
Cocon: Computation in Contextual Type Theory

BRIGITTE PIENTKA,McGill University, Canada
ANDREAS ABEL, Gothenburg University, Sweden
FRANCISCO FERREIRA, Imperial College London, United Kingdom
DAVID THIBODEAU,McGill University, Canada
REBECCA ZUCCHINI, ENS Paris Saclay, France

We describe a Martin-Löf-style dependent type theory, called Cocon, that allows us to mix the intensional function space that is used
to represent higher-order abstract syntax (HOAS) trees with the extensional function space that describes (recursive) computations.
We mediate between HOAS representations and computations using contextual modal types. Our type theory also supports an
infinite hierarchy of universes and hence supports type-level computation—thereby providing metaprogramming and (small-scale)
reflection. Our main contribution is the development of a Kripke-style model for Cocon that allows us to prove normalization. From
the normalization proof, we derive subject reduction and consistency. Our work lays the foundation to incorporate the methodology
of logical frameworks into systems such as Agda and bridges the longstanding gap between these two worlds.

Additional Key Words and Phrases: Dependent Types, Logical Relations, Proof assistants

1 INTRODUCTION
Higher-order abstract syntax (HOAS) is an elegant and deceptively simple idea of encoding syntax and more generally
formal systems given via axioms and inference rules. The basic idea is to map uniformly binding structures in our object
language to the function space in a meta-language thereby inheriting α-renaming and capture-avoiding substitution. In
the logical framework LF [Harper et al. 1993], for example, we encode a simple object language consisting of functions,
function application, and let-expressions using a type tm together with the constants as follows:

lam : (tm → tm) → tm.

app : tm → tm → tm.

letv: tm → (tm → tm) → tm.

The object language term (lam x .lam y.letw = x y inw y) is then encoded as (lam λx.lam λy.letv (app x y) λw.
app w y) using the LF abstractions to model binding. Object level substitution is modelled through LF application; for
instance, the fact that ((lam x .M) N) reduces to [N /x]M in our object language is expressed as (app (lam M) N) reducing
to (M N). This approach can offer substantial benefits: programmers do not need to build up the basic mathematical
infrastructure, they can work at a higher-level of abstraction, encodings are more compact, and hence it is easier to
mechanize formal systems together with their meta-theory.

However, this approach relies on the fact that we use an intensional function space that lacks recursion, case analysis,
inductive types, and universes to adequately represent syntax. In the logical framework LF [Harper et al. 1993] for
example we use the dependently-typed lambda calculus as a meta-language to represent formal systems. Two LF
objects are equal if they have the same βη-normal form. Under this view, intensional functions represent syntactic
binding structures. However, we cannot write recursive programs about such syntactic structures within LF, as we
lack the power of recursion. We only have a way to represent data. In contrast, to describe computation we rely on the
extensional function space. Under this view, two functions are (extensionally) equal if they behave in the same way, i.e.
when they produce equal results when applied to equal inputs. Under this view, functions are opaque.

1.1 Intensional and Extensional Functions – A World of a Difference
To understand the fundamental difference between defining HOAS trees in LF vs. defining HOAS-style trees using
inductive types, let us consider an inductive type D with one constructor lam: (D → D) → D. What is the problem
with such a definition in type theory? – In functional ML-like languages, this is, of course, possible, and types like D can
be explained using domain theory [Scott 1976]. However, the function argument to the constructor lam is opaque and
we would not be able to pattern match deeper on the argument to inspect the shape and structure of the syntax tree

Authors’ addresses: Brigitte Pientka, School of Computer Science, McGill University, Canada, bpientka@cs.mcgill.ca; Andreas Abel, Department of
Computer Science and Engineering, Gothenburg University, Sweden, andreas.abel@gu.se; Francisco Ferreira, School of Computer Science, Imperial
College London, United Kingdom, f.ferreira-ruiz@imperial.ac.uk; David Thibodeau, School of Computer Science, McGill University, Canada, david.
thibodeau@mail.mcgill.ca; Rebecca Zucchini, ENS Paris Saclay, sss, xxx, xx, xxxxx, France, XXX.

1

that is described by it. We can only observe it by applying it to some argument. The resulting encoding also would
not be adequate, i.e. there are terms of type D that are in normal form but do not uniquely correspond to a term in the
object language we try to model. As a consequence, we may need to rule out such “exotic” representations [Despeyroux
et al. 1995]. But there is a more fundamental problem. In proof assistants based on type theory such as Coq or Agda, we
cannot afford to work within an inconsistent system and we demand that all programs we write are terminating. The
definition of a constructor lam as given previously would be forbidden as it violates what is known as the positivity
restriction. Were we to allow it, we can easily write non-terminating programs by pattern matching – even without
making a recursive call.

apply : D → (D → D)

apply (lam f) = f

omega : D

omega = lam (λx → apply x x)

Omega : D

Omega = apply omega omega

Here we simply write two functions: the function apply unpacks an object of type D using pattern matching and the
function omega creates an object of type D. Using apply and omega we can now write a non-terminating program that
will continue to reproduce itself.

This example begs two questions: How can we reason inductively about LF definitions if they are seemingly not
inductive? Do we have to simply give up on HOAS definitions to model syntactic structures within type theory to
remain consistent?

1.2 Towards Bridging the Gap between Intensional and Extensional Functions
Over the past two decades, we have made substantial progress in bringing the intensional and extensional views closer
together. Despeyroux et al. [1997] made the key observation that we can mediate between the weak LF and the strong
computation-level function space using a box-modality. The authors describe a simply typed lambda-calculus with
iteration and case constructs which preserves the adequacy of higher-order abstract syntax encodings. The well-known
paradoxes are avoided through the use of a modal box operator which obeys the laws of S4. In addition to being simply
typed, all computation had to be on closed HOAS trees. Despeyroux and Leleu [1999] sketch an extension of this line of
work to dependent type theory – however it lacks a normalization proof.

Beluga [Pientka and Cave 2015; Pientka and Dunfield 2010] took another important step towards writing inductive
proofs about HOAS trees by generalizing the box-modality to a contextual modal type [Nanevski et al. 2008; Pientka
2008]. This allows us to characterize HOAS trees that depend on a context of assumptions. More importantly, Beluga
allows programmers to analyze these contextual HOAS trees using case distinction and recursion. Exploiting the
Curry-Howard isomorphism, inductive proofs about HOAS trees can be described using recursive functions. However,
the gap between full dependent type theories with recursion and universes such as Martin-Löf type theory, and weak
dependent type theories such as LF remains. In particular, Beluga cleanly separates representing syntax from reasoning
about syntax. The resulting language is an indexed type system in the tradition of Zenger [1997] and Xi and Pfenning
[1999] where the index language is completely different from the computation language which is used to write recursive
programs. In Beluga, contextual LF is taken as the index domain. This has the key advantage that meta-theoretic proofs
are modular and hinge on the fact that equality in the index domain is decidable. However, this approach also gives
up a lot of expressivity; in particular we can only express properties of HOAS trees, but we lack the power to express
properties of the functions we write about them. This prevents us from fully exploiting the power of metaprogramming
and reflection.

1.3 The Best of Both Worlds
In this paper, we present the Martin-Löf style dependent type theory Cocon where we mediate between intensional
syntactic structures and extensional computations using contextual types [Nanevski et al. 2008; Pientka 2008]. Following
Beluga, we pair a LF object together with its surrounding LF context and embed it as a contextual object into
computations using the box-modality. For example, ⌈x ,y ⊢ app x y⌉ describes a contextual LF object that has the
contextual LF type ⌈x :tm,y:tm ⊢ tm⌉. In contrast to Beluga, we also allow computations to be embedded within LF
objects. For example, if a program t promises to compute a value ⌈x :tm,y:tm ⊢ tm⌉, then we can embed t directly
into an LF object writing lam λx .lam λy.app ⌊t⌋ x . In general, we can use a computation that produces a value of type
⌈Ψ ⊢ A⌉ when constructing a LF object in a LF context Φ by unboxing it together with a LF substitution that moves

2

the value from the LF context Ψ to the current LF context Φ. This is written as ⌊t⌋σ . In the example, we omitted the
substitution as the computation already promised to produce a value in the appropriate LF context.

Being able to embed functions into LF objects is key to express properties about function we write about them.
For example, we might implement a function that evaluates a tm-object and another function trans that eliminates
let-expressions from our tm language. Then we would like to know whether both the original term and the translated
term evaluate to the same value.

Allowing computation within LF objects, might seem like a small change, but it has far reaching consequences.
To establish consistency of the type theory, we cannot consider normalization of LF separately from normalization
of computations anymore, as it is done in Pientka and Abel [2015] and Jacob-Rao et al. [2018]. As Martin-Löf type
theory [1973], Cocon is a predicative type theory and supports an infinite hierarchy of universes. This allows us to
write type-level computation, i.e. we can compute types whose shape depends on a given value. Such recursively
defined types are sometimes called large eliminations [Werner 1992]. Due to the presence of type-level computations
dependencies cannot be erased from the model. As a consequence, the simpler proof technique of Harper and Pfenning
[2005] which considers approximate shape of types and has been used to prove completeness of equivalence algorithm
for LF’s type theory cannot be used in our setting. Instead, we follow recent work by Abel and Scherer [2012a] and Abel
et al. [2018] on proving normalization of our fully dependent type theory using a Kripke logical relation. Our semantic
model highlights the intensional character of the LF function space and the extensional character of computations.
Our main contribution is the design of the Kripke-style model for the dependent type theory Cocon that allows us to
establish normalization. From the normalization proof, we derive type uniqueness, subject reduction, and consistency.

We believe Cocon lays the foundation to incorporate the methodology of logical frameworks into systems such as
Agda [Norell 2007] or Coq [Bertot and Castéran 2004]. This finally allows us to combine the world of type theory and
logical frameworks inheriting the best of both worlds.

1.4 Outline of the Technical Development
Before delving into the technical details, we sketch here the main structure of the technical development. Cocon
consists of two mutually defined layers: LF to define HOAS and computation to write recursive programs. The syntax
and typing rules of Cocon together with definitional equality are described in Sec. 2. We distinguish between two
different kinds of variables, LF variables and computation variables. In particular, we define two different substitution
operations. We then proceed to prove some elementary properties about LF (Sec. 3.1) and computation (Sec. 3.2), in
particular well-formedness of LF contexts, LF Weakening and LF Substitution properties. For LF we also establish
functionality of LF typing from which injectivity of LF function types follows.

Similarly, we establish some elementary properties about computation-level contexts and computation-level sub-
stitutions. We then proceed to define weak head reductions for LF and computations (Sec. 4) and show that they are
closed under weakening (renaming).

Using weak head reduction, we define semantic equality using a Kripke model (Sec. 5). Our model is Kripke-style in
the sense that it is closed under weakening. It contains all well-typed terms in weak head normal form (whnf) and is
built on top of definitional equality. We do not define semantic typing, but say a term is semantically well typed, if it is
semantically equal to itself. Since we embed computations inside LF terms, our typing rules for LF and computations are
mutually defined, and one might wonder how we can break this cycle to arrive at a well-founded definition of semantic
equality. We consider two LF termsM and N that weak head reduce to a ⌊t⌋σ and ⌊t ′⌋σ ′ resp. semantically equal, if
the computations t and t ′ are definitionally equal and the corresponding LF substitutions are semantically equal. This
allows us to first define semantic equality for LF objects and subsequently semantic equality for computations breaking
the cycle.

As we allow type-level computation, semantic equality for computations cannot be inductively defined on the
structure of computation-level types. Instead, we use semantic kinding for types as a measure to define the semantic
equality for computations.

Our semantic equality definitions are stable under renaming (weakening). We also prove symmetry, transitivity and
type conversion for semantic equality that are the cornerstone of the development. This allows us to show that our
semantic definition for terms is backwards closed and that neutral terms are semantically equal (see Sec. 6). Using the
Kripke-model, we then show normalization and subject reduction (see Sec. 7). Logical consistency follows. The full
development including the proofs can be found in the accompanying long version.

3

Summary of Contributions.

• We describe Cocon, a Martin-Löf style type theory with an an infinite hierarchy of universes and two intertwined
layers: on the LF layer, we can define HOAS trees referring to values produced by computations and on the
computation layer we can write recursive functions on HOAS trees and exploit the power of large eliminations.
We mediate between these layers using contextual modal types. This allows us to bridge the gap between the
intensional LF function space and the extensional function space used for writing recursive computations.
• We give a Kripke-style model to describe semantic equality for well-typed LF objects and well-typed compu-
tations highlighting the difference between intensional and extensional functions. Using this model we prove
normalization.

2 COCON: COMPUTATION IN CONTEXTUAL TYPE THEORY
Cocon combines the logical framework LF [Harper et al. 1993] with a full dependent type theory that supports recursion
over HOAS objects and universes. For clarity, we split Cocon’s grammar into different syntactic categories (see Fig. 1).
The LF layer describes LF objects, LF types, LF contexts; the computation layer consists of terms and types that describe
recursive computation and universes. We mediate the interaction between LF objects and computations via a (contextual)
box modality following Pientka [2008]: we embed contextual LF objects into computations, by pairing an LF object with
its LF contexts and we embed computations within LF objects by unboxing the result of a computation. This allows
us to not only write functions about LF objects, but also establish proofs about such functions and opens the way for
metaprogramming and writing programs using reflection.

LF Kinds K ::= type | Πx :A.K
LF Types A,B ::= aM1 . . .Mn | Πx :A.B
LF Terms M,N ::= λx .M | x | c | M N | ⌊t⌋σ
LF Constants a, c ::= tm | lam | app
LF Contexts Ψ,Φ ::= ψ | · | Ψ,x :A
LF Context (Erased) Ψ̂, Φ̂ ::= ψ | · | Ψ̂, x
LF Substitutions σ ::= · | wkΨ̂ | σ ,M
LF Signature Σ ::= tm:type, lam :Πy:(Πx :tm.tm).tm, app:Πx :tm.Πy:tm.tm

Contextual Types T ::= Ψ ⊢ A | Ψ ⊢# A

Contextual Objects C ::= Ψ̂ ⊢ M

Sorts u ::= Uk
Domain of Discourse τ̆ ::= τ | tm_ctx
Types and τ ,I, ::= u | ⌈T ⌉ | (y : τ̆1) ⇒ τ2
Terms t , s | y | ⌈C⌉ | t1 t2 | fn y ⇒ t | recI B Ψ t
Branches B ::= (ψ ,p ⇒ tv | ψ ,m,n, fm , fn ⇒ tapp | ψ ,m, fm ⇒ tlam)

| (ψ ⇒ tx | ψ ,y, fy ⇒ ty)
Contexts Γ ::= · | Γ,y : τ̆

Fig. 1. Syntax of Cocon

2.1 Syntax
Logical Framework LF with Embedded Computations. As in LF we allow dependent kinds and types; LF terms can be

defined by LF variables, constants, LF applications, and LF lambda-abstractions. In addition, we allow a computation t
to be embedded into LF terms using a closure ⌊t⌋σ . Here the computation t eventually computes to a contextual object
that depends on assumptions Ψ following Pientka [2008]. Once computation of t produces a contextual object Ψ̂ ⊢ M
we can embed the result by applying the substitution σ toM movingM from the LF context Ψ to the current context Φ.

4

We distinguish between computations that characterize a general LF term M of type A in a context Ψ using the
contextual type Ψ ⊢ A and computations that are guaranteed to return a variable in a context Ψ of type A using
the contextual type Ψ ⊢# A. This is essential when describing recursors over contextual LF terms, but also generally
important when mechanizing formal systems and it is smoothly integrated in our type theory.

For simplicity, we fix here the LF signature to include the type tm and the LF constants lam and app . This allows us
to for example define recursors on tm-objects directly.

LF contexts. LF contexts are either empty or are built by extending a context with a declaration x :A. We may also use
a (context) variableψ that stands for a context prefix and must be declared on the computation-level. In particular, we
can write functions where we abstract over (context) variables. Consequently, we can pass LF contexts as arguments to
functions. We classify LF contexts via schemas – for this paper, we pre-define the schema tm_ctx which classifies a LF
context which consists of tm declarations. Such context schemas are similar to adding base types to computation-level
types. We often do not need to carry the full LF context with the type annotations, but it suffices to simply consider the
erased LF context. Erased LF contexts are simply a list of variables possibly with a context variable at the head.

At the moment, we do not support computation on context at the moment – this simplifies the design. Recall that
the head of a context denotes a possibly empty sequence of declarations. This prefix should be abstract and opaque to
any LF term or LF type that is considered within this context. In other words, a LF term M (or LF type A) should be
meaningful without requiring any specific knowledge about the prefix of declarations. Second, it would be difficult to
enforce well-scoping and α-renaming. To illustrate, consider the following LF term app x y in the LF context x :tm,y:tm.
If we were to allow type checking to exploit equivalence relations on LF contexts that take into account computations
on LF contexts, we can argue that since x :tm,y:tm is equivalent to copy ⌈x :tm,y:tm⌉, app x y should also be meaningful
in the latter LF context. However, now the LF variables x and y are free in app x y.

LF Substitutions. LF substitutions allow us to move between LF contexts. The empty LF substitution provides a
mapping from an empty LF context to a LF context Ψ and hence has weakening built-in. The weakening substitution
written as wkΨ̂ where Ψ describes the prefix of the range that corresponds to the domain; in other words it describes the
weakening of the domain Ψ to the range Ψ,−−→x :A. In general, we may weaken any given LF context with the declarations
−−→
x :A. The generality of weakening substitutions is necessary to, for example, express that we can weaken a LF contextψ .
We may write simply id, if |−−→x :A| = 0.

Weakening substitutions do not subsume the empty substitutions – only the empty substitution that maps the empty
context to a concrete context xn :An , . . . ,x1:A1 can be expressed as wk· where we annotate the weakening substitution
with the empty LF context. For example, we would not be able to represent a substitution with the empty context as the
domain and a context variableψ as the range using a weakening substitution. Our built-in weakening substitutions
are also sometimes called renamings as they only allow contexts to be extended to the right but they do not support
arbitrary weakening of a LF context where we would insert a declaration in the middle (i.e. given a context x :A1,y:A3
we can weaken it to x :A1,w :A2,y:A3).

From a de Bruijn perspective, the weakening substitution wk· which maps the empty context to xn :An , . . . ,x1:A1
can be viewed as a shift n. Further, as in the de Bruijn world, wkxn :An, ...,x1:A1 can be expanded and is equivalent to
·,xn , . . . ,x1. While our theory lends itself to an implementation with de Bruijn indices, we formulate our type theory
using a named representation of variables. This not only simplifies our subsequent definitions of substitutions, but also
leaves open how variables are realized in an implementation.

LF substitutions can also be built by extending a LF substitution σ with a LF termM . Following Nanevski et al. [2008],
we do not store the domain of a substitution, but simply write them as a list of terms. We resurrect the domain of the
substitution before applying it by erasing types from a context. To apply a substitution σ to a term M in an erased
context Ψ̂, we write [σ/Ψ̂]M .

Contextual Objects and Types. We mediate between the LF and computation level using contextual types. We consider
here general contextual LF terms that have type Ψ ⊢ A, and contextual variable objects that have type Ψ ⊢# A.

Computations and their Types. Computations are formed by computation-level functions, written as fn y ⇒ t , that
are extensional, i.e. we can only observe their behaviour, applications, written as t1 t2, boxed contextual objects, written
as ⌈C⌉, and recursor, written as recI B Ψ t . We annotate the recursor with the typing invariant I and recurse over the

5

values computed by the term t . The LF context Ψ describes the local LF-world in which the value computed by t makes
sense. Finally, B describes the different branches we can take depending on the value computed by t . These branches
can be generated generically following Pientka and Abel [2015]. We focus on in the rest of the paper on the iterator
over contextual objects of type ⌈Ψ ⊢ tm⌉. In this case, we consider three different branches: 1) In the LF variable case,
(ψ ,p ⇒ tv), the variable p stands for a LF variable tm in the LF contextψ and has type ⌈ψ ⊢# tm⌉ and tv is the body of
the branch. 2) In the app -case, written as (ψ ,m,n, fm , fn ⇒ tapp), we pattern match on a LF term appm n in the LF
contextψ . The recursive calls are denoted by fm and fn respectively and tapp describes the body of the branch. 3) In
the lam -case, written as (ψ ,m, fm ⇒ tlam), we pattern match on a LF term lam λx .m wherem denotes a LF term of LF
type tm in the LF contextψ ,x :tm. The recursive call is described by fm and the body of the branch is denoted by tlam .

For illustration, we also include other branches to construct also recursors over contextual objects of type ⌈Ψ ⊢# tm⌉,
i.e. variables of type tm in the LF context Ψ. In this case, we only consider two branches where Ψ = Ψ′,x :tm: in the first
branch (ψ ⇒ tx) we pattern match against x andψ will be instantiated with Ψ′; in the second branch, (ψ ,y, fy ⇒ ty),
the LF variable we are looking for is not x , but is somewhere in Ψ′. In this case, y denotes intuitively a LF variable that
is not x and has type ⌈ψ ⊢# tm⌉ and we will instantiateψ with Ψ′; fy is the recursive call on the smaller LF context Ψ′
and ty is the body of the branch. We also include branches for recursing over LF substitution which have either the
contextual type ⌈Ψ ⊢ Φ⌉ or ⌈Ψ ⊢# Φ⌉. Here we consider two cases: either the LF substitution is empty then we choose
the first branch, or it is of the shape σ ,m and fσ denotes the recursive call on the smaller LF substitution σ .

Computation-level types consist of boxed contextual types, written as ⌈T ⌉, and dependent types, written as (y :
τ̆1) ⇒ τ2. We overload the dependent function space and allow as domain of discourse both computation-level types
and the schema tm_ctx of LF context. To form both functions we use fn y ⇒ t . We also overload function application
t s to eliminate dependent types (y : τ1) ⇒ τ2 and and (y : tm_ctx) ⇒ τ2, although in the latter case s stands for a LF
context.

Cocon is a pure type system (PTS) with infinite hierarchy of predicative universes, written as Uk where k ∈
Nat. The universes are not cumulative. We use sorts u,k ∈ S, axioms A = {(Ui , Ui+1 | i ∈ Nat}, and rules R =
{(Ui , Uj , Umax(i, j)) | i, j ∈ Nat}. Universes add additional power.

Example 2.1. To illustrate the syntax of Cocon, we write a program that counts the number of constructors in a
given tm. The type of the function is I = (ψ : tm_ctx) ⇒ (m : ⌈ψ ⊢ tm⌉) ⇒ nat.

fnψ ⇒ fnm ⇒ rec
I (ψ ,p ⇒ 0
| ψ ,m,n, fn , fm ⇒ fn + fm + 1
| ψ ,m, fm ⇒ fm + 1) ψ m

The first branch describes the variable case where p describes a variable from the LF context ψ which has type
⌈ψ ⊢# tm⌉. The second branch describes the application case; here fn and fm respectively denote the recursive calls
and have type nat. The third branch describes the lambda case where fm is the recursive call made on the body of the
lambda-term.

Example 2.2. Next we implement copy of type I = (ψ : tm_ctx) ⇒ (m : ⌈ψ ⊢ tm⌉) ⇒ ⌈ψ ⊢ tm⌉. We abbreviate the
identity substitution wkψ by simply writing id.

fnψ ⇒ fnm ⇒ rec
I (ψ ,p ⇒ ⌈ψ ⊢ ⌊p⌋

id
⌉

| ψ ,m,n, fn , fm ⇒ ⌈ψ ⊢ app ⌊ fn⌋id ⌊ fm⌋id ⌉
| ψ ,m, fm ⇒ ⌈ψ ⊢ lam λx .⌊ fm⌋id ⌉) ψ m

In this example the input and output type depends onψ ; in particular the type of the recursive call fm in the lambda
case will be ⌈ψ ,x :tm ⊢ tm⌉.

Example 2.3. We return the position of a LF variable in a LF context by writing a function pos that has type
I = (ψ : tm_ctx) ⇒ (x : ⌈ψ ⊢# tm⌉) ⇒ nat.

fnψ ⇒ fn x ⇒ rec
I (ψ ⇒ 0
| ψ ,y, fy ⇒ 1 + fy) ψ x

6

2.2 LF Substitution Operation
Our type theory distinguishes between LF-variables and computation-level variables. We have substitution operation
for both. Let’s consider first a few examples to get a better intuition. Let’s look at a few examples to get a better intuition.

Examples 1. Consider the LF term app ⌊⌈x ,y ⊢ app x y⌉⌋
wkx,y w . This LF term is obviously well-typed in the (normal)

LF context x :tm,y:tm,w :tm and applying the substitution wkx,y to app x y is meaningful as wkx,y expands to ·,x ,y.
When we apply ·,x ,y to unbox ⌈x ,y ⊢ app x y⌉, we resurrect the domain and apply [·,x ,y / ·,x ,y](app x y).

Examples 2. What about considering the α-equivalent term ⌊⌈x ′,y′ ⊢ app x ′ y′⌉⌋
wkx,y ? – Again we observe that

wkx,y expands to ·,x ,y; when we apply ·,x ,y to unbox ⌈x ′,y′ ⊢ app x ′ y′⌉, we resurrect the domain and apply
[·,x ,y / ·,x ′,y′](app x ′ y′) effectively renaming x ′ and y′ to x and y respectively.

[σ/Ψ̂](λx .M) = λx .M ′ where [σ ,x/Ψ̂,x](M) = M ′ provided that x < FV(σ) and x < Ψ̂

[σ/Ψ̂](M N) =M ′ N ′ where [σ/Ψ̂](M) = M ′ and [σ/Ψ̂](N) = N ′

[σ/Ψ̂](⌊t⌋σ ′) = ⌊t⌋σ ′′ where [σ/Ψ̂](σ ′) = σ ′′

[σ/Ψ̂](x) =M where lookup x [σ/Ψ̂] = M

[σ/Ψ̂]c = c

[σ/Ψ̂](·) = ·

[σ/Ψ̂](wkΦ̂) = σ
′ where truncΦ (σ/Ψ̂) = σ ′

[σ/Ψ̂](σ ′,M) = σ ′′,M ′ where [σ/Ψ̂](σ ′) = σ ′′ and [σ/Ψ̂](M) = M ′

Fig. 2. Simultaneous LF Substitution for LF Objects

We define LF substitutions uniformly using simultaneous substitution operation written as [σ/Ψ̂]M (and similarly
[σ/Ψ̂]A and [σ/Ψ̂]K) (see Fig. 2). As LF substitutions are simply a list of terms, we need to resurrect the domain to
lookup the instantiation for a LF variable x in σ . This is always possible. When pushing the substitution through an
applicationM N , we simply apply it toM and N respectively. When pushing the LF substitution through a λ-abstraction,
we extend it. When applying σ to a LF variable x , we retrieve the corresponding instantiation from σ using the auxiliary
function lookup which works mostly as expected. When applying the LF substitution σ to the LF closure ⌊t⌋σ ′ we
leave t untouched, since t cannot contain any free LF variables and compose σ and σ ′.

lookup x [σ ,M/Ψ̂,x] =M

lookup x [σ ,M/Ψ̂,y] = lookup x [σ/Ψ̂]
lookup x [wkΨ̂/Ψ̂] = x where x ∈ Ψ̂
lookup x [σ/Ψ̂] = fails otherwise

Composition of LF substitution is straightforward. When we apply σ to wkΨ̂ , we truncate σ and only keep those
entries corresponding to the LF context Ψ. Recall that wkΨ̂ provides a weakening substitution from a context Ψ to
another context Ψ,−−→x :A where |−−→x :A| = n. The simultaneous substitution σ provides mappings for all the variables in
Ψ̂, x⃗ . The result of [σ/Ψ̂, x⃗]wkΨ̂ then should only provide mappings for all the variables in Ψ. We use the operation
trunc to remove irrelevant instantiations. The definition of truncation is straightforward.

truncΨ (σ/Ψ̂) = σ

truncΨ (σ ,M/Φ̂,x) = truncΨ (σ/Φ̂)

truncΨ (wk(Ψ̂, x⃗)/Ψ̂, x⃗) = wkΨ̂
truncΨ (·/·) = fails Ψ , ·

7

Computation-level Substitution for Terms

{t/y}(fn x ⇒ t ′) = fn x ⇒ {t/y}t ′ provided x < FV(t)

{t/y}(t1 t2) = {t/y}t1 {t/y}t2
{t/y}(recI B Ψ t) = rec

I {t/y}b1 | {t/y}bk {t/y}Ψ {t/y}t where B = b1 | . . . | bn
{t/y}⌈C⌉ = ⌈{t/y}(C)⌉

{t/y}(y) = t

{t/y}(x) = x where x , y
{t/y}(·) = ·

{t/y}(Ψ,x : A) = {t/y}Ψ,x : {t/y}A provided (Ψ̂,x) < FV(t)

Computation-level Substitution for Branches

{t/y}(x⃗ ⇒ t ′) = (x⃗ ⇒ {t/y}t ′) provided x⃗ < FV(t)

Computation-level Substitution for Contextual Objects

{t/y}(Ψ̂ ⊢ M) = {t/y}Ψ̂ ⊢ {t/y}M provided Ψ̂ < FV(t)

{t/y}(Ψ̂ ⊢ σ) = {t/y}Ψ̂ ⊢ {t/y}σ provided Ψ̂ < FV(t)

Computation-level Substitution for LF Objects

{t/y}(λx .M) = λx .{t/y}M

{t/y}(M N) = {t/y}M {t/y}N

{t/y}(⌊t ′⌋σ) = ⌊{t/y}t ′⌋{t/y }σ
{t/y}(c) = c

{t/y}(x) = x

Computation-level Substitution for LF Substitutions

{t/y}(·) = ·

{t/y}(σ ,M) = {t/y}σ , {t/y}M

{t/y}(wkΨ̂) = wk
{t/y }(Ψ̂)

Fig. 3. Computation-level Substitution

2.3 Computation-level Substitution Operation
The computation-level substitution operation {t/x }t ′ traverses the computation t ′ and replaces any free occurrence of
the computation-level variable x in t ′ with t (see Fig. 3). The interesting case is {t/x }⌈C⌉. Here we push the substitution
into C and we will further apply it to objects in the LF layer. When we encounter a closure such as ⌊t ′′⌋σ , we continue
to push it inside σ and also into t ′′. When substituting a LF context Ψ for the variableψ in a context Φ, we rename the
declarations present in Φ. This is a convention. It would equally work to rename the variable declarations in Ψ. For
example, in {(x :tm,y:tm)/ψ }(ψ̂ ,x ⊢ lam λy.app x y), we rename the variable x in ψ̂ ,x and replaceψ with (x :tm,y:tm)

in (ψ̂ ,w ⊢ lam λy.appw y). This results in x ,y,w ⊢ lam λy.appw y. When type checking this term we will eventually
also α-rename the λ-bound LF variable y.

2.4 LF Typing
We concentrate here on the typing rules for LF terms, LF substitutions and LF contexts (see Fig. 5). The rules for LF
types and kinds are straightforward (see Fig. 4). All of the typing rules have access to a LF signature Σ which we omit
to keep the presentation compact. In typing rules for LF abstractions λx .M we simply extend the LF context and check
the bodyM . When we encounter a LF variable, we look up its type in the LF context. The conversion rule is important
and subtle. We only allow conversion of types – conversion of the LF context is not necessary, as we do not allow
computations to appear directly in the LF context and we can keep part of the LF context abstract. However, we deviate

8

Γ;Φ ⊢ A : type and Γ;Φ ⊢ K : kind LF type A is well-kinded and LF kind K is well-formed

Γ ⊢ Ψ : ctx a:K ∈ Σ
Γ;Ψ ⊢ a : K

Γ;Ψ ⊢ P : Πx :A.K Γ;Ψ ⊢ M : A
Γ;Ψ ⊢ P M : [M/x]K

Γ;Ψ ⊢ A : type Γ;Ψ,x :A ⊢ B : type
Γ;Ψ ⊢ Πx :A.B : type

Γ;Ψ ⊢ A : K ′ Γ;Ψ ⊢ K ′ ≡ K : kind
Γ;Ψ ⊢ A : K

Γ ⊢ Ψ : ctx
Γ;Ψ ⊢ type : kind

Γ;Ψ ⊢ A : type Γ;Ψ,x :A ⊢ K : kind
Γ;Ψ ⊢ Πx :A.K : kind

Fig. 4. Kinding Rules for LF Types

Γ;Ψ ⊢# M : A LF termM of LF type A in the LF context Ψ and context Γ describes a variable
Γ;Ψ ⊢ M ≡ x : A Ψ(x) = A

Γ;Ψ ⊢# M : A
Γ;Ψ ⊢# M : B Γ;Ψ ⊢ B ≡ A : type

Γ;Ψ ⊢# M : A

Γ;Ψ ⊢ M ≡ ⌊t⌋σ : [σ/Φ̂](A) Γ ⊢ t : [Φ ⊢# A] Γ;Ψ ⊢# σ : Φ
Γ;Ψ ⊢# M : A

Γ;Ψ ⊢ M : A LF termM has LF type A in the LF context Ψ and context Γ

Γ;Ψ,x :A ⊢ M : B
Γ;Ψ ⊢ λx .M : Πx :A.B

Γ ⊢ t : [Φ ⊢ A] or Γ ⊢ t : [Φ ⊢# A] Γ;Ψ ⊢ σ : Φ
Γ;Ψ ⊢ ⌊t⌋σ : [σ/Φ̂]A

Γ ⊢ Ψ : ctx Ψ(x) = A

Γ;Ψ ⊢ x : A
Γ;Ψ ⊢ M : B Γ;Ψ ⊢ B ≡ A : type

Γ;Ψ ⊢ M : A
Γ;Ψ ⊢ M : Πx :A.B Γ;Ψ ⊢ N : A

Γ;Ψ ⊢ M N : [N /x]B
Γ ⊢ Ψ : ctx c : A ∈ Σ

Γ;Ψ ⊢ c : A

Γ;Φ ⊢ σ : Ψ LF substitution σ provides a mapping from the LF context Ψ to Φ

Γ ⊢ Ψ,
−−→
x :A : ctx

Γ;Ψ,−−→x :A ⊢ wkΨ̂ : Ψ
Γ ⊢ Φ : ctx
Γ;Φ ⊢ · : ·

Γ;Φ ⊢ σ : Ψ Γ;Φ ⊢ M : [σ/Ψ̂]A
Γ;Φ ⊢ σ ,M : Ψ,x :A

Γ;Ψ ⊢# σ : Φ LF substitution σ from LF context Φ to the LF context Ψ is a weakening subst.

Γ;Ψ,−−→x :A ⊢ σ ≡ wkΨ̂ : Ψ

Γ;Ψ,−−→x :A ⊢# σ : Ψ

Fig. 5. Typing Rules for LF Terms and LF Substitutions

from Cave and Pientka [2012] in the rule that allows us to embed computations into LF terms. Given a computation t
that has type ⌈Ψ ⊢ A⌉ or ⌈Ψ ⊢# A⌉, we can embed it into the current LF context Φ by forming the closure ⌊t⌋σ where σ
provides a mapping for the variables in Ψ. This formulation generalizes previous work which only allowed variables
declared in Γ to be embedded in LF terms. This enforced a strict separation between computations and LF terms. The
typing rules for LF substitutions are as expected.

Last, we consider the typing rules for LF contexts (see Fig. 6). They simply analyze the structure of a LF context.
When we reach the head we either encounter a empty LF context or an context variable y which must be declared in
the computation-level context Γ.

9

Γ ⊢ Ψ : ctx LF context Ψ is a well-formed
⊢ Γ

Γ ⊢ · : ctx
Γ(y) = tm_ctx ⊢ Γ

Γ ⊢ y : ctx
Γ ⊢ Ψ : ctx Γ;Ψ ⊢ A : type

Γ ⊢ Ψ,x :A : ctx

Fig. 6. Typing Rules for LF Contexts

2.5 Definitional LF Equality
Wenow consider definitional LF equality.We omit the transitive closure rules as well as congruence rules, but concentrate
here on the reduction and expansion rules. For LF terms, equality is βη. In addition, we can reduce ⌊Ψ ⊢ M⌋σ by simply
applying σ toM .

For LF substitutions, we take into account that weakening substitutions are not unique. For example, the substitution
wk· may stand for a mapping from the empty context to another LF context; so does the empty substitution ·. Similarly,
wkx1, ...xn is equivalent to wk·,x1, . . . ,xn .

Γ;Ψ ⊢ M ≡ N : A LF TermM is definitionally equal to LF Term N at LF type A

Γ;Ψ ⊢ M : Πx :A.B
Γ;Ψ ⊢ M ≡ λx .M x : Πx :A.B

Γ;Ψ,x :A ⊢ M1 : B Γ;Ψ ⊢ M2 : A
Γ;Ψ ⊢ (λx .M1) M2 ≡ [M2/x]M1 : [M2/x]B

Γ;Φ ⊢ N : A Γ;Ψ ⊢ σ : Φ
Γ;Ψ ⊢ ⌊⌈Φ̂ ⊢ N ⌉⌋σ ≡ [σ/Φ̂]N : [σ/Φ̂]A

Γ;Ψ ⊢ σ ≡ σ ′ : Φ LF Substitution σ is definitionally equal to LF Substitution σ ′

Γ ⊢ Ψ : ctx
Γ;Ψ ⊢ wk· ≡ · : ·

Γ ⊢ Φ,x :A,−−→y:B : ctx

Γ;Φ,x :A,−−→y:B ⊢ wkΦ̂,x ≡ wkΦ,x : Φ,x :A

Γ;Ψ ⊢ σ ≡ σ ′ : Φ Γ;Ψ ⊢ M ≡ N : [σ/Φ̂]A
Γ;Ψ ⊢ σ ,M ≡ σ ′,N : Φ,x :A

Fig. 7. Reduction and Expansion for LF Terms and LF Substitutions

2.6 Contextual LF Typing and Definitional Equivalence
We describe typing and equivalence of contextual objects in Fig. 8. This is standard. We lift definitional equality on
LF terms to contextual objects. Note that we overload notation, writing Ψ̂ for a LF context Ψ where we have already
erased type declarations, but we sometimes abuse notation and write Ψ̂ for taking a LF context Ψ and erasing its type
information.

