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Abstract. Beluga is a proof checker that provides sophisticated in-
frastructure for implementing formal systems with the logical framework
LF and proving metatheoretic properties as total, recursive functions
transforming LF derivations.
In this paper, we describe Harpoon, an interactive proof engine built
on top of Beluga. It allows users to develop proofs interactively using
a small, fixed set of high-level actions that safely transform a subgoal. A
sequence of actions elaborates into a (partial) proof script that serves as
an intermediate representation describing an assertion-level proof. Last,
a proof script translates into a Beluga program which can be type-
checked independently.
Harpoon is available on GitHub. We have used Harpoon to replay
a wide array of examples covering all features supported by Beluga.
In particular, we have used it for normalization proofs, including the
recently proposed POPLMark reloaded challenge.

1 Introduction

Mechanizing formal systems and proofs about them plays an important role in
establishing trust in programming languages and verifying software systems in
general. Key questions in this setting are how to represent variables, (simulta-
neous) substitutions, assumptions, and derivations that depend on assumptions.
Higher-order abstract syntax (HOAS) provides an elegant and unifying answer
to these questions, relieving users from having to write boilerplate code.

Beluga is a proof checker with built-in support for HOAS encodings of for-
mal systems based on the logical framework LF [13]. Metatheoretic inductive
proofs are implemented as recursive, dependently-typed functions that manip-
ulate and transform HOAS representations [21,4,25]. In this paper, we describe
the interactive proof engine Harpoon which is built on top of Beluga. A
Harpoon user modularly and incrementally develops a metatheoretic proof by
solving independent subgoals via a fixed set of high-level actions. An action elim-
inates the subgoal on which it is executed, filling it with a proof that possibly
contains new subgoals to be resolved. The actions we support are: introduction of
assumptions, case-analysis, inductive reasoning, and both forward and backward
reasoning styles.
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While our fixed set of actions is largely inspired by similar systems such
as Twelf [20,28,27] and Abella [11], Harpoon advances the state of the art in
interactively developing mechanized proofs about HOAS representations in two
ways: 1. We treat subgoals as first-class and characterize them using contextual
types that pair their goal types together with the contexts in which they are
meaningful; a contextual substitution property guarantees that each step of proof
development correctly refines the partial proof under construction [8]. 2. Rather
than simply record the sequence of actions given by the user, we elaborate this
sequence into an assertion-level proof [15], represented as what we call a proof
script. The proof script is what we record as output of an interactive session. It
can be both typechecked directly and translated into a Beluga program.

We have used Harpoon (see https://beluga-lang.readthedocs.io/) on a wide
range of representative examples from the Beluga library: normalization proofs
for the simply-typed lambda calculus [6], benchmarks for reasoning about binders
[9,10], and the recent POPLMark Reloaded challenge [1]. These examples involve
numerous concerns that arise in proof development, and cover all the domain-
specific abstractions that Beluga provides. Our experience shows that Har-
poon lowers the entry barrier for users: they only need to understand how to
represent formal systems and derivations using HOAS encodings and can then
manipulate the HOAS representations directly via the high-level actions which
correspond closely to how proofs are developed on paper. As such, we believe
that Harpoon eases the task of proving metatheoretic statements.

2 Proof Development in Harpoon

We introduce the main features of Harpoon by interactively developing the
proof of two lemmas that play a central role in the proof of weak normalization
of the simply-typed lambda calculus. For a more detailed description, see [6].

2.1 Initial setup: encoding the language

We begin by defining the simply-typed lambda-calculus in the logical framework
LF [13] using an intrinsically typed encoding. In typical HOAS style, lambda
abstraction takes an LF function representing the abstraction of a term over a
variable. There is no case for variables, as they are treated implicitly. We remind
the reader that this is a weak, representational function space – there is no case
analysis or recursion, so only genuine lambda terms can be represented.
LF tp : type =
| unit: tp
| arr : tp → tp → tp;

LF tm : tp → type =
| lam : (tm T1 → tm T2) → tm (arr T1 T2)
| app : tm (arr T1 T2) → tm T1 → tm T2;

Free variables such as T1 and T2 are implicitly universally quantified (see [23])
and programmers subsequently do not supply arguments for implicitly quantified
parameters when using a constructor.

