A Type Theory for Defining Logics and Proofs

Brigitte Pientka, David Thibodeau, Andreas Abel, Francisco Ferreira, Rebecca Zucchi
School of Computer Science, McGill University
Dep. of Computer Science and Eng., Gothenburg University
Dept. of Computing, Imperial College London
ENS Paris Saclay

Abstract—We describe a Martin-Löf-style dependent type theory, called COCON, that allows us to mix the intensional function space that is used to represent higher-order abstract syntax (HOAS) trees with the extensional function space that describes (recursive) computations. We mediate between HOAS representations and computations using contextual modal types. Our type theory also supports an infinite hierarchy of universes and hence supports type-level computation—thereby providing metaprogramming and (small-scale) reflection. Our main contribution is the development of a Kripke-style model for COCON that allows us to prove normalization. From the normalization proof, we derive subject reduction and consistency. Our work lays the foundation to incorporate the methodology of logical frameworks into systems such as Agda and bridges the longstanding gap between these two worlds.

I. INTRODUCTION

Higher-order abstract syntax (HOAS) is an elegant and deceptively simple idea of encoding syntax and more generally formal systems given via axioms and inference rules. The basic idea is to map uniformly binding structures in our object language (OL) to the function space in a meta-language thereby inheriting α-renaming and capture-avoiding substitution. In the logical framework LF (Harper et al., 1993), for example, we encode a simple OL consisting of functions, function application, and let-expressions using a type \(\text{tm} \) as:

\[
\begin{align*}
\text{lam} &: (\text{tm} \to \text{tm}) \to \text{tm}. \\
\text{app} &: \text{tm} \to \text{tm} \to \text{tm}. \\
\text{letv} &: \text{tm} \to (\text{tm} \to \text{tm}) \to \text{tm}.
\end{align*}
\]

The OL term \((\text{lam } x.\text{lam } y.\text{let } w = x \ y \in w \ w)\) is then encoded as:

\[
\text{lam } x.\text{lam } y.\text{letv } (\text{app } x \ y) \ \lambda w.\text{app } w \ w
\]

using the LF abstractions to model binding. OL substitution is modelled through LF application; for instance, the fact that \((\text{lam } x.\text{M}) \ N\) reduces to \([N/x]\text{M}\) in our object language is expressed as \((\text{app } (\text{lam } M) \ N)\) reducing to \((\text{M} \ N)\). This approach can offer substantial benefits: programmers do not need to build up the basic mathematical infrastructure, they can work at a higher-level of abstraction, encodings are more compact, and hence it is easier to mechanize formal systems together with their meta-theory.

However, this approach relies on the fact that we use an intensional function space that lacks recursion, case analysis, inductive types, and universes to adequately represent syntax. In LF, for example, we use the dependently-typed lambda calculus as a meta-language to represent formal systems. Under this view, intensional functions represent syntactic binding structures and functions are transparent. However, we cannot write recursive programs about such syntactic structures within LF, as we lack the power of recursion. In contrast, (recursive) computation relies on the extensional function space. Under this view, functions are opaque and programmers cannot compare two functions for equality nor can they use pattern matching on functions to inspect their bodies. Functions are treated as a black box.

To understand the fundamental difference between defining HOAS trees in LF vs. defining HOAS-style trees using inductive types, let us consider an inductive type \(D \) with one constructor \(\text{lam}: (D \to D) \to D \). What is the problem with such a definition in type theory? – In functional ML-like languages, this is, of course, possible, and types like \(D \) can be explained using domain theory (Scott, 1976). However, the function argument to the constructor \(\text{lam} \) is opaque and we would not be able to pattern match deeper on the argument to inspect the shape and structure of the syntax tree that is described by it. We can only observe it by applying it to some argument. The resulting encoding also would not be adequate, i.e. there are terms of type \(D \) that are in normal form but do not uniquely correspond to a term in the object language we try to model. As a consequence, we may need to rule out such “exotic” representations (Despeyroux et al., 1995). But there is a more fundamental problem. In proof assistants based on type theory such as Coq or Agda, we cannot afford to work within an inconsistent system and we demand that all programs we write are terminating. The definition of a constructor \(\text{lam} \) as given previously would be forbidden, as it violates what is known as the positivity restriction.

It is worth pointing out that although we have extensional functions, we still may have an intensional type theory keeping the definitional equality (and hence typechecking) decidable. This notion of intensional equality should not be confused with the intensional function space that we attributed to LF and contrasted to the extensional function space that exists in type theories such as Martin-Löf type theory.

This example begs two questions: How can we reason inductively about LF definitions, if they are seemingly not inductive? Do we have to simply give up on HOAS definitions to model syntactic structures within type theory to remain consistent?

Over the past two decades, we have made substantial progress in bringing the intensional and extensional views closer together. Despeyroux et al. (1997) made the key observation that we can mediate between the weak LF and the
strong computation-level function space using a box-modality. The authors describe a simply typed lambda-calculus with iteration and case constructs which preserves the adequacy of HOAS encodings. The well-known paradoxes are avoided through the use of a modal box operator which obeys the laws of S4. In addition to being simply typed, all computation had to be on closed HOAS trees. Despeyroux and Leleu (1999) sketch an extension to dependent type theory – however it lacks a normalization proof.

OTIVATION

As is common practice in implementations of LF, we treat free variables \(A \) and \(B \) as implicitly \(\Pi \)-quantified at the outside; they can typically be reconstructed. Our goal is to translate between well-typed terms in STLC and morphisms and also state some of the equivalence theorems. Morphisms are relations between objects. The standard morphisms in CCC can be encoded directly where we define the composition of morphisms using \(\odot \) as an infix operation for better readability.

\[
\begin{align*}
\text{id} & : \text{mor} A A.
\end{align*}
\]
would not be able to refer to the function \(ELUGA \) braces to indicate implicit arguments and round braces for \(γ \) type declaration of \(ictx \). Here we rely on the function \(A \) the recursive call \(LF \) specifications. However, in contrast to \(B \) unboxing, if it is the identity. We omit here the implementation of \(ivar \) due to space. It simply looks up a variable in the LF context \(γ \) and builds the corresponding projection. The most interesting case is \(γ \vdash \lambda \ A \cdot e \), where \(e \) has type \(γ, x:tm \ [B] \vdash \gamma [C] \). The recursive call \(itm e \) returns a morphism from \(\{ \lambda \ A \cdot e \} [B] \) to \(C \) which matches what is expected, since \(\{ \lambda \ A \cdot e \} [B] \) evaluates to \(\{ \lambda \ A \cdot e \} [B] \).

Next we translate a morphism to a STL term. Given a morphism between \(Λ \) and \(B \), we build a term of type \(B \) with one variable of type \(Λ \). As our types are closed, we again employ the weakening substitution whenever we refer to \(B \) in a non-empty context.