2.7 Computation Typing
We describe well-typed computations in Fig. 9 using the typing judgment Γ ⊢ t : τ . Computations only have access to
computation-level variables declared in the context Γ. To avoid duplication of typing rules, we overload the typing
judgment and write τ̆ instead of τ , if the same judgment is used to check that a given LF context is of schema tm_ctx.
For example, to ensure that (y : τ̆1) ⇒ τ2 has kind u3, we check that τ̆1 is well-kinded. For compactness, we abuse
notation writing Γ ⊢ tm_ctx : u although the schema tm_ctx is not a proper type whose elements can be computed. In
the typing rules for computation-level (extensional) functions, the input to the function which we also call domain of
discourse may either be of type τ1 or tm_ctx. To eliminate a term t of type (y : τ1) ⇒ τ2, we check that s is of type
τ1 and then return {s/y}τ2 as the type of t s . To eliminate a term of type (y : tm_ctx) ⇒ τ , we overload application

10

Γ ⊢ T Contextual Type T is well-kinded

Γ;Ψ ⊢ A : type
Γ ⊢ (Ψ ⊢ A)

Γ;Ψ ⊢ A : type
Γ ⊢ (Ψ ⊢# A)

Γ ⊢ C : T Contextual Objects C has Contextual Type T in context Γ
Γ;Ψ ⊢ M : A

Γ ⊢ (Ψ̂ ⊢ M) : (Ψ ⊢ A)
Γ;Ψ ⊢# M : A

Γ ⊢ (Ψ̂ ⊢ M) : (Ψ ⊢# A)

Γ ⊢ C ≡ C ′ : T Definitional Equivalence between Contextual Object
Γ;Ψ ⊢ M ≡ N : A

Γ ⊢ (Ψ̂ ⊢ M) ≡ (Ψ̂ ⊢ N) : (Ψ ⊢ A)

Γ ⊢ T ≡ T ′ Definitional Equivalence between Contextual Types
Γ ⊢ Ψ ≡ Φ : ctx Γ;Ψ ⊢ A ≡ B : type

Γ ⊢ (Ψ ⊢ A) ≡ (Φ ⊢ B)

Γ ⊢ Ψ ≡ Φ : ctx Γ;Ψ ⊢ A ≡ B : type
Γ ⊢ (Ψ ⊢# A) ≡ (Φ ⊢# B)

Fig. 8. Typing and Equivalence Rules for Contextual Objects

simply writing t s , although s stands for a LF context and check that s is of schema tm_ctx. This distinction between
the domains of discourse is important, as we only allow LF contexts to be built either by a context variable or a LF type
declaration. We can embed contextual object C into computations by boxing it and transitioning to the typing rules for
LF. We eliminate contextual types using the recursor.

In general, the output type of the recursor may depend on the argument we are recursing over. We hence annotate the
recursor itself with an invariant I. We consider only the recursor for contextual LF terms where I = (ψ : tm_ctx) ⇒
(y : ⌈ψ ⊢ tm⌉) ⇒ τ , but other recursors follow similar ideas. To check that the recursor recI B Ψ t has type {Ψ/ψ , t/y}τ ,
we check that each of the three branches has the specified type I. In the base case, we may assume in addition to
ψ : tm_ctx that we have a variable p : ⌈ψ ⊢# tm⌉ and check that the body has the appropriate type. If we encounter
a contextual LF object built with the LF constant app , then we choose the branch bapp . We assume ψ : ⌈tm_ctx⌉,
m : ⌈ψ ⊢ tm⌉, n : ⌈ψ ⊢ tm⌉, as well as fn and fm which stand for the recursive calls onm and n respectively. We then
check that the body tapp is well-typed. If we encounter a LF object built with the LF constant lam , then we choose the
branch blam . We assumeψ : ⌈tm_ctx⌉ andm : ⌈ψ ,x :tm ⊢ tm⌉ together with the recursive call fm onm in the extended
LF contextψ ,x :tm. We then check that the body tlam is well-typed.

2.8 Definitional Equality for Computations
We now consider definitional equality for computations concentrating on the reduction rules. We omit the transitive
closure and congruence rules, as they are as expected.

We consider two computations to be equal, if they evaluate to the same result. We propagate values through compu-
tations and types relying on the computation-level substitution operation. When we apply a term s to a computation
fn y ⇒ t , we β-reduce and replace y in the body t with s . We unfold the recursor depending on the value passed. If it is
⌈Ψ̂ ⊢ lam λx .M⌉, then we choose the branch tlam . If the value is ⌈Ψ̂ ⊢ appM N ⌉, we continue with the branch tapp . If it
is ⌈Ψ̂ ⊢ x⌉, i.e. the variable case, we continue with tv . Note that if Ψ is empty, then the case for variables is unreachable,
since there is no LF variable of type tm in the empty LF context and hence the contextual type ⌈· ⊢# tm⌉ is empty.

We also include the expansion of a computation t at type ⌈Ψ ⊢ A⌉; it is equivalent to unboxing t with the identity
substitution and subsequently boxing it, i.e. t is equivalent to ⌈Ψ̂ ⊢ ⌊t⌋

wkΨ̂
⌉ .

11

Well-formed Context: ⊢ Γ
⊢ ·

⊢ Γ Γ ⊢ τ̆ : u
⊢ Γ,x :τ̆

Typing and Kinding Judgments for Computations Γ ⊢ t : τ and Γ ⊢ τ : u

⊢ Γ
Γ ⊢ u1 : u2

(u1,u2) ∈ A
Γ ⊢ τ̆1 : u1 Γ,y:τ1 ⊢ τ2 : u2

Γ ⊢ (y : τ̆1) ⇒ τ2 : u3
(u1, u2, u3) ∈ R

Γ ⊢ T
Γ ⊢ ⌈T ⌉ : u

y : τ̆ ∈ Γ ⊢ Γ

Γ ⊢ y : τ̆
Γ ⊢ t : (y : τ̆1) ⇒ τ2 Γ ⊢ s : τ̆1

Γ ⊢ t s : {s/y}τ2

Γ,y : τ̆1 ⊢ t : τ2 Γ ⊢ (y : τ̆1) ⇒ τ2 : u
Γ ⊢ fn y ⇒ t : (y : τ̆1) ⇒ τ2

Γ ⊢ C : T
Γ ⊢ ⌈C⌉ : ⌈T ⌉

Γ ⊢ t : τ ′ Γ ⊢ τ ′ ≡ τ : u
Γ ⊢ t : τ

Schema checking of LF Context Γ ⊢ Ψ : tm_ctx ;Well-Formedness of Schema Γ ⊢ tm_ctx : u

⊢ Γ
Γ ⊢ tm_ctx : u

⊢ Γ
Γ ⊢ · : tm_ctx

Γ ⊢ Ψ : tm_ctx Γ;Ψ ⊢ A : type Γ;Ψ ⊢ A ≡ tm : type
Γ ⊢ Ψ,x :A : tm_ctx

Fig. 9. Typing Rules for Computations (without recursor)

3 ELEMENTARY PROPERTIES OF TYPING AND DEFINITIONAL EQUALITY
We now state and prove some basic properties about our type theory before we give its semantic interpretation and
show that all well-typed terms normalize. For stating the theorems succinctly, we refer to judgments that only depend
on the computation context Γ using Jcomp and judgments that refer to both the computation context Γ and the LF
context Ψ with JLF.

Jcomp = {t : τ̆ , t ≡ t ′ : τ̆ }
JLF = {M : A,M ≡ N : A,A : K ,A ≡ B : K ,K : kind,K ≡ K ′ : kind,σ : Ψ,σ ≡ σ ′ : Ψ}

Next we prove some elementary properties for LF and computations. As we separate the LF variables from the
computation-level variables, we establish first properties such as well-formedness of context, weakening and substitution,
for LF and then we prove the dual properties for computations.

3.1 Elementary Properties of LF
Theorem 3.1 (Well-Formedness of LF Context).
(1) If D :: Γ ⊢ Ψ,x :A,Ψ′ : ctx then C :: Γ ⊢ Ψ : ctx and C < D.
(2) If D :: Γ;Ψ ⊢ JLF then C :: Γ ⊢ Ψ : ctx and C < D.

Proof. 1(1) by induction on the structure of Ψ′; 2(2) by induction on Γ;Ψ ⊢ JLF.

First statement: If D :: Γ ⊢ Ψ,x :A,Ψ′ then C :: Γ ⊢ Ψ and C < D
Case. Ψ′ = ·

D :: Γ ⊢ Ψ,x :A : ctx by assumption
C :: Γ ⊢ Ψ : ctx and C < D by inversion

Case. Ψ′ = Ψ′′,x ′ : B

D :: Γ ⊢ Ψ,x :A,Ψ′′,x ′:B : ctx by assumption
D :: Γ ⊢ Ψ,x :A,Ψ′′ and D ′ < C′ by inversion
C :: Γ ⊢ Ψ and C < D by IH

12

Recursor over LF Parameters I = (ψ : tm_ctx) ⇒ (q : ⌈ψ ⊢# tm⌉) ⇒ τ

Γ ⊢ t : ⌈Ψ ⊢# tm⌉ Γ ⊢ I : u Γ ⊢ (ψ ⇒ be) : I Γ ⊢ (ψ ,q, fq ⇒ bc) : I

Γ ⊢ recI (ψ ⇒ be | ψ ,q, fq ⇒ bc) Ψ t : {Ψ/ψ , t/y}τ

Branches where I = (ψ : tm_ctx) ⇒ (y : ⌈ψ ⊢# tm⌉) ⇒ τ

Γ,ψ : tm_ctx ⊢ be : {(ψ ,x :tm)/ψ , ⌈ψ ,x ⊢ x⌉/p}τ

Γ ⊢ (ψ ⇒ be) : I
Γ,ψ : tm_ctx,q : ⌈ψ ⊢# tm⌉, fq : {q/p}τ ⊢ bc : {(ψ ,x :tm)/ψ , {⌈ψ ,x ⊢ ⌊q⌋

wkψ ⌉/p}τ

Γ ⊢ (ψ ,q, fq ⇒ bc) : I

Recursor over LF Terms I = (ψ : tm_ctx) ⇒ (y : ⌈ψ ⊢ tm⌉) ⇒ τ

Γ ⊢ t : ⌈Ψ ⊢ tm⌉ Γ ⊢ I : u Γ ⊢ bv : I Γ ⊢ bapp : I Γ ⊢ b
lam

: I

Γ ⊢ recI (bv | bapp | blam) Ψ t : {Ψ/ψ , t/y}τ

Branches where I = (ψ : tm_ctx) ⇒ (y : ⌈ψ ⊢ tm⌉) ⇒ τ

Γ,ψ : tm_ctx,p : ⌈ψ ⊢# tm⌉ ⊢ tv : {p/y}τ
Γ ⊢ (ψ ,p ⇒ tv) : I

Γ,ψ : tm_ctx,m : ⌈ψ ⊢ tm⌉,n : ⌈ψ ⊢ tm⌉
fm : {m/y}τ , fn : {n/y}τ ⊢ tapp : {⌈ψ ⊢ app ⌊m⌋

id
⌊n⌋

id
⌉/y}τ

Γ ⊢ (ψ ,m,n, fn , fm ⇒ tapp) : I

Γ,ϕ : tm_ctx,m : ⌈ϕ,x : tm ⊢ tm⌉,
fm : {(ϕ,x : tm)/ψ ,m/y}τ ⊢ tlam : {ϕ/ψ , ⌈ ϕ ⊢ lam λx .⌊m⌋

id
⌉/y}τ

Γ ⊢ ψ ,m, fm ⇒ tlam : I

Fig. 10. Typing Rules for Recursors

Second statement:If D :: Γ;Ψ ⊢ JLF then C :: Γ ⊢ Ψ : ctx and C < D.

Case. D =
Γ ⊢ Ψ : ctx a:K ∈ Σ

Γ;Ψ ⊢ a : K

C :: Γ ⊢ Ψ : ctx and C < D by assumption

Case. D =
Γ;Ψ,x :A ⊢ M : B

Γ;Ψ ⊢ λx .M : Πx :A.B

C′ :: Γ ⊢ Ψ,x :A : ctx and C′ < D by IH
C :: Γ ⊢ Ψ : ctx and C < D by inversion on well-formedness rules for LF contexts

□

Lemma 3.2 (LF Weakening). Let
−−→
y:B = y1:B1, . . . ,yk :Bk .

If Γ;Ψ,−−→y:B ⊢ JLF and Γ ⊢ (Ψ,x :A,−−→y:B) : ctx then Γ;Ψ,x :A,−−→y:B ⊢ JLF.

Proof. By induction on the first derivation.
13

Reduction and Expansions for Computations

Γ ⊢ fn y ⇒ t : (y:τ̆1) ⇒ τ2 Γ ⊢ s : τ̆1
Γ ⊢ (fn y ⇒ t) s ≡ {s/y}t : {s/y}τ2

Γ ⊢ t : ⌈Ψ ⊢ A⌉
Γ ⊢ ⌈Ψ̂ ⊢ ⌊t⌋

wkΨ̂
⌉ ≡ t : ⌈Ψ ⊢ A⌉

let B = (ψ ,p ⇒ tp | ψ ,m,n, fm , fn ⇒ tapp | ψ ,m, fm ⇒ tlam)

and I = (ψ : tm_ctx) ⇒ (y : ⌈ψ ⊢ tm⌉) ⇒ τ

Γ ⊢ Ψ : tm_ctx Γ;Ψ,x :tm ⊢ M : tm Γ ⊢ I : u
Γ ⊢ recI B Ψ ⌈Ψ̂ ⊢ lam λx .M⌉ ≡ {θ }tlam : {Ψ/ψ , ⌈Ψ̂ ⊢ lam λx .M⌉/y}τ

where θ = Ψ/ψ , ⌈Ψ̂,x ⊢ M⌉/m, recI B (Ψ,x :tm) ⌈Ψ̂,x ⊢ M⌉/f

Γ ⊢ Ψ : tm_ctx Γ;Ψ ⊢ M : tm Γ;Ψ ⊢ N : tm Γ ⊢ I : u
Γ ⊢ recI B Ψ⌈Ψ̂ ⊢ appM N ⌉ ≡ {θ }tapp : {Ψ/ψ , ⌈Ψ̂ ⊢ appM N ⌉/y}τ

where θ = Ψ/ψ , ⌈Ψ̂ ⊢ M⌉/m, ⌈Ψ̂ ⊢ N ⌉/n, recI B Ψ ⌈Ψ̂ ⊢ M⌉/fm , rec
I B Ψ ⌈Ψ̂ ⊢ N ⌉/fn

x :tm ∈ Ψ Γ ⊢ Ψ : tm_ctx Γ ⊢ I : u
Γ ⊢ recI B Ψ ⌈Ψ̂ ⊢ x⌉ ≡ {Ψ/ψ , ⌈Ψ̂ ⊢ x⌉/p}tp : {Ψ/ψ , ⌈Ψ ⊢ x⌉/y}τ

Fig. 11. Definitional Equality for Computations

Case.
Γ ⊢ Ψ,

−−→
y:B : ctx a:K ∈ Σ

Γ;Ψ,−−→y:B ⊢ a : K

Γ ⊢ Ψ,x :A,−−→y:B : ctx by assumption
Γ;Ψ,x : A,−−→y:B ⊢ a : K by rule

Case.
Γ;Ψ,−−→y:B ⊢ A′ : type Γ;Ψ,−−→y:B,x ′:A′ ⊢ B′ : type

Γ;Ψ,−−→y:B ⊢ Πx ′:A′.B′ : type

Γ;Ψ,x :A,−−→y:B ⊢ A′ : type by IH
Γ ⊢ Ψ,x :A,−−→y:B : ctx by assumption
Γ ⊢ Ψ,x :A,−−→y:B,x ′:A′ : ctx by rules for well-formed LF contexts
D :: Γ;Ψ,

−−→
y:B,x ′:A′ ⊢ B′ : type by premise

Γ;Ψ,x :A,−−→y:B,x ′:A′ ⊢ B′ : type by IH
Γ;Ψ,x :A,−−→y:B ⊢ Πx ′:A′.B′ : type by rule

□

Lemma 3.3 (LF Variable Lookup). Let Γ ⊢ Ψ : ctx and Ψ(x) = A.
If Γ;Φ ⊢ σ : Ψ then Γ;Φ ⊢ M : [σ/Ψ̂]A and lookup x [σ/Ψ̂] = M .

Proof. By induction Γ;Φ ⊢ σ : Ψ.

Case.
Γ ⊢ Ψ,

−−→
y:B : ctx

Γ;Ψ,−−→y:B ⊢ wkΨ̂ : Ψ
14

x ∈ Ψ̂ by assumption Ψ(x) = A

lookup x [wkΨ̂/Ψ̂] = x by definition of lookup

(Ψ,
−−→
y:B) (x) = A since Ψ(x) = A

Γ;Ψ,−−→y:B ⊢ x : A by typing rule

Case.
Γ;Φ ⊢ σ : Ψ′ Γ;Φ ⊢ N : [σ/Ψ̂′]B

Γ;Φ ⊢ σ ,N : Ψ′,y:B
where Ψ′(x) = A and x , y

Γ;Φ ⊢ M : [σ/Ψ̂′]A by IH
Γ;Φ ⊢ M : [σ ,N /Ψ̂′,y]A since y < FV(A)

Case.
Γ;Φ ⊢ σ : Ψ′ Γ;Φ ⊢ M : [σ/Ψ̂′]A

Γ;Φ ⊢ σ ,M : Ψ′,x :A
where (Ψ′,x :A) (x) = A

lookup x [σ ,M/Ψ̂′,x] = M by def. of lookup
Γ;Φ ⊢ M : [σ/Ψ̂′]A by premise
Γ;Φ ⊢ M : [σ ,M/Ψ̂′,x]A since x < FV(A)

□

Lemma 3.4 (LF Substitution). If Γ;Ψ ⊢ JLF and Γ;Φ ⊢ σ : Ψ then Γ;Φ ⊢ [σ/Ψ]JLF.

Proof. By induction on the derivation on the first derivation using well-formedness of LF contexts (Lemma 3.1) and
LF weakening (Lemma 3.2). In the LF variable case, we refer to Lemma 3.3. Most cases are straightforward; we only
show a few cases, the others are similar.

Case.
Γ ⊢ Ψ : ctx Ψ(x) = A

Γ;Ψ ⊢ x : A

Γ;Φ ⊢ M : [σ/Ψ]A and lookup x [σ/Ψ̂] = M by Lemma 3.3
Γ;Φ ⊢ [σ/Ψ]x : [σ/Ψ]A by subst. def.

Case.
a : K ∈ Σ Γ ⊢ Ψ : ctx

Γ;Ψ ⊢ a : K

Γ ⊢ Φ : ctx by Lemma 3.1
[σ/Ψ](a : K) ∈ Σ as K is closed and [σ/Ψ]K = K

Γ;Φ ⊢ [σ/Ψ]a : [σ/Ψ]K by rule and substitution def.

Case.
Γ;Ψ ⊢ A : type Γ;Ψ,x : A ⊢ B : type

Γ;Ψ ⊢ Πx :A.B : type

Γ;Φ ⊢ [σ/Ψ]A : type by IH
Γ ⊢ Φ : ctx by the lemma 3.1 using Γ;Φ ⊢ σ : Ψ
Γ ⊢ Φ,x : [σ/Ψ]A : ctx by rule
Γ;Φ ⊢ σ : Ψ by assumption
Γ;Φ,x : [σ/Ψ]A ⊢ σ : Ψ by Lemma 3.2
Γ;Φ,x : [σ/Ψ]A ⊢ x : ([σ/Ψ̂]A) by rule

15

Γ;Φ,x : [σ/Ψ]A ⊢ σ , x : Ψ,x : A by rule
Γ;Φ,x : [σ/Ψ]A ⊢ [σ , x/Ψ,x]B : type by IH
Γ;Φ ⊢ Πx :[σ/Ψ]A.[σ ,x/Ψ,x]B : type by rule
Γ;Φ ⊢ [σ/Ψ](Πx :A.B) : [σ/Ψ]type by substitution def.

Case.
Γ ⊢ t : [Φ′ ⊢ A] or Γ ⊢ t : [Φ′ ⊢# A] Γ;Ψ ⊢ σ ′ : Φ′

Γ;Ψ ⊢ ⌊t⌋σ ′ : [σ ′/Φ′]A

Γ;Φ ⊢ [σ/Ψ]σ ′ : Φ′ IH
Γ;Φ ⊢ ⌊t⌋[σ /Ψ]σ ′ : [[σ/Ψ]σ ′/Φ′]A by rule
Γ;Φ ⊢ [σ/Ψ](⌊t⌋σ ′) : [σ/Ψ]([σ ′/Φ′]A) by substitution def.

Case.
Γ;Ψ ⊢ M : Πx :A.B Γ;Ψ ⊢ N : A

Γ;Ψ ⊢ M N : [N /x]B

Γ;Φ ⊢ [σ/Ψ]M : [σ/Ψ](Πx :A.B) by IH
Γ;Φ ⊢ [σ/Ψ]M : Πx :[σ/Ψ]A.([σ , x/Ψ,x]B) by substitution def.
Γ;Φ ⊢ [σ/Ψ]N : [σ/Ψ]A by IH
Γ;Φ ⊢ ([σ/Ψ]M) ([σ/Ψ]N) : [[σ/Ψ]N /x]([σ , x/Ψ,x] B) by rule
Γ;Φ ⊢ [σ/Ψ](M N) : [σ/Ψ]([N /x]B) by definition and composition of substitution

Case.
Γ ⊢ Ψ,

−−→
x :A : ctx

Γ;Ψ,−−−→x : A ⊢ wkΨ̂ : Ψ

Γ;Φ ⊢ σ : Ψ,
−−→
x :A by assumption

Γ;Φ ⊢ σ ′ : Ψ by inversion where σ = σ ′,Mn , . . .M1
Γ;Φ ⊢ [σ/Ψ, x⃗](wkΨ̂) : Ψ using the fact that σ ′ = truncΨ (σ/Ψ̂, x⃗) = [σ/Ψ, x⃗](wkΨ̂)

Case.
Γ;Ψ ⊢ σ ′ : Φ′ Γ;Ψ ⊢ M : [σ ′/Φ′]A

Γ;Ψ ⊢ σ ′,M : Φ′,x : A

Γ;Φ ⊢ [σ/Ψ]σ ′ : Φ′ by IH
Γ;Φ ⊢ [σ/Ψ]M : [σ/Ψ]([σ ′/Φ′]A by IH
Γ;Φ ⊢ [σ/Ψ]M : [[σ/Ψ]σ ′/Φ′]A by substitution def.
Γ;Φ ⊢ [σ/Ψ]σ ′, [σ/Ψ]M : Φ′,x : A by rule
Γ;Φ ⊢ [σ/Ψ](σ ′,M) : Φ′,x : A by substitution def.

□

We omit here the substitution lemma for the restricted LF typing judgments Γ;Ψ ⊢# M : A and Γ;Φ ⊢# σ : Ψ. However,
it is worth noting that when we apply an LF substitution σ where Γ;Φ ⊢ σ : Ψ to M where Γ;Ψ ⊢# M : A we are not
guaranteed to obtain a variable and hence we can only conclude Γ;Φ ⊢ [σ/Ψ̂]M : [σ/Ψ̂]A. We can only guarantee that
we remain in ⊢# if the LF substitution is a variable substitution.

Lemma 3.5 (LF Context Conversion). Assume Γ ⊢ Ψ,x :A : ctx and Γ;Ψ ⊢ B : type.
If Γ;Ψ,x :A ⊢ JLF and Γ;Ψ ⊢ A ≡ B : type then Γ;Ψ,x :B ⊢ JLF.

Proof. Proof using LF Substitution (Lemma 3.4).
16

Γ ⊢ Ψ,x :A : ctx by assumption
Γ ⊢ Ψ : ctx by inversion
Γ ⊢ Ψ,x :B : ctx by rule
Γ;Ψ,x :B ⊢ wkΨ̂ : Ψ by rule
Γ;Ψ,x :B ⊢ x : B by rule
Γ;Ψ ⊢ B ≡ A : type by symmetry
Γ;Ψ,x :B ⊢ x : A by rule
Γ;Ψ,x :B ⊢ x : [wkΨ̂/Ψ̂]A as [wkΨ̂/Ψ̂]A = A

Γ;Ψ,x :B ⊢ wkΨ̂,x : Ψ,x :A by rule
Γ;Ψ,x :B ⊢ J by Lemma 3.4 and [wkΨ̂,x/Ψ̂,x]J = J

□

Lemma 3.6 (Functionality of LF Typing).
Let Γ;Ψ ⊢ σ1 : Φ and Γ;Ψ ⊢ σ2 : Φ, and Γ;Ψ ⊢ σ1 ≡ σ2 : Φ.

(1) If Φ = Φi ,xi :A,
−−→
y:A and Γ;Φ ⊢ xi : A then Γ;Ψ ⊢ [σ1/Φ̂](xi) ≡ [σ2/Φ̂](xi) : [σ1/Φ̂](A).

(2) If Γ;Φ ⊢ σ : Φ′ then Γ;Ψ ⊢ [σ1/Φ̂]σ ≡ [σ2/Φ̂]σ : Φ′.
(3) If Γ;Φ ⊢ M : A then Γ;Ψ ⊢ [σ1/Φ̂]M ≡ [σ2/Φ̂]M : [σ1/Φ̂]A.
(4) If Γ;Φ ⊢ A : type then Γ;Ψ ⊢ [σ1/Φ̂]A ≡ [σ2/Φ̂]A : type.

Proof. We prove these statements by induction on the typing derivation Γ;Φ ⊢ M : A (resp. Γ;Φ ⊢ σ : Φ′and
Γ;Φ ⊢ A : type) and followed by another inner induction on Γ;Ψ ⊢ σ1 ≡ σ2 : Φ to prove (1).

We concentrate first on the variable case (1).

Case.
Γ ⊢ Φ0,x0:A0,

−−→
y:B : ctx

Γ;Φ0,x0:A0,
−−→
y:B ⊢ wkΦ̂,x ≡ wkΦ0 ,x0 : Φ0,x0:A0

Letxi ∈ Φ̂0 andΦ0 = •,xn , . . . ,x1 where • stands for either the empty context or a variable. Then lookupxi [wk•,xn ...,x1/x̂n . . . ,x1] =
xi

Subcase. xi = x0
lookup xi [wkΦ̂,x0

/Φ̂0,x0] = x0 since xi :Ai ∈ (Φ0,x0 : A0)

lookup xi [wkΦ0 ,x0/Φ̂0,x0] = x0 by lookup

Subcase. x , x0 and xi ∈ xn , . . . ,x1
lookup xi [wkΦ̂,x /Φ̂0,x0] = xi since xi :Ai ∈ (Φ0,x0 : A0)

lookup xi [wkΦ0 ,x0/Φ̂0,x0] = lookup xi [wkΦ0/Φ̂0] = xi
since lookup xi [wk•,xn ...,x1/•,xn . . . ,x1] = xi

Γ;Φ0,x0:A0,
−−→
y:B ⊢ xi ≡ xi : Ai using Ai = [wk•,xn, ...,xi−1/•,xn , . . . ,xi−1]Ai

Case.
Γ;Ψ ⊢ σ = σ ′ : Φ Γ;Ψ ⊢ M ≡ N : [σ/Φ̂]A

Γ;Ψ ⊢ σ ,M ≡ σ ′,N : Φ,y:A

Subcase. x = y
lookup x [σ ,M/Φ̂,x :A] = M by def. of lookup

17

lookup x [σ ′,N /Φ̂,x :A] = N by def. of lookup
Γ;Ψ ⊢ M ≡ N : [σ/Φ̂]A by premise
Γ;Ψ ⊢ M ≡ N : [σ ,M/Φ̂,x]A since [σ ,M/Φ̂,x]A = [σ/Φ̂]A

Case.
Γ;Ψ ⊢ σ ′ ≡ σ : Φ

Γ;Ψ ⊢ σ ≡ σ ′ : Φ

Γ;Ψ ⊢ [σ ′/Φ̂](x) ≡ [σ/Φ̂](x) : [σ ′/Φ̂]A by IH
Γ;Ψ ⊢ [σ ′/Φ̂]A ≡ [σ/Φ̂]A by IH
Γ;Ψ ⊢ [σ/Φ̂](xi) ≡ [σ ′/Φ̂](xi) : [σ ′/Φ̂](A) by type conversion

□

Lemma 3.7 (Eqality Inversion). If Γ;Ψ ⊢ A ≡ Πx :B1.B2 : type or Γ;Ψ ⊢ Πx :B1.B2 ≡ A : type then A = Πx :A1.A2
for some A1 and A2 and Γ;Ψ ⊢ A1 ≡ B1 : type and Γ;Ψ,x :A1 ⊢ A2 ≡ B2 : type.

Proof. By induction on the definitional equality derivation. □

Lemma 3.8 (Injectivity of LF Pi-Types). If Γ;Ψ ⊢ Πx :A.B ≡ Πx :A′.B′ : type then Γ;Ψ ⊢ A ≡ A′ : type and
Γ;Ψ,x :A ⊢ B ≡ B′ : type.

Proof. By equality inversion (Lemma 3.7). □

3.2 Elementary Properties of Computations
Theorem 3.9 (Well-Formedness of Computation Context).
(1) If D :: ⊢ Γ,x :τ̆ , Γ′ then C :: ⊢ Γ and C is a sub-derivation of D, i.e. C < D.
(2) If D :: Γ;Ψ ⊢ JLF then C :: ⊢ Γ and C is a sub-derivation of D, i.e. C < D.
(3) If D :: Γ ⊢ Jcomp then C :: ⊢ Γ and C is a sub-derivation of D, i.e. C < D.

Proof. (1) by induction on the structure of Γ′; (2) and (3) by mutual induction on D.

First statement: If D :: ⊢ Γ,x :τ̆ , Γ′ then C :: ⊢ Γ and C is a sub-derivation of D, i.e. C < D.

Case. Γ′ = ·

D :: ⊢ Γ,x :τ̆ by assumption
C :: ⊢ Γ and C < D by inversion

Case. Γ′ = Γ′′,y:τ̆ ′

D :: ⊢ (Γ,x :τ̆ , Γ′′,y:τ̆ ′) by assumption
D ′ :: ⊢ Γ,x :τ̆ , Γ′′ and D ′ < D by inversion
⊢ Γ and C < D by IH

For the 2nd and 3rd statement we show a few cases; most of the cases are straightforward and follow either directly by
applying the induction hypothesis or by the premises of a rule. We only show one case.

Case. D =
Γ ⊢ t : τ

Γ ⊢ t ≡ t : τ

C :: ⊢ Γ and C < D by IH

18

Case. D =
Γ,y:τ̆1 ⊢ t ≡ s : τ2

Γ ⊢ fn y ⇒ t ≡ fn y ⇒ s : (y : τ̆1) ⇒ τ2

C′ :: ⊢ Γ,y : τ̆1 and C′ < D by IH
C :: ⊢ Γ and C < D by well-formed context rule

□

Lemma 3.10 (Computation-level Weakening).
(1) If Γ1, Γ2 ⊢ Jcomp and ⊢ Γ1,y : τ̆ , Γ2 then Γ1,y : τ , Γ2 ⊢ Jcomp

(2) If Γ1, Γ2;Ψ ⊢ JLF and ⊢ Γ1,y : τ̆ , Γ2 then Γ1,y : τ̆ , Γ2;Ψ ⊢ JLF.

Proof. Proof by mutual induction exploiting Lemma 3.9.

Case.
⊢ Γ1, Γ2

Γ1, Γ2 ⊢ · : ctx

⊢ Γ1,y : τ̆ , Γ2 by assumption
Γ1,y : τ̆ , Γ2 ⊢ · : ctx by rule

Case. D =
Γ1, Γ2,y

′ : τ̆1 ⊢ t : τ2 Γ1, Γ2 ⊢ (y
′ : τ̆1) ⇒ τ2 : u

Γ1, Γ2 ⊢ fn y
′ ⇒ t : (y′ : τ̆1) ⇒ τ2

⊢ Γ1,y : τ̆ , Γ2 by assumption
⊢ Γ1, Γ2,y′ : τ̆1 by Lemma 3.9
Γ1, Γ2 ⊢ τ̆1 : u by inversion
Γ1,y : τ̆ , Γ2 ⊢ τ̆1 : u by IH
⊢ Γ1,y : τ̆ , Γ2,y′ : τ̆1 by rule
Γ1,y : τ̆ , Γ2 ⊢ (y′ : τ̆1) ⇒ τ2 : u by IH
Γ1,y : τ , Γ2,y′ : τ̆1 ⊢ t : τ2 by IH
Γ1,y : τ , Γ2 ⊢ fn y ⇒′ t : (y′ : τ̆1) ⇒ τ2 by rule

Case. D =
y′ : τ̆ ′ ∈ (Γ1, Γ2) ⊢ (Γ1, Γ2)

Γ1, Γ2 ⊢ y
′ : τ̆ ′

y′ : τ̆ ′ ∈ (Γ1,y : τ̆ , Γ2) by since y′ : τ̆ ′ ∈ (Γ1, Γ2)

⊢ Γ1,y : τ̆ , Γ2 by assumption
Γ1,y : τ̆ , Γ2 ⊢ y′ : τ̆ ′ by rule

□
Lemma 3.11 (Computation-level Substitution).
(1) If ⊢ Γ,y : τ̆ , Γ′ and Γ ⊢ t : τ̆ then ⊢ Γ, {t/y}Γ′

(2) If Γ,y : τ̆ , Γ′;Ψ ⊢ JLF and Γ ⊢ t : τ̆ then Γ, {t/y}Γ′;Ψ ⊢ {t/y}JLF.
(3) If Γ,y : τ̆ , Γ′ ⊢ Jcomp and Γ ⊢ t : τ̆ then Γ, {t/y}Γ′ ⊢ {t/y}Jcomp.

Proof. By mutual induction on the first derivation exploiting Lemma 3.10.
We show here a few cases. Most cases are straightforward and only require us to apply the induction hypothesis.

Part 1.

Case. Γ′ = ·

⊢ Γ,y : τ̆ by assumption
⊢ Γ by inversion

19

Case. Γ′ = Γ0,x :τ̆0

⊢ Γ,y:τ̆ , Γ0 and Γ,y:τ̆ , Γ0 ⊢ τ̆0 : u by inversion on assumption
⊢ Γ, {t/y}Γ0 by IH (part 1)
Γ, {t/y}Γ0 ⊢ {t/y}τ̆0 : u by IH (part 2)
⊢ Γ, {t/y}Γ0, {t/y}τ̆0 by rule
⊢ Γ, {t/y}(Γ0,x :τ̆0) by subst. def.

Part 2.

Case.
y′:τ̆ ′ ∈ (Γ,y:τ̆ , Γ′) ⊢ Γ,y:τ̆ , Γ′

Γ,y:τ̆ , Γ′ ⊢ y′ : τ̆ ′
where y , y′

Subcase: y′:τ̆ ′ ∈ Γ.

{t/y}y′ = y′ by subst. def.
{t/y}τ̆ ′ = τ̆ ′ by subst. def. and the fact that y < FV(τ̆ ′)
⊢ Γ, {t/y}Γ′ by IH (part 1)
y:τ̆ ′ ∈ (Γ, {t/y}Γ′) by previous lines
Γ, {t/y}Γ′ ⊢ y′ : τ̆ ′ by rule

Subcase: y:τ̆ ′ ∈ Γ′.

⊢ Γ, {t/y}Γ′ by IH (part 1)
y′:{t/y}τ̆ ′ ∈ {t/y}Γ′ by previous lines
y:{t/y}τ̆ ′ ∈ (Γ, {t/y}Γ′) by previous lines
Γ, {t/y}Γ′ ⊢ y′ : {t/y}τ̆ ′ by rule

Case.
y:τ̆ ∈ (Γ,y:τ̆ , Γ′) ⊢ Γ,y:τ̆ , Γ′

Γ,y:τ̆ , Γ′ ⊢ y : τ̆

Γ ⊢ t : τ̆ by assumption
⊢ Γ, {t/y}Γ′ by IH (part 1)
{t/y}τ̆ = τ̆ by subst. def. and the fact that y < FV(τ)
Γ, {t/y}Γ′ ⊢ {t/y}y : {t/y}τ̆ by Lemma 3.10

Case.
Γ,y:τ̆ , Γ′,x :τ̆1 ⊢ t

′ : τ2 Γ,y : τ̆ , Γ′ ⊢ (x : τ̆1) ⇒ τ2 : u

Γ,y:τ̆ , Γ′ ⊢ fn x ⇒ t ′ : (x :τ̆1) ⇒ τ2

Γ, {t/y}(Γ′,x :τ̆1) ⊢ {t/y}t ′ : {t/y}τ2 by IH (part 2)
Γ, {t/y}Γ′,x :{t/y}τ̆1 ⊢ {t/y}t ′ : {t/y}τ2 by subst. def.
Γ, {t/y}Γ′ ⊢ {t/y}((x : τ̆1) ⇒ τ2) : {t/y}u by IH (part 2)
Γ, {t/y}Γ′ ⊢ (x : {t/y}τ̆1) ⇒ {t/y,x/x }τ2) : {t/y}u by subst. def.
Γ, {t/y}Γ′ ⊢ {t/y}(fn x ⇒ t ′) : {t/y}((x :τ̆1) ⇒ τ2) by rule and subst. def.

