
Case analysis of higher-order data

Joshua Dunfield and Brigitte Pientka

School of Computer Science, McGill University, Montreal, Canada
{joshua,bpientka}@cs.mcgill.ca

Abstract. We discuss coverage checking for data that is dependently
typed and is defined using higher-order abstract syntax. Unlike previous
work on coverage checking that required objects to be closed, we consider
open data objects, i.e. objects that may depend on some context. Our
work may therefore provide insights into coverage checking in Twelf, and
serve as a basis for coverage checking in functional languages such as Del-
phin and Beluga. More generally, our work is a foundation for proofs by
case analysis in systems that reason about higher-order abstract syntax.

1 Introduction

Over the past decade, programming and reasoning with and about data struc-
tures that contain binders has received widespread attention in programming lan-
guages as well as automated reasoning systems. One simple and elegant technique
for handling binders is higher-order abstract syntax. The central idea is easily ex-
plained: instead of representing object variables explicitly, we use meta-language
variables. For example, the object-level formula ∀x. (x = 1) ⊃ ¬(x = 0) can
be represented as forall λx. (eq x (Suc Zero)) imp (not (eq x Zero)). One of
the key benefits is that one can avoid implementing common and tricky routines
dealing with variables, such as capture-avoiding substitution, renaming and fresh
name generation. When we implement proofs, higher-order abstract syntax al-
lows us to think of hypothetical derivations, i.e. derivations that depend on
assumptions as higher-order functions, where the application of a substitution
lemma corresponds to a function application. For example, in natural deduction,
the hypothetical typing derivation for implication introduction can be elegantly
modeled using higher-order functions (see Fig. 1).

The power of higher-order abstract syntax encodings has been demonstrated
within the logical framework LF [4] and its implementation in the Twelf system
[9]. Most recently, HOAS encodings are supported in functional programming
languages such as Elphin [15], Delphin [12], and Beluga [11]. In these systems, we
typically analyze higher-order data using pattern matching and case expressions.
This requires us to validate that all possible cases are covered, i.e. the patterns
are exhaustive. A closely related question arises in proof assistants that support
reasoning about HOAS specifications when we split a goal into different cases.
In this situation we also must generate an exhaustive set of cases. This issue
arises in the Twelf system’s induction theorem prover [13], and in systems such
as Bedwyr [1] and Abella [3].

2

Numbers N, M ::= x
| 0
| suc N

Propositions A ::= N = M
| A ⊃ B
| ∀x.A

nat : type.

Zero: nat.
Suc : nat → nat.

o : type.
eq : nat → nat → o.
imp : o → o → o.
forall: (nat → o) → o.

Natural Deduction : Γ ⊢ nd A

Γ, u : nd A ⊢ nd B

Γ ⊢ nd A ⊃ B
⊃Iu

Γ ⊢ nd A ⊃ B Γ ⊢ nd A
Γ ⊢ nd B

⊃E

Γ ⊢ nd [a/x]A

Γ ⊢ nd (∀x.A)
∀Ia

Γ ⊢ (∀x.A)

Γ ⊢ nd [T/x]A]
∀E

(u : nd A) ∈ Γ

Γ ⊢ nd A
Hyp

nd: o → type.

impi:(nd A → nd B)
→ nd (A imp B).

impe: nd (A imp B) → nd A
→ nd B.

alli: (Π a:nat. nd (A a))
→ nd (forall λx. A x).

alle: nd (forall λx. A x)
→ nd (A T).

Fig. 1. Natural deduction and its HOAS encoding

Analyzing data by cases is a basic programming and proof technique. In
the first-order setting, it is straightforward. We simply consider all declared
constants of a given type. To illustrate, in Figure 1 we define a simple logic
with equality on numbers following typical encodings in the logical framework
LF [4]. The cases arising when splitting on the proposition A are clear: they are
exactly the three possible proposition forms specified in the grammar. However,
already when we consider analyzing numbers we potentially will not only need to
consider cases for 0 and suc N , but also the case where we encounter a variable. A
similar situation comes up with higher-order data, such as derivations in natural
deduction. An encoding using higher-order abstract syntax does not represent
the last rule Hyp explicitly. Instead, this base case will be implicit. Therefore,
generating all cases exhaustively is not a simple matter. We must think of an
object within a context, and we need to reason about the possible elements of
the context.

Our main contribution is a theoretical framework for generating an exhaus-
tive and complete set of cases for objects that may refer to assumptions, i.e.
open objects. While some systems like Twelf provide implementations that sup-
port case analysis on open objects, previous theoretical work on coverage dealt
with closed objects [14] and a clean theoretical analysis has so far been lacking.
For many Twelf users, this operation remains mysterious, and we hope our ra-
tional reconstruction is a step towards demystifying this operation. Moreover,

DRAFT February 22, 2008—15 : 44

3

we believe our work lays a solid foundation for languages such as Beluga [11]
that support case analysis of open data, and is an important step towards un-
derstanding how to reason about HOAS encodings. In this paper, we describe
a theoretical framework for checking whether a set of patterns is exhaustive,
that is, whether it covers, and we prove soundness of this coverage checking
framework.

We will begin with an example in the language Beluga, which supports pro-
gramming with LF encodings in a functional setting. To emphasize the issues due
to open terms, we will concentrate on the simply typed setting in this example.
However, our formal framework treats dependently typed terms, which makes
the problem harder. The structure of types can be observed, and this makes
coverage checking undecidable, since any set of patterns will cover all terms of
an empty type and emptiness is undecidable.

2 Motivation

To motivate the problem, we consider a simple program in the Beluga lan-
guage [11] that counts the free occurrences of some variable x in a formula.
For example, ∀y.(x = y) ⊃ (suc y = suc x) has two free occurrences of x. The
data language here is first-order logic with quantification over natural numbers,
as defined in Figure 1, and we analyzes HOAS data via pattern matching. Using
this example, we then discuss in more detail the problem of coverage.

We will write two functions to solve this problem. The function cntV will
recursively analyze formulas. When it reaches a natural number expression, it
will call a second function cntVN. We use modal types such as o[x:nat, y:nat],
which describes a formula that can refer to the variables x and y. The formula
((eq x y) imp (eq (Suc x) (Suc y)) has this type.