The translation is mostly straightforward. The most interesting cases are the case for currying and concatenation. In the former, given \(cur [f] \) of type \(γ \vdash \lambda \ A \cdot [A \ [B] \ [C]] \), we recursively translate \(f:γ \vdash \lambda \ A \cdot \{ \lambda \ B \cdot \{ \lambda \ C \cdot \} \} \rightarrow \{ \lambda \ B \cdot \} \). It yields a STL term of type \(\{ \lambda \ A \cdot \} [B] \rightarrow \{ \lambda \ C \cdot \} \ [B] \rightarrow \{ \lambda \ C \cdot \} \). We now need to replace the LF variable \(x \) that occurs in the result of the recursive call \(imorph f \) with \(tPair x \) and we build a STL term \(\{ \lambda \ A \cdot \} [B] \rightarrow \{ \lambda \ C \cdot \} \ [B] \rightarrow \{ \lambda \ C \cdot \} \). We therefore unbox the result of the recursive call with the substitution \(tPair x \) \(y \). This is written as \(\{ \lambda \ A \cdot \} [B] \rightarrow \{ \lambda \ C \cdot \} \ [B] \rightarrow \{ \lambda \ C \cdot \} \). Here we do not write the domain of the substitution explicitly, however the type of \(imorph f \) tells us that the result of translating \(f \) contains one LF variable. In general, we write LF substitutions as lists whose domain is determined by the contextual object we unbox.

\[
\begin{align*}
\gamma : \alpha \rightarrow \beta & \rightarrow (\gamma ; \alpha \rightarrow \beta) \\
\delta : \alpha \rightarrow \beta & \rightarrow (\delta ; \alpha \rightarrow \beta) \\
\end{align*}
\]
To translate a morphism $f : \Gamma \Rightarrow \Lambda$, we recursively translate ϵ and g where morph f returns a STL term of type $\lfctx \Gamma \Rightarrow \lfctx \Lambda$ and morph g returns a STL term of type $\lfctx \Gamma \Rightarrow \lfctx \Lambda$. To produce the desired STL term of type $\lfctx \Gamma \Rightarrow \lfctx \Lambda$, we replace the LF variable x in the translation of ϵ with the result of the translation of g. This is simply done by $\lfctx \Gamma \Rightarrow \lfctx \Lambda$.

We note that $\lfctx \Gamma \Rightarrow \lfctx \Lambda$ is associated with the identity substitution and hence the LF variable that occurs in the result of $\lfctx \Gamma \Rightarrow \lfctx \Lambda$ is implicitly renamed and bound by x.

Finally, we sketch the equivalence between STLC and CCC to illustrate what COCON opens up. We do not show the concrete implementation, since this would go beyond this paper.

Assuming that we have defined convertibility of lambda-terms (conv) and equality (γ) between morphisms, we can now state the equivalence between STLC and CCC succinctly.

Let \mathbf{rec} be the translation of \mathbf{lfctx} and $\mathbf{ccc2tm}$ be the translation of \mathbf{lfctx}.

Recall that $\mathbf{ccc2tm} : \lfctx \Gamma \Rightarrow \lfctx \Lambda$ can be expressed as $\mathbf{lfctx} \Gamma \Rightarrow \lfctx \Lambda$.

We hope this example provides a glimpse of what COCON has to offer. In the rest of the paper we develop the dependent type theory for COCON that supports both defining HOAS trees using the intensional function space of LF and defining (type-level) computations using the extensional function space.

III. A Type Theory for Defining Logics and Proofs

COCON combines the logical framework LF with a full dependent type theory that supports recursion over HOAS objects and universes. For clarity, we split COCON’s grammar into different syntactic categories (see Fig. 1).

\begin{itemize}
\item LF Kinds $K ::= \text{type} | \Pi x : A. K$
\item LF Types $A, B ::= a | M_1 \ldots M_n | \Pi x : A. B$
\item LF Terms $M, N ::= \lambda x . M | M N | \text{c} | [\text{f}]_\sigma$
\item LF Contexts $\Psi, \Phi ::= \cdot | \psi \mid \Psi, x : A$
\item LF Contexts (Erased) $\hat{\Psi}, \hat{\Phi} ::= \cdot | \psi \mid \hat{\Psi}$
\item LF Substitutions $\sigma ::= \cdot | \text{wk}_A \mid \sigma, M$
\item LF Signature $\Sigma ::= \cdot | \Sigma, a : K \mid \Sigma, c : A$
\item Contextual Types $T ::= \Psi \mid A \mid \Psi \mid M$
\item Contextual Objects $C ::= \Psi \mid M$
\end{itemize}

\begin{align*}
\text{Sorts} & \quad u ::= U_k \\
\text{Domain of Discourse} & \quad \tau ::= \tau \mid \text{ctx} \\
\text{Types and Terms} & \quad \tau, I, ::= u \mid [T] \mid (y : \hat{\tau}_1) \Rightarrow \tau_2 \\
\text{Terms} & \quad t, s \mid y \mid [C] \mid \text{rec'} B \Psi \hat{f}^* \\
\text{Branches} & \quad \text{fn} y \Rightarrow t \mid t_1 \mid t_2 \\
\text{Contexts} & \quad B ::= \hat{\Gamma} \Rightarrow t \\
& \quad \hat{\Gamma} ::= \cdot \mid \hat{\Gamma}, y : \hat{\tau}
\end{align*}

Fig. 1. Syntax of COCON

A. Syntax

a) Logical Framework LF with Embedded Computations:

As in LF we allow dependent kinds and types; LF terms can be defined by LF variables, constants, LF applications, and LF lambda-abstractions. In addition, we allow a computation t to be embedded into LF terms using a closure $[t]_\sigma$. Once computation of t produces a contextual object M in an LF context Ψ, we can embed the result by applying the substitution σ to moving M from the LF context Ψ to the current context Φ. In the source level syntax that we previously used in the code examples, this was written as $[\epsilon t]_\sigma$.

We distinguish between computations that characterize a general LF term M of type A in a context Φ using the contextual type $\Psi \mid A$ and computations that are guaranteed to return a variable in a context Φ of type A using the contextual type $\Psi \mid \# A$. This distinction is exploited in the definition of a recursor for contextual objects of type $\Psi \mid A$ to characterize the base case where we consider a LF variable of LF type A.

For simplicity and lack of space, we focus on $\Psi \mid A$ in the subsequent development. Intuitively, $\Psi \mid \# A$ is a special case restricted to variables from Ψ inhabiting A.

b) LF contexts: LF contexts are either empty or are built by extending a context with a declaration $x : A$. We may also use a (context) variable ψ that stands for a context prefix and must be declared on the computation-level. In particular, we can write functions where we abstract over (context) variables. Consequently, we can pass LF contexts as arguments to functions. We classify LF contexts via schemas – for this paper, we pre-define the schema ctx. Such context schemas are similar to adding base types to computation-level types. We often do not need to carry the full LF context with the type annotations, but it suffices to simply consider the erased LF context. Erased LF contexts are simply a list of variables possibly with a context variable at the head. We sometimes abuse notation and write Ψ for the operation of erasing type information from a LF context Ψ.

c) LF Substitutions: LF substitutions allow us to move between LF contexts. The empty LF substitution provides a mapping from an empty LF context to a LF context Ψ and hence has weakening built-in. The weakening substitution, written as wk_A, describes the weakening of the domain Ψ in $\Psi, x : A$. The generality of weakening substitutions is necessary to, for example, express that we can weaken a LF context ψ. We simply write id, if $[x : A] = 0$.

