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Abstract. We present a multi-context sequent calculus whose deriva-
tions are in bijective correspondence with normal natural deductions in
the propositional fragment of the intuitionistic modal logic IS4. This
calculus, suitable for proof enumeration, is the starting point for the de-
velopment of a sequent calculus-based bidirectional decision procedure
for propositional IS4. In this system, big-step inference rules are con-
structed in a forward direction, but searched over in a backward direc-
tion. We also present a variant which searches directly over normal nat-
ural deductions. Experimental results show that on most problems, the
bidirectional prover is competitive with conventional backward provers
using loop-detection and inverse method provers, significantly outper-
forming them in a number of cases.

1 Introduction

Intuitionistic modal logics are constructive logics incorporating operators of ne-
cessity (2) and possibility (3). Fitch [8], Prawitz [16], Satre [18], and more
recently Simpson [19], Bierman and de Paiva [2], and Pfenning and Davies [15]
have investigated a broad range of proof-theoretical properties of various log-
ics of this kind. Recently, such logics have also found applications in hardware
verification [7] and proposed type systems for staged computation [4] and dis-
tributed computing [13]. A logic frequently used in these settings is either the
intuitionistic variant of the classical modal logic S4, which we will call IS4, or a
logic that can be expressed through IS4, such as Fairtlough and Mendler’s lax
logic [7] (see for example [15] for the relationship between IS4 and lax logic).

In this light, it is surprising that proof search in IS4 has not received more
attention. Howe has investigated proof enumeration and theorem proving in lax
logic [12] and, coming closer to our work, has presented a backward decision
procedure for the fragment of propositional IS4 without the possibility modal-
ity [11]. His system performs loop-detection using a history mechanism, but is
encumbered by a large number of rules and related provisos (21 axioms and in-
ference rules). It would only grow with the addition of the possibility modality,
which would also require a different loop-detection mechanism.

Our contributions begin with a sequent calculus for propositional IS4 suit-
able for proof enumeration. This forms the basis for the development of a sequent
calculus-based bidirectional IS4 decision procedure, in which big-step inference



rules are constructed in a forward direction, while derivations constructed from
these rules are searched over in a backward direction. We also demonstrate that
this approach corresponds very closely to an elegant bidirectional decision pro-
cedure that searches directly over normal natural deductions. The key to our
theoretical justification of both of these decision procedures is a refinement of
the well-known subformula property, which we use to restrict nondeterminism in
focused proof search in the presence of multiple contexts. Although we concen-
trate on propositional IS4, we believe that the techniques presented are general
enough to find applications in other constructive logics, such as contextual modal
logic [14]. To evaluate our approach empirically, we have put together a set of 50
benchmark formulas for IS4. Experimental results show that on most problems,
the bidirectional prover is competitive with conventional backward provers using
loop-detection and inverse method provers, significantly outperforming them in
a number of cases.

In Sect. 2 we summarize the relevant background and introduce our core nat-
ural deduction formalism, while Sect. 3 presents corresponding sequent calculi
for proof search in both backward and forward directions. In Sect. 4 we discuss
some of the intricacies of focused forward proof search, building up to the bidi-
rectional decision procedures in Sects. 5 and 6. Experimental results are given
in Sect. 7, while Sect. 8 concludes with related and future work.

2 Natural Deduction

Formulas in the propositional fragment of IS4 are defined by

A ::= P | ⊥ | A1 ⊃ A2 | A1 ∧ A2 | A1 ∨ A2 | 2A | 3A

where P is atomic and negation and truth are defined notationally in the usual
way. Our starting point is a multi-context natural deduction formulation for IS4

similar to that of Pfenning and Davies [15], except that only natural deductions
in normal form can be constructed. This is achieved by annotating judgements
with their intended direction of reasoning:

∆; Γ ⊢ A ↑ A has a normal proof under hypotheses ∆ and Γ ,

∆; Γ ⊢ A ↓
A can be extracted from hypotheses in ∆ and Γ using
only elimination rules,

where Γ = A1, . . . , An is a context of true hypotheses and ∆ = B1, . . . , Bm is a
modal context of valid hypotheses whose truth does not depend on hypotheses
about the truth of other formulas. The resulting calculus, which we will call
NJN

IS4
, is shown in Fig. 1. The usual structural properties of weakening, con-

traction, and exchange hold for both contexts. Note that while NJN

IS4
defines

the normal forms that we are interested in during proof search, an unrestricted
variant NJIS4 can be obtained by dropping the arrow annotations and the rule
↑↓. Using an approach analogous to that of Howe in [10], the two systems can
be shown to be equivalent in terms of provability.