When cntV recursively reaches a formula with a universal quantifier, the set
of free variables grows. Hence, we need to abstract over the contexts in which
the formula makes sense. Context variables ψ provide this ability.

The function cntV (Fig. 2) takes in a context ψ of natural numbers, a formula
f, and returns an integer. Just as types classify data objects and kinds classify
types, we introduce schemas to classify contexts. In the type declaration for the
function cntV we say that the context variable ψ has the schema (nat)∗, meaning
that ψ stands for a data-level context whose the form is x1:nat,. . .,xn:nat. We
represent contextual variables which are instantiated via higher-order pattern
matching with capital letters.

We examine the second function, cntV, first. It is built by a context abstrac-
tion Λ ψ that introduces the context variable ψ and binds every occurrence of ψ
in the body. Next, we introduce the computation-level variable f which has type
o[ψ,x:nat]. In the body of the function cntV we case-analyze objects of type
o[ψ,x:nat]. The box construct separates data from computations. Since formu-
las are constructed by equality eq, implication imp and quantification forall, we
have cases for each of these.

DRAFT February 22, 2008—15 : 44

4

rec cntVN : Π ψ:(nat)∗.nat[ψ,x:nat] → int =
Λ ψ ⇒ fn n ⇒ case n of

box(ψ,x. x]) ⇒ 1
| box(ψ,x. p[idψ]) ⇒ 0
| box(ψ,x. Zero) ⇒ 0
| box(ψ,x. Suc U[idψ,x]) ⇒ cntVN ⌈ψ⌉ box(ψ,x. U[idψ,x])

rec cntV : Π ψ:(nat)∗.o[ψ,x:nat] → int =
Λ ψ ⇒ fn f ⇒ case f of

box(ψ,x. eq U[idψ,x] V[idψ, x]) ⇒ cntVN ⌈ψ⌉ box(ψ,x.U[idψ,x])
+ cntVN ⌈ψ⌉ box(ψ,x.V[idψ,x])

| box(ψ,x. imp U[idψ,x] W[idψ,x]) ⇒ cntV ⌈ψ⌉ box(ψ,x. U[idψ,x])
+ cntV ⌈ψ⌉ box(ψ,x. W[idψ,x])

| box(ψ,x. forall(λy.U[idψ,x,y]))⇒ cntV⌈ψ,y:nat⌉ box(ψ,y,x. U[idψ,x,y])

Fig. 2. Counting free variables using pattern matching and HOAS

When we encounter an object built from a constructor eq, imp, or forall,
we must extract the subexpression(s) underneath. Pattern variables are charac-
terized by a closure U[σ] consisting of a contextual variable U and a postponed
substitution σ. As soon as we know what the contextual variable stands for, we
apply the substitution σ. In the example, the postponed substitution associated
with U is the identity substitution which essentially corresponds to α-renaming.
We write idψ for the identity substitution with domain ψ. Intuitively, one may
think of the substitution associated with contextual variables which occur in
patterns as a list of variables which may occur in the hole. In the data object
U[idψ], for example, the contextual variable U can be instantiated with any for-
mula which either is closed (does not refer to any bound variable listed in the
context ψ) or contains a bound variable from the context ψ. Since we want to
ensure that subformulas refer to all variables in ψ, x:nat, we write U[idψ, x].
We use capital letters for meta-variables.

In the first case, for eq, we call cntVN to count the occurrences of x in the
natural numbers U[idψ,x] and V[idψ, x], explicitly passing the context ψ.

The second case for imp is similarly structured, calling cntV instead of cntVN.

In the third case, for box(ψ,x. forall (λy.W[idψ,x,y])), we analyze the
quantified formula under the assumption that y is a natural number. To do this,
we pass an extended context (ψ,y:nat) to cntV.

The function cntVN counts the occurrences of a variable x in an object of type
nat[ψ,x:nat], considering four cases. The first case, box(ψ,x. x), matches an
occurrence of x. The second case, box(ψ,x. p[λidψ]), matches a variable that
is not x and occurs in ψ. For this case, we use a parameter variable p (using
a small letter to distinguish it from a meta-variable). This represents a bound
object-level variable. The substitution idψ associated with p characterizes the
possible instantiations of p. The remaining cases are straightforward.

DRAFT February 22, 2008—15 : 44

5

2.1 Basic idea of coverage on open data

In this paper, we provide the foundation for ensuring that case expressions
which analyze elements of type A[Ψ] via pattern matching cover all possible
elements of this type. For example, in the function cntV we ensure that the set
of patterns {x, p[id_ψ], Zero, Suc U[id_ψ, x]} covers the type nat[ψ, x:nat].
In cntV, the set {eq U[idψ,x] V[idψ,x], imp U[idψ,x] W[idψ,x], forall (λy.U[

idψ,x,y])} covers all elements of type o[ψ,x:nat].

This set of patterns for covering the type o[ψ,x:nat] is by no means the
only one. Instead of explicitly counting the occurrences of x in a natural num-
ber of type nat[ψ,x:nat], we could have used the power of higher-order pattern
matching to enforce variable dependencies. In other words, we could have re-
fined the pattern eq U[idψ,x] V[idψ,x] into the following four cases: {eq U[idψ]

V[idψ], eq U[idψ,x] V[idψ], eq U[idψ] V[idψ,x], eq U[idψ,x] V[idψ,x]}, ex-
actly distinguishing between (1) no variable x occurs in U[idψ] and V[idψ], (2)
the variable x occurs in U[idψ,x] but not in V[idψ], (3) the variable x occurs in
V[idψ,x] but not in U[idψ], and (4) the variable x occurs in both U[idψ,x] and
V[idψ,x].

More generally, we provide a formal framework for answering the following
question: Does a set of patterns cover the type A[Ψ]? Alternatively, our frame-
work provides a general way of generating a set of patterns thereby providing a
foundation for splitting an object of type A[Ψ] into different cases.

We would like to emphasize that while we illustrate the problem here in the
setting of Beluga, in which contexts are explicit, similar situations arise when
contexts are implicit, as in other systems such as Delphin and Twelf.

