty, Tm is also defined by terms Tm in the domain category D.
For spelling out the interpretation of the remaining terms, we need to give a manageable

presentation of the semantic interpretation of function types of the form El (Φ) → El (Φ′). In the
simply typed case, the Yoneda lemma shows an isomorphism between D(Φ,Φ′) and D̂(y(Φ), y(Φ′)).
In the dependently typed case, this isomorphism remains: the function space El (Φ) → El (Φ′) is
isomorphic to D(Φ,Φ′), as proved by the following lemma:
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Lemma 6.3. The interpretation of

Φ:Ctx,Φ′:Ctx ⊢ El (Φ) → El (Φ′) type

in the internal type theory of D̂ is isomorphic to the following presheaf Hom:

Hom : T̂y(⊤.Ctx.Ctx{p})

Hom(Ψ, (∗, A⃗, B⃗)) = {σ ∈ D(Ψ.A⃗,Ψ.B⃗) | p (B⃗) ◦ σ = p (A⃗)}

Proof. For one direction, as given in Section 3, the type El (Φ) → El (Φ′) in the syntax is
interpreted to a function f which takes σ : Φ→ Ψ andM : Φ→ Φ.A⃗{σ } and outputs Φ→ Φ.B⃗{σ }

that is natural in Φ. Then we obtain f (pA⃗ : Ψ.A⃗→ Ψ,v : Ψ.A⃗→ Ψ.A⃗.A⃗{pA⃗}) : Ψ.A⃗→ Ψ.A⃗.B⃗{pA⃗},
such that pA⃗ ◦ f (pA⃗,v ) = idΨ.A⃗. We obtain Ψ.A⃗→ Ψ.B⃗ by composing q(pA⃗, B⃗) with f (pA⃗,v ).
The other direction is given σ : Ψ.A⃗ → Ψ.B⃗, δ : Φ → Ψ and σ ′ : Φ → Φ.A⃗{δ } and outputs

Φ→ Φ.B⃗{δ }.

Ψ.A⃗ Ψ.B⃗

Φ Φ.A⃗{δ } Φ.B⃗{δ }

σ

σ ′

q (δ,A⃗) q (δ, B⃗ )

Thus the morphism Φ → Φ.B⃗{δ } is obtained by composing σ ′ with the unique morphism that
makes the above square a pullback. □

In the following, we shall apply the isomorphism from the lemma implicitly and treat the
interpretation of El (Φ) → El (Φ′) to be the same as Hom.
With this convention, we are able to give an explicit interpretation for the judgments that we

give at the beginning of this section. Recall, for example, the term for type substitution:
Φ : Ctx, Ψ : Ctx, A : Ty(Ψ), σ : El (Φ) → El (Ψ) ⊢ A{σ } : Ty(Φ)

This term A{σ } is interpreted as the following natural transformation:

A{σ }Θ := (∗, A⃗, B⃗,C : Ty(Θ.B⃗),σ : Θ.A⃗→ Θ.B⃗) 7→ (∗, A⃗, B⃗,C,σ ,C{σ })

Recall that terms of D̂ are interpreted as sections of context projections, so A{σ } is a natural
transformation from the interpretation of the context Γ := Φ : Ctx, Ψ : Ctx, A : Ty(Ψ), σ :
El (Φ) → El (Ψ) to the interpretation of the context Γ, B : Ty(Φ). A⃗ and B⃗ interpret Φ and Ψ
respectively because Ctx is interpreted as a set of telescopes of Θ.

We omit the interpretation of the remaining terms and the verification of the equations and next
turn to the case where D is a CwF with dependent product.

Domain-level Π types. Domain-level Π types can be formulated by the following constants:
Φ : Ctx,A : Ty(Φ),B : Ty(Φ.A) ⊢ Π(A,B) : Ty(Φ)

Φ : Ctx,M : Tm(Φ.A,B) ⊢ Λ(M ) : Tm(Φ,Π(A,B))

Φ : Ctx,M : Tm(Φ,Π(A,B)),N : Tm(Φ,A) ⊢ App(M,N ) : Tm(Φ,B{⟨1Φ,N ⟩})
Π types defined here reside in the presheaf category and model Π types in the domain category D.
They can be defined in terms of Π types in D as the types defined above:

ΠΨ := (∗, A⃗,C : Ty(Ψ.A⃗),D : Ty(Ψ.A⃗.C )) 7→ (∗, A⃗,C : Ty(Ψ.A⃗),D : Ty(Ψ.A⃗.C ),Π(C,D))

where Π(C,D) is given by the Π types in D.
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Object-level Language. Finally we can define a model for the object-level language defined in
the beginning of Section 6. In this object language, trm is indexed by ty. We encode the object
language as follows:

· ⊢ ty : Ty(⊤) · ⊢ trm : Ty(⊤.ty) Φ : Ctx ⊢ ty′ := ty{!} : Ty(Φ)

For convenience, we introduce the abbreviation ty
′ for ty{!}. We model ty and trm in their minimal

contexts in order to avoid formulating their coherence conditions w.r.t. substitutions. In the front-
end language, we use the applied form trm a to denote a type of terms with type a. In the model
given as here, we must apply a substitution instead:

Φ : Ctx,a : Tm(Φ, ty′) ⊢ trm{⟨!,a⟩} : Ty(Φ)