Weakening substitutions do not subsume the empty substitutions – only the empty substitution that maps the empty context to a concrete context $\cdot, x_1 : A_1, \ldots, x_n : A_n$ can be expressed as wk_A where we annotate the weakening substitution with the empty LF context. Our built-in weakening substitutions are also sometimes called renamings, as they only allow contexts to be extended to the right, but they do not support arbitrary weakening of a LF context where we would insert a declaration in the middle (i.e. given a context $x : A_1, y : A_2$ we can weaken it to $x : A_1, w : A_2, y : A_3$).

From a de Bruijn perspective, the weakening substitution
wk, which maps the empty context to \(\cdot, x_n: A_n, \ldots, x_1: A_1\) can be viewed as a shift \(n\). Further, as in the de Bruijn world, wk\((\cdot, x_n: A_n, \ldots, x_1: A_1)\) can be expanded and is equivalent to \(\cdot, x_n, \ldots, x_1\). While our theory lends itself to an implementation with de Bruijn indices, we formulate our type theory using a named representation of variables. This not only simplifies our subsequent definitions of substitutions, but also leaves open how variables are realized in an implementation.

In addition to empty and weakening substitutions, LF substitutions can also be built by extending a LF substitution \(\sigma\) with a LF term \(M\). Following Nanevski et al. (2008), we do not store the domain of a substitution, but simply write them as a list of terms. We resurrect the domain of the substitution before applying it by erasing types from a context.

d) Contextual Objects and Types: We mediate between LF and computations using contextual types. Here, we concentrate on contextual LF terms that have type \(\Psi \vdash A\). However, others may be added (see Cave and Pientka 2013).

e) Computations and their Types: Computations are formed by functions, written as \(\text{fn } y \Rightarrow t\), that are extensional, applications, written as \(t_1 t_2\), boxed contextual objects, written as \(\{C\}\), and recursion, written as \(\text{rec}^Z B \Psi \ t \bar{t}\) where \(\bar{t} = t_n \ldots t_0\). We annotate the recursion with the typing invariant \(I\). We may either recurse over \(\Psi\) directly or we recurse over the values computed by the term \(t_0\). The LF context \(\Psi\) describes the local LF-world in which the value computed by \(t_0\) makes sense. The arguments \(t_n \ldots t_1\) describe in general the implicit arguments \(t\) might depend on. Finally, \(B\) describes the different branches that we can take depending on the value computed by \(t_0\). A covering set of branches can be generated generically following Pientka and Abel (2015). In this paper, we will subsequently work with a recursion for the LF type \(tm\) which we encountered in the introduction together with two LF constants \(\text{lam} : \Pi y : (\Pi x : tm).tm\) and \(\text{app} : \Pi x : tm.\Pi y : tm .\text{tm}\) to keep the development compact.

Computation-level types consist of boxed contextual types, written as \(\{\cdot\}\), and dependent types, written as \((y : t_1) \Rightarrow t_2\). We overload the dependent function space and allow as domain of discourse both computation-level types and the schema \(\text{ctx}\) of LF context. To form both functions we use \(\text{fn } y \Rightarrow t\). We also overload function application \(t\ s\) to eliminate dependent types \((y : t_1) \Rightarrow t_2\) and \((y : \text{ctx}) \Rightarrow t_2\), although in the latter case \(s\) stands for a LF context. We separate LF contexts from contextual objects, as we do not allow functions that return an LF context.

\(\text{Cocon}\) is a pure type system (PTS) with infinite hierarchy of predicative universes, written as \(U_k\) where \(k \in \text{Nat}\). The universes are not cumulative. We use sorts \(u, k \in S\), axioms \(S = \{\{U_i, U_{i+1}\mid i \in \text{Nat}\}\}\), and rules \(\Gamma = \{\{U_i, U_j, U_{\max(i,j)}\mid i, j \in \text{Nat}\}\}\).}

B. LF Substitution Operation

Our type theory distinguishes between LF-variables and computation variables and we define substitution for both. We define LF substitutions uniformly using simultaneous substitution operation written as \(\sigma/\Psi\). As LF substitutions are simply a list of terms, we need to resurrect the domain to look up the instantiation for a LF variable \(x\) in \(\sigma\). This is always possible.

\[|\sigma/\Psi| (\lambda x. M) = \lambda x. M'\] provided that \(x \notin \text{FV}(\sigma)\) and \(x \notin \Psi\).

\[|\sigma/\Psi|(M N) = M' N'\] where \(|\sigma/\Psi|(M) = M'\) and \(|\sigma/\Psi|(N) = N'\).

\[|\sigma/\Psi|([t]_{\sigma'}) = [t]_{\sigma''}\] where \(|\sigma/\Psi|(\sigma') = \sigma''\).

\[|\sigma/\Psi|(x) = M\] where lookup \(x\) \(|\sigma/\Psi| = M\).

\[|\sigma/\Psi|c = c\]

When pushing the substitution through an application \(M N\), we simply apply it to \(M\) and \(N\) respectively. When pushing the LF substitution through a \(\lambda\)-abstraction, we extend it. When applying \(\sigma\) to a LF variable \(x\), we retrieve the corresponding instantiation from \(\sigma\) using the auxiliary function lookup which works mostly as expected. When applying the LF substitution \(\sigma\) to the LF closure \([t]_{\sigma}\), we leave \(t\) untouched, since \(t\) cannot contain any free LF variables and compose \(\sigma\) and \(\sigma'\). Composition of LF substitution is straightforward. When we apply \(\sigma\) to \(wk_\Psi\), we truncate \(\sigma\) and only keep those entries corresponding to the LF context \(\Psi\). Recall that \(wk_\Psi\) provides a weakening substitution from a context \(\Psi\) to another context \(\Psi, x : A\) where \(|x : A| = n\). The simultaneous substitution \(\sigma\) provides mappings for all the variables in \(\Psi, \bar{x}\). The result of \(|\sigma/\Psi, \bar{x}| wk_\Psi\) then should only provide mappings for all the variables in \(\Psi\). We use the operation \(\text{trunc}\) to remove irrelevant instantiations. Its definition is straightforward and is given in the long version (see Pientka et al. 2019).

C. Computation-level Substitution Operation

The computation-level substitution operation \(\{t/x\}t'\) traverses the computation \(t'\) and replaces any free occurrence of the computation-level variable \(x\) in \(t'\) with \(t\). The interesting case is \(\{t/x\}[C]\). Here we push the substitution into \(C\) and we will further apply it to objects in the LF layer. When we encounter a closure such as \([t''\sigma]\), we continue to push it inside \(\sigma\) and also into \(t''\). When substituting a LF context \(\Psi\) for the variable \(\psi\) in a context \(\Phi\), we rename the declarations present in \(\Phi\). This is a convention. It would equally work to rename the variable declarations in \(\Psi\). For example, in \(\{(x:tm, y:tm)/\psi\}(\psi, x \vdash \text{lam} \lambda y . \text{app} \ x \ y\) , we rename the variable \(x\) in \(\psi, x\) and replace \(\psi\) with \((x : tm, y : tm)\) in \(\psi, x : \text{lam} \lambda y . \text{app} \ x \ y\). This results in \(x, y \vdash \text{lam} \lambda y . \text{app} \ x \ y\). When type checking this term we will eventually also \(\alpha\)-rename the \(\lambda\)-bound LF variable \(y\).