3 Background

We will concentrate here on the data level, since we are mainly interested in
testing whether a set of patterns covers a given data object. For a discussion of
the computation level, see [11].

We essentially support the full logical framework LF plus Σ-types. Our data
layer closely follows contextual modal type theory [7], extended with parameter
variables, substitution variables, and context variables [11], and finally with de-
pendent pairs and projections. Perhaps most importantly, we formalize schemas,
which classify contexts. We only characterize normal terms since only these are
meaningful in the logical framework, following Watkins et al.[17] and Nanevski
et al.[7]. This is achieved by distinguishing between normal terms M and neu-
tral terms R. While the syntax only guarantees that terms N contain no β-
redexes, the typing rules will also guarantee that all well-typed terms are fully
η-expanded.

We distinguish between four kinds of variables in our theory: Ordinary bound
variables are used to represent data-level binders and are bound by λ-abstraction.
Contextual variables stand for open objects, and include meta-variables u, which

DRAFT February 22, 2008—15 : 44

6

Kinds K ::= type | Πx:A.K
Atomic types P ::= a M1 . . . Mn

Types A, B ::= P | Πx:A.B | Σx:A.B
Normal terms M, N ::= λx. M | (M, N) | R
Neutral terms R ::= c | x | u[σ] | p[σ] | R N | projkR
Substitutions σ, ρ ::= · | σ ; M | σ , R | s[σ] | idψ

Context variables ψ, φ
Contexts Ψ, Φ ::= · | ψ | Ψ, x:A
Meta-contexts ∆ ::= · | ∆, u::A[Ψ] | ∆, p::A[Ψ] | ∆, s::Ψ [Φ]
Schema contexts Ω ::= · | Ω, ψ::W

Fig. 3. The data level

represent general open objects, parameter variables p that can only be instanti-
ated with an ordinary bound variable, and substitution variables s, which rep-
resent a mapping from one context to another. Contextual variables are intro-
duced in computation-level case expressions, and can be instantiated via pattern
matching. They are associated with a postponed substitution σ thereby repre-
senting a closure. Our intention is to apply σ as soon as we know which term the
contextual variable should stand for. The domain of σ thus describes the free
variables that can possibly occur in the object which represents the contextual
variable, and the type system statically guarantees this.

Substitutions σ are built of either normal terms (in σ ; M) or atomic terms (in
σ , R). We do not make the domain of the substitutions explicit, which simplifies
the theoretical development and avoids having to rename the domain of a given
substitution σ. Similar to meta-variables, substitution variables are closures with
a postponed substitution. We also have a first-class notion of identity substitu-
tion idψ. Our convention is that data-level substitutions, as defined operations
on data-level terms, are written [σ]N .

Contextual variables such as meta-variables u, parameter variables p, and
substitution variables s are declared in a meta-level context ∆, while ordinary
bound variables are declared in a context Ψ .

Finally, our foundation supports context variables ψ which allow us to reason
abstractly with contexts. Abstracting over contexts is an interesting and essential
next step to allow recursion over higher-order abstract syntax. Context variables
are declared in Ω. Unlike previous uses of context variables [6], a context may
contain at most one context variable. In the same way that types classify objects,
and kinds classify types, we introduce the notion of a schema W that classifies
contexts Ψ . We will return to the definition of schemas on page 8.

We assume that type constants and object constants are declared in a signa-
ture Σ as pure LF objects, i.e. data objects of Π-type. We suppress the signature
since it is the same throughout a typing derivation, but we will keep in mind
that all typing judgments have access to a well-formed signature. As a notational
convenience, we write proj

#
k R for the kth projection of R.

DRAFT February 22, 2008—15 : 44

7

Data-level typing We present a bidirectional type system for data-level terms.
Typing is defined via the following judgments:

Ω;∆;Ψ ⊢ M ⇐ A Check normal object M against A
Ω;∆;Ψ ⊢ R ⇒ A Synthesize A for neutral object R
Ω;∆;Φ ⊢ σ ⇐ Ψ Check σ against context Ψ

For readability, we omit Ω in the subsequent development since it is constant;
we also assume that ∆ and Ψ are well-formed. First, the typing rules for objects.

Data-level normal terms

∆;Ψ, x:A ⊢ M ⇐ B

∆;Ψ ⊢ λx.M ⇐ Πx:A.B
ΠI

∆;Ψ ⊢ M1 ⇐ A1 ∆;Ψ ⊢ M2 ⇐ [M1/x]aA1
A2

∆;Ψ ⊢ (M1,M2) ⇐ Σx:A1.A2
ΣI

∆;Ψ ⊢ R ⇒ P ′ P ′ = P

∆;Ψ ⊢ R ⇐ P
turn

Data-level neutral terms

x:A ∈ Ψ
∆;Ψ ⊢ x ⇒ A

var c:A ∈ Σ
∆;Ψ ⊢ c ⇒ A

con
u::A[Φ] ∈ ∆ ∆;Ψ ⊢ σ ⇐ Φ

∆;Ψ ⊢ u[σ] ⇒ [σ]aΦA
mvar

p::A[Φ] ∈ ∆ ∆;Ψ ⊢ σ ⇐ Φ

∆;Ψ ⊢ p[σ] ⇒ [σ]aΦA
param ∆;Ψ ⊢ R ⇒ Πx:A.B ∆;Ψ ⊢ N ⇐ A

∆;Ψ ⊢ R N ⇒ [N/x]aAB
ΠE

∆;Ψ ⊢ R ⇒ Σx:A1.A2

∆;Ψ ⊢ proj1R ⇒ A1

ΣE1
∆;Ψ ⊢ R ⇒ Σx:A1.A2

∆;Ψ ⊢ proj2R ⇒ [proj1R/x]aA1
A2

ΣE2

Data-level substitutions

∆;Ψ ⊢ · ⇐ · ∆;ψ, Ψ ⊢ idψ ⇐ ψ

s::Φ1[Φ2] ∈ ∆ ∆;Ψ ⊢ ρ ⇐ Φ2 Φ
α
= Φ1

∆;Ψ ⊢ (s[ρ]) ⇐ Φ

∆;Ψ ⊢ σ⇐Φ ∆;Ψ ⊢ R⇒A′ [σ]aΦA=A′

∆;Ψ ⊢ (σ ,R) ⇐ (Φ, x:A)

∆;Ψ ⊢ σ ⇐ Φ ∆;Ψ ⊢ M ⇐ [σ]aΦA

∆;Ψ ⊢ (σ ;M) ⇐ (Φ, x:A)

We assume that data level type constants a together with constants c have
been declared in a signature. We will tacitly rename bound variables, and main-
tain that contexts and substitutions declare no variable more than once. Note
that substitutions σ are defined only on ordinary variables x, not on modal vari-
ables u. We also require the usual conditions on bound variables. For example,
in ΠI the bound variable x must be new and cannot already occur in Ψ . This
can always be achieved via α-renaming. The typing rules for data-level neutral
terms rely on hereditary substitutions which ensure that canonical forms are
preserved [7].