That is, in the front-end syntax, we write trm a, which is interpreted as trm{⟨!,a⟩} in the model.
We introduce an abbreviation for later:

trm[a] := trm{⟨!,a⟩}

Finally, the constructors of the object language are formulated as follows:
Φ : Ctx ⊢ o : Tm(Φ, ty′) Φ : Ctx ⊢ arr : Tm(Φ, ty′) → Tm(Φ, ty′) → Tm(Φ, ty′)

Φ : Ctx ⊢ lam : (a,b : Tm(Φ, ty′)) → Tm(Φ.trm[a], trm[b{p}]) → Tm(Φ, trm[arr(a,b)])

Φ : Ctx ⊢ app : (a,b : Tm(Φ, ty′)) → Tm(Φ, trm[arr(a,b)]) → Tm(Φ, trm[a]) → Tm(Φ, trm[b])

Category-theoretic perspective. A number of properties of the universe El can be obtained by
category-theoretic considerations. We have explained El as a syntactic representation of the Yoneda
embedding. It has been shown [Capriotti 2016] that the Yoneda embedding is a morphism of CwFs,
which means that it is a functor preserving the CwF structure. Using the notation of [Capriotti
2016, Definition 2.1.4] this means that there are isomorphisms such as y(Φ.A) � y(Φ).yTy (A) for
the preservation of context comprehension. The terms and types for the universe El in the internal
type theory that we have defined at the beginning of this section are a syntactic presentation of
this structure.

With this category-theoretic view, it is possible to use existing results on morphisms of CwFs to
obtain information about the universe El . For example, [Clairambault and Dybjer 2014, Proposi-
tion 4.8] can be used to show that the Yoneda embedding preserves Π-types up to isomorphism,
because the Yoneda embedding preserves local cartesian closed structure [Pitts 1987, Lemma 4.5].
This gives us isomorphisms such as between El (Φ) → El (Φ′) and El (Φ→ Φ′). For instance the
direct proof of Lemma 6.3 above can be understood as an instance of this isomorphism.

6.4 Interpreting the Domain Level

Given the semantic model, we can detail the interpretation of the dependently typed Cocon defined
in Section 6.1 into this model. The interpretation is a natural generalization of the simply typed
version. First we will consider the interpretation of the domain-level types and terms, as shown
in Fig. 11. One complication we encountered here is that various judgments are interdependent.
For example, the type well-formedness judgment Γ;Ψ ⊢ A type and the term well-formedness
judgment Γ;Ψ ⊢ M : A depend on each other. As previously discussed, a general fact of the
interpretation is that trm M in the syntactic level is interpreted to trm[JMK].
In the interpretation, we proceed by interpreting domain-level types, JΓ;Ψ ⊢ A typeK. We

interpret ty and trm to their semantic correspondences. Dependent function types Π is interpreted
to semantic Π types as defined in the previous subsection. The interpretation of domain-level
contexts JΓ ⊢ Ψ ctxK is defined recursively by appending interpreted types to the end of the
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Interpretation of domain-level types
JΓ;Ψ ⊢ Πx : A.B typeK = Π(JΓ;Ψ ⊢ A typeK, JΓ;Ψ,x : A ⊢ B typeK)

JΓ;Ψ ⊢ ty typeK = ty
′

JΓ;Ψ ⊢ trm M typeK = trm[JΓ;Ψ ⊢ M : tyK]
Interpretation of domain-level contexts
JΓ ⊢ · ctxK = ⊤

JΓ ⊢ Ψ,x : A ctxK = JΓ ⊢ Ψ ctxK.JΓ;Ψ ⊢ A typeK

JΓ ⊢ ψ ctxK = ψ

Interpretation of domain-level substitutions where Ψ′ = JΓ ⊢ Ψ ctxK

JΓ;Ψ ⊢ · : ·K = ! : El (Ψ′) → El (⊤)

JΓ;Ψ ⊢ σ ,M : Φ,x : AK = ⟨e1, e2⟩ : El (Ψ′) → El (Φ′.A′) where A′ = JΓ;Φ ⊢ A typeK

and Φ′ = JΓ ⊢ Φ ctxK

and e1 = JΓ;Ψ ⊢ σ : ΦK : El (Ψ′) → El (Φ′)

and e2 = JΓ;Ψ ⊢ M : A[σ/Φ̂]K : Tm(Ψ′,A′{e1})

JΓ;Ψ,−−−→x : A ⊢ wk
Ψ̂

: ΨK = pk : El (JΓ ⊢ Ψ,−−−→x : A ctxK) → El (Ψ′) where k = |−−→x :A|
Interpretation of domain-level terms where Ψ′ = JΓ ⊢ Ψ ctxK

JΓ;Ψ ⊢ x : AK = v{pk } : Tm(Ψ′,A′{pk+1}) where Ψ = Ψ0,x : A,−−−−−→yi : Bi

and |−−−−−→yi : Bi | = k
A′ = JΓ;Ψ0 ⊢ A typeK

JΓ;Ψ ⊢ λx .M : Πx : A.BK = Λ(e ) : Tm(Ψ′,Π(A′,B′))
where A′ = JΓ;Ψ ⊢ A typeK and B′ = JΓ;Ψ,x : A ⊢ B typeK,

and e = JΓ;Ψ,x : A ⊢ M : BK : Tm(Ψ′.A′,B′)