Case.
Γ,y:τ̆ , Γ′ ⊢ t ′ : (x : τ̆1) ⇒ τ2 Γ,y:τ̆ , Γ′ ⊢ s : τ1

Γ,y:τ , Γ′ ⊢ t ′ s : {s/x }τ2

20

Γ, {t/y}Γ′ ⊢ {t/y}t ′ : (x : {t/y}τ̆1) ⇒ {t/y, x/x }τ2 by IH (part 2) and definition of substitution
Γ, {t/y}Γ′ ⊢ {t/y}s : {t/y}τ̆1 by IH (part 2)
Γ, {t/y}Γ′ ⊢ ({t/y}t ′) ({t/y}s) : {{t/y}s/x }({t/y,x/x }τ2) by rule
Γ, {t/y}Γ′ ⊢ {t/y}(t ′ s) : {t/y}({s/x }τ2) by definition and composition rules of substitution

□

Last, we define simultaneous computation-level substitution using the judgment Γ′ ⊢ θ : Γ . For simplicity, we
overload the typing judgment simply writing Γ ⊢ t : τ̆ , although if τ̆ = tm_ctx, t stands for a LF context.

⊢ Γ′

Γ′ ⊢ · : ·
Γ′ ⊢ θ : Γ Γ′ ⊢ t : {θ }τ̆
Γ′ ⊢ θ , t/x : Γ,x : τ̆

We distinguish between a substitution θ that provides instantiations for variables declared in the computation context
Γ, and a renaming substitution ρ which maps variables in the computation context Γ to the same variables in the context
Γ′ where Γ′ = Γ,

−−→
x :τ̆ and Γ′ ⊢ ρ : Γ. We write Γ′ ≤ρ Γ for the latter. We note that the substitution properties also hold

for renamings.

Lemma 3.12 (Well-Formed Contexts for Substitutions). If Γ′ ⊢ θ : Γ then ⊢ Γ′.

Proof. By induction on the structure of the derivation of Γ′ ⊢ θ : Γ.

Case.
⊢ Γ′

Γ′ ⊢ · : ·

⊢ Γ′ by premise

Case.
Γ′ ⊢ θ : Γ Γ′ ⊢ t : {θ }τ̆

Γ′ ⊢ θ , t/x : Γ,x : τ̆

⊢ Γ′ by IH
□

Lemma 3.13 (Weakening for computation-level substitutions). Lety be a new name s.t.y < dom(Γ′). If Γ′ ⊢ θ : Γ.
and Γ′ ⊢ τ̆ : u then Γ′,y : τ̆ ⊢ θ : Γ.

Proof. By induction on the first derivation using Lemma 3.10.

Case.
⊢ Γ′

Γ′ ⊢ · : ·

⊢ Γ′ by premise
Γ′ ⊢ τ̆ : u by assumption
⊢ Γ′,y : τ̆ by rule
Γ′,y : τ̆ ⊢ · : · by rule

Case.
Γ′ ⊢ θ : Γ Γ′ ⊢ t : {θ }τ̆ ′

Γ′ ⊢ θ , t/x : Γ,x : τ̆ ′

Γ′,y : τ̆ ⊢ θ : Γ by IH
Γ′,y : τ̆ ⊢ t : {θ }τ̆ ′ by Lemma 3.10
Γ′,y : τ̆ ⊢ θ , t/x : Γ,x : τ̆ ′ by rule

□

21

Corollary 3.14 (Identity Extension of Computation-level Substitution). Let y be a new name s.t. y < dom(Γ′)
and y < dom(Γ). If Γ′ ⊢ θ : Γ and Γ′ ⊢ {θ }τ̆ : u then Γ′,y : {θ }τ̆ ⊢ θ ,y/y : Γ,y:τ̆ .

Proof.
Γ′,y : {θ }τ̆ ⊢ θ : Γ by Lemma 3.13
⊢ Γ′,y : {θ }τ̆ by Lemma 3.12
Γ′,y : {θ }τ̆ ⊢ y : {θ }τ̆ by typing rule
Γ′,y : {θ }τ̆ ⊢ θ ,y/y : Γ,y : τ̆ by rule

□

Lemma 3.15 (Computation-level Simultaneous Substitution).

(1) If Γ′ ⊢ θ : Γ and Γ;Ψ ⊢ JLF then Γ′; {θ }Ψ ⊢ {θ }JLF.
(2) If Γ′ ⊢ θ : Γ and Γ ⊢ Jcomp then Γ′ ⊢ {θ }Jcomp.

Proof. By mutual induction on the second derivation using Lemma 3.9 and Lemma 3.13.

Case.
x :τ̆ ∈ Γ ⊢ Γ

Γ ⊢ x : τ̆

Γ′ ⊢ θ : Γ by assumption
Γ′ ⊢ θ0, t/x : Γ0,x :τ̆ and θ = θ0, t/x , θ1 and Γ = Γ0,x :τ̆ , Γ1 by inversion
Γ′ ⊢ t : {θ0}τ̆ by inversion
Γ′ ⊢ t : {θ }τ̆ since τ̆ does not depend on the variable in (x :τ̆ , Γ1)

Γ′ ⊢ {θ }x : {θ }τ̆ since {θ }x = t and t does not depend on the variable in (x :τ̆ , Γ1)

Case.
Γ ⊢ t : (y : τ̆1) ⇒ τ2 Γ ⊢ s : τ̆1

Γ ⊢ t s : {s/y}τ2

Γ′ ⊢ {θ }s : {θ }τ̆1 by IH
Γ′ ⊢ {θ }t : {θ }((y : τ̆1) ⇒ τ2) by IH
Γ′ ⊢ {θ }t : (y : {θ }τ̆1) ⇒ {θ ,y/y}τ2 by subst. definition
Γ′ ⊢ ({θ }t) ({θ }s) : {{θ }s/y}({θ ,y/y}τ2) by rule
Γ′ ⊢ {θ }(t s) : {{θ }s/y}({θ ,y/y}τ2) by subst. definition
Γ′ ⊢ {θ }(t s) : {θ }({s/y}τ2) by compositionality of substitution

Case.
Γ,y : τ̆1 ⊢ t : τ2

Γ ⊢ fn y ⇒ t : (y : τ̆1) ⇒ τ2

Γ′ ⊢ θ : Γ by assumption
⊢ Γ,y : τ̆1 by Lemma 3.9
Γ ⊢ τ̆1 : u by inversion
Γ′ ⊢ {θ }τ̆1 : u by IH
Γ′,y : {θ }τ̆1 ⊢ θ ,y/y : Γ,y : τ̆1 by Lemma 3.14
Γ′,y : {θ }τ̆1 ⊢ {θ ,y/y}t : {θ ,y/y}τ2 by IH
Γ′ ⊢ fn y ⇒ {θ ,y/y}t : (y : {θ }τ̆1) ⇒ {θ ,y/y}τ2 by rule
Γ′ ⊢ {θ }(fn y ⇒ t) : {θ }((y : τ̆1) ⇒ τ2) by subst. definition

Case.
Γ,ψ : tm_ctx,p : ⌈ψ ⊢# tm⌉ ⊢ tv : {p/y}τ

Γ ⊢ (ψ ,p ⇒ tv) : I
where I = (ψ : tm_ctx) ⇒ (y : ⌈ψ ⊢ tm⌉) ⇒ τ

22

Γ′ ⊢ θ : Γ by assumption
⊢ Γ,ψ : tm_ctx,p : ⌈ψ ⊢# tm⌉ by Lemma 3.9
⊢ Γ,ψ : tm_ctx by inversion
Γ,ψ : tm_ctx ⊢ ⌈ψ ⊢# tm⌉ by inversion
Γ′ ⊢ tm_ctx : u by typing rule
Γ′ ⊢ {θ }tm_ctx : u by subst. def. since {θ }tm_ctx = tm_ctx
Γ′,ψ : tm_ctx ⊢ θ ,ψ/ψ : Γ,ψ : tm_ctx by Lemma 3.14
Γ′,ψ : tm_ctx ⊢ ⌈ψ ⊢# tm⌉ : u by typing rules
let θv = θ ,ψ/ψ ,p/p
Γ′,ψ : tm_ctx,p : ⌈ψ ⊢# tm⌉ ⊢ θv : Γ,ψ : tm_ctx,p : ⌈ψ ⊢# tm⌉ by Lemma 3.14
Γ′,ψ : tm_ctx,p : ⌈ψ ⊢# tm⌉ ⊢ {θv }tv : {p/y}{θv }τ by IH and by definition of substitution
Γ′ ⊢ {θ }(ψ ,p ⇒ tv) : {θ }I by rule and by definition of substitution

□

Next, we show that we can always extend a renaming substitution.

Lemma 3.16 (Weakening of Renaming Substitutions). Let y be a new name s.t. y < dom(Γ′).
If Γ′ ≤ρ Γ and Γ′ ⊢ τ : u then Γ′,y : τ ≤ρ Γ.

Proof. Follows from Lemma 3.13. □

Corollary 3.17 (Identity Extension of Renaming Computation-level Substitution). Let y be a new name s.t.
y < dom(Γ′) and y < dom(Γ).
If Γ′ ≤ρ Γ and Γ′ ⊢ {ρ}τ̆ : u then Γ′,y:{ρ}τ̆ , Γ′ ≤ρ,y/y Γ,y:τ̆ .

Proof.
Γ′,y : {ρ}τ̆ ≤ρ : Γ by Lemma 3.16
Γ′,y : {ρ}τ̆ ≤ρ,y/y : Γ,y : τ̆ by rule

□

Lemma 3.18 (Computation-level Renaming Lemma).
(1) If Γ′ ≤ρ Γ and Γ;Ψ ⊢ JLF then Γ′; {ρ}Ψ ⊢ {ρ}JLF.
(2) If Γ′ ≤ρ Γ and Γ ⊢ Jcomp then Γ′ ⊢ {ρ}Jcomp.

Proof. By induction on the second derivation using Lemma 3.9 We show a few cases.

Case. D =
x :τ̆ ∈ Γ ⊢ Γ

Γ ⊢ x : τ̆

Γ′ ≤ρ Γ by assumption
Γ′ ≤ρ0,x/x Γ0,x :τ̆ and ρ = ρ0,x/x , ρ1 and Γ = Γ0,x :τ̆ , Γ1 by inversion
Γ′ ⊢ x : {ρ0}τ̆ by inversion
Γ′ ⊢ x : {ρ}τ̆ since τ does not depend on the variable in (x :τ̆ , Γ1)

Γ′ ⊢ {ρ}x : {ρ}τ̆ since {ρ}x = y

Case. D =
Γ ⊢ t : (y : τ̆1) ⇒ τ2 Γ ⊢ s : τ̆1

Γ ⊢ t s : {s/y}τ2

Γ′ ⊢ {ρ}s : {ρ}τ̆1 by IH
Γ′ ⊢ {ρ}t : {ρ}((y : τ̆1) ⇒ τ2) by IH
Γ′ ⊢ {ρ}t : (y : {ρ}τ̆1) ⇒ {ρ,y/y}τ2 by subst. definition
Γ′ ⊢ ({ρ}t) ({ρ}s) : {{ρ}s/y}({ρ,y/y}τ2) by rule

23

Γ′ ⊢ {ρ}(t s) : {{ρ}s/y}({ρ,y/y}τ2) by subst. definition
Γ′ ⊢ {ρ}(t s) : {ρ}({s/y}τ2) by compositionality of substitution

Case. D =
Γ,y : τ̆1 ⊢ t : τ2

Γ ⊢ fn y ⇒ t : (y : τ̆1) ⇒ τ2

Γ′ ≤ρ Γ by assumption
C :: ⊢ Γ,y : τ̆1 and moreover C is smaller than D by Lemma 3.9
Γ ⊢ τ̆1 : u by inversion
Γ′ ⊢ {ρ}τ̆1 : u by IH
Γ′,y : {ρ}τ̆1 ≤ρ,y/y Γ,y : τ̆1 by Lemma 3.16
Γ′,y : {ρ}τ̆1 ⊢ {ρ,y/y}t : {ρ,y/y}τ2 by IH
Γ′ ⊢ fn y ⇒ {ρ,y/y}t : (y : {ρ}τ̆1) ⇒ {ρ,y/y}τ2 by rule
Γ′ ⊢ {ρ}(fn y ⇒ t) : {ρ}((y : τ̆1) ⇒ τ2) by subst. definition

Case. D = Γ ⊢ recI (ψ ,p ⇒ tv | ψ ,m,n, fn , fm ⇒ tapp | ψ ,m, fm ⇒ tlam) t : {[Ψ]/ψ , t/y}τ

where I = (ψ : ⌈tm_ctx⌉) ⇒ (m : ⌈ψ ⊢ tm⌉) ⇒ τ .

Γ ⊢ t : ⌈Ψ ⊢ tm⌉
Γ,ψ :tm_ctx,m:⌈ψ ,x :tm ⊢ tm⌉, fm :{⌈ψ ,x :tm⌉/ψ ,m/y}τ ⊢ tlam : {ψ/ψ , ⌈ψ ⊢ lam λx .⌊m⌋

id
⌉/y}τ

Γ,ψ :tm_ctx,m:⌈ψ ⊢ tm⌉,n:⌈ψ ⊢ tm⌉, fm :{m/y}τ , fn : {n/y}τ ⊢ tapp:{⌈ψ ⊢ app ⌊m⌋
id
⌊n⌋

id
⌉/y}τ

Γ,ψ :tm_ctx,p:⌈ψ ⊢# tm⌉ ⊢ tv : {p/y}τ by premise

Γ′ ⊢ {ρ}t : {ρ}⌈Ψ ⊢ tm⌉ by IH
Γ′ ⊢ {ρ}t : ⌈{ρ}Ψ ⊢ tm⌉ by subst. definition

Γ′ ⊢ tm_ctx by rule
Γ′,ψ : tm_ctx ⊢ ψ : tm_ctx by rule
Γ′,ψ : tm_ctx ⊢ ψ : ctx by rule
Γ′,ψ : tm_ctx;ψ ⊢ tm : type by rule
Γ′,ψ : tm_ctx ⊢ ψ ⊢# tm : type by rule
Γ′,ψ : tm_ctx ⊢ ⌈ψ ⊢# tm⌉ : u by rule
Γ′,ψ : tm_ctx,p : ⌈ψ ⊢# tm⌉ ≤(ρ,ψ /ψ ,p/p) Γ,ψ : tm_ctx,m : ⌈ψ ,x :tm ⊢ tm⌉ by Lemma 3.16
Γ′,ψ : tm_ctx,p : ⌈ψ ⊢# tm⌉ ⊢ {ψ/ψ ,p/p}tv : {ρ,ψ/ψ ,p/y}τ by IH (since τ does not depend on Γ′)
Γ′ ⊢ tm_ctx by rule
Γ′,ψ : tm_ctx ⊢ ψ : tm_ctx by rule
Γ′,ψ : tm_ctx ⊢ ψ : ctx by rule
Γ′,ψ : tm_ctx ⊢ ψ ,x :tm : ctx by rule
Γ′,ψ : tm_ctx;ψ ,x :tm ⊢ tm : type by rule
Γ′,ψ : tm_ctx ⊢ ⌈ψ ,x :tm ⊢ tm⌉ : u by rule
Γ′,ψ : tm_ctx,m : ⌈ψ ,x : tm ⊢ tm⌉ ⊢ {⌈ψ ,x :tm⌉/ψ ,m/y}τ : u by assumption and Lemma 3.9
Γ′,ψ :tm_ctx,m:⌈ψ ,x : tm ⊢ tm⌉ ≤(ρ,ψ /ψ ,m/m) Γ,ψ :tm_ctx,m:⌈ψ ,x :tm ⊢ tm⌉ by Lemma 3.16
Γ′,ψ : tm_ctx,m : ⌈ψ ,x : tm ⊢ tm⌉ ⊢ {ψ/ψ ,m/m}({⌈ψ ,x :tm⌉/ψ ,m/y}τ) : u

by IH (since τ does not depend of Γ′)
Γ′,ψ :tm_ctx,m:⌈ψ ,x : tm ⊢ tm⌉, fm :{⌈ψ ,x :tm⌉/ψ ,m/y}τ

≤(ρ,ψ /ψ ,m/m,fm/fm) Γ,ψ :tm_ctx,m:⌈ψ ,x : tm ⊢ tm⌉, fm :{⌈ψ ,x :tm⌉/ψ ,m/y}τ by Lemma 3.16

24

Γ′,ψ : tm_ctx,m : ⌈ψ ,x : tm ⊢ tm⌉, fm : {⌈ψ ,x :tm⌉/ψ ,m/y}τ
⊢ {ρ,ψ/ψ ,m/m, fm/fm }tlam : {ψ/ψ , ⌈ψ ⊢ lam λx .⌊m⌋

id
⌉/y}τ

by IH (since τ does not depend on Γ′)

With a similar argument, we have :
Γ′,ψ : tm_ctx,m : ⌈ψ ⊢ tm⌉,n : ⌈ ⌊ψ ⌋⊢tm⌉, fm : {m/y}τ , fn : {n/y}τ

≤ρ,ψ /ψ ,m/m,n/n Γ,ψ : tm_ctx,m : ⌈ψ ⊢ tm⌉,n : ⌈ψ ⊢ tm⌉, fm : {m/y}τ , fn : {n/y}τ

So we have by IH:
Γ′,ψ :tm_ctx,m:⌈ψ ⊢ tm⌉,n:⌈ψ ⊢ tm⌉, fm :{m/y}τ , fn :{n/y}τ ⊢ {ρ}tapp : {⌈ψ ⊢ app ⌊m⌋

id
⌊n⌋

id
⌉/y}τ

So we have :
Γ′ ⊢ {ρ}recI (ψ ,p ⇒ tv | ψ ,m,n, fn , fm ⇒ tapp | ψ ,m, fm ⇒ tlam) t : {ρ}({⌈Ψ⌉/ψ , t/y}τ)

□

4 WEAK HEAD REDUCTION
Before we define the operational semantics of Cocon using weak head reduction, we characterize weak head normal
forms for both, (contextual) LF and computations (Fig. 12 and Fig. 13). They are mutually defined. Any computation-level
term t that is unboxed within an LF object (i.e.⌊t⌋σ) must be neutral and not further trigger any reductions. We leave
the substitution σ that is associated with it untouched. LF substitutions are in whnf.

whnfM : LF termM is in weak head normal; wneM : LF termM is in weak head neutral

whnf λx .M
wne t

whnf ⌊t⌋σ

wneM
whnfM wne (lamM) wne (appM N) wne x

whnf σ : LF substitution σ is in weak head normal form

whnf (σ ,M) whnf · whnf wkψ

whnf A : LF type A is in weak head normal form

whnf aM1 . . .Mn

whnf A whnf B
whnf Πx :A.B

Fig. 12. Normal and Neutral LF Terms and LF Types

LF types are always considered to be in whnf, as computation may only produce a contextual LF term, but not a
contextual LF type. LF contexts are in weak head normal form, as we do not allow the embedding of computations
that compute a context. Similarly, the erased context, described by Ψ̂, is in weak head normal form. Further, contextual
objects C and types T are considered to be in weak head normal form.

Computation-level expressions are in weak head normal form, if they do not trigger any further computation-level
reductions. We consider boxed objects, i.e. ⌈C⌉, and boxed types, i.e. ⌈T ⌉, in whnf. The contextual object C will be
further reduced when we use them and have to unbox them. A computation-level term t is neutral (i.e. wne t) if it
cannot be reduced further because it contains free variables. Variables are neutral, applications t s are neutral, if t
is neutral, and rec

I (ψ ,p ⇒ tv | ψ ,m,n, fm , fn ⇒ tapp | ψ ,m, fm ⇒ t
lam

) Ψ t is neutral, if t is neutral. We note that
weakening preserves weak head normal forms.

Lemma 4.1 (Weakening preserves head normal forms).
For LF Terms:

(1) If whnfM and Γ′ ≤ρ Γ and Γ;Ψ ⊢ M : A then whnf {ρ}M .
25

whnf t : Computation (type) t is in weak head normal form

whnf ⌈T ⌉ whnf (y : τ1) ⇒ τ2 whnf u whnf (fn y ⇒ t) whnf ⌈C⌉
wne t
whnf t

wne y
wne t

wne (t s)

wne s

wne (recI B (Ψ) s)

r = ⌊t⌋σ wne t

wne (recI B (Ψ) ⌈Ψ̂ ⊢ r⌉)

Fig. 13. Normal and Neutral Computations

(2) If wneM and Γ′ ≤ρ Γ and Γ;Ψ ⊢ M : A then wne {ρ}M .
For LF Substitutions

(1) If whnf σ and Γ′ ≤ρ Γ and Γ;Ψ ⊢ σ : Φ then whnf {ρ}σ .
(2) If wne σ and Γ′ ≤ρ Γ and Γ;Ψ ⊢ σ : Φ then wne {ρ}σ .

For Computations:
(1) If whnf t and Γ′ ≤ρ Γ and Γ ⊢ t : τ then whnf {ρ}t .
(2) If wne t and Γ′ ≤ρ Γ and Γ ⊢ t : τ then wne {ρ}t .

Proof. By induction on the first derivation.
□

We define weak head reductions for LF in Fig. 14 and for computations in Fig. 13. If an LF term is not already in
whnf form, we have two cases: either we encounter an LF application M N and we may need to beta-reduce or M
reduces to ⌊t⌋σ . If t is neutral, then we are done; otherwise t reduces to a contextual object ⌈Ψ̂ ⊢ M⌉, and we continue
to reduce [σ/Ψ̂]M .

M ↘LF N : LF TermM weak head reduces to N s.t. whnf N

whnfM
M ↘LF M

M ↘LF λx .M
′ [N /x]M ′ ↘LF R

M N ↘LF R

M ↘LF R wne R

M N ↘LF R N

t ↘ ⌈Ψ̂ ⊢ M⌉ [σ/Ψ̂]M ↘LF N

⌊t⌋σ ↘LF N

t ↘ n wne n

⌊t⌋σ ↘LF ⌊n⌋σ

σ ↘LF σ
′ : LF Substitution σ weak head reduces to σ ′ s.t. whnf σ ′

whnf σ
σ ↘LF σ wk· ↘LF · wk(Ψ̂,x) ↘LF wkΨ̂,x

Fig. 14. Weak Head Reductions for LF Terms, LF Substitutions, LF Contexts, and LF Contextual Terms.

If a computation-level term t is not already in whnf form, we have either an application t1 t2 or a recursor. For an
application t1 t2, we reduce t1. If it reduces to a function and we continue to beta-reduce otherwise we build a neutral
application. For the recursor recI B Ψ t we also consider different cases: 1) if t reduces to a neutral term, then we
cannot proceed; 2) if t reduces to ⌈Ψ̂′ ⊢ M⌉, and then proceed to further reduce M . If the result is ⌊t ′⌋σ , where t is
neutral, then we cannot proceed; if the result is N where N is neutral, then we proceed and choose the appropriate
branch in B. We note that weak head reduction for LF and computation is deterministic.

Lemma 4.2 (Determinacy of whnf reduction).
(1) IfM ↘LF N1 andM ↘LF N2 then N1 = N2.
(2) If σ ↘LF σ1 and σ ↘LF σ2 then σ1 = σ2.

26

t ↘ r : Computation-level term t weak head reduces to r s.t. whnf r

whnf t
t ↘ t

t1 ↘ fn y ⇒ t {t2/y}t ↘ v

t1 t2 ↘ v

t1 ↘ w wnew

t1 t2 ↘ w t2

t ↘ s wne s

rec
I B Ψ t ↘ rec

I B Ψ s

t ↘ ⌈Ψ̂ ⊢ M⌉ M ↘LF ⌊t
′⌋σ wne t ′

rec
I B Ψ t ↘ rec

I B Ψ (Ψ̂ ⊢ ⌊t ′⌋σ)

t ↘ ⌈Ψ̂ ⊢ M⌉ M ↘LF N wne N B ≪ (Ψ) (Ψ̂ ⊢ N) ↘ v

rec
I B Ψ t ↘ v

let B = (ψ ,p ⇒ tv | ψ ,m,n, fm , fn ⇒ tapp | ψ ,m, fm ⇒ tlam)

{Ψ/ψ , ⌈Ψ̂ ⊢ M⌉/m, ⌈Ψ̂ ⊢ N ⌉/n, recI B Ψ ⌈Ψ̂ ⊢ M⌉/fm , rec
I B Ψ ⌈Ψ̂ ⊢ N ⌉/fn }tapp ↘ v

B ≪ (Ψ) (Ψ̂ ⊢ appM N) ↘ v

{Ψ/ψ , ⌈Ψ̂ ⊢ x⌉/p}tv ↘ v

B ≪ (Ψ) (Ψ̂ ⊢ x) ↘ v

{Ψ/ψ , ⌈Ψ̂,x ⊢ M⌉/m, recI B (Ψ,x :tm) ⌈Ψ̂,x ⊢ M⌉/f }tlam ↘ v

B ≪ (Ψ) (Ψ̂ ⊢ lam λx .M) ↘ v

Fig. 15. Weak Head Reductions for Computations

(3) If t ↘ t1 and t ↘ t2 then t1 = t2.

Proof. By inspection of the rules. □

Our semantic model for equivalence characterizes well-typed terms. To facilitate our further development we
introduce the following notational abbreviations for well-typed weak head normal forms (see Def. 4.3) and show that
whnf reductions are preserved under renamings and are stable under substitutions.

Definition 4.3 (Well-Typed Whnf).

Γ;Ψ ⊢M ↘LF N : A :⇔ Γ;Ψ ⊢ M : A and Γ;Ψ ⊢ N : A and Γ;Ψ ⊢ M ≡ N : A andM ↘LF N
Γ;Ψ ⊢ σ1 ↘LF σ2 : Φ :⇔ Γ;Ψ ⊢ σ1 : Φ and Γ;Ψ ⊢ σ2 : Φ and Γ;Ψ ⊢ σ1 ≡ σ2 : Φ and σ1 ↘LF σ2

Γ ⊢ t ↘ t ′ : τ :⇔ Γ ⊢ t : τ and Γ ⊢ t ′ : τ and Γ ⊢ t ≡ t ′ : τ and t ↘ t ′

Lemma 4.4 (Weak Head Reductions preserved under Weakening).
(1) If Γ;Ψ ⊢ M ↘LF N : A and Γ′ ≤ρ Γ then Γ′; {ρ}Ψ ⊢ {ρ}M ↘LF {ρ}N : {ρ}A.
(2) If Γ;Ψ ⊢ σ ↘LF σ

′ : Φ and Γ′ ≤ρ Γ then Γ′; {ρ}Ψ ⊢ {ρ}σ ↘LF {ρ}σ
′ : {ρ}Φ.

(3) If Γ ⊢ t ↘ t ′ : τ and Γ′ ≤ρ Γ then Γ′ ⊢ {ρ}t ↘ {ρ}t ′ : {ρ}τ .

Proof. By mutual induction on the first derivation using the computation-level substitution lemma 3.15, as renaming
Γ′ ≤ρ Γ are a special case of computation-level substitutions. □

Lemma 4.5 (LF Weak Head Reduction is stable under LF Substitutions). Let Γ;Ψ ⊢ σ : Φ.
(1) If Γ;Φ ⊢ M ↘LF ⌊t1⌋σ1 : A then Γ;Ψ ⊢ [σ/Φ̂]M ↘LF ⌊t1⌋[σ /Φ̂]σ1

: [σ/Φ̂]A.
(2) If Γ;Φ ⊢ M ↘LF λx .N : Πx :A.B then Γ;Ψ ⊢ [σ/Φ̂]M ↘LF [σ/Φ̂](λx .N) : [σ/Φ̂](Πx :A.B).
(3) If Γ;Φ ⊢ M ↘LF x : A and Γ;Ψ ⊢ σ (x) ↘LF N : [σ/Φ̂]A then Γ;Ψ ⊢ [σ/Φ̂]M ↘LF N : [σ/Φ̂]A.
(4) If Γ;Φ ⊢ M ↘LF appM1 M2 : tm then Γ;Ψ ⊢ [σ/Φ̂]M ↘LF [σ/Φ̂](appM1 M2) : tm.
(5) If Γ;Φ ⊢ M ↘LF lamM1 : tm then Γ;Ψ ⊢ [σ/Φ̂]M ↘LF [σ/Φ̂](lamM1) : tm.
(6) If Γ;Φ ⊢ σ1 ↘LF σ2 : Φ′ then Γ;Ψ ⊢ [σ/Φ̂]σ1 ↘LF [σ/Φ̂]σ2 : Φ′.

Proof. By induction on M ↘LF M ′ relation that is part of the well-typed weak head reduction using Lemma 3.1
and 3.4.

27

For (1): If Γ;Φ ⊢ M ↘LF ⌊t1⌋σ1 : A then Γ;Ψ ⊢ [σ/Φ̂]M ↘LF ⌊t1⌋[σ /Φ̂]σ1
: [σ/Φ̂]A.

Case M = ⌊t0⌋σ1 and t0 ↘ t1 and wne t1
Γ;Φ ⊢ M : A by assumption
Γ;Φ ⊢ ⌊t1⌋σ1 : A by assumption
Γ;Ψ ⊢ [σ/Φ̂]M : [σ/Φ̂]A by LF subst. lemma 3.4
Γ;Ψ ⊢ [σ/Φ̂](⌊t1⌋σ1) : [σ/Φ̂]A by LF subst. lemma 3.4
[σ/Φ̂]M ↘LF ⌊t1⌋[σ /Φ̂]σ1

since wne t1 and t0 ↘ t1 and LF subst. prop.

Γ;Φ ⊢ [σ/Φ̂]M ↘LF ⌊t1⌋[σ /Φ̂]σ1
: [σ/Φ̂]A by well-typed whnf (Def 4.3)

Case M = ⌊t0⌋σ0 and t0 ↘ ⌈Φ̂′ ⊢ M ′⌉, [σ0/Φ̂′]M ′ ↘LF ⌊t1⌋σ1

Γ;Φ ⊢ M : A by assumption
Γ;Φ ⊢ ⌊t1⌋σ1 : A by assumption
Γ;Ψ ⊢ [σ/Φ̂]M : [σ/Φ̂]A by LF subst. lemma 3.4
Γ;Ψ ⊢ [σ/Φ̂](⌊t1⌋σ1) : [σ/Φ̂]A by LF subst. lemma 3.4
[[σ/Φ̂]σ0/Φ̂′]M ′ ↘LF ⌊t1⌋[σ /Φ̂]σ1

by IH (and subst. prop)
⌊t0⌋[σ /Φ̂]σ0

↘LF ⌊t1⌋[σ /Φ̂]σ1
by whnf

Γ;Ψ ⊢ [σ/Φ̂](⌊t0⌋σ0) ↘LF ⌊t1⌋[σ /Φ̂]σ1
: [σ/Φ̂]A by subst. prop. and well-typed whnf (Def 4.3)

Case M = ⌊t1⌋σ1 and wne t1
Γ;Φ ⊢ M : A by assumption
Γ;Φ ⊢ ⌊t1⌋σ1 : A by assumption
Γ;Ψ ⊢ [σ/Φ̂]M : [σ/Φ̂]A by LF subst. lemma 3.4
Γ;Ψ ⊢ [σ/Φ̂](⌊t1⌋σ1) : [σ/Φ̂]A by LF subst. lemma 3.4
[σ/Φ̂](⌊t1⌋σ1) = ⌊t1⌋[σ /Φ̂]σ1

by subst. def.
wne ⌊t1⌋[σ /Φ̂]σ1

since wne t1
[σ/Φ̂]M ↘LF ⌊t1⌋[σ /Φ̂]σ1

by whnf

Γ;Ψ ⊢ [σ/Φ̂]M ↘LF ⌊t1⌋[σ /Φ̂]σ1
: [σ/Φ̂]A by well-typed whnf (Def 4.3)

Case M = M1 M2 andM ↘LF ⌊t1⌋σ1

Γ;Φ ⊢ M : A by assumption
Γ;Φ ⊢ ⌊t1⌋σ1 : A by assumption
Γ;Ψ ⊢ [σ/Φ̂]M : [σ/Φ̂]A by LF subst. lemma 3.4
Γ;Ψ ⊢ [σ/Φ̂](⌊t1⌋σ1) : [σ/Φ̂]A by LF subst. lemma 3.4
M1 ↘LF λx .M

′ and [M2/x]M ′ ↘LF ⌊t1⌋σ1 by inversion
[σ/Φ̂][M2/x]M ′ ↘LF [σ/Φ̂](⌊t1⌋σ1) by IH
[σ , [σ/Φ̂]M2/Φ̂,x]M ′ ↘LF [σ/Φ̂](⌊t1⌋σ1) by subst. def
[σ/Φ̂]M1 ↘LF [σ/Φ̂](λx .M ′) by IH
[σ/Φ̂]M1 ↘LF λx .[σ ,x/Φ̂,x]M ′ by subst. def.
[[σ/Φ̂]M2/x](σ ,x) = σ , [σ/Φ̂]M2 by subst. def.
[σ/Φ̂]M1 [σ/Φ̂]M2 ↘LF [σ/Φ̂](⌊t1⌋σ1) by whnf rules
[σ/Φ̂](M1 M2) ↘LF ⌊t1⌋[σ /Φ̂]σ1

by subst. def.

28

For (3): If Γ;Φ ⊢ M ↘LF x : A and Γ;Ψ ⊢ σ (x) ↘LF N : [σ/Φ̂]A then Γ;Ψ ⊢ [σ/Φ̂]M ↘LF N : [σ/Φ̂]A.

Case M = x where x ∈ Φ and whnfM

Γ;Φ ⊢ x : A and x : A ∈ Φ since Γ;Φ ⊢ M ↘LF x : A
Γ;Φ ⊢ M : A since Γ;Φ ⊢ M ↘LF x : A
Γ;Ψ ⊢ [σ/Φ̂]M : [σ/Φ̂]A LF subst. lemma 3.4
Γ;Ψ ⊢ N : [σ/Φ̂]A since Γ;Ψ ⊢ σ : Φ and x : A ∈ Φ
[σ/Φ̂]M = [σ/Φ̂]x = σ (x) by subst. def.
[σ/Φ̂]M ↘LF N since σ (x) ↘LF N

Case M = M1 M2 andM ↘LF x

Γ;Φ ⊢ x : A and x : A ∈ Φ since Γ;Φ ⊢ M ↘LF x : A
Γ;Φ ⊢ M : A since Γ;Φ ⊢ M ↘LF x : A
Γ;Ψ ⊢ [σ/Φ̂]M : [σ/Φ̂]A LF subst. lemma 3.4
M1 ↘LF λx .M

′ and [M2/x]M ′ ↘LF x by inversion
[σ/Φ̂][M2/x]M ′ ↘LF N by IH using σ (x) ↘LF N

[σ , [σ/Φ̂]M2/Φ̂,x]M ′ ↘LF N by subst. def.
[σ/Φ̂]M1 ↘LF λx .[σ ,x]M ′ by IH and LF subst. prop.
[σ/Φ̂]M ↘LF N by whnf rules
Γ;Ψ ⊢ [σ/Φ̂]M ↘LF N : [σ/Φ̂]A by well-typed whnf (Def 4.3)

Case M = ⌊t1⌋σ1 andM ↘LF x

Γ;Φ ⊢ x : A and x : A ∈ Φ since Γ;Φ ⊢ M ↘LF x : A
Γ;Φ ⊢ M : A since Γ;Φ ⊢ M ↘LF x : A
Γ;Ψ ⊢ [σ/Φ̂]M : [σ/Φ̂]A LF subst. lemma 3.4
t1 ↘ ⌈Φ̂′ ⊢ M ′⌉ since Γ;Φ ⊢ M ↘LF x : tm
σ1 ↘LF σ2 and [σ2/Φ̂′]M ′ ↘LF x since Γ;Φ ⊢ M ↘LF x : tm

[σ/Φ̂]σ1 ↘LF [σ/Φ̂]σ2 by IH

[σ/Φ̂]([σ2/Φ̂′]M ′) ↘LF N by IH

[[σ/Φ̂]σ2/Φ̂′]M ′ ↘LF N by subst. prop.

⌊t1⌋[σ /Φ̂]σ1
↘LF N by whnf rules

Γ;Ψ ⊢ ⌊t1⌋[σ /Φ̂]σ1
↘LF N : tm by well-typed whnf (Def 4.3)

For (6): If Γ;Φ ⊢ σ1 ↘LF σ2 : Φ′ then Γ;Ψ ⊢ [σ/Φ̂]σ1 ↘LF [σ/Φ̂]σ2 : Φ′.