Last, we define simultaneous computation-level substitution using the judgment \(\Gamma'' \vdash \theta : \Gamma\). For simplicity, we overload the typing judgment simply writing \(\Gamma'' \vdash t : \hat{\tau}\), although if \(\hat{\tau} = \text{ctx}\), \(t\) stands for a LF context.
We distinguish between a substitution θ that provides instantiations for variables declared in the computation context Γ, and a renaming substitution ρ which maps variables in the computation variables in the context Γ' where $\Gamma' = \Gamma, x: \tau$ and $\Gamma' \vdash \rho : \Gamma$. We write $\Gamma' \leq \rho \Gamma$ for the latter. We note that the weakening and substitution properties for simultaneous substitutions also hold for renamings.

$$\vdash \Gamma' \quad \Gamma' \vdash \theta : \Gamma \quad \Gamma' \vdash t : \{\theta\}\overline{\tau}$$

We concentrate here on the typing rules for LF terms, LF substitutions, and LF contexts (see Fig. 2) and omit the rules for LF types and kinds. All of the typing rules have access to a LF signature Σ which we omit to keep the presentation compact. In typing rules for LF abstractions $\lambda x.M$ we simply extend the LF context and check the body M. When we encounter a LF variable, we look up its type in the LF context. The conversion rule is important and subtle. We only allow conversion of types – conversion of the LF context is not necessary, as we do not allow computations to return a LF context. Importantly, given a computation t that has type $[\Psi \vdash A]$ or $[\Psi \vdash \neq A]$, we can embed it into the current LF context Φ by forming the closure $\{t\}\sigma$ where σ provides a mapping for the variables in Ψ. This formulation generalizes previous work which only allowed variables declared in Γ to be embedded in LF terms. This enforced a strict separation between computations and LF terms. The typing rules for LF substitutions are as expected.

The typing rules for LF contexts simply analyze the structure of a LF context. When we reach the head, we either encounter an empty LF context or a context variable y which must be declared in the computation-level context Γ. They can be found in the long version.

E. Definitional LF Equality

For LF terms, equality is $\beta\eta$. In addition, we can reduce $[\Psi \vdash M]_{\sigma}$ by simply applying σ to M. We omit the transitive closure rules as well as congruence rules, as they are straightforward.

For LF substitutions, we take into account that weakening substitutions are not unique. For example, the substitution wk may stand for a mapping from the empty context to another LF context; so does the empty substitution \cdot. Similarly, $wk_{\tau_1, \ldots, \tau_n}$ is equivalent to wk, x_1, \ldots, x_n.

F. Contextual LF Typing and Definitional Equivalence

We lift typing and definitional equality on LF terms to contextual objects. For example, two contextual objects $\Psi \vdash M$ and $\Psi \vdash N$ are equivalent at LF type $[\Psi \vdash A]$, if M and N are equivalent in Ψ.

G. Computation Typing

We describe well-typed computations in Fig. 3 using the typing judgment $\Gamma \vdash t : \tau$. Computations only have access to computation-level variables declared in the context Γ. We use the judgment $\Gamma \vdash t$ to describe well-formed contexts where every declaration $x: \tau$ in Γ is well-formed.

To avoid duplication of typing rules, we overload the typing judgment and write $\overline{\tau}$ instead of τ, if the same judgment is used to check that a given LF context is of schema ctx. For example, to ensure that $(y : \bar{\tau}_1) \Rightarrow \tau_2$ has kind τ_3, we check that $\bar{\tau}_1$ is well-formed. For compactness, we abuse notation writing $\Gamma \vdash \text{ctx} : u$ although the schema ctx is not a proper type whose elements can be computed. In the typing rules for computation-level (extensional) functions, the input to the function which we also call domain of discourse may either be of type τ_1 or ctx. To eliminate a term t of type $(y : \tau_1) \Rightarrow \tau_2$,
Recursor over LF Terms \(I = (\psi : \text{ctx}) \Rightarrow (y : [\psi \vdash \text{tm}]) \Rightarrow \tau \)

\[
\begin{align*}
\Gamma \vdash t : \tau &\quad \text{and} \quad \Gamma \vdash \tau : u \quad \text{Typing and Kinding Judg. for Comp.} \\
\frac{
\psi \in \Gamma \vdash \tau &\quad \text{and} \quad \Gamma \vdash \tau : u \\
\frac{\Gamma \vdash y : \tau}{\Gamma \vdash y : \tau} &\quad \text{for} \quad \psi \\
\frac{\Gamma \vdash \psi : \tau}{\Gamma \vdash \psi : \tau} &\quad \text{for} \quad \psi \\
\frac{\Gamma \vdash \psi : \tau \text{ and } u_1, u_2 \in \mathbb{A}}{\Gamma \vdash \psi : \tau} &\quad \text{for} \quad \psi \\
\frac{\Gamma \vdash \psi : \tau \text{ and } u_1, u_2 \in \mathbb{A}}{\Gamma \vdash \psi : \tau} &\quad \text{for} \quad \psi \\
\frac{\Gamma \vdash \tau_1 : \tau_2 \text{ and } \Gamma \vdash u_1, u_2 \in \mathbb{A}}{\Gamma \vdash \tau_1 : \tau_2} &\quad \text{for} \quad \psi \\
\frac{\Gamma \vdash \tau_1 : \tau_2 \text{ and } \Gamma \vdash u_1, u_2 \in \mathbb{A}}{\Gamma \vdash \tau_1 : \tau_2} &\quad \text{for} \quad \psi \\
\frac{\Gamma \vdash \tau_1 : \tau_2 \text{ and } \Gamma \vdash u_1, u_2 \in \mathbb{A}}{\Gamma \vdash \tau_1 : \tau_2} &\quad \text{for} \quad \psi \\
\frac{\Gamma \vdash \psi \in \mathbb{A}}{\Gamma \vdash \psi \in \mathbb{A}} &\quad \text{for} \quad \psi \\
\end{align*}
\]

Fig. 4. Typing Rules for Computations (without recursor)

we check that \(s \) is of type \(\tau_1 \) and then return \(\{s/y\} \tau_2 \) as the type of \(t \). To eliminate a term of type \((y : \tau) \Rightarrow \tau \), we overload application simply writing \(t \), although \(s \) stands for a LF context and check that \(s \) is of schema ctx. This distinction between the domains of discourse is important, as we only allow LF contexts to be built either by a context variable or a LF type declaration. We can embed contextual object \(C \) into computations by boxing it and transitioning to the typing rules for LF. We eliminate contextual types using a recursor. As mentioned earlier, we define an iterator over \(t \) of type \([\Psi \vdash \text{tm}] \) to keep the exposition compact. For a more general generation of recursors for contextual objects of type \(\Psi \vdash A \) and LF contexts, we refer the reader to [Pientka and Abel 2015].