JΓ;Ψ ⊢ M N : [N /x]BK = App(e1, e2) : Tm(Ψ′,B′{e2})
where A′ = JΓ;Ψ ⊢ A typeK and B′ = JΓ;Ψ,x : A ⊢ B typeK,

and e1 = JΓ;Ψ ⊢ M : Πx : A.BK : Tm(Ψ′,Π(A′,B′)),
and e2 = JΓ;Ψ ⊢ N : AK : Tm(Ψ′,A)

JΓ;Ψ ⊢ o : tyK = o : Tm(Ψ′, ty′)

JΓ;Ψ ⊢ arr a b : tyK = arr(JΓ;Ψ ⊢ a : tyK, JΓ;Ψ ⊢ b : tyK) : Tm(Ψ′, ty′)

JΓ;Ψ ⊢ lam a b m : trm (arr a b)K = lam(a′,b ′,App(e ′{p},v )) : Tm(Ψ′, trm[arr (a′,b ′)])
where a′ = JΓ;Ψ ⊢ a : tyK : Tm(Ψ′, ty′),

and b ′ = JΓ;Ψ ⊢ b : tyK : Tm(Ψ′, ty′),
and e ′ = JΓ;Ψ ⊢m : trm a → trm bK : Tm(Ψ′,Π(trm[a′], trm[b ′{p}])),

and v : Tm(Ψ′.trm[a′], trm[a′]{p})
JΓ;Ψ ⊢ app a b m n : trm bK = app(a′,b ′, e1, e2) : Tm(Ψ′, trm[b ′])

where a′ = JΓ;Ψ ⊢ a : tyK and b ′ = JΓ;Ψ ⊢ b : tyK,
and e1 = JΓ;Ψ ⊢m : trm (arr a b)K

and e2 = JΓ;Ψ ⊢ n : trm aK

JΓ;Ψ ⊢ ⌊t⌋σ : [σ/Φ̂]AK = let box u = e1 in u{e2} : Tm(Ψ′,A′{e2})

where Φ′ = JΓ ⊢ Φ ctxK and A′ = JΓ;Φ ⊢ A typeK,
and e1 = JΓ ⊢ t : ⌈Φ ⊢ A⌉K : ♭(Tm(Φ′,A′)),
and e2 = JΓ;Ψ ⊢ σ : ΦK : El (Ψ′) → El (Φ′)

Fig. 11. Interpretation of the domain-level level
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semantic context. The empty context · is interpreted to the terminal object ⊤ and a context variable
ψ is interpreted to an interpreted crisp variable in the interpretation of Γ, which we will give later
in the interpretation of the computation level.
Domain-level substitutions are interpreted to substitution morphisms by JΓ;Ψ ⊢ σ : ΦK. The

interpretation in this case is very similar to the simply typed case. We use ! for the case of an empty
substitution, ⟨e1, e2⟩ for an extended substitution, and iterated first projections pk for weakening
substitutions.
Last we interpret domain-level terms using JΓ;Ψ ⊢ t : AK. In the variable case, given well-

typedness, we know that the domain-level context Ψ must have the form Ψ0,x : A,−−−−−→yi : Bi . We first
use v : Tm(Ψ0.A

′,A′{p}) to extract x from Ψ0,x : A. Then we apply weakening pk to it where k is
the length of the part of context after x , which gives us v{pk }. The abstraction and the application
cases are straightforward; they are interpreted to their semantic terms immediately. Next we
interpret the constructors on the object level. o and arr are interpreted directly to their semantic
correspondences.
The lam case is more interesting, because we need to determine how HOAS encoding in the

domain language corresponds in the semantics. According to the rule for lam in the previous
subsection, HOAS corresponds to a semantic term in the set Tm(Φ′.trm[a′], trm[b ′{p}]). Meanwhile,
if we directly interpretm as in the rule, we obtain a term e ′ in the set Tm(Ψ′,Π(trm[a′], trm[b ′{p}])).
Therefore, we need to transform e ′ properly by supplying App(e ′{p},v ). We can examine that this
transformation does achieve the goal:

App(e ′{p},v ) : Tm(Ψ′.trm[a′], trm[b ′{p}]{p}{⟨idΨ′ .trm[a′],v⟩})

= Tm(Ψ′.trm[a′], trm[b ′{p}]{p ◦ ⟨idΨ′ .trm[a′],v⟩})

= Tm(Ψ′.trm[a′], trm[b ′{p}])

The app case is straightforward. In the unbox case, we first interpret t , from which we obtain a
boxed semantic term. We use let box to extract from itu in Tm(Φ′,A′). By applying the interpreted
substitution e2 to u, we obtain a term in the expected set Tm(Ψ′,A′{e2}).

6.5 Interpreting the Computation Level

In this section, we discuss the interpretation of the computation level of Cocon. The interpretation
of the computation level is simpler than the one of the domain level, because we work in a presheaf
category which possesses a CwF structure with Π types. The interpretation only needs to relate
the corresponding parts.

The interpretation functions without the recursors are shown in Fig. 12. They are very similar to
the simply typed case. In the interpretation of computation types, JΓ ⊢ τ̆ typeK, we surround boxed
contextual types with a ♭ modality, and the contextual types are interpreted using JΓ ⊢ (Ψ ⊢ A)K,
resulting in some Tm. Computation-level functions are directly translated to crisp functions in the
model, similar to the simply typed case. This is because we want to maintain the invariant where
computation-level variables are all crisp and in the model all crisp variables live in ♭. At last, we
simply map ctx to Ctx which is a type representing the domain-level contexts.