The idea is to define a primitive recursive functional that always returns
a canonical object. In places where the ordinary substitution would construct
a redex (λy.M)N we must continue, substituting N for y in M . Since this
could again create a redex, we must continue and hereditarily substitute and
eliminate potential redexes. Hereditary substitution can be defined recursively,

DRAFT February 22, 2008—15 : 44

8

Element types A∗ ::= Πx:A.A∗ | a N1 . . . Nn

Schema elements F ::= all x1:B
∗

1 , . . . xk:B∗

k .Σy1:A
∗

1, . . . , yj :A
∗

j .A∗

Schemas W ::= (F1 + · · · + Fn)∗

Context Ψ checks against a schema W

for some k Ω; ∆; Ψ ⊢ A ∈ Fk Ω; ∆ ⊢ Ψ ⇐ (F1 + · · · + Fn)∗

Ω; ∆ ⊢ Ψ, x:A ⇐ (F1 + · · · + Fn)∗

ψ::W ∈ Ω

Ω; ∆ ⊢ ψ ⇐ W Ω; ∆ ⊢ · ⇐ W

Type A is an instance of schema element F = all Θ.ΣΦ∗. B∗

Θ∗ = x1:C
∗

1 , . . . , xn:C∗

n σ = u1[id(Ψ)]/x1, . . . , un[id(Ψ)]/xn

Ω; ∆; u1::C
∗

1 [Ψ], . . . , un::C∗

n[Ψ]; Ψ ⊢ A
.
= [σ]ΣΦ∗.B∗ / (θ, ∆)

Ω; ∆; Ψ ⊢ A ∈ all Θ∗.ΣΦ∗. B∗

Fig. 4. Schemas

considering both the structure of the term to which the substitution is applied
and the type of the object being substituted. We omit the definition of ordinary
hereditary substitutions and refer the reader to Nanevski et al. [7] for details.
For the subsequent development we omit the subscripts for better readability.

Context schemas As the earlier example illustrated, contexts play an important
part in programming with open data objects, and in particular contexts which
are explicitly constructed passed will belong to a specific context schema. In
the earlier example, the context schema (nat)∗ represented contexts of the form
x1:nat, . . ., xn:nat. In general, we allow much more expressive contexts. For
instance, when reasoning about natural deductions, the implication introduction
rule adds an assumption of the form u:nd A for some concrete proposition A.

Inductive definition for contexts Representation of the context
Γ ′ ::= · | Γ ′, x:nat | Γ ′, u:nd A nat + (all A : o.nd A)

We use + to denote a choice of possible elements in a context, and all allows us to
describe an assumption for all possible propositions A. One concrete instance of
this schema is x:nat, u:nd (eq x x), which arises when describing the derivation
of forall λx. (eq x x) imp (eq (Suc x) (Suc x).

We give the grammar of schemas in Figure 4. Schemas are built of elements
F1, . . . , Fn, each of which must have the form allΦ∗.Σy1:A

∗

1, . . . , yj :A
∗

j . A
∗ where

Φ∗ = x1:B
∗

1 , . . . xk:B∗

k . In other words, the element is of ΣΠ-type, where we
first introduce some Σ-types, followed by pure Π-types. We disallow arbitrary
mixing of Σ and Π. This restriction will make it easier to describe the possible
terms of this type, which is a crucial step towards ensuring coverage. It also
seems sufficient for many practical situations, since the Twelf system employs

DRAFT February 22, 2008—15 : 44

9

a similar restriction on worlds. In Beluga, the computation typing rules [11]
guarantee that contexts matching this grammar are the only contexts created
during computation.

To check a context Ψ against a schema (F1 + · · · + Fn), we check that Ψ
is an instance of a schema element Fk = allΦ∗.Σy1:A

∗

1, . . . , yj :A
∗

j . A
∗, with all

variables in Φ∗ instantiated such that Ψ is an instance of Fk. In Figure 4 we
show how to check that a given context Ψ is an instance of a schema element Fi

using higher-order pattern matching.

4 Coverage Checking

In this section, we present a theory for coverage checking. The task is to decide
whether every closed term of type A[Ψ] is an instance of at least one of a given
set of patterns; in Beluga, this is the set of patterns guarding the branches of a
case expression. This is undecidable in general, since any set of patterns covers
all terms of an empty type, and emptiness is undecidable [5, p. 179]. In the
setting of Beluga, empty types are useless, so there is no reason to worry about
how coverage checking behaves with empty types.

The work of Coquand [2] and of Schürmann and Pfenning [14] described
coverage checking for closed terms. A theoretical treatment of coverage over
open data objects has been left open.

Coverage checking always requires some notion of splitting. In the setting of
closed terms, to see that the set of patterns Z = {Zero, Suc u} covers the type
nat, one splits nat into its constituent constructors. In our setting, the question
becomes: does Z cover nat[Ψ] for some context Ψ?