In general, the output type of the recursor may depend on the argument we are recursing over. We hence annotate the recursor itself with an invariant \(I \). We consider here the recursor for contextual LF terms where \(I = (\psi : \text{ctx}) \Rightarrow (y : [\psi \vdash \text{tm}]) \Rightarrow \tau \). To check that the recursor \(\text{rec}^2 B \Psi t \) has type \(\{\Psi/\psi, t/y\} \tau \), we check that each of the three branches has the specified type \(I \). In the base case, we may assume in addition to \(\psi : \text{ctx} \) that we have a variable \(p : [\psi \vdash \text{tm}] \) and check that the body has the appropriate type. If we encounter a contextual LF object built with the LF constant \(\text{app} \), then we choose the branch \(b_{\text{app}} \). We assume \(\psi : \text{ctx} \), \(m : [\psi \vdash \text{tm}] \), \(n : [\psi \vdash \text{tm}] \), as well as \(f_n \) and \(f_m \) which stand for the recursive calls on \(m \) and \(n \) respectively. We then check that the body \(t_{\text{app}} \) is well-typed. If we encounter a LF object built with the LF constant \(\lambda a \), then we choose the branch \(b_{\lambda a} \). We assume \(\psi : \text{ctx} \) and \(m : [\psi, x : \text{tm} \vdash \text{tm}] \) together with the recursive call \(f_m \) on \(m \) in the extended LF context \(\psi, x : \text{tm} \). We then check that the body \(t_{\lambda a} \) is well-typed.

H. Definitional Equality for Computations

We now consider definitional equality for computations concentrating on the reduction rules. We omit the transitive closure and congruence rules, as they are as expected.

We consider two computations to be equal, if they evaluate to the same result. We propagate values through computations and types relying on the computation-level substitution operation. When we apply a term \(s \) to a computation \(f \) we \(\beta \)-reduce and replace \(y \) in the body \(t \) with \(s \). We unfold the recursor depending on the value passed. If it is \([\Psi \vdash \text{app} M N] \), then we choose the branch \(t_{\text{app}} \). If the value is \([\Psi \vdash \lambda x.M] \), we continue with the branch \(t_{\lambda a} \). If it is \([\Psi \vdash A] \), i.e. the variable case, we continue with \(t_v \). Note that if \(\Psi \) is empty, then the case for variables is unreachable, since there is no LF variable of type \(\text{tm} \) in the empty LF context and hence the contextual type \([\vdash \# \text{tm}] \) is empty.

We also include the expansion of a computation \(t \) at type \([\Psi \vdash A] \); it is equivalent to unboxing \(t \) with the identity substitution and subsequently boxing it, i.e. \(t \) is equivalent to \([\Psi \vdash \text{tm}] \).

IV. Elementary Properties

For the LF level, we can establish well-formedness of LF context, LF substitution and weakening properties. In addition, we have LF context conversion and equality conversion for LF types. As usual, we can also prove directly functionality of LF type, injectivity of Pi-types.

Lemma IV.1 (Functionality of LF Typing). Let \(\Gamma : \Psi \vdash \sigma_1 : \Phi \) and \(\Gamma : \Psi \vdash \sigma_2 : \Phi \), and \(\Psi : \sigma_1 \equiv \sigma_2 : \Phi \).

1) If \(\Gamma : \Phi \vdash \sigma : \Phi' \) then \(\Gamma : [\sigma_1/\Phi] \sigma \equiv [\sigma_2/\Phi] \sigma : \Phi' \).

2) If \(\Gamma : [\Phi/\text{M}] : A \) then
 \(\Gamma : [\sigma_1/\Phi] M \equiv [\sigma_2/\Phi] M : [\sigma_1/\Phi] A \).

Proof. We prove these statements by induction on \(\Phi : \Gamma \vdash M : A \) (resp. \(\Phi : \Gamma \vdash \sigma : \Phi' \)) and followed by another inner induction on \(\Psi : \Gamma : [\sigma_1/\Phi] \equiv [\sigma_2/\Phi] \phi \) to prove (1). \(\square \)

Lemma IV.2 (Injectivity of LF Pi-Types). If \(\Gamma : \Psi \vdash \Pi x : A B \equiv \Pi x : A' B' \) then \(\Gamma : \Psi \vdash A \equiv A' \) type and \(\Gamma : \Psi, x : A \vdash B \equiv B' \) type.

Proof. By equality inversion. \(\square \)
For the computation level, we also know that computation context Γ is well-formed; in addition, weakening and substitution properties hold. However, proving functionality of typing and injectivity of Pi-types on the computation-level must be postponed.

V. Weak head reduction

The operational semantics of COCON uses weak head reduction and mirrors declarative equality. It proceeds lazily. We characterize weak head normal forms (whnf) for both, (contextual) LF and computations. They are mutually defined.

Definition V.1 (Whnf of LF).

- A LF term M is in whnf, whnf M, iff $M = \lambda x.N$, or M is neutral, i.e. $\text{wne } M$, or $M = [t]_\sigma$ and t is neutral (i.e. wne t).
- A LF term M is neutral, wne M, iff M is of the form $h \, M_1 \ldots M_n$ where h is either a LF variable or a constant c.

LF substitutions are already in whnf. LF types are also always considered to be in whnf, as computation may only produce a contextual LF term, but not a contextual LF type. Last, (erased) LF contexts are in whnf, as we do not allow computations to return a LF context.

Computation-level expressions are in whnf, if they do not trigger any further computation-level reductions.

Definition V.2 (Whnf of Computations).

- A term t is in whnf, whnf t, if t is a (fn $y \Rightarrow s$) or $(y : \tau_1) \Rightarrow \tau_2$ or s, or t is $[C]$ or $[T]$, or t is neutral.
- A term t is neutral, wne t, if t is a variable, $t = s_1 \cdot s_2$ where wne s_1, $t = (\text{rec} B \; \Psi \; s)$ where either wne s or $s = [\Psi \rightarrow [t]_\sigma]$ and wne t.

We consider boxed objects, i.e. $[C]$, and boxed types, i.e. $[T]$, in whnf, as the contextual object C will be further reduced when we use them and have to unbox them. The remaining definition of whnf characterizes terms that do not trigger any further reductions. We note that weakening preserves whnfs.

We now define weak head reductions (Fig. 7 and Fig. 8). If an LF term is not already in whnf, we have two cases: either we encounter an LF application $M \, N$ and we may need to beta-reduce or M reduces to $[t]_\sigma$. If t is neutral, then we are done; otherwise t reduces to a contextual object $[\Psi \rightarrow M]$, and we continue to reduce $[\sigma / \Psi] M$.

![Fig. 6. Definitional Equality for Computations](image)

![Fig. 7. Weak Head Reductions for LF Terms and LF Substitutions](image)
trees. To define semantic equality for LF terms \(M \) (Fig. 10), as these are the terms the recursor eliminates Scherer (2012) to accommodate type-level computation.