The interpretation of computation contexts, JΓK, simply iteratively interprets all types in it. Note
that a computation-level context Γ is interpreted to a global or crisp context in our model. That is
why we do not wrap all interpreted types with ♭ and seemingly mismatches with the parameter
types in function types. We will resolve this problem when interpreting computation-level terms.
The interpretations of contextual objects and contextual terms are immediately reduced to

the interpretations of domain-level types and terms, which we have discussed in the previous
subsection. Since Ψ ⊢v A denotes a variable of type A in domain context Ψ, the interpretation as a

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2022.



A Category Theoretic View of Contextual Types: from Simple Types to Dependent Types 1:29

Intepretation of computation types
JΓ ⊢ ⌈T ⌉ typeK = ♭JΓ ⊢ T K

JΓ ⊢ (x : τ̌1) ⇒ τ2 typeK = (x :: JΓ ⊢ τ̌1 typeK) →♭ JΓ,x : τ̆1 ⊢ τ2 typeK

JΓ ⊢ ctx typeK = Ctx

Interpretation of computation contexts
J·K = ·

JΓ,x : τ̌ K = JΓK,x :: JΓ ⊢ τ̆ typeK
Interpretation of contextual objects

JΓ ⊢ (Ψ̂ ⊢ M ) : (Ψ ⊢ A)K = JΓ;Ψ ⊢ M : AK

JΓ ⊢ (Ψ̂ ⊢ M ) : (Ψ ⊢v A)K = JΓ;Ψ ⊢ M : AK
Interpretation of contextual types

JΓ ⊢ (Ψ ⊢ A)K = Tm(JΓ ⊢ Ψ ctxK, JΓ;Ψ ⊢ A typeK)

JΓ ⊢ (Ψ ⊢v A)K = Tmv (JΓ ⊢ Ψ ctxK, JΓ;Ψ ⊢ A typeK) Tmv is Tm but equivalent to v{pk }
Interpretation of computation terms

JΓ ⊢ ⌈C⌉ : ⌈T ⌉K = box JΓ ⊢ C : T K

JΓ ⊢ t s : [s/y]τ2K = JΓ ⊢ t : (y : τ̌1) ⇒ τ2K JΓ ⊢ s : τ̌1K

JΓ ⊢ fn x ⇒ t : (x : τ̌1) ⇒ τ2K = ⋋♭ x :: ♭JΓ ⊢ τ̆1 typeK.JΓ,x : τ̌1 ⊢ t : τ2K

JΓ ⊢ x : τ̌ K = x

Fig. 12. Interpretation of the computation level without recursors

Tm(Φ,A) is restricted such that it is semantically also a variable lookup v{pk }. restricted semantic
term in the set Tm(Φ,A) in the form ofv{pk }. This is indeed the case by looking at the interpretation
of the variable case of the domain level.

The interpretation of the computation-level terms is straightforward. Boxed contextual objects
are simply interpreted as boxed domain-level terms in the model. Since we interpret to computation-
level functions to crisp functions, we use crisp applications and ⋋♭ abstractions respectively to
interpret computation-level applications and abstractions. Notice that in the application case, due
to the soundness theorem we are about to show, the interpretation of s , JΓ ⊢ s : τ̆1K, is indeed closed,
and thus the application is valid. At last, variables are simply interpreted to those in the semantic
context.

6.6 Interpreting Recursors

Compared to the previous standard interpretations, the recursors are more interesting to consider.
The recursor of ty appears to be very typical because it is simply a algebraic data type, which can
already be modeled conventionally using the initial algebra of some polynomial functor. Therefore,
we omit the concrete formulation here in favor of conciseness and only focus on the recursor of
trm.
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The semantic recursor for trm:
Γ | · ⊢ Ψ : Ctx Γ | · ⊢ a : ♭(Tm(⊤, ty)) Γ | · ⊢ y : ♭(Tm(Ψ, trm[lift(Ψ,a)]))

Γ ⊢ R (Ψ,a,y) type

Γ | · ⊢ Ψ : Ctx Γ | · ⊢ a : ♭(Tm(⊤, ty)) Γ | · ⊢ t : ♭(Tmv (Ψ, trm[lift(Ψ,a)]))
Γ | · ⊢ Bv (Ψ,a, t ) : R (Ψ,a, t )

Γ | · ⊢ Ψ : Ctx Γ | · ⊢ a : ♭(Tm(⊤, ty))
Γ | · ⊢ b : ♭(Tm(⊤, ty)) Γ | · ⊢m : ♭(Tm(Ψ.trm[lift(Ψ,a)], trm[lift(Ψ.trm[lift(Ψ,a)],b)]))

Γ | · ⊢ fm : R (Ψ.trm[lift(Ψ,a)],b,m)

Γ | · ⊢ B
lam

(Ψ,m, fm ) : R (Φ, arr′(a,b), lam′(Ψ,m))

Γ | · ⊢ Ψ : Ctx Γ | · ⊢ a : ♭(Tm(⊤, ty)) Γ | · ⊢ b : ♭(Tm(⊤, ty))
Γ | · ⊢m : ♭(Tm(Ψ, trm[arr(lift(Ψ,a), lift(Ψ,b))]))

Γ | · ⊢ n : ♭(Tm(Ψ, trm[lift(Ψ,a)])) Γ | · ⊢ fm : R (Ψ, arr′(a,b),m) Γ | · ⊢ fn : R (Ψ,a,n)
Γ | · ⊢ Bapp (Ψ,m,n, fm , fn ) : R (Ψ,b, app′(Ψ,m,n))