In fact, Z only covers nat[·], the closed terms of type nat. With open data,
the type is also inhabited by variables. Thus, nat[Ψ] should be split into the
constituent constructors plus the possible variables. For example, to see that
Z ′ = {Zero, Suc u[idψ], x, p2[idψ]} covers nat[ψ, x:nat, y:o], we split that type
into the constructors along with the parameter variables p[idψ] denoting the
generic case that we may encounter a variable from ψ and concrete variables x

and y which occur in the context:

constructors of nat

︷ ︸︸ ︷

Zero, Suc u[idψ, x, y],

variables of ψ, x:nat, y:o
︷ ︸︸ ︷

p1[idψ], p2[idψ], x, y

Next, we throw out variables that are not of the covering type nat. To do this,
we need to know the types of the parameter variables p1 and p2. These come
from the schema of context ψ. Suppose that ψ represents a context of the form
(o)∗+ (nat)∗. We can let p1[idψ] stand for any variable in ψ of type o, and p2[idψ]
stand for any variable in ψ of type nat. Then we can discard p1[idψ] and y—both
of which are variables of type o, not of type nat—giving a direct correspondence
to Z ′, from which coverage is obvious.

In practice, we can rely on techniques based on subordination [16] to eliminate
the variable y in Suc u[idψ, x, y], since natural numbers do not include subterms
of type o.

DRAFT February 22, 2008—15 : 44

10

Note that we could also refine u[idψ, x, y] further by splitting it into its con-
stituent constructors and variables to obtain Suc Zero and Suc (Suc u[idψ, x, y]),
but there was no need. On the other hand, showing that Z ′ covers required the
“outermost” split. Decisions about when and where to split are not determined
by our theory; such choices are embodied in a nondeterministic choice between
two rules. Our system is thus the foundation for a coverage checking algorithm.

We state some key metatheoretical results, and then describe how the cover-
age checking rules work. We write [[θ]] for meta-level substitution.

Theorem 1. All data-level typing judgments are decidable.

Proof. The typing rules are syntax-directed, and therefore clearly decidable as-
suming hereditary substitution is decidable.

Theorem 2 (Soundness of higher-order pattern unification).
If Ω;∆;Ψ ⊢ Q ⇐ type and Ω;∆;Ψ ⊢ P ⇐ type and Ω;∆;Ψ ⊢ Q

.
= P / (θ,∆′)

then Ω;∆′ ⊢ θ : ∆ and Ω;∆′; [[θ]]Ψ ⊢ [[θ]]P = [[θ]]Q
and θ is the most general unifier, that is,
for all ·; · ⊢ ρ : (Ω;∆) there exists θ′ such that ρ = [[θ′]]θ.

Proof. The proof is a simple extension of the one in [10].

Lemma 1 (Object inversion).
If ·; ·;Ψ ⊢ R ⇐ P and ⊢ Ψ : W then

(1) R = c N1 . . . Nk iff Σ(c) = Πx1:A1. · · ·Πxk:Ak.P ′

and [N1/x1, . . . , Nk/xk]P ′ = P .

(2) R = x N1 . . . Nk iff Ψ(x) = Πx1:A1. · · ·Πxk:Ak.P ′

and [N1/x1, . . . , Nk/xk]P ′ = P .

(3) R = (proj
#

l y) N1 . . . Nk iff Ψ(y) = Σy1:A
∗

1, . . . ym:A∗

m.A∗

m+1

and [proj
#
1 y/y1, . . . , proj

#

l y/yl]A
∗

l+1 = Πx1:B1. . . . Πxk:Bk.P ′

where 1 ≤ l ≤ m and [N1/x1, . . . Nk/xk]P ′ = P .

Proof. By case analysis and inversion on the derivation of ·; ·;Ψ ⊢ R ⇐ P .

4.1 Overview of coverage judgments

The most essential judgment has the form Ω;∆;Ψ ⊢ Obj(A) ¤ covered-byZ,
meaning that every object of type A is matched by at least one pattern in
Z. A derivation of this judgment has subderivations of a more general form,
Ω;∆;Ψ ⊢ Obj(A) ¤ J , which analyzes A and “continues” with J . Thus, the
first judgment Ω;∆;Ψ ⊢ Obj(A) ¤ covered-byZ says to analyze A and then
check whether Z covers it.

Within the derivation, the splits produced are represented by subderivations
of Ω;∆;Ψ ⊢ M : A ¤ J , saying that M—which can include “pattern variables”

DRAFT February 22, 2008—15 : 44

11

u[σ], very roughly corresponding to wildcard patterns—has type A. The shape
of a coverage derivation (omitting contexts for clarity) is:

M1 : A1 ¤ J
...

. . . Mn : An ¤ J
...

Obj(A) ¤ J

where M1, . . . ,Mn collectively cover all possible terms of type A, and A1, . . . , An

may be more precise than A.
In a derivation of Obj(A) ¤covered-byZ, we examine Z only at the leaves.

Following the diagram above, with J = covered-byZ, each subderivation
rooted at Mk : Ak ¤ covered-byZ must look like this:

Ω ⊢ (Π∆.box(Ψ̂ .Mk) : Ak[Ψ])
.
= ζ / (θ,∆′′)

Ω ⊢ Π∆.box(Ψ̂ .Mk) : Ak[Ψ] covered-by ζ
Covered-By-ζ

Ω;∆;Ψ ⊢ Mk : Ak ¤ covered-by {. . . , ζ, . . . }
Covered-By-Z

We assume that the pattern ζ includes an explicit meta-variable context ∆′,
explicit object-level names Ψ̂ ′, and an explicit type A′[Ψ ′]. The expressions on
each side of the

.
= thus have the same shape, so the

.
= premise is

Ω ⊢ (Π∆.box(Ψ̂ .Mk) : Ak[Ψ])
︸ ︷︷ ︸

result of coverage analysis

.
= (Π∆′.box(Ψ̂ ′.M ′) : A′[Ψ ′])

︸ ︷︷ ︸

guard from case expression

/ (θ,∆′′)

Ignoring contexts for a moment, this says that Mk is an instance of M ′, realized
by the substitution θ, that is, Mk = [[θ]]M ′. If all the Mk resulting from analysis
of A are thus covered, then all terms of type A are covered.

4.2 Obj(P): analyzing base types

When deriving Obj(P) ¤ J , we can choose not to split (rule Obj-no-split), in
which case the Mk shown above will have the form u[id(Ψk)] for various Ψk (dis-
cussed below). Alternatively, we can apply the rule Obj-split (bottom of Figure
5) to split it into several terms. Each of these will look like R N1 . . . Nm, where
R is a variable x, constructor c or parameter p[σ]—or some projection of x or
p[σ].