Case. whnf σ1 and σ2 = σ1

whnf [σ/Φ̂]σ1 by def. of whnf
[σ/Φ̂]σ1 ↘LF [σ/Φ̂]σ1 by whnf
Γ;Φ ⊢ σ1 : Φ′ and Γ;Φ ⊢ σ2 : Φ′ by assumption
Γ;Ψ ⊢ [σ/Φ̂]σ1 : Φ and Γ;Ψ ⊢ [σ/Φ̂]σ2 : Φ by LF subst. lemma
Γ;Ψ ⊢ [σ/Φ̂]σ1 ↘LF [σ/Φ̂]σ1 : Φ′ by well-typed whnf (Def 4.3)

29

Case. σ1 = wk·

Γ;Φ ⊢ wk· : · by assumption
Γ ⊢ Φ : ctx and Γ ⊢ Ψ : ctx by well-formedness of LF context (Lemma 3.1)
Γ;Φ ⊢ · : · by typing rule
· = [σ/Φ̂]wk· = trunc· (σ/Φ̂) by subst. def.
Γ;Ψ ⊢ · : · by typing rule
whnf · by whnf
· ↘LF · by whnf
[σ/Φ̂]wk· ↘LF [σ/Φ̂]· since · = [σ/Φ̂]wk· and [σ/Φ̂]· = ·
Γ;Ψ ⊢ [σ/Φ̂]wk· ↘LF [σ/Φ̂]· : · by well-typed whnf (Def 4.3)

Case. σ1 = wkΦ̂′,x where Φ = Φ′,x :A,−−→x :A

σ2 = wkΦ̂′ ,x by assumption
Γ;Φ ⊢ wkΦ̂′,x : Φ′,x :A and Γ;Φ ⊢ wkΦ̂′ : Φ′ by assumption and typing

Γ;Ψ ⊢ σ : Φ′,x :A,−−→x :A by assumption

Sub-case : σ = (σ ′,M, M⃗)

Γ;Ψ ⊢ (σ ′,M, M⃗) : Φ′,x :A,−−→x :A where σ = (σ ′,M, M⃗)

Γ;Ψ ⊢ σ ′ : Φ′ and Γ;Ψ ⊢ M : [σ ′/Φ̂′]A by inversion
[σ/Φ̂](wkΦ̂′,x) = truncΦ̂′,x (σ/Φ) = σ

′,M by definition

[σ/Φ̂](wkΦ̂′) = truncΦ̂′ (σ/Φ) = σ
′ by definition

Γ;Ψ ⊢ σ ′,M ↘LF σ
′,M : Φ′,x :A since wne (σ ′,M)

Γ;Ψ ⊢ [σ/Φ̂](wkΦ̂′,x) ↘LF [σ/Φ̂](wkΦ̂′ ,x) : Φ′,x :A by well-typed whnf (Def 4.3)

Sub-case : σ = wkΦ̂′,x, x⃗

[σ/Φ̂](wkΦ̂′,x) = truncΦ̂′,x (σ/Φ) = truncΦ̂′,x (wkΦ̂′,x, x⃗ /Φ̂
′,x , x⃗) = wkΦ̂′,x by definition

[σ/Φ̂](wkΦ̂′ ,x) = truncΦ̂′ (σ/Φ) = wkΦ̂′ by definition
[σ/Φ̂](x) = x since σ = wkΦ̂′,x, x⃗

Γ;Φ′,x :A,−−−→x : A ⊢ wkΦ̂′,x ↘LF wkΦ̂′ ,x : Φ′,x :A by↘LF rule and by well-typed whnf (Def 4.3)

For (4): If Γ;Φ ⊢ M ↘LF appM1 M2 : tm then Γ;Ψ ⊢ [σ/Φ̂]M ↘LF [σ/Φ̂](appM1 M2) : tm.

Case.
whnf (appM1 M2)

appM1 M2 ↘LF appM1 M2

Γ;Φ ⊢ appM1 M2 : tm by assumption
Γ;Ψ ⊢ [σ/Φ̂](appM1 M2) : tm by LF subst. lemma
Γ;Ψ ⊢ app [σ/Φ̂](M1) [σ/Φ̂](M2) : tm subst. prop
whnf (app [σ/Φ̂](M1) [σ/Φ̂](M2)) by whnf def.
Γ;Ψ ⊢ [σ/Φ̂](appM1 M2) ↘LF [σ/Φ̂](appM1 M2) : tm by subst. prop.,↘LF rule, and Def. 4.3

30

Case.
M ↘LF λx .M

′ [N /x]M ′ ↘LF appM1 M2

M N ↘LF appM1 M2

Γ;Φ ⊢ appM1 M2 : tm by assumption
Γ;Ψ ⊢ [σ/Φ̂](appM1 M2) : tm by LF subst. lemma
Γ;Φ ⊢ M N : tm by assumption
Γ;Ψ ⊢ [σ/Φ̂](M N) : tm by LF subst. lemma
Γ;Ψ ⊢ [σ/Φ̂]M ↘LF [σ/Φ̂](λx .M ′) : tm by IH
Γ;Ψ ⊢ [σ/Φ̂]([N /x]M ′) ↘LF [σ/Φ̂](appM1 M2) : tm by IH
Γ;Ψ ⊢ [σ/Φ̂](M N) ↘LF [σ/Φ̂](appM1 M2) : tm with [σ/Φ̂]([N /x]M ′) = [σ , [σ/Φ̂]N /Φ̂,x :tm]

Case.
t ↘ ⌈Φ̂′ ⊢ M⌉ [σ ′/Φ̂′]M ↘LF appM1 M2

⌊t⌋σ ′ ↘LF appM1 M2

Γ;Ψ ⊢ [σ/Φ̂][σ ′/Φ̂′]M ↘LF [σ/Φ̂](appM1 M2) : tm by IH
Γ;Ψ ⊢ ⌊t⌋[σ /Φ̂]σ ′ ↘LF [σ/Φ̂](appM1 M2) : tm by subst. prop.,↘LF rule, and Def. 4.3

The remaining cases for (2) and (5) are similar. □

5 KRIPKE-STYLE LOGICAL RELATION
We construct a Kripke-logical relation to prove weak head normalization. Our semantic definitions for computations
follows closely Abel and Scherer [2012a] to accommodate type-level computation.

Γ;Ψ ⊢ M ↘LF ⌊t1⌋σ1 : tm typeof (Γ ⊢ t1) = ⌈Φ1 ⊢ tm⌉ Γ ⊢ Φ1 ≡ Φ2 : ctx
Γ;Ψ ⊢ N ↘LF ⌊t2⌋σ2 : tm typeof (Γ ⊢ t2) = ⌈Φ2 ⊢ tm⌉ Γ ⊢ t1 ≡ t2 : ⌈Φ1 ⊢ tm⌉ Γ;Ψ ⊩ σ1 = σ2 : Φ1

Γ;Ψ ⊩ M = N : tm

Γ;Ψ ⊢ M ↘LF lamM ′ : tm
Γ;Ψ ⊢ N ↘LF lam N ′ : tm Γ;Ψ,x :tm ⊩ M ′ x = N ′ x : tm

Γ;Ψ ⊩ M = N : tm

Γ;Ψ ⊢ M ↘LF appM1 M2 : tm
Γ;Ψ ⊢ N ↘LF app N1 N2 : tm Γ;Ψ ⊩ M1 = N1 : tm Γ;Ψ ⊩ M2 = N2 : tm

Γ;Ψ ⊩ M = N : tm

Γ;Ψ ⊢ M ↘LF x : tm Γ;Ψ ⊢ N ↘LF x : tm
Γ;Ψ ⊩ M = N : tm

Fig. 16. Semantic Equality for LF Terms: Γ;Ψ ⊩ M = N : A

We start by defining semantic equality for LF terms of type tm (Fig. 16), as we restricted our LF signature and these
are the terms of interest. To define semantic equality for LF termsM and N , we consider different cases depending on
their whnf: 1) if they reduce to appM1 M2 and app N1 N2 respectively, thenMi must be semantically equal to Ni ; 2) if
they reduce to lamM ′ and lam N ′ respectively, then the bodies ofM ′ and N ′ must be equal. To compare their bodies,
we apply bothM ′ and N ′ to an LF variable x and considerM ′ x and N ′ x in the extended LF context Ψ,x :tm. This has
the effect of opening up the body and replacing the bound LF variable with a fresh one. This highlights the difference
between the intensional LF function space and the extensional nature of the computation-level functions. In the former,
we can concentrate on LF variables and continue to analyze the LF function body; in the latter, we consider all possible

31

inputs, not just variables; 3) if the LF termsM and N may reduce to the same LF variable in Ψ, then they are obviously
also semantically equal; 4) last, ifM and N reduce to ⌊ti ⌋σi respectively. In this case ti is neutral and we only need to
semantically compare the LF substitutions σi and check whether the terms ti are definitional equal. However, what
type should we choose? – As the computation ti is neutral, we can infer a unique type ⌈Φ ⊢ tm⌉ which we can use.
This is defined as follows:

Type inference for Neutral Computations t : typeof (Γ ⊢ t) = τ

typeof (Γ ⊢ t) = τ τ ↘ (y:τ1) ⇒ τ2 Γ ⊢ s : τ1
typeof (Γ ⊢ t s) = {s/y}τ2

x :τ ∈ Γ
typeof (Γ ⊢ x) = τ

I = (ψ : tm_ctx) ⇒ (y : ⌈ψ ⊢ tm⌉) ⇒ τ

typeof (Γ ⊢ recI B Ψ t) = {Ψ/ψ , t/y}τ

Lemma 5.1. If Γ ⊢ t : τ and wne t then typeof (Γ ⊢ t) = τ ′ and Γ ⊢ τ ≡ τ ′ : u.

Proof. By induction on wne t . □

Semantic equality for LF substitutions is also defined by considering different weak head normal forms (see Fig. 17).
As we only work with well-typed LF objects, there is only one inhabitant for an empty context. Moreover, given a LF
substitution with domain Φ,x :A, we can weak head reduce the LF substitutions σ and σ ′ and continue to recursively
compare them. Finally, for LF substitutions with domainψ , a context variable, there are two cases we consider: either
both LF substitution reduce to a weakening wkψ or they reduce to substitution closure.

Γ;Ψ ⊢ σ ↘LF · : · Γ;Ψ ⊢ σ ′ ↘LF · : ·

Γ;Ψ ⊩ σ = σ ′ : ·

Γ;ψ ,−−→x :A ⊢ σ ↘LF wkψ : ψ Γ;ψ ,−−→x :A ⊢ σ ′ ↘LF wkψ : ψ

Γ;ψ ,−−→x :A ⊩ σ = σ ′ : ψ

Γ;Ψ ⊢ σ ↘LF σ1,M : Φ,x :A
Γ;Ψ ⊢ σ ′ ↘LF σ2,N : Φ,x :A Γ;Ψ ⊩ σ1 = σ2 : Φ Γ;Ψ ⊩ M = N : [σ1/Φ̂]A

Γ;Ψ ⊩ σ = σ ′ : Φ,x :A

Fig. 17. Semantic Equality for LF Substitutions: Γ;Ψ ⊩ σ = σ ′ : Φ

To keep the definition compact, we again overload the semantic kinding and equality for types and terms. For
example, we define the judgment Γ ⊩ τ̆ : u which falls into two parts: Γ ⊩ τ : u and Γ ⊩ tm_ctx : u where the latter is
simply notation, as tm_ctx is not a computation-level type. Similarly, we define Γ ⊩ t = t ′ : τ̆ to stand for Γ ⊢ t = t ′ : τ ,
i.e. semantic equality for terms, and semantic equality for LF contexts where we write Γ ⊩ t = t ′ : tm_ctx, although t
and t ′ stand for LF contexts.

Our semantic kinding for types (Fig. 19) is used as a measure to define the semantic typing for computations. In
particular, we define Γ ⊩ τ̆ = τ̆ ′ : u and Γ ⊩ t = t ′ : τ̆ recursively on the semantic kinding of τ̆ . i.e. Γ ⊩ τ̆ : u. For better
readability, we simply write for example Γ ⊩ t = t ′ : ⌈T ⌉ instead of Γ ⊩ t = t ′ : τ where τ ↘ ⌈T ⌉, and Γ ⊢ T ≡ T in
proofs. We note that to prove reflexivity for types, we would need to strengthen our semantic kinding definition with
the additional premise: ∀Γ′ ≤ρ Γ. Γ′ ⊩ s = s ′ : {ρ}τ̆1 =⇒ Γ′ ⊩ {ρ, s/y}τ2 = {ρ, s ′/y}τ2 : u2. This is possible, but since
semantic reflexivity for types is not needed, we keep the semantic kinding definition more compact.

Γ;Ψ ⊩ M = N : A
Γ ⊩LF (Ψ̂ ⊢ M) = (Ψ̂ ⊢ N) : (Ψ ⊢ A)

Γ;Ψ ⊩# M = N : A
Γ ⊩LF (Ψ̂ ⊢ M) = (Ψ̂ ⊢ N) : (Ψ ⊢# A)

Fig. 18. Semantic Typing for Contextual LF Terms

32

Γ ⊢ τ ↘ ⌈T ⌉ : u Γ ⊢ T ≡ T

Γ ⊩ τ : u
Γ ⊢ τ ↘ u ′ : u u ′ < u

Γ ⊩ τ : u
Γ ⊢ τ ↘ x t⃗ : u wne (x t⃗)

Γ ⊩ τ : u

Γ ⊢ τ ↘ (y : τ̆1) ⇒ τ2 : u ∀Γ′ ≤ρ Γ. Γ′ ⊩ {ρ}τ̆1 : u1
∀Γ′ ≤ρ Γ. Γ′ ⊩ s = s : {ρ}τ̆1 =⇒ Γ′ ⊩ {ρ, s/y}τ2 : u

Γ ⊩ τ : u
(u1, u2, u) ∈ R

⊢ Γ
Γ ⊩ tm_ctx : u

Fig. 19. Semantic Kinding for Types Γ ⊩ τ̆ : u (inductive)

Semantic Equality for Types: Γ ⊩ τ̆ = τ̆ ′ : u recursively defined by recursion on Γ ⊩ τ : u

Γ ⊩ tm_ctx = tm_ctx : u :⇔ true

Γ ⊩ ⌈T ⌉ = τ ′ : u :⇔ Γ ⊢ τ ′ ↘ ⌈T ′⌉ : u and Γ ⊢ T ≡ T ′

Γ ⊩ u ′ = τ ′ : u :⇔ Γ ⊢ τ ′ ↘ u ′ : u

Γ ⊩ (y : τ̆1) ⇒ τ2 = τ ′ : u :⇔ Γ ⊢ τ ′ ↘ (y′ : τ̆ ′1) ⇒ τ ′2 : u and ∀Γ′ ≤ρ Γ. Γ′ ⊩ {ρ}τ̆1 = {ρ}τ̆ ′1 : u1 and
∀Γ′ ≤ρ Γ. Γ′ ⊩ s = s ′ : {ρ}τ̆1 =⇒ Γ′ ⊩ {ρ, s/y}τ2 = {ρ, s ′/y′}τ ′2 : u2
where (u1,u2,u) ∈ R

Γ ⊩ x t⃗ = τ ′ : u :⇔ Γ ⊢ τ ′ ↘ x s⃗ : u and Γ ⊢ x t⃗ ≡ x s⃗ : u

Semantic Equality for Terms (Computations): Γ ⊩ t = t ′ : τ̆ by recursion on Γ ⊩ τ̆ : u

Γ ⊩ Ψ = Ψ′ : tm_ctx :⇔ Γ ⊢ Ψ ≡ Ψ′ : tm_ctx

Γ ⊩ t = t ′ : ⌈Ψ ⊢ A⌉ :⇔ Γ ⊢ t ↘ w : ⌈Ψ ⊢ A⌉ and Γ ⊢ t ′ ↘ w ′ : ⌈Ψ ⊢ A⌉ and
Γ;Ψ ⊩ ⌊w⌋

id
= ⌊w ′⌋

id
: A

Γ ⊩ t = t ′ : u ′ already defined above by recursion on Γ ⊩ t : u ′
we note that we have Γ ⊩ τ : u where Γ ⊢ τ ↘ u ′ : u and u ′ < u;
hence using the sem. eq. for types is well-founded as we do so at a smaller universe u ′
and our sem. eq. for types is recursively defined on Γ ⊩ t : u ′

Γ ⊩ t = t ′ : (y : τ̆1) ⇒ τ2 :⇔ Γ ⊢ t ↘ w : (y : τ̆1) ⇒ τ2 and Γ ⊢ t ′ ↘ w ′ : (y : τ̆1) ⇒ τ2 and
∀Γ′ ≤ρ Γ. Γ′ ⊩ s = s ′ : {ρ}τ̆1 =⇒ Γ′ ⊩ {ρ}w s = {ρ}w ′ s ′ : {ρ, s/y}τ2

Γ ⊩ t = t ′ : x s⃗ :⇔ Γ ⊢ t ↘ n : x s⃗ and Γ ⊢ t ′ ↘ n′ : x s⃗ and wne n,n′ and Γ ⊢ n ≡ n′ : x s⃗

Fig. 20. Semantic Equality

Lemma 5.2 (Weakening of Type Inference for Neutral Computations). If typeof (Γ ⊢ t) = τ and Γ′ ≤ρ Γ then
typeof (Γ′ ⊢ {ρ}t) = τ ′ s.t. τ ′ = {ρ}τ .

Proof. By induction on typeof (Γ ⊢ t) = τ using Lemma 4.4 (3). □

6 SEMANTIC PROPERTIES
6.1 Semantic Properties of LF

Lemma 6.1 (Well-Formedness of Semantic LF Typing).
33

(1) If Γ;Ψ ⊩ M = N : A then Γ;Ψ ⊢ M : A and Γ;Ψ ⊢ N : A and Γ ⊢ M ≡ N : A.
(2) If Γ;Ψ ⊩ σ1 = σ2 : Φ then Γ;Ψ ⊢ σ1 : Φ and Γ;Ψ ⊢ σ2 : Φ and Γ;Ψ ⊢ σ1 ≡ σ2 : Φ.

Proof. By induction on the semantic definition. In each case, we refer the Def. 4.3. To illustrate, consider the case
where Γ;Ψ ⊢ M ↘LF λx .M

′ : Πx :A.B and Γ;Ψ ⊢ N ↘LF λx .N
′ : Πx :A.B, we also know that Γ;Ψ ⊢ M ≡ λx .M ′ : Πx :A.B

and Γ;Ψ ⊢ N ≡ λx .N ′ : Πx :A.B by Def. 4.3.
Further, we have that Γ;Ψ,x :A ⊩ M ′ = N ′ : B. By IH, we get that Γ;Ψ,x :A ⊢ M ′ ≡ N ′ : B By dec. equivalence rules,

we have Γ;Ψ ⊢ λx .M ′ ≡ λx .N ′ : Πx :A.B. Therefore, by symmetry and transitivity of ≡, we have Γ;Ψ ⊢ M ≡ N : Πx :A.B.
The typing invariants are left implicit.
We show the expanded proofs below concentrating on showing ≡ and leaving the tracking of typing invariants implicit.

Case.
Γ;Ψ ⊢ σ ↘LF · : · Γ;Ψ ⊢ σ ′ ↘LF · : ·

Γ;Ψ ⊩ σ = σ ′ : ·

Γ;Ψ ⊢ σ1 ≡ · : · and Γ;Ψ ⊢ σ2 ≡ · : · by Def. 4.3
Γ;Ψ ⊢ σ1 ≡ σ2 : · by symmetry and transitivity of ≡

Case.

Γ;ψ ,−−→x :A ⊢ σ ↘LF wkψ : ψ Γ;ψ ,−−→x :A ⊢ σ ′ ↘LF wkψ : ψ

Γ;ψ ,−−→x :A ⊩ σ = σ ′ : ψ

Γ;ψ ,
−−→
x :A ⊢ σ1 ≡ wkψ : ψ and Γ;ψ ,

−−→
x :A ⊢ σ2 ≡ wkψ : ψ by Def. 4.3

Γ;ψ−−→x :A ⊢ σ1 ≡ σ2 : ψ by symmetry and transitivity of ≡

Case.

Γ;Ψ ⊢ σ1 ↘LF σ
′
1,M : Φ,x :A

Γ;Ψ ⊢ σ2 ↘LF σ
′
2,N : Φ,x :A Γ;Ψ ⊩ σ ′1 = σ

′
2 : Φ Γ;Ψ ⊩ M = N : [σ ′1/Φ̂]A

Γ;Ψ ⊩ σ1 = σ2 : Φ,x :A

Γ;Ψ ⊢ σ1 ≡ σ ′1,M : Φ,x :A and Γ;Ψ ⊢ σ2 ≡ σ ′2,N : Φ,x :A by Def. 4.3
Γ;Ψ ⊢ σ ′1 ≡ σ

′
2 : Φ and Γ;Ψ ⊢ M ≡ N : [σ ′1/Φ̂]A by induction hypothesis

Γ;Ψ ⊢ σ ′1,M ≡ σ
′
2,N : Φ,x :A by dec. equivalence rules

Γ;Ψ ⊢ σ1 ≡ σ2 : Φ,x :A by symmetry and transitivity of ≡

Case.

Γ;Ψ ⊢ M ↘LF ⌊t1⌋σ1 : tm typeof (Γ ⊢ t1) = ⌈Φ1 ⊢ tm⌉ Γ ⊢ Φ1 ≡ Φ2 : ctx
Γ;Ψ ⊢ N ↘LF ⌊t2⌋σ2 : tm typeof (Γ ⊢ t2) = ⌈Φ2 ⊢ tm⌉ Γ ⊢ t1 ≡ t2 : ⌈Φ1 ⊢ tm⌉ Γ;Ψ ⊩ σ1 = σ2 : Φ1

Γ;Ψ ⊩ M = N : tm

Γ;Ψ ⊢ M ≡ ⌊t1⌋σ1 : tm and Γ;Ψ ⊢ N ≡ ⌊t2⌋σ2 : tm by Def. 4.3
Γ;Ψ ⊢ σ1 ≡ σ2 : Φ1 by induction hypothesis
Γ;Ψ ⊢ ⌊t1⌋σ1 ≡ ⌊t2⌋σ2 : tm by dec. equivalence rules
Γ;Ψ ⊢ M ≡ N : tm by symmetry and transitivity of ≡

Case.

Γ;Ψ ⊢ M ↘LF lamM ′ : tm
Γ;Ψ ⊢ N ↘LF lam N ′ : tm Γ;Ψ ⊩ M ′ = N ′ : Πx :tm.tm

Γ;Ψ ⊩ M = N : tm

Γ;Ψ ⊢ M ≡ lamM ′ : tm and Γ;Ψ ⊢ N ≡ lam N ′ : tm by Def. 4.3
Γ;Ψ ⊢ M ′ ≡ N ′ : Πx :tm.tm by induction hypothesis
Γ;Ψ ⊢ lamM ′ ≡ lam N ′ : tm by dec. equivalence rules
Γ;Ψ ⊢ M ≡ N : tm by symmetry and transitivity of ≡

34

Case.

Γ;Ψ ⊢ M ↘LF appM1 M2 : tm
Γ;Ψ ⊢ N ↘LF app N1 N2 : tm Γ;Ψ ⊩ M1 = N1 : tm Γ;Ψ ⊩ M2 = N2 : tm

Γ;Ψ ⊩ M = N : tm

Γ;Ψ ⊢ M ≡ appM1 M2 : tm and Γ;Ψ ⊢ N ≡ app N1 N2 : tm by Def. 4.3
Γ;Ψ ⊢ M1 ≡ N1 : tm and Γ;Ψ ⊢ M2 ≡ N2 : tm by induction hypothesis
Γ;Ψ ⊢ appM1 M2 ≡ app N1 N2 by dec. equivalence rules
Γ;Ψ ⊢ M ≡ N : tm by symmetry and transitivity of ≡

Case.
Γ;Ψ ⊢ M ↘LF x : tm Γ;Ψ ⊢ N ↘LF x : tm

Γ;Ψ ⊩ M = N : tm

Γ;Ψ ⊢ M ≡ x : tm and Γ;Ψ ⊢ N ≡ x : tm by Def. 4.3
Γ;Ψ ⊢ M ≡ N : tm by symmetry and transitivity of ≡

□

Lemma 6.2 (Semantic Weakening for LF).
(1) If Γ;Ψ ⊩ M = N : A and Γ′ ≤ρ Γ then Γ′; {ρ}Ψ ⊩ {ρ}M = {ρ}N : {ρ}A.
(2) If Γ;Ψ ⊩ σ = σ ′ : Φ and Γ′ ≤ρ Γ then Γ′; {ρ}Ψ ⊩ {ρ}σ = {ρ}σ ′ : {ρ}Φ.

Proof. By induction on the first derivation.

Case.

Γ;Ψ ⊢ M ↘LF ⌊t1⌋σ1 : tm typeof (Γ ⊢ t1) = ⌈Φ1 ⊢ tm⌉ Γ ⊢ Φ1 ≡ Φ2 : ctx
Γ;Ψ ⊢ N ↘LF ⌊t2⌋σ2 : tm typeof (Γ ⊢ t2) = ⌈Φ2 ⊢ tm⌉ Γ;Ψ ⊩ σ1 = σ2 : Φ1 Γ ⊢ t1 ≡ t2 : ⌈Φ1 ⊢ tm⌉

Γ ⊩ M = N : tm

Γ′; {ρ}Ψ ⊢ {ρ}M ↘LF {ρ}(⌊t1⌋σ1) : tm and Γ′; {ρ}Ψ ⊢ {ρ}N ↘LF {ρ}(⌊t2⌋σ1) : tm by Lemma 4.4
Γ′; {ρ}Ψ ⊢ {ρ}M ↘LF ⌊{ρ}t1⌋{ρ }σ1 : tm and Γ′; {ρ}Ψ ⊢ {ρ}N ↘LF ⌊{ρ}t2⌋{ρ }σ2 : tm by subst. def.
Γ′; {ρ}Ψ ⊩ {ρ}σ1 = {ρ}σ2 : {ρ}Φ1 by IH
Γ′ ⊢ {ρ}Φ1 ≡ {ρ}Φ2 : ctx by Lemma 3.18
Γ′ ⊢ {ρ}t1 ≡ {ρ}t2 : {ρ}⌈Φ1 ⊢ tm⌉ by Lemma 3.18
Γ′ ⊢ {ρ}t = {ρ}t ′ : ⌈{ρ}Φ1 ⊢ tm⌉ by substitution def.
typeof (Γ′ ⊢ {ρ}t1) = ⌈{ρ}Φ1 ⊢ tm⌉ by Lemma 5.2
typeof (Γ′ ⊢ {ρ}t2) = ⌈{ρ}Φ2 ⊢ tm⌉ by Lemma 5.2
Γ′; {ρ}Ψ ⊩ {ρ}M = {ρ}N : {ρ}tm by rule and substitution def.

□

Lemma 6.3 (Backwards Closure for LF terms).
(1) If Γ;Ψ ⊩ Q = N : A and Γ;Ψ ⊢ M ↘LF Q : A then Γ ⊩ M = N : A
(2) If Γ;Ψ ⊩ N = Q : A and Γ;Ψ ⊢ M ↘LF Q : A then Γ ⊩ N = M : A

Proof. By case analysis on Γ;Ψ ⊩ Q = N : A and the fact that Q is in whnf .

Case.

Γ;Ψ ⊢ Q ↘LF ⌊t1⌋σ1 : tm typeof (Γ ⊢ t1) = ⌈Φ1 ⊢ tm⌉ Γ ⊢ Φ1 ≡ Φ2 : ctx
Γ;Ψ ⊢ N ↘LF ⌊t2⌋σ2 : tm typeof (Γ ⊢ t2) = ⌈Φ2 ⊢ tm⌉ Γ ⊢ t1 ≡ t2 : ⌈Φ1 ⊢ tm⌉ Γ;Ψ ⊩ σ1 = σ2 : Φ1

Γ;Ψ ⊩ Q = N : tm

Γ;Ψ ⊢ M ↘LF Q : A by assumption
whnf Q by invariant of↘LF

Q = ⌊t1⌋σ1 since whnf Q
35

Γ;Ψ ⊩ M = N : tm usingM ↘LF ⌊t1⌋σ1 and sem. def.

Case.

Γ;Ψ ⊢ Q ↘LF lamM ′ : tm
Γ;Ψ ⊢ N ↘LF lam N ′ : tm Γ;Ψ ⊩ M ′ = N ′ : Πx :tm.tm

Γ;Ψ ⊩ Q = N : tm

Γ;Ψ ⊢ M ↘LF Q : A by assumption
whnf Q by invariant of↘LF

Q = lamM ′ by Γ;Ψ ⊢ Q ↘LF lamM ′ : tm using whnf Q
Γ;Ψ ⊩ M = N : tm using Γ;Ψ ⊢ M ↘LF lamM ′ : tm

□

Lemma 6.4 (Semantic LF Eqality is preserved under LF Substitution).
(1) If Γ;Ψ ⊩ σ = σ ′ : Φ and Γ;Φ ⊩ M = N : A then Γ;Ψ ⊩ [σ/Φ̂]M = [σ ′/Φ̂]N : [σ/Φ̂]A.
(2) If Γ;Ψ ⊩ σ = σ ′ : Φ and Γ;Φ ⊩ σ1 = σ2 : Φ′ then Γ;Ψ ⊩ [σ/Φ̂]σ1 = [σ ′/Φ̂]σ2 : Φ′.

Proof. Proof by mutual induction on Γ;Φ ⊩ M = N : A and Γ;Φ ⊩ σ = σ ′ : Φ using the fact that weak head
reduction is preserved under substitution (Lemma 4.5).

(1) If Γ;Ψ ⊩ σ = σ ′ : Φ and Γ;Φ ⊩ M = N : A then Γ;Ψ ⊩ [σ/Φ̂]M = [σ ′/Φ̂]N : [σ/Φ̂]A.

Case.

Γ;Φ ⊢ M ↘LF ⌊t1⌋σ1 : tm typeof (Γ ⊢ t1) = ⌈Φ1 ⊢ tm⌉ Γ ⊢ Φ1 = Φ2 : ctx
Γ;Φ ⊢ N ↘LF ⌊t2⌋σ2 : tm typeof (Γ ⊢ t2) = ⌈Φ2 ⊢ tm⌉ Γ;Φ ⊩ σ1 = σ2 : Φ1 Γ ⊢ t1 ≡ t2 : ⌈Φ1 ⊢ tm⌉

Γ;Φ ⊩ M = N : tm

Γ;Ψ ⊢ σ : Φ and Γ;Ψ ⊢ σ ′ : Φ by well-formedness of semantic equ. (Lemma 6.1)
Γ;Ψ ⊢ [σ/Φ̂]M ↘LF [σ/Φ̂](⌊t1⌋σ1) : tm by Lemma 4.5
Γ;Ψ ⊢ [σ ′/Φ̂]N ↘LF [σ ′/Φ̂](⌊t2⌋σ2) : tm by Lemma 4.5
Γ;Φ ⊩ [σ/Φ̂]σ1 = [σ ′/Φ̂]σ2 : Φ1 by IH
Γ;Φ ⊩ [σ/Φ̂]M = [σ ′/Φ̂]N : tm by well-typed

Case.
Γ;Φ ⊢ M ↘LF x : tm Γ;Φ ⊢ N ↘LF x : tm

Γ;Φ ⊩ M = N : tm

Γ;Ψ ⊩ σ (x) = σ ′(x) : tm by Γ;Φ ⊩ σ = σ ′ : Ψ
Γ;Ψ ⊢ σ (x) ↘LF M ′ : tm and Γ;Φ ⊢ σ ′(x) ↘LF N ′ : tm by Γ;Ψ ⊩ σ (x) = σ ′(x) : tm
Γ;Ψ ⊩ M ′ = N ′ : tm since both whnfM ′ and whnf N ′

Γ;Ψ ⊢ [σ/Φ̂]M ↘LF M ′ : tm by Lemma 4.5
Γ;Ψ ⊢ [σ/Φ̂]N ↘LF N ′ : tm by Lemma 4.5
Γ;Φ ⊩ [σ/Φ̂]M = [σ ′/Φ̂]N : tm Backwards Closure (Lemma 6.3)

Other cases are similar.

(2) If Γ;Ψ ⊩ σ = σ ′ : Φ and Γ;Φ ⊩ σ1 = σ2 : Φ′ then Γ;Ψ ⊩ [σ/Φ̂]σ1 = [σ ′/Φ̂]σ2 : Φ′.

Proof by induction on Γ;Φ ⊩ σ = σ ′ : Φ using the fact that weak head reduction is preserved under substitution
(Lemma 4.5).

Case.
Γ;Φ ⊢ σ1 ↘LF · : · Γ;Φ ⊢ σ2 ↘LF · : ·

Γ;Φ ⊩ σ1 = σ2 : ·
36

Γ;Ψ ⊢ [σ/Φ̂]σ1 ↘LF [σ/Φ̂]· : · by Lemma 4.5
Γ;Ψ ⊢ [σ/Φ̂]σ2 ↘LF [σ/Φ̂]· : · by Lemma 4.5
[σ/Φ̂]· = · by LF subst. def.
ΓΨ ⊩ [σ/Φ̂]σ1 = [σ/Φ̂]σ2 : · by sem. eq. def.

Case.
Γ;ϕ,−−→x :A ⊢ σ1 ↘LF wkϕ : ϕ Γ;ϕ,−−→x :A ⊢ σ2 ↘LF wkϕ : ϕ

Γ;ϕ,−−→x :A ⊩ σ1 = σ2 : ϕ

Γ;Ψ ⊢ [σ/ϕ, x⃗]σ1 ↘LF [σ/ϕ, x⃗]wkϕ : ϕ by Lemma 4.5
[σ/ϕ, x⃗]wkϕ = truncϕ (σ/ϕ, x⃗) = σ ′1 where Γ;Ψ ⊢ σ ′1 : ϕ by LF subst. def.
Γ;Ψ ⊢ [σ ′/ϕ, x⃗]σ2 ↘LF [σ ′/ϕ, x⃗]wkϕ : ϕ by Lemma 4.5
[σ ′/ϕ, x⃗]wkϕ = truncϕ (σ ′/ϕ, x⃗) = σ ′2 where Γ;Ψ ⊢ σ ′2 : ϕ by LF subst. def.
Γ;Ψ ⊩ σ ′1 = σ

′
2 : ϕ since Γ;Ψ ⊩ σ = σ ′ : ϕ, x⃗

Case.

Γ;Φ ⊢ σ1 ↘LF σ
′
1,M : Φ′,x :A

Γ;Φ ⊢ σ2 ↘LF σ
′
2,N : Φ′,x :A Γ;Φ ⊩ σ ′1 = σ

′
2 : Φ′ Γ;Ψ ⊩ M = N : [σ ′1/Φ̂

′]A

Γ;Φ ⊩ σ1 = σ2 : Φ′,x :A

Γ;Ψ ⊢ [σ/Φ̂]σ1 ↘LF [σ/Φ̂](σ ′1,M) : Φ′,x :A by Lemma 4.5
Γ;Ψ ⊢ [σ ′/Φ̂]σ2 ↘LF [σ ′/Φ̂](σ ′2,N) : Φ′,x :A by Lemma 4.5
[σ ′/Φ̂](σ ′2,N) = [σ ′/Φ̂]σ ′2, [σ ′/Φ̂]N by LF subst. def.
[σ/Φ̂](σ ′1,M) = [σ/Φ̂]σ ′1, [σ/Φ̂]M by LF subst. def.
Γ;Ψ ⊩ [σ/Φ̂]σ ′1 = [σ ′/Φ̂]σ ′2 : Φ′ by IH
Γ;Ψ ⊩ [σ/Φ̂]M = [σ ′/Φ̂]N : [σ/Φ̂]([σ ′1/Φ̂

′]A) by IH
Γ;Ψ[σ/Φ̂]σ1 = [σ ′/Φ̂]σ2 : Φ′,x :A by sem. equ. def.

□

Lemma 6.5 (Semantic Weakening Substitution Exist).
If Γ;Ψ,−−→x :A ⊢ wkΨ̂ : Ψ then Γ;Ψ,−−→x :A ⊩ wkΨ̂ = wkΨ̂ : Ψ.

Proof. By induction on the LF context Ψ. Case. Ψ = ·.

Γ; ·,−−→x :A ⊢ wk· : · by assumption
Γ; ·,−−→x :A ⊢ wk· ↘ · : · by↘ rule and typing
Γ; ·,−−→x :A ⊩ wk· = wk· : · by semantic. def.

Case. Ψ = Ψ′,y:B

Γ;Ψ′,y:B,−−→x :A ⊢ wkΨ̂′,y : Ψ′,y:B by assumption

Γ;Ψ′,y:B,−−→x :A ⊢ wkΨ̂′ : Ψ′ by typing

Γ;Ψ′,y:B,−−→x :A ⊩ wkΨ̂′ = wkΨ̂′ : Ψ′ by IH

Γ;Ψ′,y:B,−−→x :A ⊩ y = y : B by semantic eq. for LF terms, the fact that whnf x , and B = [wkΨ̂′/Ψ̂
′]B

37

Γ;Ψ′,y:B,−−→x :A ⊢ wkΨ̂′,y ↘ wkΨ̂′ ,y : Ψ′,y:B by↘ and typing rules

Γ;Ψ′,y:B,−−→x :A ⊢ wkΨ̂′,y = wkΨ̂′,y : Ψ′,y:B by sem. eq. for LF substitutions

Case. Ψ = ψ

Γ;ψ ,−−→x :A ⊢ wkψ : ψ by assumption

Γ;ψ ,−−→x :A ⊢ wkψ : ψ by↘ and typing and the fact that whnf wkψ
Γ;ψ ,−−→x :A ⊢ wkψ = wkψ : ψ by sem. eq. for LF subst.

□

Lemma 6.6 (Semantic LF Context Conversion).
(1) If Γ;Ψ,x :A1 ⊩ M = N : B and Γ;Ψ ⊢ A1 ≡ A2 : type then Γ;Ψ,x :A2 ⊩ M = N : B
(2) If Γ;Ψ,x :A1 ⊩ σ = σ ′ : Φ and Γ;Ψ ⊢ A1 ≡ A2 : type then Γ;Ψ,x :A2 ⊩ σ = σ ′ : Φ.

Proof. The idea is to use Γ;Ψ ⊢ A1 ≡ A2 : type and build LF weakening substitutions Γ;Ψ,x :A2,y:A1 ⊩ wkΨ̂,y =
wkΨ̂,y : Ψ,x :A1 and Γ;Ψ,x :A2 ⊩ wkΨ̂,x ,x = wkΨ̂,x ,x : Ψ,x :A2,y:A1. Using semantic LF subst. (Lemma 6.4), we can
then move Γ;Ψ,x :A1 ⊩ M = N : B to the new LF context Ψ,x :A2.