Γ | · ⊢ rectrm (Bv ,Blam,Bapp) : (Ψ : Ctx) → (a : ♭(Tm(⊤, ty))) → (y : ♭(Tm(Ψ, trm[lift(Ψ,a)]))) → R (Ψ,a,y)

Equations:

rectrm (Bv ,Blam,Bapp,Ψ,a,x ) = Bv (Ψ,a,x ) where x : ♭(Tmv (Ψ, trm[lift(Ψ,a)]))
rectrm (Bv ,Blam,Bapp,Ψ, arr

′(a,b), lam′(Ψ,m))

=B
lam

(Ψ, f , rectrm (Bv ,Blam,Bapp,Ψ.trm[lift(Ψ,a)],b,m))

rectrm (Bv ,Blam,Bapp,Ψ,b, app
′(Ψ,m,n))

=B
lam

(Ψ, f ,m,n, rectrm (Bv ,Blam,Bapp,Ψ, arr
′(a,b),m), rectrm (Bv ,Blam,Bapp,Ψ,a,n))

Fig. 13. Semantic recursor

In order to formulate the semantic recursor of trm, we define the following three auxiliary
definitions:

Γ | · ⊢ A : Ty(⊤) Γ | · ⊢ Ψ : Ctx Γ | · ⊢ t : ♭(Tm(⊤,A))
Γ | · ⊢ lift(Ψ, t ) := let box x ′ = t in x ′{!} : Tm(Ψ,A{!})

Γ | · ⊢ a : ♭(Tm(⊤, ty)) Γ | · ⊢ b : ♭(Tm(⊤, ty))

Γ | · ⊢ arr′(a,b) := let box a′ = a in let box b ′ = b in box arr(a′,b ′) : ♭(Tm(⊤, ty))

Γ | · ⊢ Ψ : Ctx
Γ | · ⊢ a : Tm(Ψ, ty′) Γ | · ⊢ b : Tm(Ψ, ty′) Γ | · ⊢m : ♭(Tm(Ψ.trm[a], trm[b{p}]))
Γ | · ⊢ lam′(Ψ,m) := let boxm′ =m in box lam(a,b,m′) : ♭(Tm(Ψ, trm[arr(a,b)]))

Γ | · ⊢ Ψ : Ctx Γ | · ⊢ a : Tm(Ψ, ty′)
Γ | · ⊢ b : Tm(Ψ, ty′) Γ | · ⊢m : ♭(Tm(Ψ, trm[arr (a,b)])) Γ | · ⊢ n : ♭(Tm(Ψ, trm[a]))

Γ | · ⊢ app′(Ψ,m,n) := let boxm′ =m in let box n′ = n in box app(a,b,m′,n′) : ♭(Tm(Ψ, trm[b]))
These helpers are defined to ease the operations related to the ♭ modality. For example, the lift
function transforms a term t of type ♭(Tm(⊤,A)) to Tm(Ψ,A{!}) for some domain-level context Ψ.
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The interpretation of the recursor for trm where I = (ψ : ctx) ⇒ (z : ⌈⊢ ty⌉) ⇒ (y : ⌈ψ ⊢ trm ⌊z⌋·⌉) ⇒ τ

JΓ ⊢ recI (bv | blam | bapp) Ψ t t ′ : τ [Ψ, t , t ′/ψ , z,y]K = rectrm (ev , elam, eapp, eΨ, et , et ′ )
where eΨ = JΓ ⊢ Ψ ctxK

and et = JΓ ⊢ t : ⌈⊢ ty⌉K
and et ′ = JΓ ⊢ t ′ : ⌈Ψ ⊢ trm[⌊t⌋·]⌉K

and ev = JΓ ⊢ bv : IK

and e
lam
= JΓ ⊢ blam : IK

and eapp = JΓ ⊢ bapp : IK

Interpretation of branches

JΓ ⊢ bv : IK = ⋋♭ Ψ a t .e where e = JΓ,Ψ : ctx,a : ⌈⊢ ty⌉, t : ⌈Ψ ⊢v trm ⌊a⌋·⌉ ⊢ tv : τ [a, t/z,y]K

JΓ ⊢ blam : IK = ⋋♭ Ψ a b m fm .e where e = Jthe premise judgmentK

JΓ ⊢ bapp : IK = ⋋♭ Ψ a b m n fm fn .e where e = Jthe premise judgmentK

Fig. 14. Interpretation of recursor for trm

lam
′ takes a boxed HOAS representation,m, and return a boxed trm constructed by lam. Similarly,

app
′ takes two boxed trm and return a boxed trm constructed by app. We need these helpers in

order to reduce the clusters in the formulation of the semantic recursor of trm and the equations,
which is presented in Fig. 13.

Since the recursion happens in the computation level, we require the local context to be empty, so
we only handle closed domain-level types and terms. In the variable case, we require the semantic
term t to be Tmv , so that it indeed represents a variable in Ψ. In the lam case, the recursion
involves a HOAS encoding of an object-level term. This corresponds to a domain-level term with
an augmented context Ψ.trm[lift(Ψ,a)]. The app case is straightforward since it just goes down
to the subterms recursively.

Given the semantic recursor, we can straightforwardly interpret the syntactical recursor, shown
in Fig. 14.
Given the recursor, we can interpret the syntactical recursor quite straightforwardly to the

semantic recursor. Following the pattern from the simply typed case, we interpret branches to crisp
functions and the bodies are recursively interpreted.