https://beluga-lang.readthedocs.io/
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Next, we define a small-step operational semantics for the language. For
simplicity, we use a call-by-name reduction strategy and do not reduce under
lambda-abstractions. Note that we use LF application to encode the object-level
substitution in the s_beta rule.
LF step : tm T → tm T → type =
| s_app : step M M’

→ step (app M N) (app M’ N)
| s_beta: step (app (lam M) N) (M N);

LF steps : tm T → tm T → type =
| next : step M M’ → steps M’ N

→ steps M N
| refl: steps M M;

Using this definition, we define a notion of termination: a term halts if it
reduces to a value. This is captured by the constructor halts/m.
LF val : tm T → type = v_lam: val (lam M);
LF halts : tm T → type = halts/m : val V → steps M V → halts M;

2.2 Termination Property: intros, split, unbox, and solve

As the first short lemma, we show the Termination property: if M’ is known to
halt and steps M M’, then M also halts. We start our interactive proof session by
loading the signature and defining the name of the theorem and the statement
that we want to prove.
Name of theorem: halts_step
Statement of theorem: [ ` step M M’] → [ ` halts M’] → [ ` halts M]

We pair each LF object such as step M M’ together with the LF context in
which it is meaningful [21,26,19]. We refer to such an object as a contextual ob-
ject and embed contextual types, written as _ ` _ , into Beluga types using the
“box” syntax. In this example, the LF context, written on the left of ` , is empty,
as we consider closed LF objects. As before, the free variables M and M’ are implic-
itly quantified at the outside. They themselves stand for contextual objects and
have contextual type ( ` tm T). The theorem statements are hence statements
about contextual LF objects and directly correspond to Beluga types.

The proof begins with a single subgoal whose type is simply the statement
of the theorem under no assumptions. Since this subgoal has a function type,
Harpoon will automatically apply the intros action, which introduces assump-
tions as follows: First, the (implicitly) universally quantified variables M, M’ are
added to the meta-context. This context collects parameters introduced by uni-
versal quantifiers. This is in contrast with the computational context, which col-
lects assumptions introduced by the simple function space. In particular, the
second phase of the intros action adds the assumptions s : [` step M M’] and
h : [` halts M’] to the computational context. Observe that since M and M’ have
type tm T, intros also adds T to the meta-context, although it is implicit in the
definitions of step and halts and is not visible at all in the theorem statement
(see the meta-context Fig. 1 step 1).

The proof proceeds by inversion on h. Using the split action, we add the
two new assumptions S:(` steps M’ M2) and V:(` val M2) to the meta-context
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Step 1 Step 2 Step 3
Meta-context:

T : ( ` tp)
M : ( ` tm T)
M’ : ( ` tm T)

Computational context:
s : [ ` step M M’]
h : [ ` halts M’]

[ ` halts M]
> split h

Meta-context:
T : ( ` tp)
M : ( ` tm T)
M’ : ( ` tm T)
M2 : ( ` tm T)
S : ( ` steps M’ M2)
V : ( ` val M2)

Computational context:
s : [ ` step M M’]
h : [ ` halts M’]

[ ` halts M]
> unbox s as S’

Meta-context:
T : ( ` tp)
M : ( ` tm T)
M’ : ( ` tm T)
M2 : ( ` tm T)
S : ( ` steps M’ M2)
V : ( ` val M2)
S’ : ( ` step M M’)

Computational context:
s : [ ` step M M’]
h : [ ` halts M’]

[ ` halts M]
> solve [` halts/m (next S’ S) V]

Fig. 1. Interactive session of the proof for the halts_step lemma.

(see Fig. 1, step 1.). To build a proof for [` halts M], we need to show that
there is a step from M to some value M2. To build such a derivation, we use
first the unbox action on the computation-level assumption s to obtain an as-
sumption S’ in the meta-context which is accessible to the LF layer (inside a
box) (see Fig. 1, step 2.). Finally, we can finish the proof by supplying the term
[ ` halts/m (next S’ S) V] with the solve action (see Fig. 1, step 3). This is
similar to the exact tactic in Coq.

The resulting proof script is given below. Assertions are written in boldface
and curly braces denote new scopes, listing the full meta-context and the full
computational context. Using an erasure we can then generate a translated pro-
gram in the external syntax, i.e. the syntax a user would use when implementing
the proof directly, rather than the internal syntax. It is hence much more com-
pact than the actual proof script. This program can then be seamlessly combined
with hand-written Beluga programs and can also independently type-checked.