(1): If Γ;Ψ,x :A1 ⊩ M = N : B and Γ;Ψ ⊢ A1 ≡ A2 : type then Γ;Ψ,x :A2 ⊩ M = N : B

Γ ⊢ Ψ : ctx by Well-Formedness of Sem. LF Equ. (Lemma 6.1)
and Well-formedness of LF context (Lemma 3.1)

Γ ⊢ Ψ,x :A2 : ctx by context well-formedness rules
Γ;Ψ ⊢ A2 ≡ A1 : type by symmetry
Γ;Ψ,x :A2 ⊢ A2 ≡ A1 : type by LF weakening
Γ;Ψ,x :A2 ⊢ x : A2 by typing rule using Γ ⊢ Ψ,x :A2 : ctx
Γ;Ψ,x :A2 ⊢ x : A1 conversion using Γ;Ψ,x :A2 ⊢ A2 ≡ A1 : type
Γ;Ψ,x :A2 ⊢ x : [wkΨ̂/Ψ̂]A1 as A1 = [wkΨ̂/Ψ̂]A1
Γ;Ψ,x :A2 ⊢ wkΨ̂,x ,x : Ψ,x :A2,y:A1 by typing rules for LF substitution
Γ;Ψ,x :A2,y:A1 ⊢ wkΨ̂,y : Ψ,x :A1 by typing rule for LF substitution
Γ;Ψ,x :A2,y:A1 ⊢ wkΨ̂ : Ψ by typing
Γ;Ψ,x :A2,y:A1 ⊩ wkΨ̂ = wkΨ̂ : Ψ by Lemma 6.5
Γ;Ψ,x :A2,y:A1 ⊩ wkΨ̂,y = wkΨ̂,y : Ψ,x :A1 by sem. equ. for LF subst.

using the fact that whnf y
Γ;Ψ,x :A2 ⊩ wkΨ̂ = wkΨ̂ : Ψ by Lemma 6.5
Γ;Ψ,x :A2 ⊩ wkΨ̂,x ,x = wkΨ̂,x ,x : Ψ,x :A2,y:A1 by sem. equ. for LF subst.

using the fact that whnf x
Γ;Ψ,x :A2 ⊩ [wkΨ̂,x ,x/Ψ̂,x ,y]M ′ = [wkΨ̂,x ,x/Ψ̂,x ,y]N ′ : [wkΨ̂,x ,x/Ψ̂,x ,y]B

whereM ′ = [wkΨ̂,y/Ψ̂,x]M and N ′ = [wkΨ̂,y/Ψ̂,x]N by semantic LF subst. (Lemma 6.4 twice)
[wkΨ̂,x ,x/Ψ̂,x ,y](wkΨ̂,y) = wkΨ̂,x by subst. def.
Γ;Ψ,x :A2 ⊢ [wkΨ̂,x/Ψ̂,x]M = [wkΨ̂,x/Ψ̂,x]N : [wkΨ̂,x/Ψ̂,x]B by previous lines
Γ;Ψ,x :A2 ⊩ M = N : B using the fact that [wkΨ̂,x/Ψ̂,x]M = M , etc.

We prove (2): If Γ;Ψ,x :A1 ⊩ σ = σ ′ : Φ and Γ;Ψ ⊢ A1 ≡ A2 : type then Γ;Ψ,x :A2 ⊩ σ = σ ′ : Φ.

Γ;Ψ,x :A2,y:A1 ⊩ wkΨ̂,y = wkΨ̂,y : Ψ,x :A1 constructed as for case (1)
Γ;Ψ,x :A2 ⊩ wkΨ̂,x ,x = wkΨ̂,x ,x : Ψ,x :A2,y:A1 constructed as for case (1)

38

Γ;Ψ,x :A2 ⊩ [wkΨ̂,x ,x/Ψ̂,x ,y]σ1 = [wkΨ̂,x ,x/Ψ̂,x ,y]σ2 : Φ
where σ1 = [wkΨ̂,y/Ψ̂,x]σ and σ2 = [wkΨ̂,y/Ψ̂,x]σ ′ by semantic LF subst. (Lemma 6.4 twice)

[wkΨ̂,x ,x/Ψ̂,x ,y](wkΨ̂,y) = wkΨ̂,x by subst. def.
Γ;Ψ,x :A2 ⊢ [wkΨ̂,x/Ψ̂,x]σ = [wkΨ̂,x/Ψ̂,x]σ ′ : Φ by previous lines
Γ;Ψ,x :A2 ⊩ σ = σ ′ : Φ using the fact that [wkΨ̂,x/Ψ̂,x]σ = σ , etc.

□

Our semantic definitions are reflexive, symmetric, and transitive. Further they are stable under type conversions.
Establishing these properties is tricky and intricate. We first establish these properties for LF and subsequently for
computations. All proofs can be found in the long version.

Lemma 6.7 (Symmetry, Transitivity, and Conversion of Semantic Eqality for LF).
A. For LF Terms:

(1) (Reflexivity:) Γ;Ψ ⊩ M = M : A.
(2) (Symmetry:) If Γ;Ψ ⊩ M = N : A then Γ;Ψ ⊩ N = M : A.
(3) (Transitivity:) If Γ;Ψ ⊩ M1 = M2 : A and Γ;Ψ ⊩ M2 = M3 : A then Γ;Ψ ⊩ M1 = M3 : A.
(4) (Conversion:) If Γ;Ψ ⊢ A ≡ A′ : type and Γ;Ψ ⊩ M = N : A then Γ;Ψ ⊩ M = N : A′.
B. For LF Substitutions:
(1) (Reflexivity:) Γ;Ψ ⊩ σ = σ : Φ.
(2) (Symmetry:) If Γ;Ψ ⊩ σ = σ ′ : Φ then Γ;Ψ ⊩ σ ′ = σ : Φ.
(3) (Transitivity:) If Γ;Ψ ⊩ σ1 = σ2 : Φ and Γ;Ψ ⊩ σ2 = σ3 : Φ then Γ;Ψ ⊩ σ1 = σ3 : Φ.
(4) (Conversion:) If Γ ⊢ Φ ≡ Φ′ : ctx and Γ;Ψ ⊩ σ = σ ′ : Φ then Γ ⊩ σ = σ ′ : Φ′.

Proof. Reflexivity follows directly from symmetry and transitivity. For LF terms and substitutions, we prove
symmetry and conversion by induction on the derivation Γ;Ψ ⊩ M = N : A and Γ;Ψ ⊩ σ = σ ′ : Φ respectively. For
transitivity, we use lexicographic induction.

We reason by induction on semantic equivalence relation where we consider any σ ′ smaller than σ if σ ↘LF σ
′; the

proofs is mostly straightforward exploiting symmetry of decl. equivalence (≡), determinacy of weak head reductions,
and crucially relies on well-formedness of semantic equality (Lemma 6.1) and functionality of LF typing (Lemma 3.6)
for the case where σi ↘LF σ

′
i ,Mi .

Transitivity: If Γ;Ψ ⊩ σ1 = σ2 : Φ and Γ;Ψ ⊩ σ2 = σ3 : Φ then Γ;Ψ ⊩ σ1 = σ3 : Φ.

By lexicographic induction on the first wo derivations;

Case.
Γ;Ψ ⊢ σ1 ↘LF · : · Γ;Ψ ⊢ σ2 ↘LF · : ·

Γ;Ψ ⊩ σ1 = σ2 : ·

Γ;Ψ ⊩ σ2 = σ3 : · by assumption
Γ;Ψ ⊢ σ2 ↘LF · : · by inversion and determinacy (Lemma 4.2)
Γ;Ψ ⊢ σ3 ↘LF · : · by inversion
Γ;Ψ ⊩ σ1 = σ3 : · using Γ;Ψ ⊢ σ1 ↘LF · : · and Γ;Ψ ⊢ σ3 ↘LF · : ·

Case.
Γ;Ψ,−−→x :A ⊢ σ1 ↘LF wkΨ̂ : Ψ Γ;Ψ,−−→x :A ⊢ σ2 ↘LF wkΨ̂ : Ψ

Γ;Ψ ⊩ σ1 = σ2 : Ψ

Γ;Ψ ⊢ σ2 ↘LF · : · by assumption
Γ;Ψ,−−→x :A ⊢ σ2 ↘LF wkΨ̂ : Ψ by inversion and determinacy (Lemma 4.2)

Γ;Ψ,−−→x :A ⊢ σ3 ↘LF wkΨ̂ : Ψ by inversion

Γ ⊩ σ1 = σ3 : · using Γ;Ψ,−−→x :A ⊢ σ1 ↘LF wkΨ̂ : Ψ and Γ;Ψ,−−→x :A ⊢ σ3 ↘LF wkΨ̂ : Ψ
39

Case.

Γ;Ψ ⊢ σ1 ↘LF σ
′
1,M : Φ,x :A

Γ;Ψ ⊢ σ2 ↘LF σ
′
2,N : Φ,x :A Γ;Ψ ⊩ σ ′1 = σ

′
2 : Φ Γ;Ψ ⊩ M = N : [σ ′1/Φ̂]A

Γ;Ψ ⊩ σ1 = σ2 : Φ,x :A

Γ;Ψ ⊩ σ2 = σ3 : Φ,x :A by assumption
Γ;Ψ ⊢ σ2 ↘LF σ

′
2,N : Φ,x :A by inversion and determinacy (Lemma 4.2)

Γ;Ψ ⊢ σ3 ↘LF σ
′
3,Q : Φ,x :A by inversion

Γ;Ψ ⊩ N = Q : [σ2/Φ̂]A inversion
Γ;Ψ ⊩ σ ′2 = σ

′
3 : Φ,x :A by inversion

Γ;Ψ ⊩ σ ′1 = σ
′
3 : Φ,x :A by IH

Γ;Ψ ⊢ σ ′2,N : Φ,x :A by def. of well-typed whnf
Γ ⊢ Φ,x :A : ctx by well-formedness of LF typing
Γ;Φ ⊢ A : type by well-formedness of LF contexts
Γ;Ψ ⊢ σ1 ≡ σ2 : Φ by well-formedness of semantic equality (Lemma 6.1)
Γ;Ψ ⊢ [σ1/Φ̂]A ≡ [σ2/Φ̂]A : type by functionality of LF typing (Lemma 3.6)
Γ;Ψ ⊩ N = Q : [σ1/Φ̂]A by IH (Conversion 4)
Γ;Ψ ⊩ M ≡ Q[σ1/Φ̂]A by IH
Γ;Ψ ⊩ σ1 = σ3 :: Φ,x :A by sem. def.

Symmetry: If Γ;Ψ ⊩ σ1 = σ2 : Φ then Γ;Ψ ⊩ σ2 = σ1 : Φ

By induction on semantic equivalence relation where we consider any σ ′ smaller than σ if σ ↘LF σ
′; the proof is mostly

straightforward exploiting symmetry of decl. equivalence (≡), but also relies again on well-formedness of semantic
equality (Lemma 6.1) and functionality of LF typing (Lemma 3.6) for the case where σi ↘LF σ ′i ,Mi . We show the
interesting case.

Case.

Γ;Ψ ⊢ σ1 ↘LF σ
′
1,M : Φ,x :A

Γ;Ψ ⊢ σ2 ↘LF σ
′
2,N : Φ,x :A Γ;Ψ ⊩ σ ′1 = σ

′
2 : Φ Γ;Ψ ⊩ M = N : [σ ′1/Φ̂]A

Γ;Ψ ⊩ σ1 = σ2 : Φ,x :A

Γ;Ψ ⊩ σ ′2 = σ
′
1 : Φ by IH

Γ ⊢ Φ,x :A : ctx by well-formedness of typing
Γ;Φ ⊢ A : type by well-formedness of LF contexts
Γ;Ψ ⊢ σ ′1 ≡ σ

′
2 : Φ by well-formedness of semantic equality (Lemma 6.1)

Γ;Ψ ⊢ [σ1/Φ̂]A ≡ [σ2/Φ̂]A : type by functionality of LF typing (Lemma 3.6)
Γ;Ψ ⊩ M = N : [σ2/Φ̂]A by IH (Conversion 4)
Γ;Ψ ⊩ N = M : [σ2/Φ̂]A by IH
Γ;Ψ ⊩ σ2 = σ1 : Φ,x :A by def. of semantic equivalence

We now consider some cases for establishing symmetry and transitivity for semantic equality of LF terms.

40

Case.

Γ;Ψ ⊢ M1 ↘LF ⌊t1⌋σ1 : tm typeof (Γ ⊢ t1) = ⌈Φ1 ⊢ tm⌉ Γ ⊢ Φ1 ≡ Φ2 : ctx
Γ;Ψ ⊢ M2 ↘LF ⌊t2⌋σ2 : tm typeof (Γ ⊢ t2) = ⌈Φ2 ⊢ tm⌉ Γ ⊢ t1 ≡ t2 : ⌈Φ1 ⊢ tm⌉ Γ ⊩ σ ′1 = σ

′
2 : Φ1

Γ;Ψ ⊩ M1 = M2 : tm

Symmetry for LF Terms.
Γ;Ψ ⊩ σ ′2 = σ

′
1 : Φ1 by IH

Γ;Ψ ⊩ σ ′2 = σ
′
1 : Φ2 by IH (Conversion (4))

Γ ⊢ ⌈Φ1 ⊢ tm⌉ ≡ ⌈Φ2 ⊢ tm⌉ : u since Γ ⊢ Φ1 ≡ Φ2 : ctx
Γ ⊢ t1 ≡ t2 : ⌈Φ2 ⊢ tm⌉ by conversion using Γ ⊢ ⌈Φ1 ⊢ tm⌉ ≡ ⌈Φ2 ⊢ tm⌉ : u
Γ ⊢ t2 ≡ t1 : ⌈Φ2 ⊢ tm⌉ by transitivity of ≡
Γ;Ψ ⊩ N = M : A by sem. def.

Transitivity for LF Terms.
Γ ⊩ M2 = M3 : tm by assumption
Γ ⊢ M2 ↘LF ⌊t2⌋σ2 : tm by inversion and determinacy (Lemma 4.2)
Γ ⊢ M3 ↘LF ⌊t3⌋σ3 by inversion
typeof (Γ ⊢ t2) = ⌈Φ2 ⊢ tm⌉ by inversion and uniqueness of typeof
typeof (Γ ⊢ t3) = ⌈Φ3 ⊢ tm⌉ by inversion
Γ ⊢ Φ2 ≡ Φ3 : ctx by inversion
Γ ⊢ Φ1 ≡ Φ3 : ctx by transitivity (≡)
Γ ⊩ σ2 = σ3 : Φ2 by inversion
Γ ⊩ σ2 = σ3 : Φ1 by IH (Conversion 4 using Γ ⊩ Φ2 = Φ1 : ctx)
Γ ⊩ σ1 = σ3 : Φ1 by IH
Γ ⊢ t2 ≡ t3 : ⌈Φ2 ⊢ tm⌉ by inversion on Γ;Ψ ⊩ M2 = M3 : tm
Γ ⊢ (Φ1 ⊢ tm) ≡ (Φ2 ⊢ tm) : u since Γ ⊢ Φ1 ≡ Φ2 : ctx
Γ ⊢ t2 ≡ t3 : ⌈Φ1 ⊢ tm⌉ by type conversion using Γ ⊢ (Φ1 ⊢ tm) ≡ (Φ2 ⊢ tm) : u)
Γ ⊩ t1 ≡ t3 : ⌈Φ1 ⊢ tm⌉ by Transitivity of ≡
Γ ⊩ M1 = M3 : tm

We concentrate here on proving the conversion properties:

(Conversion:) If Γ;Ψ ⊢ A ≡ A′ : type and Γ;Ψ ⊩ M = N : A then Γ;Ψ ⊩ M = N : A′.

Case.
Γ;Ψ ⊢ M ↘LF λx .M

′ : Πx :A.B Γ;Ψ ⊢ N ↘LF λx .N
′ : Πx :A.B Γ;Ψ,x :A ⊩ M ′ = N ′ : B

Γ;Ψ ⊩ M = N : Πx :A.B

Γ;Ψ ⊢ Πx :A.B ≡ Πx :A′.B′ : type by assumption
Γ;Ψ,x :A ⊢ B ≡ B′ : type and Γ;Ψ ⊢ A ≡ A′ : type by injectivity of Π-types (Lemma 3.8)
Γ;Ψ,x :A ⊩ M ′ = N ′ : B′ by IH
Γ;Ψ,x :A′ ⊩ M ′ = N ′ : B′ by Semantic LF context conversion (Lemma 6.6)
Γ;Ψ ⊩ M = N : Πx :A′.B′ by sem. def.

Other cases are trivial since they are at type tm. □

41

6.2 Semantic Properties of Computations
Lemma 6.8 (Well-Formedness of Semantic Typing). If Γ ⊩ t = t ′ : τ̆ then Γ ⊢ t : τ̆ and Γ ⊢ t ′ : τ̆ and

Γ ⊢ t ≡ t ′ : τ̆ .

Proof. By induction on the induction on Γ ⊩ τ̆ : u. . In each case, we refer the Def. 4.3. □

Lemma 6.9 (Semantic Weakening for Computations).
(1) If Γ ⊩ τ̆ : u and Γ′ ≤ρ Γ then Γ′ ⊩ {ρ}τ̆ : u.
(2) If Γ ⊩ τ̆ = τ̆ ′ : u and Γ′ ≤ρ Γ then Γ′ ⊩ {ρ}τ̆ = {ρ}τ̆ ′ : u.
(3) If Γ ⊩ t = t ′ : τ̆ and Γ′ ≤ρ Γ then Γ′ ⊩ {ρ}t = {ρ}t : {ρ}τ̆ .

Proof. By induction on Γ ⊩ τ̆ : u.
We note that the theorem is trivial for τ̆ = tm_ctx. Hence we concentrate on proving it where τ̆ = τ (i.e. it is a proper
type).
For better and easier readability we simply write for example τ = (y : τ̆1) ⇒ τ2 instead of
Γ ⊩ τ : u where

(1) Γ ⊢ τ ↘ (x : τ̆1) ⇒ τ2
(2) (∀Γ′ ≤ρ Γ.Γ′ ⊩ {ρ}τ̆1 : u1)
(3) ∀Γ′ ≤ρ Γ. Γ′ ⊩ s = s ′ : {ρ}τ̆1 =⇒ Γ′ ⊩ {ρ, s/x }τ2 = {ρ, s ′/x }τ2 : u2 and
(4) (u1,u2,u3) ∈ R.

Weakening of semantic typing Γ ⊩ τ : u:
By case analysis on Γ ⊩ τ : u.

Case. τ = (x : τ̆1) ⇒ τ2

Γ′ ⊢ {ρ}τ ↘ {ρ}((y : τ̆1) ⇒ τ2) : u3 by Lemma 4.4 using Γ ⊩ τ : u
Γ′ ⊢ {ρ}τ ↘ (x : {ρ}τ̆1) ⇒ {ρ,x/x }τ2 : u3 by substitution def.

Suppose that Γ1 ≤ρ1 Γ′

Γ′ ≤ρ Γ by assumption
Γ1 ≤{ρ1 }ρ Γ by composition of substitution
Γ1 ⊩ {{ρ1}ρ}τ̆1 : u1 by Γ ⊩ τ : u
Γ1 ⊩ {ρ1}{ρ}τ̆1 : u1 by composition of substitution

Suppose that Γ1 ≤ρ1 Γ′ and Γ1 ⊩ s = s ′ : {ρ1}({ρ}τ̆1)

Γ1 ≤{ρ1 }ρ Γ by composition of substitution
Γ1 ⊩ s = s ′ : {{ρ1}ρ}τ̆1 by composition of substitution
Γ1 ⊩ {{ρ1}ρ, s/x }τ2 = {{ρ1}ρ, s ′/x }τ2 : u2 by Γ ⊩ τ : u
Γ1 ⊩ {ρ1, s/x }({ρ,x/x }τ2) = {ρ1, s ′/x }({ρ,x/x }τ2) : u2 by composition of substitution

Γ′ ⊩ {ρ}τ : u3 by abstraction, since Γ1, ρ1 where arbitrary

Case. τ = ⌈T ⌉

Γ′ ⊢ {ρ}τ ↘ {ρ}⌈T ⌉ : u by Lemma 4.4 using Γ ⊩ τ : u
Γ′ ⊢ {ρ}τ ↘ ⌈{ρ}T ⌉ : u by substitution def.
Γ ⊩LF T = T : u by assumption
Γ ⊢ T ≡ T : u by inversion
Γ′ ⊢ {ρ}T ≡ {ρ}T : u by substitution lemma
Γ′ ⊩ {ρ}τ : u by def.

42

Case. Γ ⊩ t = t ′ : ⌈Ψ ⊢ A⌉

Γ ⊢ t ↘ w : ⌈Ψ ⊢ A⌉ by assumption
Γ′ ⊢ {ρ}t ↘ {ρ}w : {ρ}⌈Ψ ⊢ A⌉ by 4.4
Γ ⊢ t ′ ↘ w ′ : ⌈Ψ ⊢ A⌉ by assumption
Γ′ ⊢ {ρ}t ′ ↘ {ρ}w ′ : {ρ}⌈Ψ ⊢ A⌉ by 4.4
Γ;Ψ ⊩ ⌊w⌋

id
= ⌊w ′⌋

id
: A by assumption

Γ′; {ρ}Ψ ⊩ {ρ}⌊w⌋
id
= {ρ}⌊w ′⌋

id
: {ρ}A by IH

Γ′ ⊩ {ρ}t = {ρ}t ′ : {ρ}⌈Ψ ⊢ A⌉ by sem. def. using subst. properties

Case. Γ ⊩ t = t ′ : (y : τ̆1) ⇒ τ2

Γ ⊢ t ↘ w : (y : τ̆1) ⇒ τ2 by assumption
Γ′ ⊢ {ρ}t ↘ {ρ}w : {ρ}((y : τ̆1) ⇒ τ2) by Lemma 4.4
Γ ⊢ t ′ ↘ w ′ : (y : τ̆1) ⇒ τ2 by assumption
Γ′ ⊢ {ρ}t ′ ↘ {ρ}w ′ : {ρ}((y : τ̆1) ⇒ τ2) by Lemma 4.4
Suppose that Γ1 ≤ρ1 Γ′ and Γ1 ⊢ t1 : {ρ1}({ρ}τ̆1) and Γ1 ⊢ t2 : {ρ1}({ρ}τ̆1)

Γ1 ≤{ρ1 }ρ Γ′ by definition
Γ1 ⊢ t1 : {{ρ1}{ρ}τ̆1 by composition of substitution
Γ1 ⊢ t2 : {{ρ1}ρ}τ̆1 by composition of substitution
Γ1 ⊩ t1 = t2 : {{ρ1}ρ}τ̆1 =⇒ Γ1 ⊩ {{ρ1}ρ}w t1 = {{ρ1}ρ}w ′ t2 : {{ρ1}ρ, t1/x }τ2 by assumption
Γ1 ⊩ t1 = t2 : {ρ1}({ρ}τ̆1) =⇒ Γ1 ⊩ ({ρ1}({ρ}w)) t1 = ({ρ1}{ρ}w ′) t2 : {ρ1, t1/x }({ρ}τ2) by composition of substitution
Γ′ ⊩ {ρ}t = {ρ}t ′ : {ρ}((y : τ̆1) ⇒ τ2) by def.

□

Our semantic equality definition is symmetric and transitive. Our semantic equality is also reflexive – however, note
we prove a weaker reflexivity statement which says that if t1 is semantically equivalent to another term t2 then it is also
equivalent to itself. This suffices for our proofs. We also note that our semantic equality takes into account extensionality
for terms at function types and contextual types; this is in fact baked into our semantic equality definition.

Lemma 6.10 (Symmetry, Transitivity, and Conversion of Semantic Eqality).
Let Γ ⊩ τ̆ : u and Γ ⊩ τ̆ ′ : u and Γ ⊩ τ̆ = τ̆ ′ : u and Γ ⊩ t1 = t2 : τ̆ . Then:

(1) (Reflexivity for Terms:) Γ ⊩ t1 = t1 : τ̆ .
(2) (Symmetry for Terms:) Γ ⊩ t2 = t1 : τ̆ .
(3) (Transitivity for Terms:) If Γ ⊩ t2 = t3 : τ̆ then Γ ⊩ t1 = t3 : τ̆ .
(4) (Symmetry for Types:) Γ ⊩ τ̆ ′ = τ̆ : u
(5) (Transitivity for Types:) If Γ ⊩ τ̆ ′ = τ̆ ′′ : u and Γ ⊩ τ̆ ′′ : u then Γ ⊩ τ̆ = τ̆ ′′ : u.
(6) (Conversion:) Γ ⊩ t1 = t2 : τ̆ ′.

Proof. Reflexivity follows directly from symmetry and transitivity. We prove symmetry and transitivity for terms
using a lexicographic induction on u and Γ ⊩ τ : u; we appeal to the induction hypothesis and use the corresponding
properties on types if the universe is smaller; if the universe stays the same, then we may appeal to the property for
terms if Γ ⊩ τ : u is smaller;

To prove conversion and symmetry for types, we may also appeal to the induction hypothesis if Γ ⊩ τ ′ : u is smaller.

Case. τ̆ = tm_ctx

Symmetry for Terms (Prop. 2): To Show: Γ ⊩ t2 = t1 : tm_ctx
t2 and t1 stand for LF context Ψ2 and Ψ1 respectively

43

Γ ⊢ Ψ1 ≡ Ψ2 : tm_ctx by def. Γ ⊩ t1 = t2 : τ
Γ ⊢ Ψ2 ≡ Ψ1 : tm_ctx by symmetry of ≡
Γ ⊩ t2 = t2 : tm_ctx by sem. equ. def.

Transitivity for Terms (Prop. 3): To Show: If Γ ⊩ t2 = t3 : tm_ctx then Γ ⊩ t1 = t3 : tm_ctx.
t1, t2, and t3 stand for LF context Ψ1, Ψ2, and Ψ3 respectively
Γ ⊢ Ψ1 ≡ Ψ2 : tm_ctx by Γ ⊩ t1 = t2 : tm_ctx
Γ ⊢ Ψ2 ≡ Ψ3 : tm_ctx by Γ ⊩ t2 = t3 : tm_ctx
Γ ⊢ Ψ1 ≡ Ψ3 : tm_ctx by transitivity of ≡
Γ ⊩ t1 = t3 : tm_ctx by semantic equ. def.

Other cases are trivial.

Case. τ = ⌈T ⌉, i.e. Γ ⊢ τ ↘ ⌈T ⌉ : u and Γ ⊩LF T = T where T = Ψ ⊢ A

Symmetry for Terms (Prop. 2): To Show: Γ ⊩ t2 = t1 : ⌈T ⌉.
Γ ⊢ t1 ↘ w1 : τ by definition of Γ ⊩ t1 = t2 : τ
Γ ⊢ t2 ↘ w2 : τ by definition of Γ ⊩ t1 = t2 : τ
Sub-Case: Γ ⊢ t1 ↘ ⌈C⌉ : ⌈T ⌉ and Γ ⊢ t2 ↘ ⌈C ′⌉ : ⌈T ⌉ and Γ ⊩LF C = C

′ : T
Consider C = (Ψ̂ ⊢ M) and C ′ = (Ψ̂ ⊢ N) and T = Ψ ⊢ A (proof is the same for case C = (Ψ̂ ⊢ σ))
Γ;Ψ ⊩ M = N : A by Γ ⊩LF C = C

′ : T
Γ;Ψ ⊩ N = M : A by Lemma 6.7 (2)
Γ ⊩LF C

′ = C : T by sem. def.
Γ ⊩ t2 = t1 : ⌈T ⌉ by semantic equ. def.

Sub-Case: wnew1,w2 and Γ ⊢ w1 ≡ w2 : ⌈T ⌉
Γ ⊢ w2 ≡ w1 : ⌈T ⌉ by symmetry of ≡
Γ ⊩ t2 = t1 : ⌈T ⌉ by semantic equ. def.

Transitivity for Terms (Prop.3): To Show If Γ ⊩ t2 = t3 : ⌈T ⌉ then Γ ⊩ t1 = t3 : ⌈T ⌉.
Γ ⊢ t1 ↘ w1 : τ by definition of Γ ⊩ t1 = t2 : τ
Γ ⊢ t2 ↘ w2 : τ by definition of Γ ⊩ t1 = t2 : τ
Γ ⊢ t2 ↘ w ′2 : τ by definition of Γ ⊩ t2 = t3 : τ
Γ ⊢ t3 ↘ w3 : τ by definition of Γ ⊩ t2 = t3 : τ
w2 = w ′2 by Lemma 4.2 (3)
Γ;Ψ ⊩ ⌊w1⌋id = ⌊w2⌋id : A by def. Γ ⊩ t1 = t2 : τ
Γ;Ψ ⊩ ⌊w2⌋id = ⌊w3⌋id : A by def. Γ ⊩ t2 = t3 : τ
Γ;Ψ ⊩ ⌊w1⌋id = ⌊w3⌋id : A by Lemma 6.7 (3)
Γ ⊩ t1 = t3 : ⌈Ψ ⊢ A⌉ by sem. equ. def.

Symmetry for Types (Prop.4): To Show: Γ ⊩ τ ′ = ⌈T ⌉ : u where T = Ψ ⊢ A

Γ ⊢ τ ′ ↘ ⌈T ′⌉ : u and Γ ⊢ T ≡ T ′ by Γ ⊩ τ = τ ′ : u
Γ ⊢ T ′ ≡ T by symmetry for LF equ.
Γ ⊩ τ ′ = τ : u by semantic equ. def.

44

Transitivity for Types (Prop.5): To Show: If Γ ⊩ τ ′ = τ ′′ : u and Γ ⊩ τ ′′ : u then Γ ⊩ ⌈T ⌉ = τ ′′ : u.
Γ ⊢ τ ′ ↘ ⌈T ′⌉ : u and Γ ⊢ T ≡ T ′ by Γ ⊩ τ = τ ′ : u
Γ ⊢ τ ′′ ↘ ⌈T ′′⌉ : u and Γ ⊢ T ′ ≡ T ′′ by Γ ⊩ τ ′ = τ ′′ : u
Γ ⊢ T ≡ T ′′ by transitivity for LF equ.
Γ ⊩ τ = τ ′′ : u by semantic equ. def.

Conversion for Terms (Prop.6): To Show: Γ ⊩ t1 = t2 : τ ′.
Γ ⊢ t1 ↘ w1 : ⌈T ⌉ by definition of Γ ⊩ t1 = t2 : τ
Γ ⊢ t2 ↘ w2 : ⌈T ⌉ by definition of Γ ⊩ t1 = t2 : τ
Γ ⊢ τ ′ ↘ ⌈T ′⌉ : u and Γ ⊢ T ≡ T ′ by def. of Γ ⊩ τ = τ ′ : u
Γ ⊢ ⌈T ⌉ ≡ ⌈T ′⌉ : u by decl. equ. def.
Γ ⊢ τ ≡ ⌈T ⌉ : u by Γ ⊢ τ ↘ ⌈T ⌉ (since↘ rules are a subset of ≡)
Γ ⊢ τ ′ ≡ ⌈T ′⌉ : u by Γ ⊢ τ ′ ↘ ⌈T ′⌉ (since↘ rules are a subset of ≡)
Γ ⊢ τ ≡ τ ′ : u by transitivity and symmetry of decl. equality (≡)
Γ ⊢ ti : τ ′ and Γ ⊢ wi : τ ′ for i = 1, 2 by typing rules using Γ ⊢ ti : ⌈T ⌉
Γ ⊢ t1 ↘ w1 : τ ′ and Γ ⊢ t2 ↘ w2 : τ ′ by Def. 4.3
Γ ⊩ t1 = t2 : τ ′ by semantic equ. def.

Case. τ = (y : τ̆1) ⇒ τ2 i.e. Γ ⊢ τ ↘ (y : τ̆1) ⇒ τ2 : u

Symmetry for Terms (Prop. 2): To Show: Γ ⊩ t2 = t1 : (y : τ̆1) ⇒ τ2
Γ ⊢ t1 ↘ w1 : τ by definition of Γ ⊩ t1 = t2 : τ
Γ ⊢ t2 ↘ w2 : τ by definition of Γ ⊩ t1 = t2 : τ
Assume Γ′ ≤ρ Γ and Γ′ ⊩ s2 = s1 : {ρ}τ̆1
Γ′ ⊩ {ρ}τ̆1 : u1 by Γ ⊩ τ : u
Γ′ ⊩ s1 = s2 : {ρ}τ̆1 by induction hypothesis (Prop. 2), symmetry
Γ′ ⊩ {ρ}w1 s1 = {ρ}w2 s2 : {ρ, s1/y}τ2 by definition of Γ ⊩ t1 = t2 : τ
Γ′ ⊩ {ρ, s1/y}τ2 : u2 by assumption Γ ⊩ τ : u
Γ′ ⊩ {ρ}w2 s2 = {ρ}w1 s1 : {ρ, s1/y}τ2 by induction hypothesis (Prop. 2), symmetry
Γ ⊢ τ ′ ↘ (y : τ̆ ′1) ⇒ τ ′2 : u by definition of Γ ⊩ τ = τ ′ : u
Γ′ ⊩ {ρ, s1/y}τ2 = {ρ, s2/y}τ ′2 : u2 by definition of Γ ⊩ τ = τ ′ : u
Γ′ ⊩ s2 = s2 : {ρ}τ̆1 by induction hypothesis (Prop. 1), reflexivity
Γ′ ⊩ {ρ, s2/y}τ2 = {ρ, s2/y}τ ′2 : u2 by definition of Γ ⊩ τ = τ ′ : u
Γ′ ⊩ {ρ, s2/y}τ ′2 = {ρ, s2/y}τ2 : u2 by induction hypothesis (Prop. 4), symmetry
Γ′ ⊩ {ρ, s1/y}τ2 = {ρ, s2/y}τ2 : u2 by induction hypothesis (Prop. 5), transitivity
Γ′ ⊩ {ρ}w2 s2 = {ρ}w1 s1 : {ρ, s2/y}τ2 by induction hypothesis (Prop. 6), conversion
Γ ⊩ t2 = t1 : τ since Γ′, ρ, s2, s1 were arbitrary

Transitivity for Terms (Prop. 3): If Γ ⊩ t2 = t3 : (y : τ̆1) ⇒ τ2 then Γ ⊩ t1 = t3 : (y : τ̆1) ⇒ τ2.
Γ ⊢ t1 ↘ w1 : τ by definition of Γ ⊩ t1 = t2 : τ
Γ ⊢ t2 ↘ w2 : τ by definition of Γ ⊩ t1 = t2 : τ
Γ ⊢ t2 ↘ w ′2 : τ by definition of Γ ⊩ t2 = t3 : τ
Γ ⊢ t3 ↘ w3 : τ by definition of Γ ⊩ t2 = t3 : τ
w2 = w ′2 by determinacy of weak head evaluation (Lemma 4.2)
Assume Γ′ ≤ρ Γ and Γ′ ⊩ s1 = s3 : {ρ}τ̆1

45

Γ′ ⊩ {ρ}τ̆1 : u1 by Γ ⊩ τ : u
Γ′ ⊩ s1 = s1 : {ρ}τ̆1 by induction hypothesis (Prop. 1), reflexivity
Γ′ ⊩ {ρ, s1/y}τ2 : u2 by assumption Γ ⊩ τ : u
Γ′ ⊩ {ρ}w1 s1 = {ρ}w2 s1 : {ρ, s1/y}τ2 by assumption Γ ⊩ t1 = t2 : τ
Γ′ ⊩ {ρ}w2 s1 = {ρ}w3 s3 : {ρ, s1/y}τ2 by assumption Γ ⊩ t2 = t3 : τ
Γ′ ⊩ {ρ}w1 s1 = {ρ}w3 s3 : {ρ, s1/y}τ2 by induction hypothesis (Prop. 3), transitivity
Γ ⊩ t1 = t3 : τ since Γ′, ρ, s1, s3 were arbitrary

Symmetry for Types (Prop. 4): Γ ⊩ τ ′ = τ : u
Γ ⊩ (y : τ̆1) ⇒ τ2 = τ ′ : u by assumption
Γ ⊢ τ ′ ↘ (y : τ̆ ′1) ⇒ τ ′2 by definition of Γ ⊩ τ = τ ′ : u
Assume Γ′ ≤ρ Γ and Γ′ ⊩ s ′ = s : {ρ}τ̆ ′1 .
Γ′ ⊩ {ρ}τ̆1 : u1 by Γ ⊩ τ : u
Γ′ ⊩ {ρ}τ̆1 = {ρ}τ̆ ′1 : u1 by Γ ⊩ τ = τ ′ : u
Γ′ ⊩ {ρ}τ̆ ′1 = {ρ}τ̆1 : u1 by induction hypothesis (Prop. 4)
Γ′ ⊢ {ρ}τ̆ ′1 : u1 by Γ ⊩ τ ′ : u
Γ′ ⊩ s ′ = s : {ρ}τ̆1 by induction hypothesis (Prop. 6), conversion
Γ′ ⊩ s = s ′ : {ρ}τ̆1 by induction hypothesis (Prop. 2), symmetry for terms
Γ′ ⊩ {ρ, s/y}τ2 = {ρ, s ′/y}τ ′2 : u2 by Γ ⊩ τ = τ ′ : u
Γ′ ⊩ s = s : {ρ}τ̆1 by induction hypothesis (Prop. 1), reflexivity
Γ′ ⊩ {ρ, s/y}τ2 : u2 by Γ ⊩ τ : u
Γ′ ⊩ {ρ, s ′/y}τ ′2 = {ρ, s/y}τ2 : u by induction hypothesis (Prop. 4), symmetry for types
Γ ⊩ τ ′ = τ : u since Γ′, ρ, s, s ′ were arbitrary

Transitivity for Types (Prop. 5): If Γ ⊩ τ ′ = τ ′′ : u and Γ ⊩ τ ′′ : u then Γ ⊩ τ = τ ′′ : u.
Γ ⊩ (y : τ̆ ′1) ⇒ τ1 = τ ′ : u by assumption
Γ ⊢ τ ′ ↘ (y : τ̆ ′2) ⇒ τ2 : u by definition of Γ ⊩ τ = τ ′ : u and determinacy of reduction
Γ ⊢ τ ′′ ↘ (y : τ̆ ′3) ⇒ τ3 : u by definition of Γ ⊩ τ ′ = τ ′′ : u
Assume Γ′ ≤ρ Γ and Γ′ ⊩ s1 = s3 : {ρ}τ̆ ′1
Γ′ ⊩ {ρ}τ̆ ′1 : u1 by Γ ⊩ τ : u
Γ′ ⊩ s1 = s1 : {ρ}τ̆ ′1 by induction hypothesis (Prop. 1), reflexivity
Γ′ ⊩ {ρ, s1/y}τ1 = {ρ, s1/y}τ2 : u2 by definition of Γ ⊩ τ = τ ′ : u
Γ′ ⊩ {ρ}τ̆ ′1 = {ρ}τ̆

′
2 : u1 by definition of Γ ⊩ τ = τ ′ : u

Γ′ ⊩ s1 = s1 : {ρ}τ̆ ′2 by induction hypothesis (Prop. 6), type conversion
Γ′ ⊩ {ρ, s1/y}τ2 = {ρ, s1/y}τ3 : u2 by definition of Γ ⊩ τ ′ = τ ′′ : u
Γ′ ⊩ {ρ, s1/y}τ1 : u2 by Γ ⊩ τ : u
Γ′ ⊩ {ρ, s1/y}τ1 = {ρ, s1/y}τ3 : u2 by induction hypothesis (Prop. 5), transitivity for types
Γ′ ⊩ {ρ}τ̆ ′2 = {ρ}τ̆

′
3 : u1 by definition of Γ ⊩ τ ′ = τ ′′ : u

Γ′ ⊩ {ρ}τ̆ ′1 = {ρ}τ̆
′
3 : u1 by induction hypothesis (Prop. 5), transitivity for types

Γ′ ⊩ s1 = s3 : {ρ}τ ′3 by induction hypothesis (6), type conversion
Γ′ ⊩ {ρ, s1/y}τ3 = {ρ, s3/y}τ3 : u2 by Γ ⊩ τ ′′ : u
Γ ⊩ {ρ, s1/y}τ1 = {ρ, s3/y}τ3 : u2 by induction hypothesis (Prop. 5), transitivity for types
Γ ⊩ τ = τ ′′ : u since Γ′, ρ, s1, s3 were arbitrary

Conversion (Prop. 6). Γ ⊩ t1 = t2 : τ ′.
Γ ⊢ τ ≡ τ ′ : u by Well-formedness Lemma 6.8

46

Γ ⊢ t1 ↘ w1 : τ by definition of Γ ⊩ t1 = t2 : τ
Γ ⊢ t1 ↘ w1 : τ ′ by the conversion rule
Γ ⊢ t2 ↘ w2 : τ ′ ditto
Γ ⊢ τ ′ ↘ (y : τ̆ ′1) ⇒ τ ′2 : u by definition of Γ ⊩ τ = τ ′ : u
Assume Γ′ ≤ρ Γ and Γ′ ⊩ s1 = s2 : {ρ}τ̆ ′1
Γ′ ⊩ {ρ}τ̆1 = {ρ}τ̆ ′1 : u1 by definition of Γ ⊩ τ = τ ′ : u1
Γ′ ⊩ {ρ}τ̆1 : u1 by Γ ⊩ τ : u
Γ′ ⊩ {ρ}τ̆ ′1 = {ρ}τ̆1 : u1 by induction hypothesis (Prop. 4), symmetry
Γ′ ⊩ s1 = s2 : {ρ}τ̆1 by induction hypothesis (Prop. 6) on Γ′ ⊩ {ρ}τ̆ ′1 : u1, conversion
Γ′ ⊩ {ρ}w1 s1 = {ρ}w2 s2 : {ρ, s1/y}τ2 by assumption Γ ⊩ t1 = t2 : τ
Γ′ ⊩ s1 = s1 : {ρ}τ̆1 by induction hypothesis (1), reflexivity
Γ′ ⊩ {ρ, s1/y}τ2 : u2 by definition of Γ ⊩ τ : u
Γ′ ⊩ {ρ, s1/y}τ2 = {ρ, s1/y}τ ′2 by definition of Γ ⊩ τ = τ ′ : u
Γ′ ⊩ {ρ}w1 s1 = {ρ}w2 s2 : {ρ, s1/y}τ ′2 by induction hypothesis (Prop. 6), conversion
Γ ⊩ t1 = t2 : τ ′ since Γ′, ρ, s1, s2 were arbitrary

Case. τ = u ′, i.e. Γ ⊩ τ : u where Γ ⊢ τ ↘ u ′ : u and u ′ < u

Symmetry for Terms (Prop. 2): To Show: Γ ⊩ t2 = t1 : u ′

Γ ⊩ t2 = t1 : u ′ by IH using Symmetry for Types (Prop. 4) (since u ′ < u)

Transitivity for Terms (Prop. 3): To Show: If Γ ⊩ t2 = t3 : u ′ then Γ ⊩ t1 = t3 : u ′.