Let \(B \) and \(\psi, \phi \) be \(\text{wne} \) because they reduce to equal. To compare their bodies, we apply weak head reductions to an LF variable \(\phi \); then we consider different cases depending on their whnf: 1) if they reduce to \(\lambda x. \psi, \phi \) respectively. In this case \(t_i \) is neutral and we need only to semantically compare the LF substitutions \(\sigma_i \) and check whether the terms \(t_i \) are definitionally equal. However, what type should we choose? – As the computation \(t_i \) is neutral, we can infer a unique type \(\theta \) which we can use. This is defined as follows:

\[
\begin{align*}
\Gamma &\vdash \phi : \sigma; \Phi \\
\Gamma &\vdash \eta : \tau; \Psi \\
\Gamma &\vdash \tau \in \Gamma
\end{align*}
\]

Fig. 10. Semantic Equality for LF Terms: \(\Gamma ; \Psi \vdash M = N : A \)

VI. Kripke-style Logical Relation

We construct a Kripke-logical relation that is defined on well-typed terms to prove weak head normalization. Our semantic definitions for computations follow closely [Abel and Scherer 2012] to accommodate type-level computation.

We start by defining semantic equality for LF terms of type \(\text{tm} \) (Fig. 10), as these are the terms the recursor eliminates and it illustrates the fact that we are working with syntax trees. To define semantic equality for LF terms \(M \) and \(N \), we consider different cases depending on their whnf: 1) if they reduce to \(\text{app} M_1 M_2 \) and \(\text{app} N_1 N_2 \) respectively, then \(M_1 \) must be semantically equal to \(N_1 \); 2) if they reduce to \(\lambda m \lambda m' \) and \(\lambda m \lambda m' \) respectively, then the bodies of \(m \) and \(m' \) must be equal. To compare their bodies, we apply both \(M' \) and \(N' \) to an LF variable \(x \) and consider \(M' x \) and \(N' x \) in the extended LF context \(\Psi, x : \text{tm} \). This has the effect of opening up the body and replacing the bound LF variable with a fresh one. This highlights the difference between the intensional LF function space and the extensional nature of the computation-level functions. In the former, we can concentrate on LF variables and continue to analyze the LF function body; in the latter, we consider all possible inputs, not just variables; 3) if the LF terms \(M \) and \(N \) may reduce to the same LF variable in \(\Psi \), then they are obviously also semantically equal; 4) last, if \(M \) and \(N \) reduce to \([t_i] \sigma_i \) respectively. In this case \(t_i \) is neutral and we only need to semantically compare the LF substitutions \(\sigma_i \) and check whether the terms \(t_i \) are definitionally equal. However, what type should we choose? – As the computation \(t_i \) is neutral, we can infer a unique type \(\theta \) which we can use. This is defined as follows:

\[
\begin{align*}
\Gamma &\vdash \text{typeof}(\Gamma \vdash t) = \tau \\
\text{typeof}(\Gamma \vdash t) &\Rightarrow \tau \\
\text{typeof}(\Gamma \vdash t) &\Rightarrow \tau_2 \quad \Gamma \vdash \theta \Rightarrow \tau_2
\end{align*}
\]

Fig. 9. Well-Typed Whnf

Semantic equality for LF substitutions is also defined by considering different whnfs (Fig. 11). As we only work with well-typed LF objects, there is only one inhabitant for an empty context. Moreover, given a LF substitution with domain \(\Phi, x : A \), we can weak head reduce the LF substitutions \(\sigma \) and \(\sigma' \) and continue to recursively compare them. A LF substitutions with domain \(\psi \), a context variable, reduces to \(\text{wkn}\psi \).

Defining semantic kinding and semantic equality is intricate, as they depend on each other and we need to ensure our definitions are well-founded. Following [Abel et al. 2018], we define semantic kinding, i.e. \(\Sigma \vdash \tau : u \) (Fig. 12), which technically falls into two parts: \(\Gamma \vdash \tau : u \) and \(\Gamma \vdash \text{ctx} : u \) where the latter is simply notation, as \(\text{ctx} \) is not a computation-level type. Function types \((y : \tau) \Rightarrow \tau_2 \) are semantically well-kindled, if \(\tau \) is semantically well-kindled in \(\Gamma \), a possible extension of \(\Gamma \) and for any term \(s \) that has semantic type
Our semantic definitions are reflexive, symmetric, and transitive. Further they are stable under type conversions. We state the lemma below only for terms, but it must in fact be proven mutually with the corresponding property for LF substitutions. We first establish these properties for LF and subsequently for computations. Establishing these properties is tricky and intricate. All proofs can be found in the long version.

Lemma VII.2 (Reflexivity, Symmetry, Transitivity, and Conversion of Semantic Equality for LF).
1) \(\Gamma ; \Psi \vdash M = M : A \).
2) If \(\Gamma ; \Psi \vdash M = N : A \) then \(\Gamma ; \Psi \vdash N = M : A \).
3) If \(\Gamma ; \Psi \vdash M_1 = M_2 : A \) and \(\Gamma ; \Psi \vdash M_2 = M_3 : A \) then \(\Gamma ; \Psi \vdash M_1 = M_3 : A \).
4) and \(\Gamma ; \Psi \vdash M = N : A \) then \(\Gamma ; \Psi \vdash M = N : A' \).

Proof. Reflexivity follows directly from symmetry and transitivity. For LF terms (and LF substitutions), we prove symmetry and conversion by induction on the derivation \(\Gamma ; \Psi \vdash M = N : A \) and \(\Gamma ; \Psi \vdash \sigma = \sigma' : \Phi \) respectively. For transitivity, we use lexicographic induction. The proofs relies on symmetry of decl. equivalence (\(\equiv \)), determinacy of weak head reductions, and crucially relies on well-formedness of semantic equality and functionality of LF typing (Lemma IV.1).

B. Semantic Properties of Computations

If a term is semantically well-typed, then it is also syntactically well-typed. Furthermore, our definition of semantic typing is stable under weakening.

Our semantic equality definition is symmetric and transitive. It is also reflexive – however, note that we prove a weaker reflexivity statement which says that if \(t_1 \) is semantically equivalent to another term \(t_2 \) then it is also equivalent to itself. This suffices for our proofs. We also note that our semantic equality takes into account extensionality for terms at function types and contextual types; this is in fact baked into our semantic equality definition.

Lemma VII.3 (Symmetry, Transitivity, and Conversion of Semantic Equality). Let \(\Gamma \vdash \tilde{\tau} : u \) and \(\Gamma \vdash \tilde{\tau}' : u \) and \(\Gamma \vdash \tilde{\tau} = \tilde{\tau}' : u \) and \(\Gamma \vdash t_1 = t_2 : \tilde{\tau} \). Then:
1) (Reflexivity) \(\Gamma \vdash t_1 = t_1 : \tilde{\tau} \).
2) (Symmetry) \(\Gamma \vdash t_2 = t_1 : \tilde{\tau} \).
3) (Transitivity) If \(\Gamma \vdash t_2 = t_3 : \tilde{\tau} \) then \(\Gamma \vdash t_1 = t_3 : \tilde{\tau} \).
4) (Conversion:) \(\Gamma \vdash t_1 = t_2 : \tilde{\tau}' \).