Theorem halts_step:[ ` step M M’] → [ ` halts M’] → [ ` halts M]

Proof Script Erased program (external syntax)
intros
{ T : ( ` tp), M : ( ` tm T), M’ : ( ` tm T)
| s : [ ` step M M’], h : [ ` halts M’]
; split h as

case halts/m:
{ T : ( ` tp), M : ( ` tm T), M’ : ( ` tm T),

M2 : ( ` tm T), S : ( ` steps M’ M2), V : ( ` val M2)
| s : [ ` step M M’], h : [ ` halts M’]
; by s as S’ unboxed
; solve [ ` halts/m (next S’ S) V]
}

}

fn s => fn h =>
let [ ` halts/m S V] = h in
let [ ` S’] = s in

[ ` halts/m (next S’ S) V]

2.3 Setup continued: reducibility

We now consider one of the key lemmas in the weak normalization proof, called
the backwards closed lemma, i.e. if M’ is reducible at some type T and M steps to
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M’, then M is also reducible at T. We begin to define a set of terms reducible at a
type T. All reducible terms are required to halt, and reducible terms at an arrow
type are required to produce reducible output given reducible input. Concretely,
a term M is reducible at type (arr T1 T2), if for all terms N:tm T1 where N is
reducible at type T1, then (app M N) is reducible at type T2. Reducibility cannot
be directly encoded on the LF layer, as it is not merely describing the syntax
of an expression or derivation. Instead, we encode the set of reducible terms
using the stratified type Reduce which is recursively defined on the type T in
Beluga (see [16]). Note that we write { } for explicit universal quantification
over contextual objects.
stratified Reduce : {T : (` tp)} [` tm T] → ctype =

| Unit: [` halts M] → Reduce [` unit] [` M]
| Arr : [` halts M]

→ ({N:(` tm T1)} Reduce [` T1] [` N] → Reduce [` T2] [` app M N])
→ Reduce [` arr T1 T2] [` M];

2.4 Backwards Closed Property: msplit, suffices, and by

We can now state the backwards closed lemma formally as follows: if M’ is re-
ducible at some type T and M steps to M’, then M is also reducible at T. We prove
this lemma by induction on T. This is specified by referring to the position of
the induction variable in the statement.
Name of theorem: bwd_closed
Statement of theorem:

{T : (` tp)} {M : (` tm T)} {M’ : (` tm T)}
[` step M M’] → Reduce [` T] [` M’] → Reduce [` T] [` M]

Induction order: 1

After Harpoon automatically introduces the metavariables T, M, and M’ to-
gether with an assumption s : [` step M M’] and r : Reduce [` T] [` M’], we
use msplit T to split the proof into two cases (see Fig. 2, step 1). Whereas split
case analyzes a Beluga type, msplit considers the cases for a (contextual) LF
type. In reality, msplit is implemented in terms of the split action.

The case for T = unit is straightforward (see Fig. 2, steps 2 and 3). First,
we use the split action to invert the premise r : Reduce [` unit] [` M’]. Then,
we use the by action to invoke the halts_step lemma (see Sec. 2.2) to obtain an
assumption h : [` halts M]. We solve this case by supplying the term Unit h
(see Fig. 2 step 3).

In the case for T = arr T1 T2, we begin similarly by inversion on r us-
ing the split action (see Fig. 3 step 4). We observe that the goal type is
Reduce [` arr T1 T2] [` M], which can be produced by using the Arr constructor
if we can construct a proof for each of the user-specified types, [` halts M] and
{N:(` tm T1)} Reduce [` T1] [` N] → Reduce [` T2] [` app M N]. Such back-
wards reasoning is accomplished via the suffices action. The user supplies a
term representing an implication whose conclusion is compatible with the cur-
rent goal and proceeds to prove its premises as specified (see Fig.3 step 5).
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Step 1 Step 2 Step 3
Meta-context:

T : ( ` tp )
M : ( ` tm T )
M’ : ( ` tm T )

Computational context:
s : [` step M M’]
r : Reduce [` T] [` M’]

Reduce [` T] [` M]
> msplit T

Meta-context:
M : ( ` tm unit )
M’: ( ` tm unit )

Computational context:
s : [` step M M’]
r : Reduce [` unit] [` M’]

Reduce [` unit] [` M]
> split r

Meta-context:
M : ( ` tm unit )
M’: ( ` tm unit )

Computational context:
s : [` step M M’]
h’: [` halts M’ ]
r : Reduce [` unit] [` M’]

Reduce [` unit] [` M]
> by halts_step s h’ as h;

solve Unit h

Fig. 2. Backwards Closed Lemma. Step 1: Case analysis of the type T; Steps 2 and 3:
Base case (T = unit).