Γ ⊢ t1 = t3 : u ′ by IH using Transitivity for Types (Prop. 5) (since u ′ < u)

Symmetry for Types (Prop. 4): To Show: Γ ⊩ τ ′ = u ′ : u

Γ ⊢ τ ′ ↘ u ′ : u by Γ ⊩ u ′ = τ ′ : u
Γ ⊢ τ ′ = τ : u since Γ ⊢ τ ↘ u ′ : u and u ′ < u (by assumption), and Γ ⊢ τ ′ ↘ u ′ : u

Transitivity for Types (Prop. 5): To Show: If Γ ⊩ τ ′ = τ ′′ : u and Γ ⊩ τ ′′ : u then Γ ⊩ u ′ = τ ′′ : u.

Γ ⊢ τ ′ ↘ u ′ : u Γ ⊩ u ′ = τ ′ : u
Γ ⊢ τ ′′ ↘ u ′ : u by Γ ⊩ τ ′ = τ ′′ : u
Γ ⊩ u ′ = τ ′′ : u using sem. equ. def. and the assumption u ′ < u

Conversion (Prop. 6): To Show: Γ ⊩ t1 = t2 : τ ′.

Γ ⊩ t1 = t2 : τ and Γ ⊩ τ : u where Γ ⊢ τ ↘ u ′ : u and u ′ < u by assumption
Γ ⊩ u ′ = τ ′ : u and u ′ < u by assumption
Γ ⊢ τ ′ ↘ u ′ : u by Γ ⊩ u ′ = τ ′ : u
Γ ⊩ t1 = t2 : τ ′ since Γ ⊩ τ ′ : u

47

Case. τ = x t⃗ and Γ ⊢ τ ↘ x t⃗ : u and wne (x t⃗)

Symmetry for Terms (Prop. 2): To Show: Γ ⊩ t2 = t1 : x s⃗ .
Γ ⊩ t1 = t2 : x s⃗ by assumption
Γ ⊢ t1 ↘ n1 : x s⃗ , Γ ⊢ t2 ↘ n2 : x s⃗ , Γ ⊢ n1 ≡ n2 : x s⃗ , wne n1,n2 by Γ ⊩ t1 = t2 : x s⃗

Γ ⊢ n2 ≡ n1 : x s⃗ by symmetry of ≡
Γ ⊩ t2 = t1 : x s⃗ by sem. equ. definition

Transitivity for Terms (Prop. 3): To Show If Γ ⊩ t2 = t3 : x s⃗ then Γ ⊩ t1 = t3 : x s⃗ .
Γ ⊩ t1 = t2 : x s⃗ by assumption
Γ ⊢ t1 ↘ n1 : x s⃗ , Γ ⊢ t2 ↘ n2 : x s⃗ , Γ ⊢ n1 ≡ n2 : x s⃗ , wne n1,n2 by Γ ⊩ t1 = t2 : x s⃗

Γ ⊢ t3 ↘ n3 : x s⃗ , Γ ⊢ n2 ≡ n3 : x s⃗ , wne n3 by Γ ⊩ t2 = t3 : x s⃗

Γ ⊢ n1 ≡ n3 : x s⃗ by transitivity of ≡
Γ ⊩ t1 = t3 : x s⃗ by sem. equ. definition

Symmetry for Types (Prop. 4): To Show: Γ ⊩ τ ′ = x s⃗ : u
Γ ⊩ x s⃗ = τ ′ : u where Γ ⊢ τ ↘ x s⃗ : u by assumption
Γ ⊢ τ ′ ↘ x t⃗ : u and Γ ⊢ x s⃗ ≡ x t⃗ : u
Γ ⊢ x t⃗ ≡ x s⃗ : u by symmetry of ≡
Γ ⊩ τ ′ = τ : u by sem. equ. definition

Transitivity for Types (Prop. 5): To Show: If Γ ⊩ τ ′ = τ ′′ : u and Γ ⊩ τ ′′ : u then Γ ⊩ x s⃗ = τ ′′ : u.
Γ ⊩ x s⃗ = τ ′ : u by assumption
Γ ⊢ τ ′ ↘ x s⃗ ′ : u and Γ ⊢ x s⃗ ≡ x s⃗ ′ : u by Γ ⊩ x s⃗ = τ ′ : u
Γ ⊩ τ ′ = τ ′′ : u by assumption
Γ ⊢ τ ′′ ↘ x s⃗ ′′ : u and Γ ⊢ x s⃗ ′ ≡ x s⃗ ′′ : u by Γ ⊩ τ ′ = τ ′′ : u
Γ ⊢ x s⃗ = x s⃗ ′′ : u by transitivity of ≡
Γ ⊢ τ = τ ′′ : u by sem. equ. def.

Conversion (Prop. 6): Γ ⊩ t1 = t2 : τ ′.
Γ ⊩ t1 = t2 : x s⃗ by assumption
Γ ⊢ t1 ↘ n1 : x s⃗ and Γ ⊢ t2 ↘ n2 : x s⃗ and Γ ⊢ n1 ≡ n2 : x s⃗ by Γ ⊩ t1 = t2 : x s⃗

Γ ⊩ x s⃗ = τ ′ : u by assumption
Γ ⊢ τ ′ ↘ x s⃗ ′ : u and Γ ⊢ x s⃗ ≡ x s⃗ ′ : u by Γ ⊩ x s⃗ = τ ′ : u
Γ ⊢ n1 ≡ n2 : x s⃗ ′ using type conversion
Γ ⊢ t1 ↘ n1 : x s⃗ ′ and Γ ⊢ t2 ↘ n2 : x s⃗ ′ using type conversion
Γ ⊩ t1 = t2 : τ ′ by sem. equ. def.

□

Finally we establish various elementary properties about our semantic definition that play a key role in the funda-
mental lemma which we prove later. First, we show that all neutral terms are in the semantic definition.

Lemma 6.11 (Neutral Soundness).
If Γ ⊩ τ̆ : u and Γ ⊢ t : τ̆ and Γ ⊢ t ′ : τ̆ and Γ ⊢ t ≡ t ′ : τ̆ and wne t , t ′ then Γ ⊩ t = t ′ : τ̆ .

48

Proof. By induction on Γ ⊩ τ : u.
Case. τ = u

wne t and wne t ′ by assumption
t = x s⃗ and t ′ = x s⃗ ′ since wne t and wne t , Γ ⊢ t : u, Γ ⊢ t ′ : u and Γ ⊢ t ≡ t ′ : u
Γ ⊢ x s⃗ ≡ x s⃗ ′ : u by assumption Γ ⊢ t ≡ t ′ : u
Γ ⊢ t ′ ↘ x s⃗ ′ and Γ ⊢ t ↘ x s⃗ since wne t and wne t ′

Γ ⊢ x s⃗ = t ′ : u by sem. def.

Case. τ = ⌈T ⌉ where Ψ ⊢ tm

Γ ⊢ t : ⌈T ⌉ and Γ ⊢ t ′ : ⌈T ⌉ by assumption
wne t and wne t ′ by assumption
whnf t and whnf t ′ by def. of whnf /wne
t ↘ t and t ′ ↘ t ′ by def. of↘
Γ ⊢ t ≡ t ′ : ⌈T ⌉ by assumption
Γ ⊢ t ↘ t : ⌈T ⌉ and Γ ⊢ t ′ ↘ t ′ : ⌈T ⌉ by Def. 4.3
Γ;Ψ ⊢ ⌊t⌋

id
↘LF ⌊t⌋id : A since wne t

Γ;Ψ ⊢ ⌊t ′⌋
id
↘LF ⌊t

′⌋
id

: A since wne t ′

Γ;Ψ ⊢ typeof (Γ ⊢ t) = ⌈Φ ⊢ tm⌉ and Γ ⊢ Ψ ≡ Φ : ctx by Lemma 5.1
Γ;Ψ ⊢ typeof (Γ ⊢ t ′) = ⌈Φ′ ⊢ tm⌉ and Γ ⊢ Ψ ≡ Φ′ : ctx by Lemma 5.1
Γ ⊢ Φ ≡ Φ′ : ctx by symmetry and transitivity of ≡
Γ;Ψ ⊩ id = id : Ψ by Lemma 6.5
Γ;Ψ ⊩ ⌊t⌋

id
= ⌊t ′⌋

id
: A by sem. def.

Γ ⊩ t = t ′ : ⌈T ⌉ by semantic def.

Case. τ = (y : τ̆1) ⇒ τ2

Γ ⊢ t : (y : τ̆1) ⇒ τ2 and Γ ⊢ t ′ : (y : τ̆1) ⇒ τ2 by assumption
wne t and wne t ′ by assumption
whnf t and whnf t ′ by def. of whnf /wne
t ↘ t and t ′ ↘ t ′ by def. of↘
Γ ⊢ t ≡ t ′ : (y : τ̆1) ⇒ τ2 by assumption
Γ ⊢ t ↘ t : (y : τ̆1) ⇒ τ2 by Def. 4.3
Γ ⊢ t ′ ↘ t ′ : (y : τ̆1) ⇒ τ2 by Def. 4.3
Assume ∀Γ′ ≤ρ Γ. Γ′ ⊩ s = s ′ : {ρ}τ̆1

Γ′ ⊢ {ρ}t ≡ {ρ}t ′ : {ρ}((y : τ̆1) ⇒ τ2) by Weakening Lemma 3.18
Γ′ ⊢ {ρ}t ≡ {ρ}t ′ : (y : {ρ}τ̆1) ⇒ {ρ,y/y}τ2 by subst. def.
Γ′ ⊢ s ≡ s ′ : {ρ}τ̆1 by Well-formedness Lemma 6.8
Γ′ ⊢ {ρ}t s ≡ {ρ}t ′ s ′ : {ρ, s/y}τ2 by rule
wne {ρ}t and wne {ρ}t ′ by Lemma 4.1
wne {ρ}t s and wne {ρ}t ′ s ′ by def. of whnf /wne
Γ′ ⊩ {ρ, s/y}τ2 : u2 by Γ ⊩ τ : u
Γ′ ⊩ {ρ}t s = {ρ}t s ′ : {ρ, s/y}τ2 by IH

Γ ⊩ t = t ′ : (y : τ̆1) ⇒ τ2 by semantic def.

Case. τ = x s⃗

49

Γ ⊢ τ ↘ x s⃗ : u and wne (x s⃗) by Γ ⊩ τ : u
Γ ⊢ t ≡ t ′ : x s⃗ and wne t , t ′ by assumption
Γ ⊢ t ↘ t : x s⃗ since wne t
Γ ⊢ t ′ ↘ t ′ : x s⃗ since wne t ′

Γ ⊩ t = t ′ : x s⃗ by sem. equ. def.

□

We also show that semantic definition are backwards closed.

Lemma 6.12 (Backwards Closure for Computations). If Γ ⊩ t1 = t2 : τ̆ and Γ ⊢ t1 ↘ w : τ̆ and Γ ⊢ t ′1 ↘ w : τ̆
then Γ ⊩ t ′1 = t2 : τ̆ .

Proof. We analyse the definition of Γ ⊩ t1 = t2 : τ̆ considering different cases of Γ ⊩ τ̆ : u. □

Lemma 6.13 (Typed Whnf is Backwards Closed). If Γ ⊢ t ↘ w : (y : τ̆1) ⇒ τ2 and Γ ⊢ s : τ̆1 and Γ ⊢ w s ↘ v :
{s/y}τ2 then Γ ⊢ t s ↘ v : {s/y}τ2.

Proof. Proof by unfolding definition and typing rules and considering different cases forw .
Γ ⊢ t : (y : τ̆1) ⇒ τ2 by def. of Γ ⊢ t ↘ w : (y : τ̆1) ⇒ τ2
Γ ⊢ s : τ̆1 by assumption
Γ ⊢ t s : {s/y}τ2 by typing rule
Γ ⊢ s ≡ s : τ̆1 by reflexivity of ≡
Γ ⊢ t ≡ w : (y : τ̆1) ⇒ τ2 by def. of Γ ⊢ t ↘ w : (y : τ̆1) ⇒ τ2
Γ ⊢ t s ≡ w s : {s/y}τ2 by congruence rules of ≡
Γ ⊢ w s ≡ v : {s/y}τ2 by def. of Γ ⊢ w s ↘ v : {s/y}τ2
Γ ⊢ t s ≡ v : {s/y}τ2 by symmetry and transitivity of ≡
t ↘ w by def. of Γ ⊢ t ↘ w : (y : τ̆1) ⇒ τ2
w s ↘ v by def. of Γ ⊢ w s ↘ v : {s/y}τ2
Γ ⊢ v : {s/y}τ2 by def. of Γ ⊢ w s ↘ v : {s/y}τ2
whnfw by definition of↘

Sub-case: t ↘ fn x ⇒ t ′ andw = fn x ⇒ t ′

(fn x ⇒ t ′) s ↘ v where {s/x }t ′ ↘ v by Γ ⊢ w s ↘ v : {s/y}τ2
t s ↘ v since t ↘ fn x ⇒ t ′

Γ ⊢ t s ↘ v : {s/y}τ2 by def.

Sub-case: t ↘ w where wnew
w s ↘ w s since wne (w s)

t s ↘ w s by rule
Γ ⊢ t s ↘ v : {s/y}τ2 by def.

□

Lemma 6.14 (Semantic Application). If Γ ⊩ t = t ′ : (y : τ̆1) ⇒ τ2 and Γ ⊩ s = s ′ : τ̆1 then Γ ⊩ t s = t ′ s ′ : {s/y}τ2

Proof. Proof using Well-formedness Lemma 6.8, Backwards closed properties (Lemma 6.13 and 6.12), and Symmetry
of semantic equality (Lemma Prop. 2).

Γ ⊢ t ↘ w : (y : τ̆1) ⇒ τ2 and
Γ ⊢ t ′ ↘ w ′ : (y : τ̆1) ⇒ τ2 and
∀Γ′ ≤ρ Γ. Γ′ ⊩ s = s ′ : {ρ}τ̆1 =⇒ Γ′ ⊩ ({ρ}w) s = {ρ}w ′ s ′ : {ρ, s/y}τ2 by sem. def.

50

Γ ⊩ w s = w ′ s ′ : {s/y}τ2 choosing Γ for Γ′, ρ to be the identity substitution
Γ ⊢ w s ↘ v : {s/y}τ2 by def. of Γ ⊩ w s = w ′ s ′ : {s/y}τ2
Γ ⊢ s : τ1 and Γ ⊢ s ′ ⊢ τ1 by Well-formedness Lemma 6.8
Γ ⊢ t s ↘ v : {s/y}τ2 by Whnf Backwards closed (Lemma 6.13)
Γ ⊢ w ′ s ′ ↘ v : {s/y}τ2 by def. of Γ ⊩ w s = w ′ s ′ : {s/y}τ2
Γ ⊢ t ′ s ′ ↘ v : {s/y}τ2 by Whnf Backwards closed (Lemma 6.13)
Γ ⊩ t s = t ′ s ′ : {s/y}τ2 by Semantic Backwards Closure for Computations (Lemma 6.12)

and Symmetry (Lemma Prop. 2)
□

7 VALIDITY IN THE MODEL
For normalization, we need to establish that well-typed terms are logically related. However, as we traverse well-typed
terms, they do not remain closed. As is customary, we now extend our logical relation to substitutions defining semantic
substitutions Γ ⊩ θ = θ ′ : Γ :

⊢ Γ′

Γ′ ⊩ · = · : ·
Γ′ ⊩ θ = θ ′ : Γ Γ′ ⊩ {θ }τ̆ = {θ ′}τ̆ : u Γ′ ⊩ t = t ′ : {θ }τ̆ Γ′ ⊩ {θ }τ̆ : u

Γ′ ⊩ θ , t/x = θ ′, t ′/x : Γ,x :τ̆

Lemma 7.1 (Semantic Weakening of Computation-level Substitutions). If Γ′ ⊩ θ = θ ′ : Γ and Γ′′ ≤ρ Γ′ then
Γ′′ ⊩ {ρ}θ = {ρ}θ ′ : Γ.

Proof. By induction on Γ′ ⊩ θ = θ ′ : Γ and using semantic weakening lemma 6.2. □

Lemma 7.2 (Semantic Substitution Preserves Eqivalence). Let Γ′ ⊩ θ = θ ′ : Γ;
(1) If Γ;Ψ ⊢ M ≡ M : A then Γ; {θ }Ψ ⊢ {θ }M ≡ {θ ′}M : {θ }A.
(2) If Γ;Ψ ⊢ σ ≡ σ : Φ then Γ; {θ }Ψ ⊢ {θ }σ ≡ {θ ′}σ : {θ }Φ.
(3) If Γ ⊢ t ≡ t : τ̆ then Γ′ ⊢ {θ }t ≡ {θ ′}t : {θ }τ̆ .

Proof. By induction on M , σ τ , and t . The proof is mostly straightforward; in the case where t = x we know by
assumption that tx /x ∈ θ and t ′x /x ∈ θ ′ where Γ′ ⊩ tx = t ′x : {θ }τx . From Well-formedness of semantic typing (Lemma
6.8), we know that Γ′ ⊢ tx ≡ t ′x : {θ }τx . □

Last, we define validity of computation-level contexts and and computation-level types and terms referring to their
semantic definitions (Fig. 21). This allows us to define compactly the fundamental lemma which states that well typed
terms correspond to valid terms in our model. Validity here is defined in terms of the semantic definition (Fig. 20). In
particular, we say that two termsM and N are equal in our model, if for all computation-level instantiations θ and θ ′
which are considered semantically equal, we have that {θ }M and {θ ′}N are semantically equal.

Lemma 7.3 (Well-formedness of Semantic Substitutions). If Γ′ ⊩ θ = θ ′ : Γ then Γ′ ⊢ θ : Γ and Γ′ ⊢ θ ′ : Γ and
Γ′ ⊢ θ ≡ θ ′ : Γ.

Proof. By induction on Γ′ ⊩ θ = θ ′ : Γ. □

Lemma 7.4 (Symmetry and Transitivity of Semantic Substitutions). Assume |= Γ.

(1) If Γ′ ⊩ θ1 = θ2 : Γ then Γ′ ⊩ θ2 = θ1 : Γ.
(2) If Γ′ ⊩ θ1 = θ2 : Γ and Γ′ ⊩ θ2 = θ3 : Γ then Γ′ ⊩ θ1 = θ3 : Γ.

Proof. We prove symmetry by induction on the derivation and transitivity by induction on both derivations using
Symmetry, Transitivity, and Conversion for semantic equality (Lemma 6.10); ; reflexivity follows from symmetry and
transitivity.

Symmetry: By induction on derivation.
51

Validity of Context : |= Γ

|= ·

|= Γ Γ |= τ̆ : u
|= Γ,x : τ̆

Validity of LF Objects : Γ;Ψ |= M = N : A

|= Γ ∀Γ′, θ , θ ′. Γ′ ⊩ θ = θ ′ : Γ =⇒ Γ′; {θ }Ψ ⊩ {θ }M = {θ ′}N : {θ }A
Γ;Ψ |= M = N : A

Validity of LF Substitutions : Γ;Ψ |= σ = σ ′ : Φ

|= Γ ∀Γ′, θ , θ ′. Γ′ ⊩ θ = θ ′ : Γ =⇒ Γ′; {θ }Ψ ⊩ {θ }σ1 = {θ ′}σ ′ : {θ }Φ
Γ;Ψ |= σ = σ ′ : Φ

Validity of Types : Γ |= τ̆ = τ̆ ′ : u and Γ |= τ̆ : u

|= Γ ∀Γ′, θ , θ ′. Γ′ ⊩ θ = θ ′ : Γ =⇒ Γ′ ⊩ {θ }τ̆ = {θ ′}τ̆ ′ : u
Γ |= τ̆ = τ̆ ′ : u

Γ |= τ̆ = τ̆ : u
Γ |= τ̆ : u

Validity of Terms : Γ |= t = t ′ : τ̆ and Γ |= t : τ̆

|= Γ Γ |= τ̆ : u ∀Γ′, θ , θ ′. Γ′ ⊩ θ = θ ′ : Γ =⇒ Γ′ ⊩ {θ }t = {θ ′}t ′ : {θ }τ̆
Γ |= t = t ′ : τ̆

Γ |= t = t : τ̆
Γ |= t : τ̆

Fig. 21. Validity Definition

Case.
Γ′ ⊩ · = · : ·

Γ′ ⊩ · = · : · by def.

Case. D =
Γ′ ⊩ θ = θ ′ : Γ Γ′ ⊩ t = t ′ : {θ }τ̆

Γ′ ⊩ θ , t/x = θ ′, t ′/x : Γ,x :τ̆

Γ′ ⊩ θ ′ = θ : Γ by IH
Γ′ ⊩ t ′ = t : {θ }τ̆ by Lemma 6.10 (Symmetry)
Γ′ ⊩ θ ′, t ′/x = θ , t/x : Γ,x :τ̆ by rule

Transitivity: By induction on both derivations.

Case. θ1 = ·, θ2 = · and θ3 = ·

Γ′ ⊩ · = · : · by def.

Case. θ1 = θ ′1, t1/x , θ2 = θ ′2, t2/x and θ3 = θ ′3, t3/x and Γ = Γ0,x :τ̆

Γ′ ⊩ θ ′1 = θ
′
2 : Γ0 by inversion

Γ′ ⊩ θ ′2 = θ
′
3 : Γ0 by inversion

Γ′ ⊩ θ ′1 = θ
′
3 : Γ0 by IH

Γ′ ⊩ t1 = t2 : {θ ′1}τ̆ by inversion
52

Γ′ ⊩ t2 = t3 : {θ ′2}τ̆ by inversion
Γ′ ⊩ {θ ′1}τ̆ = {θ

′
2}τ̆ : u by inversion

Γ′ ⊩ {θ ′2}τ̆ = {θ
′
3}τ̆ : u by inversion

Γ′ ⊩ {θ ′2}τ̆ = {θ
′
1}τ̆ : u by Lemma 6.10 (Symmetry)

Γ′ ⊩ t2 = t3 : {θ ′1}τ̆ by Lemma 6.10 (Conversion)
Γ′ ⊩ t1 = t3 : {θ ′1}τ̆ by Lemma 6.10 (Transitivity)
Γ′ ⊩ {θ ′1}τ̆ = {θ

′
3}τ̆ by Lemma 6.10 (Transitivity)

Γ′ ⊩ θ1 = θ3 : Γ by rule
□

Lemma 7.5 (Context Satisfiability). If |= Γ then ⊢ Γ and Γ ⊩ id(Γ) = id(Γ) : Γ where

id(·) = ·

id(Γ,x :τ) = id(Γ),x/x

Proof. By induction on Γ using Neutral Soundness (Lemma 6.11) and SemanticWeakening (Lemma 7.1). By induction
on Γ.

Case. Γ = ·

⊢ · by rules
id(·) = · by def. of id
Γ′ ⊩ · = · : · by semantic def.

Case. Γ = Γ0,x :τ̆

|= Γ0,x :τ̆ by assumption
|= Γ0 and Γ0 |= τ̆ : u by def. validity
⊢ Γ0 and Γ0 ⊩ id(Γ0) = id(Γ0) : Γ0 by IH
∀Γ′, θ , θ ′. Γ′ ⊩ θ = θ ′ : Γ =⇒ Γ′ ⊩ {θ }τ̆ = {θ }τ̆ : {θ }u by def. validity
Γ0 ⊩ {id(Γ0)}τ̆ = {id(Γ0)}τ̆ : {id(Γ0)}u by previous lines
Γ0 ⊩ τ̆ = τ̆ : u by subst. def.
Γ0 ⊢ τ̆ : u by semantic typing
⊢ Γ0,x :τ̆ by context def.
wne x by def.
Γ0,x :τ̆ ⊢ x : τ̆ by typing rule
Γ0,x :τ̆ ⊢ x ≡ x : τ̆ by typing rule
Γ0,x :τ̆ ⊩ x = x : τ̆ by Neutral Soundness Lemma 6.11
Γ0,x :τ̆ ⊩ id(Γ0) = id(Γ0) : Γ0 by Sem. Weakening Lemma 7.1
Γ0,x :τ̆ ⊩ id(Γ0),x/x = id(Γ0),x/x : Γ0,x :τ̆ by semantic def.
Γ0,x :τ̆ ⊩ id(Γ0,x :τ) = id(Γ0,x :τ) : Γ0,x :τ̆ by def. of id

□

Lemma 7.6 (Symmetry and Transitivity of Validity).
(1) If Γ |= t = t ′ : τ̆ then Γ |= t ′ = t : τ̆ .
(2) If Γ |= t1 = t2 : τ̆ and Γ |= t2 = t3 : τ̆ then Γ |= t1 = t3 : τ̆ .

Proof. Using Lemma 7.5 (Context Satisfiability), Lemma 7.4 (Symmetry and Transitivity for Substitutions), Lemma
6.10 (Symmetry and Transitivity for Terms), and Lemma 6.10 (Conversion).

Case.
|= Γ Γ |= τ̆ : u ∀Γ′, θ , θ ′. Γ′ ⊩ θ = θ ′ : Γ =⇒ Γ′ ⊩ {θ }t = {θ ′}t ′ : {θ }τ̆

Γ |= t = t ′ : τ̆
53

Assume Γ′ ⊩ θ ′ = θ : Γ
Γ′ ⊩ θ = θ ′ : Γ by Lemma 7.4 (Symmetry)
Γ′ ⊩ {θ }t = {θ ′}t ′ : {θ }τ̆ by assumption Γ ⊩ t = t ′ : τ̆
Γ′ ⊩ {θ }t ′ = {θ ′}t : {θ }τ̆ by Lemma 6.10 (Symmetry)
|= Γ by assumption
Γ ⊩ id(Γ) = id(Γ) : Γ by Lemma 7.5
Γ |= τ̆ : u by assumption
Γ |= τ̆ = τ̆ : u by def.
Γ′ ⊩ {θ ′}τ̆ = {θ }τ̆ : u by Γ |= τ̆ = τ̆ : u
Γ′ ⊩ {θ ′}t ′ = {θ }t : {θ ′}τ̆ by Lemma 6.10 (Conversion)
Γ |= t ′ = t : τ̆ by rule

Case.
|= Γ Γ |= τ̆ : u ∀Γ′, θ , θ ′. Γ′ ⊩ θ = θ ′ : Γ =⇒ Γ′ ⊩ {θ }t1 = {θ

′}t2 : {θ }τ̆

Γ |= t1 = t2 : τ̆
and

Case.
|= Γ Γ |= τ̆ : u ∀Γ′, θ , θ ′. Γ′ ⊩ θ = θ ′ : Γ =⇒ Γ′ ⊩ {θ }t2 = {θ

′}t3 : {θ }τ̆

Γ |= t2 = t3 : τ̆

Assume Γ′ ⊩ θ = θ ′ : Γ
Γ′ ⊩ θ = θ : Γ by symmetry and transitivity of substitution (Lemma 7.4)
Γ′ ⊩ {θ }t1 = {θ }t2 : {θ }τ̆ by Γ |= t1 = t2 : τ̆
Γ′ ⊩ {θ }t2 = {θ ′}t3 : {θ }τ̆ by Γ |= t2 = t3 : τ̆
Γ′ ⊩ {θ }t1 = {θ ′}t3 : {θ }τ̆ by Lemma 6.10 (Transitivity)
Γ |= t1 = t3 : τ̆ by rule

□

Lemma 7.7 (Function Type Injectivity is valid.). If Γ |= (y : τ̆1) ⇒ τ2 = (y : τ̆ ′1) ⇒ τ ′2 : u3 then Γ |= τ̆1 = τ̆ ′1 : u1
and Γ,y:τ̆1 |= τ2 = τ ′2 : u2 and (u1, u2, u3) ∈ R

Proof. Proof by unfolding the semantic definitions.

Γ |= (y : τ̆1) ⇒ τ2 = (y : τ̆ ′1) ⇒ τ ′2 : u3 by assumption
|= Γ

∀Γ′, θ , θ ′. Γ′ ⊩ θ = θ ′ : Γ =⇒ Γ′ ⊩ {θ }(y : τ̆1) ⇒ τ2 = {θ ′}(y : τ̆ ′1) ⇒ τ ′2 : {θ }u3 by def. of validity

To prove: Γ |= τ̆1 = τ̆ ′1 : u1
Assume an arbitrary Γ′ ⊩ θ = θ ′ : Γ.
Γ′ ⊩ {θ }(y : τ̆1) ⇒ τ2 = {θ ′}(y : τ̆ ′1) ⇒ τ ′2 : u3 by previous lines and {θ }u3 = u3
Γ′ ⊩ (y : {θ }τ̆1) ⇒ {θ , y/y}τ2 = (y : {θ ′}τ̆ ′1) ⇒ {θ

′,y/y}τ ′2 : u3 by subst. def.
(y : {θ ′}τ̆ ′1) ⇒ {θ

′, y/y}τ ′2 ↘ (y : {θ ′}τ̆ ′1) ⇒ {θ
′, y/y}τ ′2 by unfolding semantic def. and↘

since whnf ((y : {θ ′}τ̆ ′1) ⇒ {θ
′, y/y}τ ′2)

∀Γ0 ≤ρ Γ′. Γ0 ⊩ {ρ}{θ }τ̆1 = {ρ}{θ }τ̆ ′1 : u1 by sem. def.
Γ′ ⊩ {θ }τ̆1 = {θ }τ̆ ′1 : u1 choosing Γ0 = Γ′ and ρ = id(Γ′) and the fact that {id(Γ′)}θ = θ
∀Γ′,θ ,θ ′. Γ′ ⊩ θ = θ ′ : Γ =⇒ Γ′ ⊩ {θ }τ̆1 = {θ ′}τ̆ ′1 : u1 previous lines
Γ |= τ̆1 = τ̆ ′1 : u1 def. of validity (|=), since Γ′,θ ,θ ′ arbitrary

To prove: Γ,y:τ̆1 |= τ2 = τ ′2 : u2
54

Assume an arbitrary Γ′ ⊩ θ2 = θ ′2 : Γ,y:τ̆1.
θ2 = θ , s/y and θ ′2 = θ

′, s ′/y
Γ′ ⊩ θ = θ ′ : Γ and Γ′ ⊩ s = s ′ : {θ }τ̆1 by inversion on Γ′ ⊩ θ2 = θ ′2 : Γ,y:τ̆1
∀Γ0 ≤ρ Γ′. Γ0 ⊩ s = s ′ : {ρ}{θ }τ̆1 =⇒ Γ′ ⊩ {ρ, s/y}{θ ,y/y}τ2 = {ρ, s ′/y}{θ ′,y/y}τ ′2 by sem. def.
Γ′ ⊩ s = s ′ : {θ }τ̆1 =⇒ Γ′ ⊩ {s/y}{θ ,y/y}τ2 = {s ′/y}{θ ′,y/y}τ ′2 by choosing ρ = id(Γ′)

Γ′ ⊩ s = s ′ : {θ }τ̆1 =⇒ Γ′ ⊩ {θ , s/y}τ2 = {θ ′, s ′/y}τ ′2 by subst. def.
Γ′ ⊩ {θ , s/y}τ2 = {θ ′, s ′/y}τ ′2 by previous line
Γ′ ⊩ {θ2}τ2 = {θ ′2}τ

′
2 by previous lines

Γ,y:τ̆1 |= τ2 = τ ′2 : u2 by def. of validity, since Γ′,θ ,θ ′ arbitrary
□

Theorem 7.8 (Completeness of Validity). If Γ |= t = t ′ : τ̆ then Γ ⊢ t : τ̆ and Γ ⊢ t ′ : τ̆ and Γ ⊢ t ≡ t ′ : τ̆ and
Γ ⊢ τ̆ : u.

Proof. Unfolding of validity definition relying on context satisfiability (Lemma 7.5) andWell-Formedness of Semantic
Typing (Lemma 6.8).