Proof. Reflexivity follows directly from symmetry and transitivity. We prove symmetry and transitivity for terms using a lexicographic induction on \(u \) and \(\Gamma \vdash \tau : u \); we appeal to the induction hypothesis and use the corresponding properties on types if the universe is smaller; if the universe stays the same, then we may appeal to the property for terms if \(\Gamma \vdash \tau : u \) is smaller; to prove conversion and symmetry for types, we may also appeal to the induction hypothesis if \(\Gamma \vdash \tau' : u \) is smaller.

Finally we establish various elementary properties about our semantic definition that play a key role in the fundamental lemma which we prove later.
Semantic Equality for Terms: \(\Gamma \vdash t = t': \tau \) by recursion on \(\Gamma \vdash \tau : u \)

\[
\begin{align*}
\Gamma \vdash t' \backslash \text{ctx} : u & \quad \Gamma \vdash t \backslash \text{ctx} : u \\
\Gamma \vdash t' \backslash w : u & \quad \Gamma \vdash t \backslash w : u \\
\Gamma \vdash t' \equiv t' : u & \quad \Gamma \vdash t \equiv t : u \\
\Gamma \vdash t' \upharpoonright x \bar{s} : u & \quad \Gamma \vdash t \equiv t : u \\
\Gamma \vdash x t' \equiv x \bar{s} : u & \quad \Gamma \vdash t \equiv t : u
\end{align*}
\]

Lemma VII.4 (Neutral Soundness).
If \(\Gamma \vdash t : \tau \) and \(\Gamma \vdash t : \bar{	au} \) and \(\Gamma \vdash t' : \bar{	au} \) and \(\Gamma \vdash t \equiv t' : \bar{	au} \)
and \(w = w \) then \(\Gamma \vdash t = t' : \bar{	au} \).

Proof. By induction on \(\Gamma \vdash \tau : u \).

Lemma VII.5 (Backwards Closure for Computations). If \(\Gamma \vdash t_1 = t_2 : \bar{	au} \) and \(\Gamma \vdash t_1 \backslash w : \bar{	au} \) and \(\Gamma \vdash t_1' \backslash w : \bar{	au} \) then \(\Gamma \vdash t_1' = t_2 : \bar{	au} \).

Proof. We analyse the definition of \(\Gamma \vdash t_1 = t_2 : \bar{	au} \) considering different cases of \(\Gamma \vdash \tau : u \).

Lemma VII.6 (Typed Wnf is Backwards Closed). If \(\Gamma \vdash t \backslash w : (y : \bar{	au}_1) \Rightarrow \bar{	au}_2 \) and \(\Gamma \vdash s = \bar{s}_1 \) and \(\Gamma \vdash w \backslash v : \{s / y\} \bar{	au}_2 \) then \(\Gamma \vdash t \backslash v : \{s / y\} \bar{	au}_2 \).

Proof. By unfolding the definitions and considering different cases for \(w \).

Lemma VII.7 (Semantic Application). If \(\Gamma \vdash t = t' : (y : \bar{	au}_1) \Rightarrow \bar{	au}_2 \) and \(\Gamma \vdash s = \bar{s}_1 : \bar{	au}_1 \) then \(\Gamma \vdash t \equiv t' : \bar{	au}_2 \).

Proof. Using well-formedness of semantic equality, Backwards closed properties (Lemma VII.6 and VII.5), and Symmetry of semantic equality (Lemma Prop. 2).

VIII. VALIDITY IN THE MODEL

For normalization, we need to establish that well-typed terms are logically related. However, as we traverse well-typed terms, they do not remain closed. As is customary, we now extend our logical relation to substitutions defining semantic substitutions \(\Gamma \vdash \theta = \theta' : \Gamma \).

\[
\begin{align*}
\vdash \Gamma' \vdash & \\
\Gamma' \vdash & \equiv \cdot \cdot \\
\Gamma' \vdash & \theta = \theta' : \Gamma \\
\Gamma' \vdash & \{\theta\} \bar{\tau} = \{\theta'\} \bar{\tau} : u \\
\Gamma' \vdash & \{\theta\} \bar{\tau} : u \\
\Gamma' \vdash & t = t' : \{\theta\} \bar{\tau} \\
\Gamma' \vdash & \theta, t/x = \theta', t'/x : \Gamma, x : \bar{\tau}
\end{align*}
\]

Semantic substitutions are well-formed (i.e. they imply that substitutions are well-typed), stable under weakening and preserve equivalences. They are also reflexive, symmetric, and transitive. Further, given a valid context where each of the declarations is valid, we can always generate \(\Gamma \vdash \text{id}(\Gamma) = \text{id}(\Gamma) : \Gamma \), where \(\text{id} \) is the identity substitution.

Last, we define validity of computation-level types and terms referring to their semantic definitions (Fig. 14). This allows us to define compactly the fundamental lemma which states that well-typed terms correspond to valid terms in our model. Validity here is defined in terms of the semantic definition (Fig. 13). In particular, we say that two terms \(M \) and \(N \) are equal in our model, if for all computation-level instantiations \(\theta \) and \(\theta' \) which are considered semantically equal, we have that \(\{\theta\} M \) and \(\{\theta'\} N \) are semantically equal. Our definition is symmetric and transitive.

Lemma VIII.1 (Function Type Injectivity is valid.). If \(\Gamma \vdash (y : \bar{s}_1) \Rightarrow \bar{s}_2 \Rightarrow \bar{s}_1 : u \) then \(\Gamma \vdash \bar{s}_1 = \bar{s}_2 : u \) and \(\Gamma \vdash y : \bar{s}_1 \Rightarrow \bar{s}_2 : u \) and \(\Gamma \vdash u, u_1, u_2, u_3 \in \mathfrak{R} \).

Proof. By unfolding the semantic definitions.

The fundamental lemma (Lemma VIII.1) states that well-typed terms are valid. The proof proceeds by mutual induction on the typing derivation for LF-objects and computations. It relies on the validity of type conversion, computation-level functions, applications, and recursion. To establish these properties, we require symmetry, transitivity of semantic equality, and semantic type conversion (Lemma VII.7).

Theorem VIII.1 (Fundamental Theorem).
1) If \(\Gamma \vdash \Gamma \).
2) If \(\Gamma ; \Psi \vdash M : A \) then \(\Gamma ; \Psi \vdash M = M : A \).
3) If \(\Gamma ; \Psi \vdash \sigma : \Phi \) then \(\Gamma ; \Psi \vdash \sigma = \sigma : \Phi \).
4) If \(\Gamma ; \Psi \vdash M = N : A \) then \(\Gamma ; \Psi \vdash M = N : A \).
5) If \(\Gamma ; \Psi \vdash \sigma = \sigma' : \Phi \) then \(\Gamma ; \Psi \vdash \sigma = \sigma' : \Phi \).
Validity of LF Objects: \[\Gamma; \Psi \vdash M = N : A \] where \(\vdash \Gamma \)

\[\forall \Gamma', \theta, \theta'. \Gamma' \vDash \theta = \theta': \Gamma \]
\[\implies \Gamma'; \{ \theta \} \Psi \vdash \{ \theta \} M = \{ \theta' \} N : \{ \theta \} A \]

\[\Gamma; \Psi \vdash M = N : A \]