To prove the first premise, we apply the halts_step lemma (see Fig. 3 step
6). As for the second premise, Harpoon first automatically introduces the
variable N:(` tm T1) and the assumption r1:Reduce [` T1] [` N], so it remains
to show Reduce [` T2] [` app M N]. We deduce r’:Reduce [` T2] [` app M’ N]
using the assumption rn. Using s:[` step M M’], we build a derivation
s’:[` step (app M N) (app M’ N)] using s_app. Finally, we appeal to the induc-
tion hypothesis. Using the by action, we refer to the recursive call to complete
the proof (see Fig. 3 step 7). The resulting proof script (of around 70 lines) can
again be translated into a compact program.

Note that Harpoon allows users to use underscores to stand for arguments
that are uniquely determined (see Harpoon Proof 3 step 7). We enforce that
these underscores stand for uniquely determined objects in order to guarantee
that the contexts and the goal type of every subgoal are closed. This ensures
modularity: solving one subgoal does not affect any other open subgoals. As a
consequence, users are not restricted in their proof development. As they would
on paper, users can work on goals in any order, mix forward and backward
reasoning, erase wrong parts, and replace them by correct steps.

Using the explained actions, one can now prove the fundamental lemma and
the weak normalization theorem. For a more detailled description of this proof
in Beluga see [5,6].

Additional actions. Harpoon supports some additional features not dis-
cussed in this paper; see https://beluga-lang.readthedocs.io/ for a complete list
of actions. In general, these actions add no expressive power, but enable more
precise expression of a user’s intent. For example, the invert action splits on
the type of a given term, ensuring that there is a unique case to consider. It is
implemented simply as the split action followed by an additional check.

https://beluga-lang.readthedocs.io/
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Step 4 Step 5
Meta-context:

T1 : (` tp)
T2 : (` tp)
M : (` tm (arr T1 T2))
M’ : (` tm (arr T1 T2))

Computational context:
s : [` step M M’]
r : Reduce [` arr T1 T2][` M’]

Reduce [` arr T1 T2][` M]
> split r

Meta-context:
T1 : (` tp)
T2 : (` tp)
M : (` tm (arr T1 T2))
M’ : (` tm (arr T1 T2))

Computational context:
s : [` step M M’]
rn : {N : ( ` tm T)}Reduce [` N][` T]
→ Reduce [` T2][` app M’ N]

h’ : [` halts M’]
r : Reduce [` arr T1 T2][` M’]

Reduce [` arr T1 T2][` M]
> suffices by Arr toshow

[` halts M],
{N : ( ` tm T1)}Reduce [` T1][` N]
→ Reduce [` T2][` app M N]

Step 6 Step 7
Meta-context:

T1 : (` tp)
T2 : (` tp)
M : (` tm (arr T1 T2))
M’ : (` tm (arr T1 T2))

Computational context:
s : [` step M M’]
rn : {N : ( ` tm T)} Reduce [` N][` T]
→ Reduce [` T2] [` app M’ N]

h’ : [` halts M’]
r : Reduce [` arr T1 T2][` M’]

[` halts M]
> by halts_step s h’ as h

Meta-context:
T1 : (` tp)
T2 : (` tp)
M : (` tm (arr T1 T2))
M’ : (` tm (arr T1 T2))
N : (` tm T1)

Computational context:
s : [` step M M’]
rn : {N : ( ` tm T)} Reduce [` N][` T]
→ Reduce [` T2] [` app M’ N]

h’ : [` halts M’]
r : Reduce [` arr T1 T2][` M’]
r1 : Reduce [` T1] [` N]

Reduce [` T2] [` app M N]
> by (rn [` N] r1) as r’;

unbox s as S;
by (bwd_closed _ _ _ [` s_app S] r’) as ih

Fig. 3. Backwards Closed Lemma: Step Case

3 Implementation of Harpoon

Harpoon is a front end that allows users to construct a proof for a theorem
statement represented as a Beluga type. Types in Beluga include universal
quantification over contextual types (dependent function space, written with
curly braces), implications (simple function space), boxed contextual types, and
stratified/recursive types (written as c −→C where C stands for a contextual ob-
ject). In addition, Beluga supports quantification over LF contexts and even
LF substitutions relating two LF contexts. We omit these below for simplicity,
although they are also supported in Harpoon. In essence, Beluga types cor-
respond to statements in first-order logic over a domain consisting of contextual
objects, LF contexts, and LF substitutions. We can view c −→C and [Ψ ` A] as
atomic propositions.