The simplest of these are the constructors c. The rule Obj-split has a premise
App〈ck〉(Σ(ck) > P) ¤ J for every object-level constructor ck. This even in-
cludes constructors for completely different base types, which will be discarded
further up the derivation. In general, we must generate many spines N1 . . . Nm

in derivations of Ω;∆;Ψ ⊢ App〈R〉(A∗ > P) ¤ J . The P denotes that we are
constructing objects of type P . The rules for such judgments are defined on the
structure of A∗ = Πx1:A1 · · ·Πxm:Am.Q. Eventually, after going through this
for each argument, we will have a fully-applied ck N1 . . . Nm where the A∗ is
some atomic type Q. To ensure that the type Q of the constructed object is
equal to our target type P , we unify them (in rule App-

.
=). If they do not unify

DRAFT February 22, 2008—15 : 44

12

Ω ⊢ Π∆.box(Ψ̂ .M) : A[Ψ] covered-by ζ

Ω ⊢ (Π∆.box(Ψ̂ . M) : A[Ψ])
.
= (Π∆′.box(Ψ̂ ′. M ′) : A′[Ψ ′]) / (θ, ∆′′)

Ω ⊢ Π∆.box(Ψ̂ . M) : A[Ψ] covered-by (Π∆′.box(Ψ̂ . M ′) : A′[Ψ ′])
Covered-By-ζ

Ω;∆;Ψ ⊢ App〈R〉(A > P) ¤ J

Ω; ∆; Ψ ⊢ Q ⇒⇐ P

Ω; ∆; Ψ ⊢ App〈R〉(Q > P) ¤ J
App-⇒⇐

Ω; ∆; Ψ ⊢ Q
.
= P / (θ, ∆′)

Ω; ∆′; [[θ]]Ψ ⊢ [[θ]]R : [[θ]]P ¤ [[θ]]J

Ω; ∆; Ψ ⊢ App〈R〉(Q > P) ¤ J
App-

.
=

Ω; ∆; Ψ ⊢ App〈R M〉([M/x]B > P) ¤ J

Ω; ∆; Ψ ⊢ M : A ¤ neutral〈R〉(x.B > P) ¤ J

Ω; ∆; Ψ ⊢ Obj(A) ¤ neutral〈R〉(x.B > P) ¤ J

Ω; ∆; Ψ ⊢ App〈R〉(Πx:A.B > P) ¤ J
App-Π

for 0 ≤ i ≤ m:

Ω; ∆; Ψ ⊢ App〈proj
#
i R〉([proj

#
1 R/x1, . . . , proj

#
i R/xi]A

∗

i+1 > P) ¤ J

Ω; ∆; Ψ ⊢ App〈R〉(Σx1:A
∗

1, . . . , xm:A∗

m.A∗

m+1 > P) ¤ J
App-Σ

Ω;∆;Ψ ⊢ M : A ¤ J

Ω ⊢ Π∆.box(Ψ̂ . M) : A[Ψ] covered-by ζk

Ω; ∆; Ψ ⊢ M : A ¤ covered-by {ζ1, . . . , ζn}
Covered-By-Z

Ω; ∆; Ψ ⊢ (λx. M) : (Πx:A1.A2) ¤ J

Ω; ∆; Ψ, x:A1 ⊢ M : A2 ¤ lam ¤ J

Ω; ∆; Ψ ⊢ (M, N) : Σx:A1.A2 ¤ J

Ω; ∆; Ψ ⊢ N : [M/x]A2 ¤ pair2 (M :A1, x.•) ¤ J

Ω; ∆; Ψ ⊢ Obj([M/x]A2) ¤ pair2 (M :A1, x.•) ¤ J

Ω; ∆; Ψ ⊢ M : A1 ¤ pair1 (•, x.A2) ¤ J
Ω;∆;Ψ ⊢ Obj(A) ¤ J

Ω; ∆; Ψ, x:A1 ⊢ Obj(A2) ¤ lam ¤ J

Ω; ∆; Ψ ⊢ Obj(Πx:A1.A2) ¤ J

Ω; ∆; Ψ ⊢ Obj(A1) ¤ pair1 (•, x.A2) ¤ J

Ω; ∆; Ψ ⊢ Obj(Σx:A1.A2) ¤ J

Ω; ∆; Ψ ⊢ MVars(P) ¤ J

Ω; ∆; Ψ ⊢ Obj(P) ¤ J
Obj-no-split

Ψ = ψ, x1:ΣΨ∗

1 .A∗

1, . . . , xk:ΣΨ∗

k .A∗

k

Ω(ψ) = F1 + · · · + Fm

Ω; ∆; Ψ ⊢ PVars〈ψ : F1〉 > P ¤ J
...

Ω; ∆; Ψ ⊢ PVars〈ψ : Fm〉 > P ¤ J

Ω; ∆; Ψ ⊢ App〈x1〉(ΣΨ∗

1 .A∗

1 > P) ¤ J
...

Ω; ∆; Ψ ⊢ App〈xk〉(ΣΨ∗

k .A∗

k > P) ¤ J
Ω; ∆; Ψ ⊢ App〈c1〉 (Σ(c1) > P) ¤ J

...
Ω; ∆; Ψ ⊢ App〈cn〉 (Σ(cn) > P) ¤ J

Ω; ∆; Ψ ⊢ Obj(P) ¤ J
Obj-split

Fig. 5. Coverage checking rules

DRAFT February 22, 2008—15 : 44

13

Ω;∆;Ψ ⊢ MVars(P) ¤ J

ValidWk(·; · ⊢ P [Ψ])
= {Ψ1, . . . , Ψn}

Ω; ∆, u::P [Ψ1]; Ψ ⊢ (u[id(Ψ1)] : P) ¤ J
...