Validity of LF Substitutions: \[\Gamma; \Psi \vdash \sigma = \sigma' : \Phi \] where \(\vdash \Gamma \)

\[\forall \Gamma', \theta, \theta'. \Gamma' \vDash \theta = \theta': \Gamma \]
\[\implies \Gamma'; \{ \theta \} \Psi \vdash \{ \theta \} \sigma_1 = \{ \theta' \} \sigma'_1 : \{ \theta \} \Phi \]

\[\Gamma; \Psi \vdash \sigma = \sigma' : \Phi \]

Validity of Types: \[\Gamma \vdash \bar{t} = \bar{t}' : u \] and \[\Gamma \vdash \bar{t} : u \]

\[\forall \Gamma', \theta, \theta'. \Gamma' \vDash \theta = \theta': \Gamma \]
\[\implies \Gamma'; \{ \theta \} \bar{t} = \{ \theta' \} \bar{t}' : u \]
\[\Gamma \vdash \bar{t} = \bar{t}' : u \]
\[\Gamma \vdash \bar{t} : u \]

Validity of Terms: \[\Gamma \vdash t = t' : \bar{t} \] and \[\Gamma \vdash t : \bar{t} \]

\[\Gamma \vdash \forall \Gamma', \theta, \theta'. \Gamma' \vDash \theta = \theta': \Gamma \]
\[\implies \Gamma'; \{ \theta \} t = \{ \theta' \} t' : \{ \theta \} \bar{t} \]
\[\Gamma \vdash \bar{t} = \bar{t}' : u \]
\[\Gamma \vdash t = t' : \bar{t} \]
\[\Gamma \vdash t : \bar{t} \]

Fig. 14. Validity Definition

6) If \(\Gamma \vdash t : \tau \) then \(\Gamma \vdash t : \tau \).

7) If \(\Gamma \vdash t \equiv t' : \tau \) then \(\Gamma \vdash t = t' : \tau \).

Theorem VIII.2 (Normalization and Subject Reduction). If \(\Gamma \vdash t : \tau \) then \(t \Downarrow w \) and \(\Gamma \vdash t \equiv w : \tau \)

Proof. By the fundamental theorem (Lemma VIII.1), we have \(\Gamma \vdash t = \bar{t} : \bar{t} \) (choosing the identity substitution for \(\theta \) and \(\theta' \)). This includes a definition \(t \Downarrow w \). Since \(w \) is in whnf (i.e. whnf \(w \)), we have \(w \Downarrow w \). Therefore, we can easily show that also \(\Gamma \vdash t = w : \tau \). By well-formedness, we also have that \(\Gamma \vdash t \equiv w : \tau \) and more specifically, \(\Gamma \vdash t : \tau \).

Using the fundamental lemma, we can also show that every term has a unique type. This requires first showing some standard inversion lemmas and then showing function type injectivity.

Lemma VIII.2 (Injectivity of Function Type). If \(\Gamma \vdash (y : \bar{t}1) \Rightarrow \tau_2 \equiv (y : \bar{t}2) \Rightarrow \tau_2' : u \) then \(\Gamma \vdash \bar{t}1 \equiv \bar{t}2 : u_1 \) and \(\Gamma, y : \bar{t}1 \vdash \tau_2 \equiv \tau_2' : u_2 \) and \((u_1, u_2, u) \in \mathfrak{R} \).

Proof. By the fundamental theorem (Lemma VIII.1) \(\Gamma \vdash (y : \bar{t}1) \Rightarrow \tau_2 \equiv (y : \bar{t}2) \Rightarrow \tau_2' : u \) (choosing the identity substitution for \(\theta \) and \(\theta' \)). By the semantic equality def., we have \(\Gamma \vdash \bar{t}1 \equiv \bar{t}2 : u_1 \) and \(\Gamma, y : \bar{t}1 \vdash \tau_2 = \tau_2' : u_2 \) and \((u_1, u_2, u) \in \mathfrak{R} \). By well-formedness of semantic typing, we have \(\Gamma \vdash \bar{t}1 \equiv \bar{t}2 : u_1 \) and \(\Gamma, y : \bar{t}1 \vdash \tau_2 \equiv \tau_2' : u_2 \).

Theorem VIII.3 (Type Uniqueness).
1) If \(\Gamma; \Psi \vdash M : A \) and \(\Gamma; \Psi \vdash B : \) then \(\Gamma \vdash A \equiv B : \) type.

2) If \(\Gamma \vdash t : \bar{t} \) and \(\Gamma \vdash t : \bar{t}' \) then \(\Gamma \vdash \bar{t} \equiv \bar{t}' : u \).

Proof. By mutual induction on the typing derivation exploiting typing inversion lemmas.

Last but not least, the fundamental lemma allows us to show that not every type is inhabited and thus COCON can be used as a logic. To establish this stronger notion of consistency, we first prove that we can discriminate type constructors.

Lemma VIII.3 (Type Constructor Discrimination). Neutral types, sorts, and function types can be discriminated.

Proof. Proof by contradiction. To show for example that \(\Gamma \vdash x \neq (y : \bar{t}1) \Rightarrow \tau_2 \), we assume \(\Gamma \vdash x \equiv (y : \bar{t}1) \Rightarrow \tau_2 : u \). By the fundamental lemma (Lemma VIII.1), we have \(\Gamma \vdash x \equiv (y : \bar{t}1) \Rightarrow \tau_2 : u \) (choosing the identity substitution for \(\theta \) and \(\theta' \)); but this is impossible given the semantic equality definition.

Theorem VIII.4 (Consistency). \(x : u_0 \not\vdash t : x \).

Proof. Assume \(x : u_0 \vdash t : x \). By subject reduction (Lemma VIII.2), there is some \(w \) s.t. \(t \Downarrow w \) and \(\Gamma \vdash t \equiv w : x \) and in particular, we must have \(\Gamma \vdash w : x \). As \(x \) is neutral, it cannot be equal to \(u \), \((y : \bar{t}1) \Rightarrow \tau_2 \), or \(\bar{t} \) (Lemma VIII.3). Thus \(w \) can also not be a sort, function, or contextual object. Hence, \(w \) can only be neutral, i.e. given the assumption \(x : u_0 \), the term \(u \) must be \(x \). This implies that \(\Gamma \vdash x \equiv x \) and implies \(\Gamma \vdash x = u_0 : u \) by inversion lemma for typing. But this is impossible by Lemma VIII.3.

An extended version with the full technical development is available at [Pientka et al. (2019)].

IX. Conclusion

COCON is a first step towards integrating LF methodology into Martin-Löf style dependent type theories and and bridges the longstanding gap between these two worlds. We have established type uniqueness, normalization, and consistency. The next immediate step is to derive an equivalence algorithm based on weak head reduction and show its completeness. We expect that this will follow a similar Kripke-style logical relation as the one we described. This would allow us to justify that type checking COCON programs is decidable.

It should be possible to implement COCON as an extension to BELEGA– from a syntactic point of view, it would be a small change. It also seems possible to extend existing implementation of Agda, however this might be more work, as in this case one needs to implement the LF infrastructure.

REFERENCES