That concludes our interpretations. We formulate the soundness properties of the interpretations
as below, which are proved via a mutual induction.

Theorem 6.4 (Soundness). The following are true.
(1) If Γ ⊢ Φ ctx, then JΓK | · ⊢ JΓ ⊢ Φ ctxK : Ctx.
(2) If Γ;Ψ ⊢ A type, then JΓK | · ⊢ JΓ;Ψ ⊢ A typeK : Ty(JΓ ⊢ Ψ ctxK).
(3) If Γ;Ψ ⊢ M : A, then JΓK | · ⊢ JΓ;Ψ ⊢ M : AK : Tm(JΓ ⊢ Ψ ctxK, JΓ;Ψ ⊢ A typeK).
(4) If Γ;Ψ ⊢ σ : Φ, then JΓK | · ⊢ JΓ;Ψ ⊢ σ : ΦK : El (JΓ ⊢ Ψ ctxK) → El (JΓ ⊢ Φ ctxK).
(5) If Γ ⊢ C : T , then JΓK | · ⊢ JΓ ⊢ C : T K : JΓ ⊢ T K.
(6) If Γ ⊢ τ̆ type, then JΓK | · ⊢ JΓ ⊢ τ̆ typeK type.
(7) If Γ ⊢ t : τ̌ , then JΓK | · ⊢ JΓ ⊢ t : τ̌ K : JΓ ⊢ τ̌ typeK.
(8) If Γ;Ψ ⊢ A ≡ A′ type, then JΓK | · ⊢ JΓ;Ψ ⊢ A typeK = JΓ;Ψ ⊢ A′ typeK : Ty(JΓ ⊢

Ψ ctxK).
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(9) If Γ; Ψ ⊢ M ≡ N : A then JΓK | · ⊢ JΓ; Ψ ⊢ M : AK = JΓ; Ψ ⊢ N : AK : Tm(JΓ ⊢ Ψ ctxK, JΓ;Ψ ⊢ A typeK).
(10) If Γ;Ψ ⊢ σ ≡ σ ′ : Φ then JΓK | · ⊢ JΓ;Ψ ⊢ σ : ΦK = JΓ;Ψ ⊢ σ ′ : ΦK : El (JΓ ⊢ Ψ ctxK) → El (JΓ ⊢ Φ ctxK).
(11) If Γ ⊢ τ̆1 ≡ τ̆2 type, then JΓK | · ⊢ JΓ ⊢ τ̆1 typeK = JΓ ⊢ τ̆2 typeK type.
(12) If Γ ⊢ t1 ≡ t2 : τ , JΓK | · ⊢ JΓ ⊢ t1 : τ̆ K = JΓ ⊢ t2 : τ̆ K : JΓ ⊢ τ̆ typeK.

7 CONNECTIONWITH FITCH-STYLE TYPE THEORIES

Birkedal et al. [2020]; Gratzer et al. [2019] discussed two Fitch-style dependent modal type theories.
Compared to the dual-context-style we presented in previous sections, Fitch-style systems differ
in that they use only one context to keep track of all variables. Instead, Fitch-style systems use a
“locking” mechanism to prevent variable lookups from continuing. In this section, we establish a
relation between a fragment of Cocon without recursion on HOAS and a semantic framework
discussed in Birkedal et al. [2020], dependent right adjoints. We show this by showing an embedding
of Cocon into the dependent intuitionistic K shown in Birkedal et al. [2020], which has the
soundness and completeness properties with respect to dependent right adjoints. Thus we can
establish that the fragment of Cocon without recursion on HOAS can be interpreted by any system
with dependent right adjoints.

7.1 Fitch-style Modal Type Theories

Fitch-style modal type theories are more intuitive than dual-context-style modal type theories in a
sense that Fitch style only handles one context. As a consequence, valid and true assumptions in
the contexts are mixed together. The introduction and the elimination rules thus must tell these
different kinds of assumption apart. In Fitch-style systems, the introduction rule for necessity or box
introduces a lock to the top of the context. This lock “blocks” the context to its left. Different flavors
of Fitch-style systems are distinguished by their elimination rules. For dependent intuitionistic K,
the rules are

Γ,µ ⊢m : T
Γ ⊢ boxm : □T

Γ ⊢m : □T µ < Γ′

Γ,µ, Γ′ ⊢ unboxm : T

In both rules, µ symbol prevents variable lookups from going beyond its left. That is, a term can
only refer to variables to the right of the rightmost µ. The rules can be understood from the classical
Kripke’s semantics: box accesses the next world, and thus the µ symbol locks the assumptions
in all previous worlds (to its left); while unbox allows us to only travel back to the immediate
previous world, so µmust not exist in Γ′ in the elimination rule. Cocon is much closer to dependent
intuitionistic K than to the dual-context models we discussed in the previous sections. Nonetheless,
one fundamental problem of dependent intuitionistic K is that it does not support recursion on
HOAS structures like trm in Section 6 as Cocon does. Therefore, in this section, we will only discuss
the interpretation from the fragment of Cocon without recursors to dependent intuitionistic K in
order to discuss their connection explicitly. Whether dependent intuitionistic K can be extended to
support recursion on HOAS is an interesting topic for future investigation.