Ω; ∆, u::P [Ψn]; Ψ ⊢ (u[id(Ψn)] : P) ¤ J

Ω; ∆; Ψ ⊢ MVars(P) ¤ J
MVars

Ω;∆;Ψ ⊢ PVars〈ψ : allΘ∗.ΣΦ∗. A∗

j+1〉 > P ¤ J

Θ∗ = y1:B
∗

1 , . . . , yn:B∗

n and Φ∗ = x1:A
∗

1, . . . , xj :A
∗

j

σ = u1[idψ]/y1, . . . , un[idψ]/yn

∆Θ = u1::B
∗

1 [ψ], . . . , un::B∗

n[ψ]
for 0 ≤ i ≤ j:

σ′ = (proj
#
1 p[idψ])/x1, . . . , (proj

#
i p[idψ])/xi

Ω; ∆, ∆Θ, p::[σ]((ΣΦ∗.A∗

j+1)[ψ]); Ψ ⊢ App〈proj
#

i p[idψ]〉([σ′][σ]A∗

i+1 > P) ¤ J

Ω; ∆; Ψ ⊢ PVars〈ψ : all Θ∗.ΣΦ∗.A∗

j+1〉 > P ¤ J
PVars

Fig. 6. Coverage checking rules (continued)

(written Q ⇒⇐ P in rule App-⇒⇐) we have a trivial coverage derivation, and
the term is discarded.

Next, we turn to the premises for variables in the rule Obj-split: App〈xk〉(B >
P) ¤ J where xk:B is in Ψ . If B is a sequence of Πs around a base type, the
system behaves as it does for the constructors. However, since B can have one
or more Σs around some B∗, we need to take all appropriate projections to get
components of the dependent tuple of type Σ.

Finally, we discuss the remaining premises of Obj-split, which have the form
PVars〈ψ : F 〉 > P ¤ J . These characterize the generic variable case by con-
structing parameter variables p of the appropriate type, and hinge on our notion
of context schemas. For each possible schema element, we generate a parameter
variable. The type of the parameter variable is given by the schema element
F . Recall the schema element all A:o.ndA describing assumptions about natural
deductions. To describe the type of a parameter p generically, we first create a
meta-variable for each all -quantified variable in the element. So, in this example,
p[idψ] has type nd u[idψ] where u is a (fresh) meta-variable. In general, we get
the type of a parameter from the element allΘ∗.ΣΦ∗.A∗ by generating a substi-
tution σ′ that instantiates all variables in Θ∗ with meta-variables, and applying
σ′ to ΣΦ∗.A∗. Then we closely follow the ideas for concrete variables. Again,
since [σ′]ΣΦ∗.A∗ is inhabited by tuples, we consider all possible projections.

4.3 MVars(P) ¤ J : General case for all ground instances of P

The rule Obj-split refined an element of type P . In contrast, the rule Obj-no-split

creates a meta-variable u[id(Ψ)] of type P [Ψ]. Since any object of type P [Ψ]
matches u[id(Ψ)], it covers all possible ground instances of the type P [Ψ].

DRAFT February 22, 2008—15 : 44

14

We also need to refine pattern sets Z based on variable dependencies. Re-
call our earlier example where we refined the pattern eq U[idψ,x] V[idψ,x] into
the four cases {eq U[idψ] V[idψ], eq U[idψ,x] V[idψ], eq U[idψ] V[idψ,x], eq
U[idψ,x] V[idψ,x]}. Thus, instead of simply generating u[id(Ψ)] we generate all
sensible weakenings {Ψ1, . . . , Ψn} of Ψ , and for each Ψi we generate u[id(Ψi)].

4.4 Coverage soundness

Roughly, the soundness result we need is that, if ·; ·;Ψ ⊢ Obj(A) ¤covered-byZ,
then for every M of type A there is a pattern in Z that matches M . That theorem
will not be difficult once we have a key lemma. This lemma will guarantee that if
we have a derivation for S :: . . . ⊢ Obj(A) ¤ J then for every ground object M ′

of type A there is some subderivation S ′ :: . . . ⊢ Mi : A ¤ J within S where M ′

is an instance of Mi. Once we have this lemma, the path to soundness is easy: if
J = covered-byZ, the subderivation S ′ is of . . . ⊢ M : A ¤ covered-byZ,
and inversions bring us to the premise of Covered-By-Z.

To state the lemma precisely, we first note that while the coverage judgment
Ω;∆;Ψ ⊢ Obj(A) ¤ J generically covers some Ω and ∆, when we run a pro-
gram we only consider closed data, so these contexts will be empty. Thus, the
assumption M ′ ⇐ A should be ground: ·; ·; [[ρ]]Ψ ⊢ M ′ ⇐ [[ρ]]A, where ρ is a
grounding substitution: ·; · ⊢ ρ : (Ω;∆).

In addition, the domain of S ′ need not exactly match the domain of S. For
instance, the type in S ′ will actually be [[θ]]A, where θ is a substitution from ∆
to ∆′. Likewise, “M ⇐ A” must actually be Ω;∆′; [[θ]]Ψ ⊢ M ⇐ [[θ]]A.

As we have θ from ∆ to ∆′, and ρ from ∆ to ground, the lemma also asserts
the existence of a θ′ from ∆′ to ground, so that ρ = [[θ′]]θ.

We must also reason about App derivations. The rough statement is that if
S :: . . . ⊢ App〈R〉(A > P) ¤ J and R ⇒ A and R N ′

1 . . . N ′

n ⇐ P , then
S ′ :: . . . ⊢ (R N ′

1 . . . N ′

n) : P ¤ J . Laying out contexts and substitutions as
before, we will actually have some N1 such that [[ρ]]N1 = N ′

1, etc.

Lemma 2 (Coverage Soundness).

(1) If S :: Ω;∆;Ψ ⊢ Obj(A) ¤J and ·; ·; [[ρ]]Ψ ⊢ M ′ ⇐ [[ρ]]A and ·; · ⊢ ρ : (Ω;∆)
then there exist θ and M such that ∆′ ⊢ θ : ∆
and S ′ :: Ω;∆′; [[θ]]Ψ ⊢ M : [[θ]]A ¤ [[θ]]J where S ′ < S
and Ω;∆′; [[θ]]Ψ ⊢ M ⇐ [[θ]]A
and there exists θ′ s.t. ρ = [[θ′]]θ and M ′ = [[θ′]]M .