∆; Γ, A, Γ ′ ⊢ A ↓
hyp

1

∆, A,∆′; Γ ⊢ A ↓
hyp

2

∆; Γ ⊢ ⊥ ↓

∆; Γ ⊢ C ↑
⊥E

∆; Γ, A1 ⊢ A2 ↑

∆; Γ ⊢ A1 ⊃ A2 ↑
⊃I

∆; Γ ⊢ A1 ⊃ A2 ↓ ∆; Γ ⊢ A1 ↑

∆; Γ ⊢ A2 ↓
⊃E

∆; Γ ⊢ A1 ↑ ∆; Γ ⊢ A2 ↑

∆; Γ ⊢ A1 ∧ A2 ↑
∧I

∆; Γ ⊢ A1 ∧ A2 ↓

∆; Γ ⊢ Aj ↓
∧Ej

∆; Γ ⊢ Aj ↑

∆; Γ ⊢ A1 ∨ A2 ↑
∨Ij

∆; Γ ⊢ A1 ∨ A2 ↓ ∆; Γ, A1 ⊢ C ↑ ∆; Γ, A2 ⊢ C ↑

∆; Γ ⊢ C ↑
∨E

∆; · ⊢ A ↑

∆; Γ ⊢ 2A ↑
2I

∆; Γ ⊢ 2A ↓ ∆, A; Γ ⊢ C ↑

∆; Γ ⊢ C ↑
2E

∆; Γ ⊢ A ↑

∆; Γ ⊢ 3A ↑
3I

∆; Γ ⊢ 3A ↓ ∆; A ⊢ 3C ↑

∆; Γ ⊢ 3C ↑
3E

∆; Γ ⊢ A ↓

∆; Γ ⊢ A ↑
↑↓ j ∈ {1, 2}

Fig. 1. NJN

IS4

The inference rules of NJN

IS4
are largely standard, but to glean some intuition

about the rules involving 2 and 3, it is useful to think of the modalities as
quantifying truth over worlds in some universe. To say that 2A is true is to say
that A is true in all worlds, while to say that 3A is true is to say that A is true
in some world. Under this interpretation, the hypotheses in the modal context
can be used in all worlds, while those in the regular context can only be used in
the current world, in which we are trying to prove the succedent.

3 Sequent Calculi

Following the approach of Dyckhoff and Pinto [6], we can construct a focused
sequent calculus for propositional IS4 whose derivations are in bijective cor-
respondence with normal natural deductions. This system, which we will call
MJIS4, is shown in Fig. 2 and involves two forms of sequents:

∆; Γ → C C can be proved from assumptions ∆, Γ ,

∆; Γ ⊲ A → C
C can be proved from assumptions ∆, Γ, A, focusing on
the assumption A.

If a sequent is focused on a formula A, then the only applicable rules are those
with A as a principal formula. Following Girard [9], we will call the position of
the focused formula the stoup.

Theorem 1. Derivations of unfocused sequents in MJIS4 correspond bijectively
to derivations in NJN

IS4
.