7.2 Dependent Right Adjoints

Dependent right adjoints are a special structure added on top of a category with families. Essentially
it is a CwF equipped with a functor L, denoting the µ symbol, and a family of types R, denoting
the modality. Dependent right adjoints are used to capture the nature of comonadic modality in a
categorical language.

Definition 7.1. A category with families with a dependent right adjoint C is a category with
families with the following extra data:
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(1) an endofunctor L : C → C,
(2) a family RΓ (A) ∈ Ty (Γ) for each Γ ∈ C and A ∈ Ty (L(Γ)).

The following axioms hold:
(1) RΓ (A){σ } = R∆ (A{L(σ )}) ∈ Ty (∆) for σ : ∆→ Γ,
(2) the following isomorphism exists for Γ ∈ C and A ∈ Ty (L(Γ)):

Tm(L(Γ),A) ≃ Tm(Γ,RΓ (A))

with the effect from left to right as −→M ∈ Tm(Γ,RΓ (A)) for M ∈ Tm(L(Γ),A) and the other
effect←−N ∈ Tm(L(Γ),A) for N ∈ Tm(Γ,RΓ (A)).

(3) −→M {σ } =
−−−−−−−→
M {L(σ )} ∈ Tm(∆,R∆ (A{σ })) forM ∈ Tm(L(Γ),A) and σ ∈ ∆→ Γ.

Birkedal et al. [2020] shows that dependent intuitionistic K can be soundly interpreted into a
CwF with a dependent right adjoint and the type theory itself forms a term model. Thus it suffices
to interpret Cocon to their type theory to show that Cocon can be interpreted using the structure
of a dependent right adjoint. We give the interpretation in the next section.

7.3 Interpreting Cocon

The interpretation is mostly straightforward. We can easily show that the interpretation is also
sound:

Theorem 7.2 (Soundness). The following are true.
(1) If Γ ⊢ Φ ctx, then JΓK ⊢ JΓ ⊢ Φ ctxK : Ctx.
(2) If Γ;Ψ ⊢ A type, then JΓK ⊢ JΓ;Ψ ⊢ A typeK : Πu : JΓ ⊢ Ψ ctxK.Type.
(3) If Γ;Ψ ⊢ M : A, then JΓK ⊢ JΓ;Ψ ⊢ M : AK : Πu : JΓ ⊢ Ψ ctxK.JΓ;Ψ ⊢ A typeK u.
(4) If Γ;Ψ ⊢ σ : Φ, then JΓK ⊢ JΓ;Ψ ⊢ σ : ΦK : Πu : JΓ ⊢ Ψ ctxK.JΓ ⊢ Φ ctxK.
(5) If Γ ⊢ C : T , then JΓK ⊢ JΓ ⊢ C : T K : JΓ ⊢ T K.
(6) If Γ ⊢ τ̆ type, then JΓK ⊢ JΓ ⊢ τ̆ typeK : Type.
(7) If Γ ⊢ t : τ̌ , then JΓK ⊢ JΓ ⊢ t : τ̌ K : JΓ ⊢ τ̌ typeK.

There are a number of differences to highlight:
(1) In Cocon, the domain level sees contextual variables on the computation level. This implies

that contextual variables must live in □.
(2) The domain level and the computation level in Cocon have different syntax. In the interpre-

tation, we need to merge them, e.g. two dependent function spaces are merged into the same
syntax. We can still distinguish them by looking at the level they live in.

This idea leads to an interpretation shown in Fig. 15. As we can see, the interpretation is very
straightforward, showing that the Fitch-style system is compatible with Cocon in many aspects.
In the interpretation of the domain-level types, we only show the case for Π types. If we have

corresponding base types in Cocon and dependent intuitionistic K, we can relate them via the
interpretation. For example, if we have ty in dependent intuitionistic K as well, then we will have a
base case in the interpretation. Nonetheless, we can still work on other parts of the interpretations.
In dependent intuitionistic K, we assume a universe Ctx, which is used to represent domain-

level contexts. There are two types, ⊤ to represent the empty context and −.− for an extended
context. That is, a domain-level context are managed as a list-like structure. To construct a domain-
level context in dependent intuitionistic K, we use () to construct an empty context and −,− to
extend an existing context. Given Φ.A, we can get the precedent Φ by applying π1 and get the
domain-level term of type A by applying π2. This is sufficient for us to perform operations related
domain-level contexts in dependent intuitionistic K. The interpretation of domain-level contexts
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Interpretation of domain-level types
JΓ;Ψ ⊢ Πx : A.B typeK = ⋋ u .Πx : JΓ;Ψ ⊢ A typeK u .JΓ;Ψ,x : A ⊢ B typeK u
Interpretation of domain-level contexts
JΓ ⊢ · ctxK = ⊤

JΓ ⊢ Ψ,x : A ctxK = JΓ ⊢ Ψ ctxK.JΓ;Ψ ⊢ A typeK

JΓ ⊢ ψ ctxK = unboxψ

Interpretation of domain-level substitutions where Ψ′ = JΓ ⊢ Ψ ctxK

JΓ;Ψ ⊢ · : ·K = ⋋ u .()

JΓ;Ψ ⊢ σ ,M : Φ,x : AK = ⋋ u .(e1 u, e2 u) where e1 = JΓ;Ψ ⊢ σ : ΦK and e2 = JΓ;Ψ ⊢ M : A[σ/Φ̂]K