(2) If S :: Ω;∆;Ψ ⊢ App〈R〉(A∗ > P) ¤ J and Ω;∆;Ψ ⊢ R ⇒ A∗

and ·; · ⊢ ρ : ∆
and for all spines N ′

1, . . . , N
′

n of some length n such that
·; ·; [[ρ]]Ψ ⊢ ([[ρ]]R) N ′

1 . . . N ′

n ⇐ [[ρ]]P ,
then S ′ :: Ω;∆′; [[θ]]Ψ ⊢ [[θ]](R N1 . . . Nn) : [[θ]]P ¤ [[θ]]J
and for all i we have [[ρ]]Ni = N ′

i

and there exists θ′ s.t. ρ = [[θ′]]θ.

Proof. By complete induction on the height of S.

DRAFT February 22, 2008—15 : 44

15

Theorem 3 (Coverage Soundness).
If Z = {ζ1, . . . , ζn} and for all j ·; ·; · ⊢ ζj ⇐A[Ψ] τ and
·; ·;Ψ ⊢ Obj(A) ¤ covered-byZ and for all M ′ s.t. ·; ·;Ψ ⊢ M ′ ⇐ A then there
exists k such that ·; ·; · ⊢ box(Ψ̂ .M)

.
= ζi / (θ, ·).

Proof. By Lemma 2, inversion, and correctness of higher order matching.

5 Conclusion

Most previous work on coverage checking, such as Coquand’s work [2] in the
setting of Agda and later refinements of this approach [5,8], has dealt with
closed data objects. In the setting of logical frameworks, theoretical work on
coverage also concentrated on closed objects [14]. In contrast, we have presented
a framework for coverage checking terms that depend on assumptions in a given
context, and proved soundness. Context schemas and parameter variables allow
us to analyze generic cases for all objects represented by a context variable.

We have concentrated on the Beluga language, but systems like Delphin and
Twelf have to address a very similar issue. In fact, Schürmann [13] presented
early work for open data in Twelf. In Twelf, we characterize context schemas
by world declarations. However, there is an important difference between worlds
and schemas. In Twelf, to count free occurrences of a variable, we would write a
relation. But there is no way to write a generic base case for all possible variables
occurring in a context represented by ψ. Instead, we must introduce dynamic
extensions for each variable encountered when we traverse a binder. Thus, the
world declaration not only captures the bound variables introduced when we
traverse a binder, but also a base case for each binder. Consequently, some of
the base cases are scattered, and world declarations tend to be more complicated
than our schema declarations. It also makes world checking significantly more
complicated.

The treatment of contexts in Delphin is closely related to ours, though Del-
phin has no explicit context variables, and parameter variables are missing from
the theoretical framework. Nevertheless, we believe this framework is also a foun-
dation for coverage in Delphin.

We plan to implement a coverage algorithm based on the ideas in this pa-
per within the Beluga prototype. We also plan to extend coverage checking to
substitution patterns (a feature unique to Beluga), which we expect will be
straightforward.

References

1. D. Baelde, A. Gacek, D. Miller, G. Nadathur, and A. Tiu. The Bedwyr system for
model checking over syntactic expressions. In F. Pfenning, editor, 21st Conference
on Automated Deduction, number 4603 in LNAI, pages 391–397. Springer, 2007.

2. T. Coquand. Pattern matching with dependent types. In Informal Proceedings of
Workshop on Types for Proofs and Programs, pages 71–84. Dept. of Computing
Science, Chalmers Univ. of Technology and Göteborg Univ., 1992.

DRAFT February 22, 2008—15 : 44

16

3. A. Gacek, D. Miller, and G. Nadathur. Combining generic judgments with recursive
definitions. Draft, arXiv:0802.0865v1 [cs.LO], Jan. 2008.

4. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the ACM, 40(1):143–184, January 1993.

5. C. McBride. Dependently Typed Functional Programs and Their Proofs. PhD
thesis, University of Edinburgh, 2000. Technical Report ECS-LFCS-00-419.

6. A. McCreight and C. Schürmann. A meta-linear logical framework. In 4th Inter-
national Workshop on Logical Frameworks and Meta-Languages (LFM’04), 2004.

7. A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory. ACM
Transactions on Computational Logic, 2008. Accepted, to appear.

8. U. Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, Sept. 2007.

9. F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical frame-
work for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th
International Conference on Automated Deduction (CADE-16), pages 202–206.
Springer-Verlag LNAI 1632, 1999.

10. B. Pientka. Tabled higher-order logic programming. PhD thesis, Department of
Computer Science, Carnegie Mellon University, 2003. CMU-CS-03-185.

11. B. Pientka. A type-theoretic foundation for programming with higher-order ab-
stract syntax and explicit substitutions. In 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’08), pages 371–382.
ACM, 2008.

12. A. Poswolsky and C. Schürmann. Practical programming with higher-order en-
codings and dependent types. In Proceedings of the 17th European Symposium on
Programming (ESOP ’08), Mar. 2008.

13. C. Schürmann. Automating the Meta Theory of Deductive Systems. PhD thesis,
Department of Computer Science, Carnegie Mellon University, 2000. CMU-CS-00-
146.

14. C. Schürmann and F. Pfenning. A coverage checking algorithm for LF. In D. Basin
and B. Wolff, editors, Proceedings of the 16th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs 2003), volume 2758 of Lecture Notes in
Computer Science(LNCS), pages 120–135, Rome, Italy, 2003. Springer.

15. C. Schürmann, A. Poswolsky, and J. Sarnat. The ∇-calculus. Functional program-
ming with higher-order encodings. In P. Urzyczyn, editor, Proceedings of the 7th
International Conference on Typed Lambda Calculi and Applications (TLCA’05),
Nara, Japan, volume 3461 of Lecture Notes in Computer Science, pages 339–353.
Springer, 2005.

16. R. Virga. Higher-Order Rewriting with Dependent Types. PhD thesis, Department
of Mathematical Sciences, Carnegie Mellon University, 1999. CMU-CS-99-167.

17. K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical frame-
work I: Judgments and properties. Technical Report CMU-CS-02-101, Department
of Computer Science, Carnegie Mellon University, 2002.

DRAFT February 22, 2008—15 : 44

	Case analysis of higher-order data
	Joshua Dunfield and Brigitte Pientka