A is atomic

∆; Γ ⊲ A → A
init

∆; Γ ⊲ ⊥ → C
⊥L

∆; Γ, A, Γ ′ ⊲ A → C

∆; Γ, A, Γ ′ → C
ch1

∆, A, ∆′; Γ ⊲ A → C

∆, A, ∆′; Γ → C
ch2

∆; Γ, A1 → A2

∆; Γ → A1 ⊃ A2

⊃R
∆; Γ → A1 ∆; Γ ⊲ A2 → C

∆; Γ ⊲ A1 ⊃ A2 → C
⊃L

∆; Γ → A1 ∆; Γ → A2

∆; Γ → A1 ∧ A2

∧R
∆; Γ ⊲ Aj → C

∆; Γ ⊲ A1 ∧ A2 → C
∧Lj

∆; Γ → Aj

∆; Γ → A1 ∨ A2

∨Rj

∆; Γ, A1 → C ∆; Γ, A2 → C

∆; Γ ⊲ A1 ∨ A2 → C
∨L

∆; · → A

∆; Γ → 2A
2R

∆, A; Γ → C

∆; Γ ⊲ 2A → C
2L

∆; Γ → A

∆; Γ → 3A
3R

∆; A → 3C

∆; Γ ⊲ 3A → 3C
3L j ∈ {1, 2}

Fig. 2. MJIS4

Proof. Injective functions can be constructed, mapping derivations from NJN

IS4

to MJIS4 and back. This is a straightforward extension of the approach used by
Dyckhoff and Pinto for regular intuitionistic propositional logic in [6]. ⊓⊔

Although MJIS4 is suitable for proof search in a backward direction, a naive
approach still requires loop-detection to achieve a decision procedure. While this
is possible, we will not pursue this direction further here, but instead concentrate
on forward proof search, and on how we can combine ideas from backward and
forward proof search to achieve bidirectional decision procedures.

Constructing MJIS4 proofs from the top down is complicated by the presence
of multiple contexts, making it less than ideal for forward proof search. All
MJIS4 derivations begin, at the leaves, with focused sequents of the form ∆; Γ ⊲

A → A, with A atomic. After a sequence of (possibly zero) left-rule applications,
the stoup formula is dropped from the stoup into one of the contexts by an
application of ch1 or ch2. In a focused forward calculus used as the basis for the
inverse method [5], we would proceed in a similar way, but it is not clear which
context a stoup formula should be dropped into.

To address this uncertainty, we refine the idea of focusing and develop the
system MJF

IS4
, which is suitable for forward proof search and features sequents

of three kinds, involving both modal and nonmodal stoups:

∆; Γ 7→ C C can be proved using all assumptions in ∆, Γ ,

∆; Γ ⊲ A 7→ C
C can be proved using all assumptions in ∆, Γ, A, with
A assumed true,



A is atomic

·; · ⊲i A 7→ A
initi

·; · ⊲i ⊥ 7→ C
⊥Li

∆; Γ ⊲ A 7→ C

∆; Γ, A 7→ C
ch1

∆; Γ ⊲ ⊲A 7→ C

∆, A;Γ 7→ C
ch2

∆; Γ, A1 7→ A2

∆; Γ 7→ A1 ⊃ A2

⊃R1

∆; Γ 7→ A2

∆; Γ 7→ A1 ⊃ A2

⊃R2

∆1; Γ1 7→ A1 ∆2; Γ2 ⊲i A2 7→ C

∆1, ∆2; Γ1, Γ2 ⊲i A1 ⊃ A2 7→ C
⊃Li

∆1; Γ1 7→ A1 ∆2; Γ2 7→ A2

∆1, ∆2; Γ1, Γ2 7→ A1 ∧ A2

∧R

∆; Γ ⊲i Aj 7→ C

∆; Γ ⊲i A1 ∧ A2 7→ C
∧Li,j

∆; Γ 7→ Aj

∆; Γ 7→ A1 ∨ A2

∨Rj

∆1; Γ1, A1 7→ C ∆2; Γ2, A2 7→ C

∆1, ∆2; Γ1, Γ2 ⊲i A1 ∨ A2 7→ C
∨Li

∆; · 7→ A

∆; · 7→ 2A
2R

∆, A; Γ 7→ C

∆; Γ ⊲i
2A 7→ C

2Li

∆; Γ 7→ A

∆; Γ 7→ 3A
3R

∆; A 7→ 3C

∆; · ⊲i
3A 7→ 3C

3Li

i, j ∈ {1, 2}

Fig. 3. MJF

IS4

∆; Γ ⊲ ⊲A 7→ C
C can be proved using all assumptions in ∆, Γ, A, with
A assumed valid.

Note that the forms of the focused sequents reveal which context the stoup
formula will drop into. For brevity, we write ∆; Γ ⊲i A 7→ C, i ∈ {1, 2} for either
form of focused sequent.