JΓ;Ψ,−−−→x : A ⊢ wk
Ψ̂

: ΨK = πk1 where k = |−−→x :A|
Interpretation of domain-level terms where Ψ′ = JΓ ⊢ Ψ ctxK

JΓ;Ψ ⊢ x : AK = ⋋ u .π2 (π
k
1 u) where Ψ = Ψ0,x : A,−−−−−→yi : Bi and |

−−−−−→
yi : Bi | = k

JΓ;Ψ ⊢ λx .M : Πx : A.BK = ⋋ u x .e (u,x ) where e = JΓ;Ψ,x : A ⊢ M : BK

JΓ;Ψ ⊢ M N : [N /x]BK = ⋋ u .(e1 u) (e2 u)
where e1 = JΓ;Ψ ⊢ M : Πx : A.BK and e2 = JΓ;Ψ ⊢ N : AK

JΓ;Ψ ⊢ ⌊t⌋σ : [σ/Φ̂]AK = ⋋ u .(unbox e1) (e2 u)
where e1 = JΓ ⊢ t : ⌈Φ ⊢ A⌉K and e2 = JΓ;Ψ ⊢ σ : ΦK

Interpretation of contextual objects

JΓ ⊢ (Ψ̂ ⊢ M ) : (Ψ ⊢ A)K = JΓ;Ψ ⊢ M : AK

JΓ ⊢ (Ψ̂ ⊢ M ) : (Ψ ⊢v A)K = JΓ;Ψ ⊢ M : AK
Interpretation of contextual types
JΓ ⊢ (Ψ ⊢ A)K = Πu : JΓ ⊢ Ψ ctxK.JΓ;Ψ ⊢ A typeK

JΓ ⊢ (Ψ ⊢v A)K = Πu : JΓ ⊢ Ψ ctxK.JΓ;Ψ ⊢ A typeK
Intepretation of computation types
JΓ ⊢ ⌈T ⌉ typeK = □JΓ ⊢ T K

JΓ ⊢ (x : τ̆1) ⇒ τ2 typeK = Πx : JΓ ⊢ τ̆1 typeK.JΓ ⊢ τ2 typeK

JΓ ⊢ ctx typeK = □Ctx

Interpretation of computation contexts
J·K = ·

JΓ,x : τ̌ K = JΓK,x : JΓ ⊢ τ̆ typeK
Interpretation of computation terms
JΓ ⊢ ⌈C⌉ : ⌈T ⌉K = box JΓ ⊢ C : T K

JΓ ⊢ t1 t2 : [t2/x]τ K = JΓ ⊢ t1 : (x : τ̆2) ⇒ τ K JΓ ⊢ t2 : τ̆2K

JΓ ⊢ fn x ⇒ t : (x : τ̆1) ⇒ τ2K = ⋋ x : Jτ̆1K.JΓ,x : τ̆1 ⊢ t : τ2K

JΓ ⊢ x : τ̌ K = x

Fig. 15. Interpretation to the Fitch-style system
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is quite straightforward, except that when we encounter a context variableψ , we unbox it in the
interpretation. This is because contextual variables always have type □Ctx in the model, as to be
shown in the interpretation of computation-level types.

The interpretations of domain-level substitutions and terms are also very straightforward. Notice
that the unbox case in the interpretation of terms becomesmuchmore direct. Since the interpretation
of t is some boxed function type, we simply apply it to the interpretation of the substitution σ
after unboxing. Notice that there we do not have to worry about idempotency of □ as in previous
sections, as unbox in Cocon is already naturally modeled by unbox in dependent intuitionistic K.
The interpretation of contextual objects directly forward to the interpretation of domain-level

terms. Contextual types are interpreted to dependent functions.
For computation-level types, we interpret boxed contextual types to boxed types and function

types in Cocon to function types in dependent intuitionistic K as typically done. Notice that
we interpret function types on both the domain level and the computation level to functions in
dependent intuitionistic K, so that we have a unified syntax. It is worth mentioning that ctx is
interpreted to □Ctx, because context variables are always global in Cocon. That is why we have
an additional unbox when interpreting contextual variables.

The interpretations of computation-level contexts and terms are immediate.
Based on this interpretation, the domain and the computation levels reside separately in two

“zones” in dependent intuitionistic K. These two “zones” can be distinguished by checking whether
a µ exists in the context. If there is, then the current term is on the computation level, and otherwise
it is on the domain level. A µ is added when a box is encountered. This corresponds to getting into
the domain level from the computation one. Therefore, dependent intuitionistic K and Cocon do
seem to correspond nicely (except that the former does not have recursors for HOAS).

8 CONCLUSION

We have given a rational reconstruction of contextual type theory in presheaf models of higher-
order abstract syntax. This provides a semantical way of understanding the invariants of contextual
types independently of the algorithmic details of type checking. At the same time, we identify the
contextual modal type theory, Cocon, which is known to be normalizing, as a syntax for presheaf
models of HOAS. By accounting for the Yoneda embedding with a universe á la Tarski, we obtain a
manageable way of constructing contextual types in the model, especially in the dependent case.
Presheaves over models of dependent types have been used in the context of two-level type theories
for homotopy type theory [Annenkov et al. 2017; Capriotti 2016]. Clarifying the precise relationship
to this line of research is an interesting direction that will however require further work.
In future work, one may consider using the model as a way of compiling contextual types, by

implementing the semantics. In another direction, it may be interesting to apply the syntax of
contextual types to other presheaf categories. We also hope that the model will help to guide the
further development of Cocon.
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