Γ |= t = t ′ : τ̆ by assumption
|= Γ by validity definition
⊢ Γ and Γ ⊩ id(Γ) = id(Γ) : Γ by Lemma 7.5
∀Γ′, θ , θ ′. Γ′ ⊩ θ = θ ′ : Γ =⇒ Γ′ ⊩ {θ }t = {θ }t ′ : {θ }τ̆ by validity definition
Γ ⊩ {id(Γ)}t = {id(Γ)}t ′ : {id(Γ)}τ̆ by previous lines
Γ ⊩ t = t ′ : τ̆ by subst. def.
Γ ⊢ t ′ : τ̆ , Γ ⊢ t : τ̆ , Γ ⊢ t ≡ t ′ : τ̆ and Γ ⊢ τ̆ : u by Well-Formedness of Seman. Typ. (Lemma 6.8)

□

The fundamental lemma (Lemma 7.13) states that well-typed terms are valid. The proof proceeds by mutual induction
on the typing derivation for LF-objects and computations. To structure the proof of the fundamental lemma that well-
typed computations are valid, we consider the validity of type conversion, computation-level functions, applications,
and recursion individually.

Lemma 7.9 (Validity of Type Conversion). If Γ |= τ̆ = τ̆ ′ : u and Γ |= t : τ̆ then Γ |= t : τ̆ ′.

Proof. By definition relying on semantic type conversion lemma (Lemma 6.10 (6)).

Γ |= t : τ̆ by assumption
Γ |= t = t : τ̆ by validity def.
Assume Γ′ ⊩ θ = θ ′ : Γ
Γ′ ⊩ {θ }t = {θ ′}t : {θ }τ̆ by validity def. Γ |= t = t : τ̆
Γ ⊩ {θ }τ̆ = {θ ′}τ̆ ′ : u by validity def. Γ |= τ̆ = τ̆ ′ : u
Γ ⊩ {θ }t = {θ ′} : {θ }τ̆ ′ by Lemma 6.10 (Conversion)
Γ |= t = t : τ̆ ′ since Γ′,θ ,θ ′ arbitrary

□

Lemma 7.10 (Validity of Functions). If Γ,y:τ̆1 |= t : τ2 then Γ |= fn y ⇒ t : (y : τ̆1) ⇒ τ2.

Proof. We unfold the validity definitions, relying on completeness of validity (Lemma 7.8), semantic weakening of
computation-level substitutions (Lemma 7.1), Well-formedness Lemma 6.8, Backwards Closure Lemma 6.12, Symmetry
property of semantic equality (Lemma 6.10).

Γ,y:τ̆1 |= t : τ2 by assumption
Γ,y : τ̆1 |= t = t : τ2 by def. validity
∀Γ′, θ , θ ′. Γ′ ⊩ θ = θ ′ : Γ,y:τ̆1 =⇒ Γ′ ⊩ {θ }t = {θ ′}t : {θ }τ2 by def. of validity

55

Γ,y : τ̆1 |= τ2 : u by def. of validity
Γ,y : τ̆1 |= τ2 = τ2 : u by inversion on validity
|= Γ,y : τ̆1 by inversion on validity
|= Γ by inversion on validity
Γ |= τ̆1 : u by inversion on validity
Γ |= τ̆1 = τ̆1 : u by inversion on validity

TO SHOW:

(1) |= Γ
(2) Γ |= (y : τ̆1) ⇒ τ2 : u, i.e.
∀Γ′, θ , θ ′. Γ′ ⊩ θ = θ ′ : Γ =⇒ Γ′ ⊩ {θ }((y : τ̆1) ⇒ τ2) = {θ ′}((y : τ̆1) ⇒ τ2) : u

(3) ∀Γ′, θ , θ ′. Γ′ ⊩ θ = θ ′ : Γ =⇒ Γ′ ⊩ {θ }(fn y ⇒ t) = {θ ′}(fn y ⇒ t) : {θ }((y : τ̆1) ⇒ τ2)

(1) SHOW: |= Γ

|= Γ,y:τ̆1 by assumption Γ,y : τ̆1 |= t = t : τ2
|= Γ by inversion on |= Γ,y:τ̆1

(2) SHOW: ∀Γ′ ⊩ θ = θ ′ : Γ =⇒ Γ′ ⊩ {θ }((y : τ̆1) ⇒ τ2) = {θ ′}((y : τ̆1) ⇒ τ2) : u
Assume Γ′ ⊩ θ = θ ′ : Γ

(2.a) SHOW: ∀Γ′′ ≤ρ Γ′.Γ′′ ⊩ s = s ′ : {ρ}{θ }τ̆1 =⇒ Γ′′ ⊩ {{ρ}θ , s/y}τ2 = {{ρ}θ ′, s ′/y}τ2 : u
Assume Γ′′ ≤ρ Γ′.Γ′′ ⊩ s = s ′ : {ρ}{θ }τ̆1
Γ′′ ⊩ {ρ}θ = {ρ}θ ′ : Γ by weakening sem. subst. (Lemma 7.1)
Γ′′ ⊩ {ρ}θ , s/y = {ρ}θ ′, s ′/y : Γ,y:τ̆1 by sem. def.
Γ′′ ⊩ {{ρ}θ , s/y}τ2 = {{ρ}θ ′, s ′/y}τ2 : u by def. of Γ,y : τ̆1 |= τ2 = τ2 : u

(2.b) SHOW: ∀Γ′′ ≤ρ Γ′.Γ′′ ⊩ {ρ}{θ }τ̆1 = {ρ}{θ ′}τ̆1 : u

Γ′′ ⊩ {ρ}θ = {ρ}θ ′ : Γ by weakening sem. subst. (Lemma 7.1)
Γ′′ ⊩ {ρ}{θ }τ̆1 = {ρ}{θ ′}τ̆1 : u by def. of Γ |= τ̆1 = τ̆1 : u

(2.c) SHOW: Γ′ ⊢ {θ ′}((y : τ̆1) ⇒ τ2) ↘ {θ ′}((y : τ̆1) ⇒ τ2) : u
Γ ⊢ (y : τ̆1) ⇒ τ2 : u by Completeness of Validity (Lemma 7.8)

(using validity of functions which we show under (3))
Γ′ ⊢ θ : Γ and Γ′ ⊢ θ ′ : Γ by Well-formedness of semantic subst. (Lemma 7.3)
Γ′ ⊢ {θ ′}((y : τ̆1) ⇒ τ2) : u by computation-level subst. lemma (Lemma 3.11)
whnf ((y : {θ ′}τ̆1) ⇒ {θ ′,y/y}τ2) by def. and subst. prop.

(3) SHOW: ∀Γ′, θ , θ ′. Γ′ ⊩ θ = θ ′ : Γ =⇒ Γ′ ⊩ {θ }(fn y ⇒ t) = {θ ′}(fn y ⇒ t) : {θ }((y : τ̆1) ⇒ τ2)

Assume Γ′ ⊩ θ = θ ′ : Γ; Showing: Γ′ ⊩ {θ }(fn y ⇒ t) = {θ ′}(fn y ⇒ t) : {θ }((y : τ̆1) ⇒ τ2)

(3.a) SHOW: Γ′ ⊢ {θ }(fn y ⇒ t) ↘ w : {θ }((y : τ̆1) ⇒ τ2)
and Γ′ ⊢ {θ ′}(fn y ⇒ t) ↘ w ′ : {θ }((y : τ̆1) ⇒ τ2)

fn y ⇒ {θ ,y/y}t ↘ w wherew = fn y ⇒ {θ ,y/y}t since whnf (fn y ⇒ {θ ,y/y}t)
fn y ⇒ {θ ′,y/y}t ↘ w ′ wherew ′ = fn y ⇒ {θ ′,y/y}t since whnf (fn y ⇒ {θ ′,y/y}t)
Γ,y:τ̆1 ⊢ t : τ2 by Well-formedness of semantic typing (Lemma 6.8)
Γ′ ⊢ θ : Γ and Γ′ ⊢ θ ′ : Γ by Well-formedness of semantic subst. (Lemma 7.3)
Γ′,y:{θ }τ̆1 ⊢ θ ,y/y : Γ,y:τ̆1 and Γ′,y:{θ ′}τ̆1 ⊢ θ ′,y/y : Γ,y:τ̆ ′1 by comp. subst.
Γ′,y:{θ }τ1 ⊢ {θ ,y/y}t : {θ ,y/y}τ2 and

56

Γ′,y:{θ ′}τ1 ⊢ {θ ′,y/y}t : {θ ′,y/y}τ2 by computation-level subst. lemma (Lemma 3.11)
Γ′ ⊢ {θ }(fn y ⇒ t) : {θ }((y : τ̆1) ⇒ τ2) and
Γ′ ⊢ {θ ′}(fn y ⇒ t) : {θ ′}((y : τ̆1) ⇒ τ2) by typing rule
Γ′ ⊢ {θ }((y : τ̆1) ⇒ τ2) = {θ ′}((y : τ̆1) ⇒ τ2) : u by (2)
Γ′ ⊢ {θ ′}(fn y ⇒ t) : {θ }((y : τ̆1) ⇒ τ2) Conversion (Lemma 6.10(6))

(3.b) SHOW: ∀Γ′′ ≤ρ Γ′.Γ′′ ⊩ s = s ′ : {ρ}{θ }τ̆1 =⇒ Γ′′ ⊩ {ρ}w s = {ρ}w ′ s ′ : {ρ, s/y}{θ ,y/y}τ2
Assume Γ′′ ≤ρ Γ′.Γ′′ ⊩ s = s ′ : {ρ}{θ }τ̆1
Γ′′ ⊩ {ρ}θ = {ρ}θ ′ : Γ by weakening sem. subst. (Lemma 7.1)
Γ′′ ⊩ {ρ}θ , s/y = {ρ}θ ′, s ′/y : Γ,y:τ̆1 by sem. def.
Γ′′ ⊩ {{ρ}θ , s/y}t = {{ρ}θ ′, s ′/y}t : {{ρ}θ , s/y}τ2 using Γ,y : τ̆1 |= t = t : τ2
Γ′′ ⊩ {{ρ}θ , s/y}t ↘ v : {{ρ}θ , s/y}τ2
Γ′′ ⊩ {{ρ}θ ′, s ′/y}t ↘ v ′ : {{ρ}θ , s/y}τ2 sem. definition ⊩
Γ′′ ⊩ {ρ}{θ }fn y ⇒ t ↘ {ρ}{θ }fn y ⇒ t : {ρ}{θ }((y : τ̆1) ⇒ τ2) since whnf ({ρ}{θ }fn y ⇒ t)

and Γ′′ ⊢ fn y ⇒ {{ρ}θ ,y/y}t : {ρ}{θ }((y : τ̆1) ⇒ τ2)

Γ′′ ⊩ (fn y ⇒ {{ρ}θ ,y/y}t) s ↘ v : {{ρ}θ , s/y}τ2 by rules (typing and↘)
Γ′′ ⊩ (fn y ⇒ {{ρ}θ ,y/y}t) s = {{ρ}θ ′, s ′/y}t : {{ρ}θ , s/y}τ2 by Backwards Closed (Lemma 6.12)
Γ′′ ⊩ {{ρ}θ , s/y}τ2 = {{ρ}θ ′, s ′/y}τ2 : u by Γ,y : τ̆1 |= τ2 = τ2 : u
Γ′′ ⊩ {{ρ}θ ′, s ′/y}t = (fn y ⇒ {{ρ}θ ,y/y}t) s : {{ρ}θ , s/y}τ2 Symmetry (Lemma 6.10(2))
Γ′′ ⊩ {ρ}{θ ′}fn y ⇒ t ↘ {ρ}{θ ′}fn y ⇒ t : {ρ}{θ }((y : τ̆1) ⇒ τ2) since whnf ({ρ}{θ ′}fn y ⇒ t)

and Γ′′ ⊢ fn y ⇒ {{ρ}θ ′,y/y}t : {ρ}{θ }((y : τ̆1) ⇒ τ2)

Γ′′ ⊩ (fn y ⇒ {{ρ}θ ′,y/y}t) s ′ ↘ v ′ : {{ρ}θ , s/y}τ2 by rules (typing and↘)
Γ′′ ⊩ (fn y ⇒ {{ρ}θ ′,y/y}t) s ′ = (fn y ⇒ {{ρ}θ ,y/y}t) s : {ρ{θ }, s/y}τ2

by Backwards Closed (Lemma 6.12)
Γ′′ ⊩ (fn y ⇒ {{ρ}θ ,y/y}t) s = (fn y ⇒ {{ρ}θ ′,y/y}t) s ′ : {ρ{θ }, s/y}τ2

by Symmetry (Lemma 6.10(2))
Γ′′ ⊩ ({ρ}fn y ⇒ {θ ,y/y}t) s = ({ρ}fn y ⇒ {θ ′,y/y}t) s ′ : {ρ, s/y}{θ ,y/y}τ2 by comp. subst.
Γ′′ ⊩ {ρ}w s = {ρ}w ′ s ′ : {ρ, s/y}{θ ,y/y}τ2 sincew = fn y ⇒ {θ ,y/y}t

andw ′ = fn y ⇒ {θ ′,y/y}t

□

Lemma 7.11 (Validity of Recursion).

Let Γ ⊢ recI (bv | bapp | blam) Ψ t : {Ψ/ψ , t/m}τ and I = (ψ : tm_ctx) ⇒ (m : ⌈ψ ⊢ tm⌉) ⇒ τ .
If Γ |= I : u and Γ |= t : ⌈Ψ ⊢ tm⌉ and

Γ,ψ : tm_ctx,p : ⌈ψ ⊢# tm⌉ |= tv : {p/y}τ and
Γ,ψ : tm_ctx,m : ⌈ψ ⊢ tm⌉,n : ⌈ψ ⊢ tm⌉,

fm : {m/y}τ , fn : {n/y}τ |= tapp : {⌈ψ ⊢ app ⌊m⌋id ⌊n⌋id⌉/y}τ and
Γ,ψ : tm_ctx,m : ⌈ψ ,x : tm ⊢ tm⌉,

fm : {⌈ψ ,x : tm⌉/ψ ,m/y}τ |= tlam : {⌈ψ ⊢ lam λx .⌊m⌋id ⌉/y}τ
then Γ |= recI (bv | bapp | blam) Ψ t : {Ψ/ψ , t/m}τ .

Proof. We assume Γ′ ⊩ θ = θ ′ : Γ, and show Γ′ ⊩ {θ }(recI B Ψ t) = {θ ′}(recI B Ψ t) : {θ }{Ψ/ψ , t/m}τ by
considering different cases for Γ′ ⊩ {θ }t = {θ ′}t : ⌈{θ }Ψ ⊢ tm⌉. Let Ψ′ = {θ }Ψ. In the case where Γ′ ⊢ {θ }t ↘ ⌈Ψ̂′ ⊢
M⌉ : ⌈Ψ′ ⊢ tm⌉ and Γ′ ⊢ {θ ′}t ↘ ⌈Ψ′ ⊢ N ⌉ : ⌈{θ }Ψ ⊢ tm⌉ and Γ′;Ψ′ ⊩ M = N : tm, we proceed by an inner induction
on Γ′;Ψ′ ⊩ M = N : tm exploiting on Back. Closed Lemma (6.12).

We now give the full proof.
57

Let recI B = rec
I (bv | bapp | blam)

Assume Γ′ ⊩ θ = θ ′ : Γ;
TO SHOW: Γ′ ⊩ {θ }(recI B Ψ t) = {θ ′}(recI B Ψ t) : {θ }{Ψ/ψ , t/m}τ

Γ′ ⊩ {θ }t = {θ ′}t : ⌈{θ }Ψ ⊢ tm⌉ by validity of Γ |= t : ⌈Ψ ⊢ tm⌉

Let Ψ′ = {θ }Ψ. We now proceed to prove:
Case. Γ′ ⊢ {θ }t ↘ w : ⌈Ψ′ ⊢ tm⌉
and Γ′ ⊢ {θ ′}t ↘ w ′ : ⌈Ψ′ ⊢ tm⌉
and Γ′;Ψ′ ⊩ ⌊w⌋

id
= ⌊w ′⌋

id
: tm

We writeM for ⌊w⌋
id
and N for ⌊w ′⌋

id
below.

If Γ′;Ψ′ ⊩ M = N : tm
then Γ′ ⊩ {θ }(recI B ⌈Ψ⌉) ⌈Ψ̂ ⊢ M⌉ = {θ ′}(recI B ⌈Ψ⌉) ⌈Ψ̂ ⊢ N ⌉ : {θ , Ψ′/ψ , ⌈Ψ̂ ⊢ M⌉/m}τ

by induction onM , i.e. we may appeal to the induction hypothesis if the termM has made progress and has stepped
using↘LF and hence is “smaller”

Sub-case: Γ′;Ψ′ ⊢ M ↘LF appM1 M2 : tm and Γ′;Ψ′ ⊢ N ↘LF app N1 N2 : tm
Γ′;Ψ′ ⊩ M1 = N1 : tm and Γ′;Ψ′ ⊩ M2 = N2 : tm

Γ′ ⊩ {θ }(recI B ⌈Ψ⌉) ⌈Ψ̂ ⊢ M1⌉ = {θ ′}(recI B ⌈Ψ⌉) ⌈Ψ̂ ⊢ N1⌉ : {θ , Ψ′/ψ , ⌈Ψ̂ ⊢ M1/m⌉}τ by IH(i)
Γ′ ⊩ {θ }(recI B ⌈Ψ⌉) ⌈Ψ̂′ ⊢ M2⌉ = {θ ′}(recI B ⌈Ψ′⌉) ⌈Ψ̂′ ⊢ N2⌉ : {θ , Ψ′/ψ , ⌈Ψ̂ ⊢ M2⌉/m}τ by IH(i)
Γ′ ⊢ {θ }(recI B Ψ) ⌈Ψ̂ ⊢ Mi ⌉ : {θ , Ψ′/ψ , ⌈Ψ̂ ⊢ Mi ⌉/m}τ by Well-form. of Sem. Def.
Γ′ ⊢ {θ }(recI B Ψ) ⌈Ψ̂ ⊢ Ni ⌉ : {θ ′, Ψ′/ψ , ⌈Ψ̂ ⊢ Ni ⌉/m}τ by Well-form. of Sem. Def. and Type Conv.
let θapp = θ ,Ψ′/ψ , ⌈Ψ̂ ⊢ M1⌉/m, ⌈Ψ̂ ⊢ M2⌉/n

{θ }(recI B ⌈Ψ⌉) ⌈Ψ̂ ⊢ M1⌉/fm , {θ }(recI B Ψ) ⌈Ψ̂ ⊢ M2⌉/fn
let θ ′app = θ ′,Ψ′/ψ , ⌈Ψ̂ ⊢ N1⌉/m, ⌈Ψ̂ ⊢ N2⌉/n

{θ ′}(recI B Ψ) ⌈Ψ̂ ⊢ N1⌉/fm , {θ ′}(recI B Ψ) ⌈Ψ̂ ⊢ N2⌉/fn
let Γapp = Γ,ψ : ⌈tm_ctx⌉,m : ⌈ψ ⊢ tm⌉,n : ⌈ψ ⊢ tm⌉, fm : {m/y}τ , fn : {n/y}τ
Γ′ ⊩ θapp = θ

′
app : Γapp

Γ′ ⊩ {θapp }tapp = {θ ′app }tapp : {θapp }{⌈ψ ⊢ app ⌊m⌋id ⌊n⌋id⌉/y}τ by sem. def. of tapp
Γ′ ⊩ {θapp }tapp = {θ ′app }tapp : {θ ,Ψ′/ψ , ⌈Ψ̂ ⊢ appM1 M2⌉/m}τ by subst. def.
Γ′ ⊩ C = C : ({θ }Ψ ⊢ tm) by reflexivity (Lemma 6.7) where C = Ψ̂ ⊢ appM1 M2
Γ′ ⊩ {θ }t = ⌈Ψ̂ ⊢ appM1 M2⌉ : Ψ′ ⊢ tm since Γ′ ⊢ {θ }t ↘ ⌈C⌉ : ({θ }Ψ ⊢ tm)

Γ′ ⊩ {θ ,Ψ′/ψ , {θ }t/m}τ = {θ , Ψ′/ψ , ⌈Ψ̂ ⊢ appM1 M2⌉/m}τ : u by sem. def. of Γ ⊩ I : u
Γ′ ⊩ {θapp }tapp = {θ ′app }tapp : {θ ,Ψ′/ψ , {θ }t/m}τ by type conversion
Γ′ ⊢ {θapp }tapp ↘ v : {θ ,Ψ′/ψ , {θ }t/m}τ by previous sem. def.
Γ′;Ψ′ ⊢ {θ }(recI B @ Ψ t) ↘ v : {θ ,Ψ′/ψ , {θ }t/m}τ

since Γ′ ⊢ {θ }t ↘ ⌈Ψ̂ ⊢ M⌉ : tm and Γ′;Ψ′ ⊢ M ↘LF appM1 M2 : tm
Γ′ ⊩ {θ }(recI B @ Ψ t) = {θ ′app }tapp : {θ ,Ψ′/ψ , {θ }t/m}τ by Back. Closed (Lemma 6.12)
Γ′ ⊢ {θ ′app }tapp ↘ v ′ : {θ ,Ψ′/ψ , {θ }t/m}τ by previous sem. def.
Γ′;Ψ′ ⊢ {θ ′}(recI B @ Ψ t) ↘ v ′ : {θ ,Ψ′/ψ , {θ }t/m}τ (using type conversion)

since Γ′ ⊢ {θ ′}t ↘ ⌈Ψ̂ ⊢ N ⌉ : tm and Γ′;Ψ′ ⊢ N ↘LF app N1 N2 : tm
58

Γ′ ⊩ {θ }(recI B @ Ψ t) = {θ ′}(recI B @ Ψ t) : {θ ,Ψ′/ψ , {θ }t/m}τ by Back. Closed (Lemma 6.12)
Γ |= rec

I B Ψ t : I since Γ′,θ ,θ ′ were arbitrary

Sub-Case. Other Sub-Cases where Γ′;Ψ′ ⊢ {θ }M ↘LF lam λx .M : tm and Γ′;Ψ′ ⊢ {θ }M ↘LF x : tm where x : tm ∈ Ψ′
are similar.

Sub-Case. Γ′;Ψ′ ⊢ {θ }M ↘LF r1 : tm where r1 = ⌊t1⌋σ1 and wne t1
and Γ′;Ψ′ ⊢ {θ ′}M ↘LF r2 : tm where r2 = ⌊t2⌋σ2 and wne t2

Γ′;Ψ′ ⊩ σ1 = σ2 : Φ since Γ′;Ψ′ ⊩LF {θ }M = {θ
′}M : tm

Γ′;Ψ′ ⊢ σ1 ≡ σ2 : Φ by Well-formedness Lemma
Γ′ ⊢ t1 ≡ t2 : ⌈Φ ⊢ tm⌉ since Γ′;Ψ′ ⊩LF {θ }M = {θ

′}M : tm
Γ′;Ψ′ ⊢ r1 ≡ r2 : tm
Γ′ ⊢ {θ }Ψ ≡ {θ ′}Ψ : tm_ctx Sem. Subst. Preserve Equiv. (Lemma 7.2)

since Γ′ ⊢ θ ≡ θ ′ : Γ
Γ′ ⊢ {θ }(recI B Ψ) ⌈Ψ̂ ⊢ r1⌉ ≡ {θ ′}(recI B Ψ) ⌈Ψ̂ ⊢ r2⌉ : {θ ,Ψ′/ψ , {θ }t/m}τ by ≡
Γ′ ⊢ {θ }(recI B Ψ) {θ }t ↘ {θ }(recI B Ψ) ⌈Ψ̂ ⊢ r1⌉ : {θ ,Ψ′/ψ , {θ }t/m}τ by↘
Γ′ ⊢ {θ ′}(recI B Ψ) {θ ′}t ↘ {θ ′}(recI B Ψ) ⌈Ψ̂ ⊢ r2⌉ : {θ ,Ψ′/ψ , {θ }t/m}τ by↘ and type conversion
Γ′ ⊩ {θ }(recI B @ Ψ t) = {θ ′}(recI B @ Ψ t) : {θ ,Ψ′/ψ , {θ }t/m}τ Back. Closed (Lemma 6.12)

and Symmetry
Case. wnew and wnew ′ and Γ′ ⊢ w ≡ w ′ : ⌈Ψ′ ⊢ tm⌉

wne {θ }(recI B @ Ψ) w and wne {θ ′}(recI B @ Ψ) w ′ by def. of wne
Γ′ ⊢ {θ }recI B ≡ {θ ′}recI B (short for all the branches remain equivalent) Sem. Subst. Preserve Equiv. (Lemma 7.2)
Γ′ ⊢ {θ }Ψ ≡ {θ ′}Ψ : tm_ctx Sem. Subst. Preserve Equiv. (Lemma 7.2)
Γ′ ⊩ {θ }(recI B @ Ψ) w ≡ {θ ′}(recI B @ Ψ) w ′ : {θ ,Ψ′/ψ , {θ }t/m}τ by ≡
Γ′ ⊢ {θ }(recI B Ψ) t ↘ {θ }(recI B Ψ) w : {θ ,Ψ/ψ , {θ }t/m}τ by type conversion and↘ rule
Γ′ ⊢ {θ }(recI B Ψ) t ↘ {θ }(recI B Ψ) w ′ : {θ ,Ψ/ψ , {θ }t/m}τ by type conversion and↘ rule
Γ′ ⊩ {θ }(recI B Ψ t) = {θ ′}(recI B Ψ t) : {θ ,Ψ/ψ , {θ }t/m}τ by Back. Closed Lemma (twice) (6.12)

and Symmetry
Γ |= rec

I B Ψ t : I since Γ′,θ ,θ ′ were arbitrary

□

Lemma 7.12 (Validity of Application). If Γ |= t : (y : τ̆1) ⇒ τ2 and Γ |= s : τ̆1 then Γ |= t s : {s/y}τ2.

Proof. By definition relying on semantic type application lemma (Lemma 6.14). □

Theorem 7.13 (Fundamental Theorem).
(1) If ⊢ Γ then |= Γ.
(2) If Γ;Ψ ⊢ M : A then Γ;Ψ |= M = M : A.
(3) If Γ;Ψ ⊢ σ : Φ then Γ;Ψ |= σ = σ : Φ.
(4) If Γ;Ψ ⊢ M ≡ N : A then Γ;Ψ |= M = N : A.
(5) If Γ;Ψ ⊢ σ ≡ σ ′ : Φ then Γ;Ψ |= σ = σ ′ : Φ.
(6) If Γ ⊢ t : τ then Γ |= t : τ .
(7) If Γ ⊢ t ≡ t ′ : τ then Γ |= t = t ′ : τ .

Proof. By induction on the first derivation using the previous lemma on validity of application (7.12), Backwards
Closed (6.12), Well-formedness Lemma 6.8, Lemma 7.9, Lemma 3.9, Lemma 7.10, Sem. weakening lemma 6.2, Validity of

59

Recursion Lemma 7.11.

If Γ ⊢ t : τ then Γ |= t : τ .

Case. D =
Γ ⊢ t : ⌈Φ ⊢ A⌉ Γ;Ψ ⊢ σ : Φ

Γ;Ψ ⊢ ⌊t⌋σ : [σ]A
Γ |= t : ⌈Φ ⊢ A⌉ by IH
Γ;Ψ |= σ = σ : Φ by IH

Assume Γ′ ⊩ θ = θ ′ : Γ
Γ′ ⊩ {θ }t = {θ ′}t : {θ }⌈Φ ⊢ A⌉ by def. Γ |= t : ⌈Φ ⊢ A⌉

Sub-case: Γ′ ⊢ {θ }t ↘ ⌈C⌉ : {θ }⌈Φ ⊢ A⌉ and Γ′ ⊢ {θ ′}t ↘ ⌈C ′⌉ : {θ }⌈Φ ⊢ A⌉
and Γ′ ⊩ C = C ′ : {θ }(Φ ⊢ A)

C = Φ̂ ⊢ M and C ′ = Φ̂ ⊢ N by inversion on Γ′ ⊩ C = C ′ : {θ }(Φ ⊢ A)
Γ′; {θ }Ψ ⊩ {θ }σ = {θ ′}σ : {θ }Φ by Γ;Ψ |= σ : Φ
Γ′; {θ }Φ ⊩ M = N : {θ }A by def. of Γ′ ⊩ C = C ′ : {θ }(Φ ⊢ A)
Γ′; {θ }Ψ ⊩ [{θ }σ]M = [{θ ′}σ]N : {θ }[σ]A by Lemma 6.4
Γ′; {θ }Ψ ⊢ [{θ }σ]M ↘LF W : {θ }[σ]A by previous line
Γ′ ⊢ {θ }t ↘ ⌈C⌉ : {θ }⌈Φ ⊢ A⌉ by restating the condition of the case we are in
Γ′; {θ }Ψ ⊢ {θ }(⌊t⌋σ) ↘LF W : {θ }[σ]A by whnf rules
Γ′; {θ }Ψ ⊢ [{θ ′}σ]N ↘LF W

′ : {θ }[σ]A by previous line
Γ′ ⊢ {θ ′}t ↘ ⌈C ′⌉ : {θ }⌈Φ ⊢ A⌉ by restating the condition of the case we are in
Γ′; {θ }Ψ ⊢ {θ ′}(⌊t⌋σ) ↘LF W

′ : {θ }[σ]A by whnf rules
Γ′; ; {θ }Ψ ⊩ {θ }(⌊t⌋σ) = {θ ′}(⌊t⌋σ) : {θ }[σ]A by Backwards Closed Lemma 6.12 (twice)

and symmetry.
Γ;Ψ |= ⌊t⌋σ : [σ]A by abstraction, since Γ′,θ ,θ ′ were arbitrary

Sub-case: Γ′ ⊢ {θ }t ↘ w : {θ }⌈Φ ⊢ A⌉ and Γ′ ⊢ {θ ′}t ↘ w ′ : {θ }⌈Φ ⊢ A⌉
and wnew and wnew ′ and Γ ⊢ w ≡ w ′ : {θ }⌈Φ ⊢ A⌉

Γ′ ⊢ θ (⌊t⌋σ) ↘ ⌊w⌋{θ }σ by whnf rules
Γ′ ⊢ θ ′(⌊t⌋σ) ↘ ⌊w

′⌋{θ }σ by whnf rules
Γ′{θ }Ψ ⊩ {θ }σ = {θ ′}σ : {θ }Φ by def. Γ;Ψ |= σ = σ : Φ
Γ′; {θ }Ψ ⊢ {θ }σ ≡ {θ ′}σ : {θ }Φ by Well-formedness Lemma 6.8
Γ′; {θ }Ψ ⊢ {θ }(⌊t⌋σ) ≡ {θ ′}(⌊t⌋σ) : {θ }[σ]A by ≡ rules
Γ′ ⊩ {θ }Φ = {θ }Φ : ctx Reflexivity
typeof (Γ′ ⊢ w) = ⌈{θ }Φ ⊢ tm⌉ since Γ′ ⊢ w : {θ }⌈Φ ⊢ A⌉
typeof (Γ′ ⊢ w ′) = ⌈{θ }Φ ⊢ tm⌉ since Γ′ ⊢ w ′ : {θ }⌈Φ ⊢ A⌉
Γ′; {θ }Ψ ⊩ {θ }(⌊t⌋σ) = {θ ′}(⌊t⌋σ) : {θ }[σ]A by semantic def.
Γ;Ψ |= ⌊t⌋σ : [σ]A by abstraction, since Γ′,θ ,θ ′ were arbitrary

Case. D =
y : τ̆ ∈ Γ

Γ ⊢ y : τ̆

C : ⊢ Γ and C < D by Lemma 3.9
Assume Γ′,θ ,θ ′. Γ′ ⊩ θ = θ ′ : Γ
Γ′ ⊩ t = s : {θi }τ̆ by sem. def. of Γ′ ⊩ θ = θ ′ : Γ

60

Γ′ ⊩ {θ }y = {θ ′}y : {θ }τ̆ subst. def. where {θ }y = t and {θ ′}y = s
Γ |= y = y : τ̆ by def. of validity

Case. D =
Γ ⊢ t : τ ′ Γ ⊢ τ ′ ≡ τ : u

Γ ⊢ t : τ

Γ |= t : τ ′ by IH
Γ |= τ = τ ′ : u by IH
Γ |= t : τ by Lemma 7.9

Case. D =
Γ ⊢ C : T

Γ ⊢ ⌈C⌉ : ⌈T ⌉

C : ⊢ Γ and C < D by Lemma 3.9
|= Γ by IH
Let C = Ψ̂ ⊢ M and T = Ψ ⊢ A.
Γ;Ψ ⊢ M : A by inversion on Γ ⊢ C : T
Γ;Ψ |= M : A by IH
Assume Γ′, θ , θ ′. Γ′ ⊩ θ = θ ′

Γ; {θ }Ψ ⊩ {θ }M = {θ ′}M : {θ }A using Γ;Ψ |= M : A
Γ ⊩ {θ }(Ψ̂ ⊢ M) = {θ ′}(Ψ̂ ⊢ M) : {θ }T by sem. def.
Γ ⊩ {θ }⌈C⌉ = {θ ′}⌈C⌉ : {θ }⌈T ⌉ by previous line
Γ |= ⌈C⌉ = ⌈C⌉ : ⌈T ⌉ by abstraction, since Γ′, θ , θ ′ were arbitrary
Γ |= ⌈C⌉ : ⌈T ⌉ by def. of validity

Case. D =
Γ ⊢ t : (y : τ̆1) ⇒ τ2 Γ ⊢ s : τ̆1

Γ ⊢ t s : {s/y}τ2

Γ |= s : τ̆1 by IH
Γ |= t : (y : τ̆1) ⇒ τ2 by IH
Γ |= t s : {s/y}τ2 by Lemma 7.12

Case. D =
Γ,y : τ̆1 ⊢ t : τ2

Γ ⊢ fn y ⇒ t : (y : τ̆1) ⇒ τ2

C : ⊢ Γ,y:τ̆1 and C < D by Lemma 3.9
|= Γ,y:τ̆1 by IH
|= Γ by def. of validity
Γ,y : τ̆1 |= t : τ2 by IH
Γ |= (fn y ⇒ t) : (y : τ̆1) ⇒ τ2 Lemma 7.10

Case. D =
⊢ Γ

(u1,u2) ∈ A
Γ ⊢ u1 : u2

Γ ⊢ u1 ↘ u1 : u2 by rules and typing assumption
u1 ≤ u2 by (u1,u2) ∈ A

Case. D =
Γ ⊢ τ̆1 : u1 Γ,y:τ̆1 ⊢ τ2 : u2

(u1, u2, u3) ∈ R
Γ ⊢ (y : τ̆1) ⇒ τ2 : u3

61

Γ |= τ̆1 : u1 by IH
∀Γ′. Γ′ ⊩ θ = θ ′ : Γ =⇒ Γ′ ⊩ {θ }τ̆1 = {θ ′}τ̆1 : u1 by sem. def.
Γ,y:τ̆1 |= τ2 : u2 by IH
∀ Γ′ ⊩ θ = θ ′ : Γ,y:τ̆1 =⇒ Γ′ ⊩ {θ }τ2 = {θ ′}τ2 : u1 by sem. def.
Assume Γ′ ⊩ θ = θ ′ : Γ
Γ′ ⊩ {θ }τ̆1 = {θ ′}τ̆1 : u1 by previous lines
Assume Γ′′ ≤ρ Γ′

Γ′′ ⊩ {ρ}{θ }τ̆1 = {ρ}{θ ′}τ̆1 : u1 sem. weakening for computations lemma 6.9
∀Γ′′. Γ′′ ≤ρ Γ′.Γ′′ ⊩ {ρ}{θ }τ̆1 = {ρ}{θ ′}τ̆1 : u1 by previous lines
Assume Γ′′ ≤ρ Γ′ and Γ′′ ⊩ t = t ′ : {{ρ}θ }τ̆1
Γ′′ ⊩ {ρ}θ = {ρ}θ ′ : Γ by sem. weakening lemma 7.1
Γ′′ ⊩ {ρ}θ , t/y = ρ{θ ′}, t ′/y : Γ,y:τ̆1 by sem. def.
Γ′′ ⊩ {{ρ}θ , t/y}τ2 = {ρ{θ ′}, t ′/y}τ2 : u2 by Γ,y:τ̆1 |= τ2 : u2

choosing θ = {ρ}θ , t/y and θ ′ = ρ{θ ′}, t ′/y
Γ′′ ⊩ {ρ, t/y}{θ ,y/y}τ2 = {ρ, t ′/y}{θ ′,y/y}τ2 : u2 by subst. def.
∀Γ′′. Γ′′ ≤ρ Γ′. Γ′′ ⊩ t = t ′ : {{ρ}θ }τ̆1 =⇒ Γ′′ ⊩ {ρ, t/y}{θ ,y/y}τ2 = {ρ, t ′/y}{θ ′,y/y}τ2 : u2

by previous lines
Γ′ ⊩ {θ }((y : τ̆1) ⇒ τ2 : u3) = {θ ′}((y : τ̆1) ⇒ τ2 : u2) by sem. def.
Γ |= ((y : τ̆1) ⇒ τ2 : u3) = ((y : τ̆1) ⇒ τ2 : u3) by sem. def.
Γ |= (y : τ̆1) ⇒ τ2 : u3 by def. of validity

Case. D =
Γ ⊢ T

Γ ⊢ ⌈T ⌉ : u

|= Γ

Assume Γ′ ⊩ θ = θ ′ : Γ
Γ |=LF T = T by IH
Γ′ ⊩LF {θ }T = {θ

′}T since Γ |=LF T = T
Γ′ ⊢ ⌈{θ }T ⌉ ↘ ⌈{θ }T ⌉ : u since whnf ⌈{θ }T ⌉
Γ′ ⊩ {θ }⌈T ⌉ = {θ ′}⌈T ⌉ : u by sem. def.
Γ |= ⌈T ⌉ = ⌈T ⌉ : Uk since Γ′,θ ,θ ′ are arbitrary
Γ |= ⌈T ⌉ : Uk by def. of validity

Case. D =
Γ ⊢ t : ⌈Ψ ⊢ tm⌉ Γ ⊢ I : u Γ ⊢ bv : I Γ ⊢ bapp : I Γ ⊢ b

lam
: I

Γ ⊢ recI (bv | bapp | blam) Ψ t : {Ψ/ψ , t/y}τ
where I = (ψ : tm_ctx) ⇒ (y : ⌈ψ ⊢ tm⌉) ⇒ τ

Γ |= I : u by IH
Γ |= t : ⌈Ψ ⊢ tm⌉ by IH
Γ,ψ : tm_ctx,p : ⌈ψ ⊢# tm⌉ ⊢ tv : {p/y}τ by typing inversion
Γ,ψ : tm_ctx,m : ⌈ψ ⊢ tm⌉,n : ⌈ψ ⊢ tm⌉ fm : {m/y}τ , fn : {n/y}τ

⊢ tapp : {⌈ψ ⊢ app ⌊m⌋
id
⌊n⌋

id
⌉/y}τ by typing inversion

Γ,ϕ : tm_ctx,m : ⌈ ϕ,x : tm ⊢ tm⌉, fm : {⌈ ϕ,x : tm⌉/ψ ,m/y}τ
⊢ tlam : {ϕ/ψ , ⌈ ϕ ⊢ lam λx .⌊m⌋

id
⌉/y}τ by typing inversion

C : ⊢ Γ,ψ : tm_ctx,p : ⌈ψ ⊢# tm⌉ and C < D by Lemma 3.9
|= Γ by def. of validity

62

Γ,ψ : tm_ctx,p : ⌈ψ ⊢# tm⌉ |= tv : {p/y}τ by IH
Γ,ψ : tm_ctx,m : ⌈ψ ⊢ tm⌉,n : ⌈ψ ⊢ tm⌉ fm : {m/y}τ , fn : {n/y}τ

|= tapp : {⌈ψ ⊢ app ⌊m⌋
id
⌊n⌋

id
⌉/y}τ by IH

Γ,ϕ : tm_ctx,m : ⌈ ϕ,x : tm ⊢ tm⌉, fm : {⌈ ϕ,x : tm⌉/ψ ,m/y}τ
|= tlam : {ϕ/ψ , ⌈ ϕ ⊢ lam λx .⌊m⌋

id
⌉/y}τ by IH

Γ |= rec
I (bv | bapp | blam) Ψ t : I by Validity of Recursion Lemma 7.11

If Γ ⊢ t ≡ t ′ : τ then Γ |= t = t ′ : τ .