Types τ ::= c −→C | [Ψ ` A] | {X:(Ψ ` A)} τ | τ1 → τ2
Meta-Context ∆ ::= · | ∆,X::(Ψ ` A)
Context Γ ::= · | Γ, x:τ
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Users construct a natural deduction proof for a theorem statement where
Γ , the computation context, contains hypotheses introduced from the simple
function space and where ∆, the meta-context, holds parameters introduced
from the universal quantifier (curly-brace syntax) or by lifting an assumption
[Ψ ` A] from Γ (box-elimination rule).

A subgoal in Harpoon is a typed hole in the proof that remains to be filled
by the user. Such a hole is represented by a subgoal variable, the type of which is a
contextual type (∆;Γ ` τ) that captures the typechecking state at the point the
variable occurs [19,3]: it remains to construct a proof for τ with the parameters
from ∆ and the assumptions from Γ . Subgoal variables in the proof script are
collected into a subgoal context and substitution of subgoal variables is type-
preserving [8]. Interactive actions are implemented with subgoal substitutions,
so the correctness of interactive proof refinement is a consequence of the subgoal
substitution property. Note that a subgoal’s type cannot itself contain subgoals –
the subgoal type must be fully determined, so solving one subgoal cannot affect
any other subgoal. Furthermore, subgoal variables may be introduced only in
positions where we must construct a normal term (written e); these are terms
that we must check against a given type. This given type becomes part of the
subgoal’s type. Subgoal variables stand thus in contrast with ordinary variables,
which are neutral terms (written i). (See [14,26,16] for examples of this so-called
bi-directional characterization of normal and neutral proof terms in Beluga.)

An action is executed on a subgoal to eliminate it, while possibly introducing
new subgoals. Actions emphasize the bi-directional nature of interactive proof
construction: some demand normal terms e and others demand neutral terms i.
To execute an action, the system synthesizes a proof script fragment from it, and
substitutes that fragment for the current subgoal. Any subgoal variables present
in the fragment become part of the subgoal context, and the user will have to
solve them later. When no subgoals remain, the proof script is closed and can be
translated straightforwardly to a Beluga program in internal (fully elaborated)
syntax. We employ an erasure to display the program to the user. These are the
essential actions for proof development, omitting our so-called “administrative”
actions (such as undo):
Actions α ::= intros | solve e | by i as x | unbox i as X | split i | suffices i by −→τ

intros introduces all assumptions from function types in the current goal;
solve closes the current subgoal with a given a normal term, introducing no
new subgoals. This action trivially makes Harpoon complete, as a full Beluga
program could be given via solve to eliminate the initial subgoal of any proof.
The action by enables introducing an intermediate result, often from a lemma or
an induction hypothesis, demanding a neutral term i and binding it to a given
name; unbox is the same as by, but it binds the result as a variable in the meta-
context; split considers a covering set of cases for a neutral term (typically a
variable) and generates possible induction hypotheses based on the specified in-
duction order, (for details on coverage, see [24]); suffices allows programmers
to reason backwards by supplying a neutral term i of function type and the types
−→τ of arguments to construct for this function.
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4 Empirical evaluation of Harpoon

We give a summary of representative case studies that we replayed using Har-
poon in Table 1. In porting these proofs to Harpoon, we use solve e only when
e is atomic, i.e. it describes either a contextual LF term or a constant applied
to all its arguments (either e = M , e = [C] or e = c

−→
C e1 . . . en). We list in the

table the number of commands used to complete the proof and what particular
features made the selected case study interesting for testing Harpoon. The first

Case study Main feature tested
MiniML value soundness Automatic solving of trivial goals
MiniML compilation completeness Unboxing program variables
STLC type preservation Automatic solving of trivial goals

STLC type uniqueness [22] Open term manipulation; (Contexts, Parame-
ter variables)

STLC weak normalization [6]
Case analysis on LF contexts, substitution vari-
ables, parameter variables, and inductive and
stratified types.

STLC strong normalization [1] Larger development (310 commands), all forms
of case analysis as above.