The inference rules of MJF

IS4
, shown in Fig. 3, are obtained by reinterpreting

the rules of MJIS4 in a forward fashion and by defining the ch rules to behave as
sketched above. The contexts of MJF

IS4
, however, are interpreted very differently,

in that sequents ∆; Γ 7→ C and ∆; Γ ⊲i A 7→ C, i ∈ {1, 2} assert that all
assumptions in ∆ and Γ , as well as A if the sequent is focused, are needed to
prove C. General weakening, which holds in MJIS4, is thus disallowed, but local
weakening is incorporated in the rule ⊃R2. We will think of contexts in MJF

IS4

as sets and write Γ1, Γ2 and Γ, A for Γ1 ∪ Γ2 and Γ ∪ {A}, respectively.

Theorem 2. MJIS4 and MJF

IS4
are equivalent in terms of provability:

1. (a) If ∆; Γ 7→ C, then ∆; Γ → C, and
(b) if ∆; Γ ⊲i A 7→ C, i ∈ {1, 2}, then ∆; Γ ⊲ A → C.

2. (a) If ∆; Γ → C, then ∆′; Γ ′ 7→ C, where ∆′ ⊆ ∆, Γ ′ ⊆ Γ ,
(b) if ∆; Γ ⊲ A → C and A is a subformula of a formula in Γ , then either

∆′; Γ ′ 7→ C or ∆′; Γ ′ ⊲ A 7→ C, where ∆′ ⊆ ∆, Γ ′ ⊆ Γ , and
(c) if ∆; Γ ⊲ A → C and A is a subformula of a formula in ∆, then either

∆′; Γ ′ 7→ C or ∆′; Γ ′ ⊲ ⊲A 7→ C, where ∆′ ⊆ ∆, Γ ′ ⊆ Γ .

Proof. In both cases by simultaneous induction on the structure of the given
derivation, using weakening in MJIS4 where necessary. ⊓⊔



Before turning to the bidirectional decision procedures that can be developed
from MJIS4 and MJF

IS4
, it is worthwhile to consider focused forward proof

search by itself.

4 Focused Forward Proof Search

The forward calculus MJF

IS4
suggests itself as a basis for an implementation of

the inverse method [5], fundamental to which is the classification of the sub-
formulas of a query formula into positive and negative classes. The sign of a
subformula determines where in a sequent it may occur (for instance, as a goal
formula or in the context) and restricts nondeterminism during proof search. We
will refine this notion by classifying subformulas as either

1. positive (+) subformulas, which may occur as goal formulas,
2. negative (−) subformulas, which may occur in the nonmodal context,
3. negative focused (∼) subformulas, which may occur in the nonmodal stoup,
4. valid (=) subformulas, which may occur in the modal context, or
5. valid focused (≈) subformulas, which may occur in the modal stoup.

With this intended interpretation, it is straightforward to read the formal defi-
nition of refined signed subformulas directly from the inference rules of MJF

IS4
.

Definition 1. A signed subformula A∗ is a formula A with a sign ∗ ∈ {+, −,

∼, =, ≈}. The subformula relation ≤ is the smallest reflexive and transitive
relation between signed subformulas satisfying the following.

A−

1 , A+
2 ≤ (A1 ⊃ A2)

+ A+

i ≤ (A1 ∧ A2)
+ A+

i ≤ (A1 ∨ A2)
+

A+ ≤ (2A)+ A+ ≤ (3A)+ A∼ ≤ A−

A+

1 , A∼

2 ≤ (A1 ⊃ A2)
∼ A∼

i ≤ (A1 ∧ A2)
∼ A−

i ≤ (A1 ∨ A2)
∼

A= ≤ (2A)∼ A− ≤ (3A)∼ A≈ ≤ A=

A+

1 , A≈

2 ≤ (A1 ⊃ A2)
≈ A≈

i ≤ (A1 ∧ A2)
≈ A−

i ≤ (A1 ∨ A2)
≈

A= ≤ (2A)≈ A− ≤ (3A)≈ i ∈ {1, 2}

Note that for every negative subformula A− of a signed formula C∗, C∗ also
has, as a subformula, the corresponding negative focused subformula A∼. The
converse, however, is not true in general. A similar relation holds for valid and
valid focused subformulas. Also, the usual signed subformula property extends to
encompass our refined signing scheme, where we write Γ− and ∆= for contexts
of signed subformulas of the forms A−

1 , . . . , A−

n and B=
1 , . . . , B=

m, respectively.