Case. D =
Γ ⊢ fn y ⇒ t : (y:τ̆1) ⇒ τ2 Γ ⊢ s : τ̆1

Γ ⊢ (fn y ⇒ t) s ≡ {s/y}t : {s/y}τ2

To Show: Γ |= (fn y ⇒ t) s = {s/y}t : {s/y}τ2
C : ⊢ Γ and C < D by Lemma 3.9
|= Γ by IH
Assume Γ′ ⊩ θ = θ ′ : Γ
Γ |= fn y ⇒ t : (y : τ̆1) ⇒ τ2 by IH
Γ |= s : τ̆1 by IH
Γ′ ⊩ {θ }s = {θ ′}s : {θ }τ̆1 by Γ |= s : τ̆1
Γ ⊩ {θ }(fn y ⇒ t) = {θ ′}(fn y ⇒ t) : {θ }((y : τ̆1) ⇒ τ2) by previous lines (def. of |=)
Γ ⊢ {θ }(fn y ⇒ t) ↘ {θ }(fn y ⇒ t) : {θ }((y : τ̆1) ⇒ τ2) by sem. equ. def.
Γ ⊢ {θ ′}(fn y ⇒ t) ↘ {θ ′}(fn y ⇒ t) : {θ }((y : τ̆1) ⇒ τ2) by sem. equ. def.
Γ ⊩ {θ }(fn y ⇒ t) {θ }s = {θ ′}(fn y ⇒ t) {θ ′}s ′ : {θ , {θ }s/y}τ2 by sem. equ. def.
Γ ⊢ {θ }((fn y ⇒ t) s) ↘ w : {θ , s/y}τ2 by sem. equ. def
Γ ⊢ {θ , {θ }s/y}t ↘ w : {θ , s/y}τ2 by inversion on↘
Γ ⊢ {θ ′}((fn y ⇒ t) s) ↘ w ′ : {θ , s/y}τ2 by sem. equ. def
Γ ⊢ {θ ′, {θ ′}s/y}t ↘ w ′ : {θ , s/y}τ2 by inversion on↘
Γ ⊩ (fn y ⇒ t) s = {s/y}t : {s/y}τ2 by Backwards Closure (Lemma 6.12)

Case. D =
Γ ⊢ t : ⌈Ψ ⊢ A⌉

Γ ⊢ ⌈Ψ̂ ⊢ ⌊t⌋
wkΨ̂
⌉ ≡ t : ⌈Ψ ⊢ A⌉

To Show: Γ |= ⌈Ψ̂ ⊢ ⌊t⌋
wkΨ̂
⌉ = t : ⌈Ψ ⊢ A⌉

Assume Γ′ ⊩ θ = θ ′ : Γ
Γ |= t : ⌈Ψ ⊢ A⌉ by IH
Γ′ ⊩ {θ }t = {θ ′}t : {θ }⌈Ψ ⊢ A⌉ by Γ |= t : ⌈Ψ ⊢ A⌉
Γ′ ⊢ {θ }t ↘ w : {θ }⌈Ψ ⊢ A⌉ by sem. def.
Γ′ ⊢ {θ ′}t ↘ w ′ : {θ }⌈Ψ ⊢ A⌉ by sem. def.
Γ′; {θ }Ψ ⊩ ⌊w⌋

id
= ⌊w ′⌋

id
: {θ }A by sem. def.

We note thatw is either n where wne n or ⌈Ψ̂ ⊢ M⌉
Sub-case w is neutral, i.e. wnew
Γ′; {θ }Ψ ⊢ ⌊{θ }t⌋

wkΨ̂
↘LF ⌊w⌋id : {θ }A since Γ′ ⊢ {θ }t ↘ w : {θ }⌈Ψ ⊢ A⌉

Γ′; {θ }Ψ ⊢ ⌊{θ }⌈Ψ̂ ⊢ ⌊t⌋
wkΨ̂
⌉⌋
id
↘LF ⌊w⌋id : {θ }A by↘LF

Γ; {θ }Ψ ⊩ ⌊{θ }⌈Ψ̂ ⊢ ⌊t⌋
wkΨ̂
⌉⌋
id
= ⌊w ′⌋

id
: {θ }A
using Γ′; {θ }Ψ ⊩ ⌊w⌋

id
= ⌊w ′⌋

id
: {θ }A and Backwards Closure (Lemma 6.12)

63

Γ; {θ }Ψ ⊢ {θ }⌈Ψ̂ ⊢ ⌊t⌋
wkΨ̂
⌉ ↘ {θ }⌈Ψ̂ ⊢ ⌊t⌋

wkΨ̂
⌉ : {θ }⌈Ψ ⊢ A⌉ since whnf {θ }⌈Ψ̂ ⊢ ⌊t⌋

wkΨ̂
⌉

Γ′ ⊩ {θ }⌈Ψ̂ ⊢ ⌊t⌋
wkΨ̂
⌉ = {θ ′}t : {θ }⌈Ψ ⊢ A⌉ by sem. def.

Sub-case w = ⌈Ψ̂ ⊢ M⌉
Γ′; {θ }Ψ ⊢ ⌊⌈Ψ̂ ⊢ M⌉⌋

id
↘LF N : {θ }A by Γ′; {θ }Ψ ⊩ ⌊w⌋

id
= ⌊w ′⌋

id
: {θ }A

Γ′; {θ }Ψ ⊢ M ↘LF N : {θ }A by↘LF

Γ′; {θ }Ψ ⊢ ⌊{θ }⌈Ψ̂ ⊢ ⌊t⌋
wkΨ̂
⌉⌋
id
↘LF N : {θ }A

Γ′; {θ }Ψ ⊩ N = ⌊w ′⌋
id

: {θ }A by sem. equ.
Γ′; {θ }Ψ ⊩ ⌊{θ }⌈Ψ̂ ⊢ ⌊t⌋

wkΨ̂
⌉⌋
id
= ⌊w ′⌋

id
: {θ }A by Backwards Closure (Lemma 6.12)

Γ′ ⊩ {θ }⌈Ψ̂ ⊢ ⌊t⌋
wkΨ̂
⌉ = {θ ′}t : {θ }⌈Ψ ⊢ A⌉ by sem. def.

□

From the fundamental lemma follows our main theorem normalization and subject reduction.

Theorem 7.14 (Normalization and Subject Reduction). If Γ ⊢ t : τ then t ↘ w and Γ ⊢ t ≡ w : τ

Proof. By the Fundamental theorem (Lemma 7.13), we have Γ ⊩ t = t : τ (choosing the identity substitution for θ
and θ ′). This includes a definition t ↘ w . Sincew is in weak head normal form (i.e. whnfw), we havew ↘ w . Therefore,
we can easily show that also Γ ⊩ t = w : τ . By well-formedness (Lemma 6.8), we also have that Γ ⊢ t ≡ w : τ and more
specifically, Γ ⊢ w : τ . □

Using the fundamental lemma, we can also show that every term has a unique type. This requires first showing some
standard inversion lemmas and then showing function type injectivity.

Lemma 7.15 (Inversion). (1) If Γ ⊢ x : τ̆ then x : τ̆ ′ ∈ Γ for some τ̆ ′ and Γ ⊢ τ̆ ≡ τ̆ ′ : u.
(2) If Γ ⊢ fn y ⇒ t : τ then Γ,y : τ̆1 ⊢ t : τ2 for some τ̆1, τ2 and If Γ ⊢ τ ≡ (y : τ̆1) ⇒ τ2 : u.
(3) If Γ ⊢ t s : τ then Γ ⊢ t : (y : τ̆1) ⇒ τ2 and Γ ⊢ s : τ̆1 for some τ̆1 and τ2 and Γ ⊢ τ ≡ {s/y}τ2 : u.
(4) If Γ ⊢ ⌈C⌉ : τ then Γ ⊢ ⌈C⌉ : ⌈T ⌉ for some contextual type T and Γ ⊢ τ ≡ ⌈T ⌉ : u.
(5) If Γ ⊢ recI (bv | bapp | blam) Ψ t : τ where I = (ψ : tm_ctx) ⇒ (y : ⌈Ψ ⊢ tm⌉) ⇒ τ then Γ ⊢ t : ⌈Ψ ⊢ tm⌉ and

Γ ⊢ I : u and Γ ⊢ bv : I and Γ ⊢ bapp : I and Γ ⊢ blam : I and Γ ⊢ τ ≡ {Ψ/ψ , t/y}τ : u.
(6) If Γ ⊢ u1 : τ then there some u2 s.t. (u1,u2) ∈ A and Γ ⊢ τ ≡ u2 : u.
(7) If Γ ⊢ (y : τ̆1) ⇒ τ2 : τ then there is some u1, u2, and u3 s.t. (u1,u2,u3) ∈ R and Γ ⊢ τ̆1 : u1, Γ,y : τ̆1 ⊢ τ2 : u2 and

Γ ⊢ u3 ≡ τ : u.

Proof. By induction on the typing derivation. □

Lemma 7.16 (Injectivity of Function Type). If Γ ⊢ (y : τ̆1) ⇒ τ2 ≡ (y : τ̆ ′1) ⇒ τ ′2 : u then Γ ⊢ τ̆1 ≡ τ̆ ′1 : u1 and
Γ,y : τ̆1 ⊢ τ2 ≡ τ2 : u2 and (u1,u2,u) ∈ R.

Proof. By the fundamental theorem (Lemma 7.13) Γ ⊩ (y : τ̆1) ⇒ τ2 ≡ (y : τ̆ ′1) ⇒ τ ′2 : u (choosing the identity
substitution for θ and θ ′). By the sem. equality def., we have Γ ⊩ τ̆1 = τ̆ ′1 : u1 and Γ,y : τ̆1 ⊩ τ2 = τ ′2 : u2 and (u1,u2,u) ∈
R. By well-formedness of semantic typing (Lemma 6.8), we have Γ ⊢ τ̆1 ≡ τ̆ ′1 : u1 and and Γ,y : τ̆1 ⊢ τ2 ≡ τ ′2 : u2 □

Theorem 7.17 (Type Uniqeness).
(1) If Γ;Ψ ⊢ M : A and Γ;Ψ ⊢ M : B then Γ ⊢ A ≡ B : type.
(2) If Γ ⊢ t : τ̆ and Γ ⊢ t : τ̆ ′ then Γ ⊢ τ̆ ≡ τ̆ ′ : u.

Proof. By mutual induction on the typing derivation exploiting typing inversion lemmas. □

Last but not least, the fundamental lemma allows us to show that not every type is inhabited and thus Cocon
can be used as a logic. To establish this stronger notion of consistency, we first prove that we can discriminate type
constructors.

Lemma 7.18 (Type Constructor Discrimination). Neutral types, sorts, and function types are can be discriminated.
64

(1) If Γ ⊢ u1 ≡ u2 : u3 then u1 = u2 (they are the same).
(2) Γ ⊢ x t⃗ , u : u ′.
(3) Γ ⊢ x t⃗ , (y : τ̆1) ⇒ τ2.
(4) Γ ⊢ x t⃗ , ⌈T ⌉.
(5) Γ ⊢ u , (y : τ̆1) ⇒ τ2.

Proof. Proof by contradiction. To show for example that Γ ⊢ x t⃗ , (y : τ̆1) ⇒ τ2, we assume Γ ⊢ x t⃗ ≡ (y : τ̆1) ⇒
τ2 : u. By the fundamental lemma (Lemma 7.13), we have Γ ⊩ x t⃗ ≡ (y : τ̆1) ⇒ τ2 : u (choosing the identity substitution
for θ and θ ′); but this is impossible given the semantic equality definition (Fig. 20). □

Theorem 7.19 (Consistency). x : u0 ⊬ t : x .

Proof. Assume x : u0 ⊢ t : x . By subject reduction (Lemma 7.14), there is somew s.t. t ↘ w and Γ ⊢ t ≡ w : x and in
particular, we must have Γ ⊢ w : x . As x is neutral, it cannot be equal u, (y : τ̆1) ⇒ τ2, or ⌈T ⌉ (Lemma 7.18). Thus w
can also not be a sort, function, or contextual object. Hence, w can only be neutral, i.e. given the assumption x : u0,
the termw must be x . This implies that Γ ⊢ x : x and implies Γ ⊢ x ≡ u0 : u by inversion lemma for typing. But this is
impossible by Lemma 7.18. □

8 RELATEDWORK
HOAS within dependent type theory. We propose a new type theoretic foundation where LF is integrated within

a Martin Löf type theory. This is in some sense a radical step. A more lightweight approach is to integrate at least
some of the benefits of LF within an existing type theory. This is for example accomplished by weak HOAS approaches
[Chlipala 2008; Despeyroux et al. 1995] where we get α-renaming for free but still have to deal with capture-avoiding
substitutions. The Hybrid library [Felty and Momigliano 2012] in Coq goes further supporting both α-renaming and
substitution by encoding a specification logic within Coq. However it is unclear whether these approaches scale to
dependently typed encodings and can be integrated smoothly into practice.

Metaprogramming. Dependent type theory is flexible enough to serve as its own metaprogramming language. For
this reason many dependently typed systems [Christiansen 2014, 2015; Ebner et al. 2017; van Der Walt and Swierstra
2012] try to support meta-programming in practice using quote operator to turn an expression into its syntactical
representation and unquote operator to escape the quotation and refer to another computation whose value will be
plugged in at its place. However, a clean theoretical foundation is missing.

Davies and Pfenning [2001] observed the similarity between modal types in S4 and quasi-quotation to support simply
typed metaprogramming. However their work concentrated on closed simply-typed code. In Cocon, we can describe
open pieces of code, i.e. code that depends on a context of assumptions, and work within a Martin Löf type theory.
Hence, Cocon has the potential to provide a basis for dependently typed metaprogramming.

9 CONCLUSION
Cocon is a first step towards integrating LF methodology into Martin-Löf style dependent type theories and and bridges
the longstanding gap between these two worlds. We have established type uniqueness, normalization, and consistency.
The next immediate step is to derive an equivalence algorithm based on weak head reduction and show its completeness.
We expect that this will follow a similar Kripke-style logical relation as the one we described. This would allow us to
justify that type checking Cocon programs is decidable.

It should be possible to implement Cocon as an extension to Beluga– from a syntactic point of view, it would be a
small change. It also seems possible to extend existing implementation of Agda, however this might be more work, as
in this case one needs to implement the LF infrastructure.

ACKNOWLEDGMENTS
This material is based upon work supported by the Humboldt Foundation and NSERC (Natural Science and Engineering
Research Council, Canada) No. mmmmmmm. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author and do not necessarily reflect the views of the funding agencies.

65

A APPENDIX
EXAMPLES

Cost-Semantics. As a first example, consider the definition of a cost semantics for our small term language described
earlier. As we aim to reason by structural induction on the evaluation judgement, we define the evaluation judgment
m ⇓k v which says that the termm evaluates in at most steps k to the value v as an inductive type:

inductive Eval : (m: ⌈ ⊢ tm⌉)(n: ⌈ ⊢ tm⌉)(k: nat) type =

| E_Lam : (m : ⌈x:tm ⊢ tm⌉)(k:nat)

Eval ⌈ ⊢ lam λx. ⌊m⌋ ⌉ ⌈ ⊢ lam λx. ⌊m⌋ ⌉ k

| E_App : (m : ⌈ ⊢ tm⌉) (n: ⌈ ⊢ tm⌉)(k:nat)(l:nat)(j:nat)

(m': ⌈x:tm ⊢ tm⌉)(v: ⌈ ⊢ tm⌉)(w: ⌈ ⊢ tm⌉)

Eval m ⌈ ⊢ lam λx. ⌊m'⌋ ⌉ k → Eval n v l → Eval ⌈ ⊢ ⌊ m'⌋ with ⌊v⌋/x ⌉ w j

→ Eval ⌈ ⊢ app ⌊m⌋ ⌊n⌋ ⌉ w (k + l + j + 1)

| E_Let : (m : ⌈ ⊢ tm⌉)(n: ⌈x:tm ⊢ tm⌉)(k:nat)(l:nat)(v : ⌈ ⊢ tm⌉) (w : ⌈ ⊢ tm⌉)

Eval m v k

→ Eval ⌈ ⊢ ⌊n⌋ with ⌊v⌋/x ⌉ w l

→ Eval ⌈ ⊢ letv ⌊m⌋ λx. ⌊n⌋ ⌉ w (k + l + 1)

We define here an inductive type that relates closed tm-objects m and n with the cost k. We rely on the inductive type
nat in addition to functions such as addition on natural numbers. In a dependent type theory such as Coq or Agda, we
would not be able to define an inductive type over (open) LF objects and exploit HOAS. In this example, we clearly state
that we evaluate closed terms. To evaluate ⌈ ⊢ app ⌊m⌋ ⌊n⌋⌉ where m and n denote a closed tm-objects, we evaluate m
and n respectively. Note that when we refer to variables inside a box (or quoted) expression, we need to first unbox (or
unquote) them. We write the unboxing here as ⌊m⌋.

In general, we are unboxing open terms, i.e. terms that may contain free variables. Hence, we are unboxing a term
together with a substitution. For example, to evaluate the body m' where we replace the LF variable x with the closed
term v, we unbox m' with the substitution ⌊v⌋/x. This is written as ⌈ ⊢ ⌊m'⌋ with ⌊v⌋/x⌉. In general, we may omit
mentioning the substitution that is associated with every unbox-operation, if the substitution is simply the identity.

In Beluga, an inductive definition about open LF objects is possible, but we would not be able to compute k + l + 1,
as Beluga is an indexed language – not a full dependently typed language. Therefore, we cannot refer to addition
function in the index.

Compilation. As a simple example of compilation, we consider here a function transwhich eliminates let-expressions.
As we also must traverse the body of lambda-abstractions and let-expression, this function takes a term in the context γ
as input and returns a term in the same context as output. As for example in Beluga, contexts are first-class in our
language and we specify their shape using a context schema tm_ctx which states that the context only contains tm
declarations.

rec trans: (γ : ⌈tm_ctx⌉) ⌈γ ⊢ tm⌉ → ⌈γ ⊢ tm⌉ =

fun γ (p : ⌈γ ⊢ # tm⌉) = p

| γ ⌈γ ⊢ app ⌊m⌋ ⌊n⌋ ⌉ = ⌈γ ⊢ app ⌊trans γ m⌋ ⌊trans γ n⌋ ⌉

| γ ⌈γ ⊢ lam λx. ⌊m⌋ ⌉ = ⌈γ ⊢ lam λx. ⌊trans (γ ,x:tm) m⌋ ⌉

| γ ⌈γ ⊢ letv ⌊m⌋ λy. ⌊n⌋ ⌉ = ⌈γ ⊢ app (lam λx. ⌊trans (γ ,x:tm) n⌋ ⌊trans γ m⌋ ⌉

We write the translation by pattern matching on the HOAS tree of type ⌈γ ⊢ tm⌉. Four different cases arise. First,
we might encounter a variable from γ . As in Beluga, we use a pattern variable p of type ⌈γ ⊢# tm⌉ which can only be
instantiated with variables from γ . Second, we translate ⌈γ ⊢ app ⌊m⌋ ⌊n⌋⌉ by simply recursively translating m and n
and rebuilding our term. Third, we translate ⌈γ ⊢ lam λx.⌊m⌋⌉ by translating m. Note that m has type ⌈γ, x:tm ⊢ tm⌉
and hence trans m returns a term in the context γ, x:tm. Last, we translate ⌈γ ⊢ letv ⌊m⌋ λy.⌊n⌋⌉ by translating
each part and replacing the let-expression with the application of a lambda-abstraction.

The function trans is close to what we can already write in Beluga with one major differences: we are able to inline
recursive calls such as trans n within a HOAS tree by supporting the boxing (quote) and the unboxing (unquote)
of contextual objects; this is in contrast to Beluga where we are forced to write programs in a let-box style. Further,
we only distinguish between LF variables that are bound by a λ-abstraction or in a LF context and computation-level
variables. If computation-level variables have a contextual type, then we can use them to construct an LF object (or
LF context) by unboxing them. In Beluga, we essentially distinguish between three different kinds of variables: LF

66

variables, computation-level variables, and meta-variables (or contextual variables) that are of contextual type. Our
treatment here unifies the latter two classes into one.

We now prove that the operational meaning of a term is preserved and it still evaluates in at most k steps. In other
words, our optimization did not add any additional costs. This is done by recursively analyzing and pattern matching
on the derivation Eval m v k. We write the type of each of the recursive calls as comments to illuminate what is
happening in the background.

rec ctrns : ⌈ ⊢ tm⌉ → ⌈ ⊢ tm⌉ = fun m ⇒ trans ⌈ ⌉ m ;

rec val_preserve : (m: ⌈ ⊢ tm⌉)(v: ⌈ ⊢ tm⌉)(k : nat) Eval m v k → Eval (ctrns m) (ctrns v) k =

fun ⌈ ⊢ lam λx. ⌊m⌋ ⌉ ⌈ ⊢ lam λx. ⌊m⌋ ⌉ k (E_Lam m k) = E_Lam (trans ⌈x:tm⌉ m) k

| ⌈ ⊢ app ⌊m⌋ ⌊n⌋ ⌉ w (k+l+j+1) (E_App m n k l j m' v w e1 e2 e3) =

E_App (ctrns m) (ctrns n) k l j (trans ⌈x:tm⌉ m') (ctrns v) (ctrns w)

(val_preserve m ⌈ ⊢ lam λx. ⌊m'⌋ ⌉ k e1)

% Eval (ctrns m) ⌈ ⊢ lam λx. ⌊trans ⌈x:tm⌉ m'⌋ ⌉ k

(val_preserve n v l e2) % Eval (ctrns n) (ctrns v) l

(subst ⌈ ⊢ tm⌉ (fun e ⇒ Eval e (ctrns w) j)

(ctrns ⌈ ⊢ ⌊m'⌋ with ⌊v⌋/x⌉) (⌈ ⊢ ⌊trans ⌈x:tm⌉ m'⌋ with ⌊ctrns v⌋/x⌉)

(lemma_trans ⌈⌉ m' v) (val_preserve ⌈ ⊢ ⌊m'⌋ with ⌊v⌋/x⌉ w j e3))

% Eval (ctrns ⌈ ⊢ ⌊m'⌋ with ⌊v⌋/x⌉) (ctrns w) j

| ⌈ ⊢ letv ⌊m⌋ λy. ⌊n⌋ ⌉ w (k+l+1) (E_Let m n k l v w e1 e2) =

E_App ⌈ ⊢ lam λx. ⌊trans ⌈x:tm⌉ n⌋ ⌉ (ctrns m) 0 k l (trans ⌈x:tm⌉ n) (ctrns v) (ctrns w)

(E_Lam (trans ⌈x:tm⌉ n) 0)

% Eval (ctrns ⌈ ⊢ lam λy. ⌊n⌋ ⌉) (ctrns ⌈ ⊢ lam λy. ⌊n⌋ ⌉) 0)

(val_preserve m v k e1) % Eval (ctrns m) (ctrns v) k)

(subst ⌈ ⊢ tm⌉ (fun e ⇒ Eval e (ctrns w) l)

(ctrns ⌈ ⊢ ⌊n⌋ with ⌊v⌋/x⌉) (⌈ ⊢ ⌊trans ⌈x:tm⌉ n⌋ with ⌊ctrns v⌋/x⌉)

(lemma_trans ⌈⌉ n v) (val_preserve ⌈ ⊢ ⌊n⌋ with ⌊v⌋/x⌉ w l e2))

% Eval (ctrns ⌈ ⊢ ⌊n⌋ with ⌊v⌋/x⌉) (ctrns w) l)

The proof above relies on a lemma that states that it does not matter whether we translate first a term m of type
⌈γ, x:tm ⊢ tm⌉ and then replace x with the translation of the term v or we translate directly the term m where we
already substituted for x the term v. It is applied by using substitutivity of identity type whose type is:
subst : (A : type) (P : A → type) (a b : A) a = b → P a → P b

rec lemma_trans : (γ : ctx) (m : ⌈γ , x:tm ⊢ tm⌉) (v : ⌈γ ⊢ tm⌉)

trans γ ⌈γ ⊢ ⌊m⌋ with wkγ , ⌊v⌋/x⌉

= ⌈γ ⊢ ⌊trans (γ , x:tm) m⌋ with wkγ , ⌊trans γ v⌋/x⌉ =

fun γ ⌈γ , x ⊢ x⌉ = refl % since trans γ v = ⌈γ ⊢ ⌊trans γ v ⌋ ⌉

| γ ⌈γ , x ⊢ ⌊p⌋ with wkγ ⌉ where p : ⌈γ ⊢ # λtm⌉ =

refl %trans γ p = ⌈γ ⊢ ⌊p⌋ with wkγ ⌉

| γ ⌈γ , x ⊢ lam λy. ⌊m⌋ ⌉ =

cong ⌈γ ,y:tm ⊢ tm⌉ ⌈γ ,y:tm ⊢ tm⌉

(fun e ⇒ ⌈γ ⊢ lam (λy. ⌊e⌋)⌉)
(trans (γ ,y:tm) ⌈γ ,y ⊢ ⌊m⌋ with wkγ , ⌊v⌋/x,y/y⌉)

⌈γ ,y ⊢ ⌊trans (γ ,x:tm,y:tm) m⌋ with wkγ , ⌊trans γ v⌋/x, y/y⌉

(lemma_trans (γ , y:tm) ⌈γ , y, x ⊢ ⌊m⌋ with wkγ ,x/x, y/y⌉)

| γ ⌈γ , x ⊢ app ⌊m⌋ ⌊n⌋ ⌉ =

cong2 ⌈γ ⊢ tm⌉ ⌈γ ⊢ tm⌉ ⌈γ ⊢ tm⌉

(fun m n ⇒ ⌈γ ⊢ app ⌊m⌋ ⌊n⌋ ⌉)

(trans γ ⌈γ ⊢ ⌊m with wkγ , ⌊v⌋/x⌋ ⌉)

(⌈γ ⊢ ⌊trans (γ ,x:tm) m with wkγ , ⌊trans (γ) v⌋,x⌋ ⌉)

(trans γ ⌈γ ⊢ ⌊n with wkγ , ⌊v⌋/x⌋ ⌉)

(⌈γ ⊢ ⌊trans (γ ,x:tm) n with wkγ , ⌊trans (γ) v⌋,x⌋ ⌉)

(lemma_trans γ m v) (lemma_trans (γ) n v)

| γ ⌈γ , x ⊢ letv ⌊m⌋ λy. ⌊n⌋ ⌉ =

cong2 ⌈γ ⊢ tm⌉ ⌈γ ⊢ tm⌉ ⌈γ ⊢ tm⌉

(fun m n ⇒ ⌈γ ⊢ app (lam λy. ⌊n⌋) ⌊m⌋ ⌉)
(trans γ ⌈γ ⊢ ⌊m⌋ with wkγ , ⌊v⌋/x⌉)

⌈γ ⊢ ⌊trans (γ ,x:tm) m⌋ with wkγ , ⌊trans γ v⌋/x⌉

67

(trans (γ ,y:tm) ⌈γ ,y ⊢ ⌊n⌋ with wkγ , ⌊v⌋/x, y/y⌉)

⌈γ ,y ⊢ ⌊trans (γ ,x:tm,y:tm) n⌋ with wkγ , ⌊trans γ v⌋/x,y/y⌉

(lemma_trans γ m v)

(lemma_trans (γ ,y:tm) ⌈γ , y, x ⊢ ⌊n⌋ with wkγ ,x/x,y/y⌉)

In the first case, we have by definitional equality that indeed trans γ v = ⌈γ ⊢ ⌊trans γ v ⌋⌉. In the second
case, we in addition exploit that composing wkγ , ⌊trans γ v⌋/x with wkγ simply is wkγ effectively dropping
⌊trans γ v⌋/x.

The recursive cases are handled by means of congruence. We rebuild the term on each side by joining together the
equalities obtained for the subterms. The types for the functions on congruences are respectively:

cong1 : (A B : type) (f : A → B) (a1 a2 : A)→ a1 = a2 → (f a1) = (f a2)

cong2 : (A B C : type) (f : A → B → C) (a1 a2 : A) (b1 b2 : B) → a1 = a2 → b1 = b2 → (f a1 b1)=(f a2 b2)

In the lam case and in the letv case, we exploit that we can build a substitution that exchanges variables such that we
can keep the x, the variable that we want to replace, to the right most position. This is a standard technique employed
in HOAS systems.

Note that we would not be able to implement such functions in Beluga for several reasons:
• We directly refer to the function ctrns in the type of val_preserve to indicate that if m evaluates to a value v
then the translation of m (i.e. ctrns m) also evaluates to the translation of the value of v (i.e. ctrns v). In Beluga,
we would need to reify the function ctrns as an inductive type and then pass it as an additional argument to
val_preserve.
• The lemma lemma_trans also directly references the function type of trans in stating that the equality property.
• We reason by equality, in particular we use the functions subst, cong1, and cong2 which all are polymorphic.
Polymorphism is presently not supported in Beluga, or any system we are aware of that supports HOAS.

RECURSORS OVER DEPENDENTLY TYPED LF OBJECTS
LF definitions are not inductive – however, we can generate recursors for each LF type following the procedure described
in [Pientka and Abel 2015].

To illustrate concretely, how recursors look for a dependently typed LF signature, we consider here another example:
the representation of well-typed terms. In this case, our LF signature contains the following type families and constants.

LF Signature Σ ::= tp : type, nat : tp, arr : Πy:tp.Πy:tp.tp
tm : Πa:tp.type, z : tm nat, suc : Πy:tm nat.tm nat,

lam : Πa:tp.Πb:tp.Πy:(Πx :tm a.tm b).tm (arr a b),
app : Πa:tp.Πb:tp.Πx :tm (arr a b).Πy:tm a.tm b

For easier readability, we simply write how it looks when we declare these constants in Beluga or Twelf. Note that
we write simply→ if B does not depend on x in Πx :A.B. We also omit abstracting over the implicit arguments – this is
common practice in logical frameworks, as the type for A and B can be inferred.

tp : type
nat: tp.

arr: tp → tp → tp.

tm: tp → type.
z : tm nat.

suc: tm nat → tm nat.

lam: (tm A → tm B) → tm (arr A B).

app: tm (arr A B) → tm A → tm B.

To build the recursor for the type family tm a we proceed as follows:
• We generalize the recursor to rec

I B Ψ s t . Here the intention is that s has type ⌈⊢ tp⌉ and t has type ⌈Ψ ⊢
tm ⌊s⌋

wkΨ̂
⌉. Hence t depends not only on the LF context Ψ but also on the type s. As s denotes a closed type, we

weaken it to be used within the LF context Ψ.
In general, we have a vector s⃗ to describe all the implicit arguments t depends on. Note that even in an LF
signature that is simply typed, i.e. we have for example defined tm : type, the type of t already depends on Ψ,

68

since it has contextual type ⌈Ψ ⊢ tm⌉. Moreover, we already are tracking this dependency on the LF context.
Hence, the generalization to more dependent arguments is quite natural.
• The recursor for iterating over contextual terms of type ⌈ψ ⊢ tm a⌉ will have 5 branches: 4 branches covering
each constructor and one branch for the variable case.

rec
I (bv | bz | bsuc | bapp | blam)

where

bv ::= ψ ,a,p ⇒ tv
bz ::= ψ ⇒ tz
bsuc ::= ψ ,n, fn ⇒ tsuc
b
lam

::= ψ ,a,b,m, fm ⇒ t
lam

bapp ::= ψ ,a,b,n,m, fn , fm ⇒ tapp
• We give the typing rules for the recursor over terms of type ⌈ψ ⊢ tm a⌉. Each branch gives rise to a specific
typing rule and we label the ⊢l with the label l where l = {v, z, suc, lam, app} for clarity.

Recursor over LF Terms I = (ψ : tm_ctx) ⇒ (a : ⌈ ⊢ tp⌉) ⇒ (y : ⌈ψ ⊢ tm a⌉) ⇒ τ

where l = {v, z, suc, lam, app}
Γ ⊢ s : ⌈ ⊢ tp⌉ Γ ⊢ t : ⌈Ψ ⊢ tm ⌊s⌋

wkΨ
⌉ Γ ⊢ I : u Γ ⊢l bl : I

Γ ⊢ recI (bv | bz | bsuc | blam | bapp) Ψ s t : {Ψ/ψ , s/a, t/y}τ

Branches where

Γ,ψ : tm_ctx,a : ⌈ ⊢ tp⌉, p : ⌈ψ ⊢# tm ⌊a⌋
wkψ ⌉ ⊢ tv : {a/a, p/y}τ

Γ ⊢v (ψ ,a,p ⇒ tv) : I

Γ,ψ : tm_ctx ⊢ tz : {⌈ ⊢ nat⌉/a, ⌈ψ ⊢ z⌉/y}τ
Γ ⊢z (ψ ⇒ tz) : I

Γψ : tm_ctx,m : ⌈ψ ⊢ tm nat⌉

fm : {⌈ ⊢ nat⌉/a, m/y}τ ⊢ tsuc : {⌈ ⊢ nat⌉/a, ⌈ψ ⊢ suc ⌊m⌋
id
⌉/y}τ

Γ ⊢suc (ψ ,m ⇒ tsuc) : I

Γ,ψ : tm_ctx,a : ⌈ ⊢ tp⌉, b : ⌈ ⊢ tp⌉,
m : ⌈ψ ⊢ tm (arr ⌊a⌋

wkψ ⌊b⌋wkψ)⌉,n : ⌈ψ ⊢ tm ⌊a⌋
id
⌉

fm : {arr ⌊a⌋
id
⌊b⌋

id
/a,m/y}τ , fn : {a/a, n/y}τ ⊢ tapp : {b/a, ⌈ψ ⊢ app ⌊m⌋

id
⌊n⌋

id
⌉/y}τ

Γ ⊢app (ψ ,a,b,m,n, fn , fm ⇒ tapp) : I

Γ,ϕ : tm_ctx,a : ⌈ ⊢ tp⌉,b : ⌈ ⊢ tp⌉
m : ⌈ϕ,x : tm ⌊a⌋

wkψ ⊢ tm ⌊b⌋wkψ ⌉,

fm : {(ϕ,x : tm a)/ψ ,b/a, m/y}τ ⊢ tlam : {ϕ/ψ , ⌈ ⊢ arr ⌊a⌋
id
⌊b⌋

id
⌉/a, ⌈ ϕ ⊢ lam λx .⌊m⌋

id
⌉/y}τ

Γ ⊢lam (ψ ,a,b,m, fm ⇒ tlam) : I

69

	Abstract
	1 Introduction
	1.1 Intensional and Extensional Functions – A World of a Difference
	1.2 Towards Bridging the Gap between Intensional and Extensional Functions
	1.3 The Best of Both Worlds
	1.4 Outline of the Technical Development

	2 Cocon: Computation in Contextual Type Theory
	2.1 Syntax
	2.2 LF Substitution Operation
	2.3 Computation-level Substitution Operation
	2.4 LF Typing
	2.5 Definitional LF Equality
	2.6 Contextual LF Typing and Definitional Equivalence
	2.7 Computation Typing
	2.8 Definitional Equality for Computations

	3 Elementary Properties of Typing and Definitional Equality
	3.1 Elementary Properties of LF
	3.2 Elementary Properties of Computations

	4 Weak head reduction
	5 Kripke-style Logical Relation
	6 Semantic Properties
	6.1 Semantic Properties of LF
	6.2 Semantic Properties of Computations

	7 Validity in the Model
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Appendix