STLC alg. equality completeness [6] Larger development (180 commands), all forms
of case analysis as above.

Table 1. Summary of proofs ported to Harpoon from Beluga.

four examples proceed by straightforward induction, but the remaining examples
are less direct since they feature logical relations. The STLC strong normaliza-
tion and algorithmic equality completeness examples are larger developments,
totalling 38 and 26 theorems respectively. Crucially, these case studies make use
of Beluga’s domain-specific abstractions, by splitting on contexts, reasoning
about object-language variables, and exploiting the built-in equational theory of
substitutions. We have since used Harpoon to replay the meta-theoretic proofs
about Standard ML from [18].

This evaluation gives us confidence in the robustness and expressive power
of Harpoon.

5 Related work

There are several approaches to specify and reason about formal systems.
Beluga and hence Harpoon belong to the lineage of the Twelf system [20],

which also implements the logical framework LF. Metatheoretic proofs in Twelf
are implemented as relations. Totality checking then ensures that these relations
correspond to actual proofs. As Twelf is limited to proving Π1 formulas (“forall-
exists” statements), normalization proofs using logical relations cannot be di-
rectly encoded. Although Harpoon’s actions are largely inspired by the internal
actions of Twelf’s (experimental) fully-automated metatheorem prover [28,27],
Harpoon supports user interaction, more expressive theorem statements, and
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generation of proof witnesses, in the form of both the generated proof script and
Beluga program resulting from translation.

The Abella system [11] also provides an interactive theorem prover for rea-
soning about specifications using HOAS. First, its theoretical basis is quite dif-
ferent from Beluga’s: Abella’s reasoning logic extends first-order logic with
a ∇ quantifier [12] that is used to express properties about variables. Second,
Abella’s interactive mode provides a fixed set of tactics, similar to the actions we
describe in this paper. However, these tactics only loosely connect to the actual
theoretical foundation of Abella and no proof terms are generated as witnesses
by the Abella system.

We can also reason about formal systems in general purpose proof assistants
such as Coq. The general philosophy in such systems is that users should be
in the position of writing complex domain-specific tactics to facilitate proof
construction using languages such as LTac [7] or MTac(2) [29,17]. Although
this is an extremely flexible approach, we believe that the tactic-centric view
often obscures the actual line of reasoning in the proof. The proofs themselves
can often be illegible and incomprehensible. Further, strong static guarantees
about interactive proof construction are lacking; for example, dynamic checks
enforce variable dependencies. In contrast, our goal is to enable mechanized proof
development in a style close to that of a proof on paper. Thus we provide a fixed
set of tactics suitable for a wide array of proofs, so users can concentrate on proof
development instead of tactic development. As such, our work draws inspiration
from [2] where the authors describe high-level actions within the tutorial proof
checker Tutch. Our work extends and adapts this view to the mechanization of
inductive metatheoretic proofs based on HOAS representations.

6 Conclusion

We have presented Harpoon, an interactive command-driven front-end of Bel-
uga for mechanizing meta-theoretic proofs based on high-level actions. The
sequence of interactive actions is elaborated into a proof script behind the
scenes that represents an assertion-level proof. Last, proof scripts can soundly be
translated to Beluga programs. We have evaluated Harpoon on several case-
studies, ranging from purely syntactic arguments to proofs by logical relations.
Our experience is that Harpoon lowers the entry barrier for users to develop
meta-theoretic proofs about HOAS encodings.

In the future, we aim to extend Harpoon with additional high-level actions
that support further automation. A natural first step is to support an action
trivial which would attempt to automatically close an open sub-goal.
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28. Schürmann, C., Pfenning, F.: Automated theorem proving in a simple meta-logic
for LF. In: Kirchner, C., Kirchner, H. (eds.) Proceedings of the 15th International
Conference on Automated Deduction (CADE-15). pp. 286–300. Springer-Verlag
Lecture Notes in Computer Science (LNCS) 1421, Lindau, Germany (Jul 1998)

29. Ziliani, B., Dreyer, D., Krishnaswami, N.R., Nanevski, A., Vafeiadis, V.: Mtac: A
monad for typed tactic programming in coq. Journal of Functional Programming
25 (2015)

https://doi.org/10.1007/3-540-58156-1_53
https://doi.org/10.1145/3236773
https://doi.org/10.1145/3236773

	Harpoon: Mechanizing Metatheory Interactively