Theorem 3. Every sequent in an MJF

IS4
derivation of

∆=; Γ− 7→ C+ or ∆=; Γ− ⊲i A∗ 7→ C+, i ∈ {1, 2},

where ∗ is ∼ or ≈ if i = 1 or i = 2, respectively, is of the form



1. D=
1 , . . . , D=

n ; E−

1 , . . . , E−

m 7→ F+,
2. D=

1 , . . . , D=
n ; E−

1 , . . . , E−

m ⊲ E∼ 7→ F+, or
3. D=

1 , . . . , D=
n ; E−

1 , . . . , E−

m ⊲ ⊲D≈ 7→ F+,

where all D=
j , E−

k , and E∼, D≈, and F+ are signed subformulas of ∆=, Γ−,
C+, and A∗.

Proof. By simultaneous induction on the structure of the given derivation. ⊓⊔

Theorem 3 guarantees, for instance, that in any MJF

IS4
derivation of the

sequent ∆=; Γ− 7→ C+, all leaves are of the forms

A is atomic

·; · ⊲i A∗ 7→ A+
initi or ·; · ⊲i ⊥∗ 7→ B+

⊥Li i ∈ {1, 2}

where ∗ is ∼ or ≈ if i = 1 or i = 2, respectively, and A∗, A+, ⊥∗ and B+ must
be signed subformulas of ∆=, Γ− and C+. In general, every rule application
considered by an implementation of the inverse method must abide by the con-
ditions set forth by the extended signed subformula property. This provides a
foundation for a focused inverse method prover for IS4, with nondeterminism
restricted more strongly than by the usual subformula property. However, this
idea becomes even more interesting when combined with some backward proof
search ideas, discussed next.

5 Bidirectional Sequent Calculus Method

The idea behind the bidirectional sequent calculus method is that given a query
formula A, we can, by exploiting forward proof search, construct a set of derived
big-step inference rules for MJIS4 which conceal all left-rule applications that
could be needed in a proof of A. We then carry out backward proof search over
these big-step rules and the usual right-rules of MJIS4. By design, our big-step
inference rules will correspond exactly to the notion of focused threads in MJF

IS4

derivations, defined as follows.

Definition 2. A focused thread of an MJF

IS4
derivation is a segment of the

derivation that begins, at the top, with an application of initi, ∨Li, 2Li, or 3Li,
i ∈ {1, 2} (raising a formula into either stoup in the conclusion), includes only
focused sequents, and ends with an application of chi, i ∈ {1, 2} (dropping a
formula from the stoup).

In any MJF

IS4
derivation, left-rule applications necessarily occur in focused

threads, so we can think of derivations as consisting of focused threads strung
together using right-rule applications. The key insight is that all focused threads
that might be needed in an MJF

IS4
proof of a formula A can be nondetermin-

istically constructed prior to proof search by inspecting the structure and the
subformulas of A. To justify this claim, we will use our refined subformula prop-
erty.



First note that it is straightforward to uniquely label subformula occurrences
of a formula to be proved, and that the definition of signed subformulas, the
signed subformula property, and the inference rules of MJF

IS4
can be adjusted to

operate on labels rather than formulas, thus differentiating between subformula
occurrences. Moreover, by inspecting the inference rules of MJF

IS4
, every proof of

a labelled formula has the property that for every sequent occurring in the proof,
no labels are duplicated in the contexts and goal formula. The stoup formula,
however, may have the same label as some subformula in one of the contexts.

To give some intuition as to how to construct all the focused threads possibly
needed for a proof of a formula, we will illustrate the approach on the following
small example:

L
+

0

︷ ︸︸ ︷

L
−

1
,L∼

1

︷ ︸︸ ︷

2(

L=
2 ,L≈

2

︷ ︸︸ ︷

L
+

3

︷︸︸︷

A ⊃

L≈

4

︷︸︸︷

B ) ⊃

L
+

5

︷ ︸︸ ︷

3(

L
+

6

︷ ︸︸ ︷

L
−

7
,L∼

7

︷︸︸︷

A ⊃

L
+

8

︷︸︸︷

B )

with subformulas

L+
0 , L+

3 , L+
5 , L+

6 , L+
8 , L−

1 , L−

7 , L∼

1 , L∼

7 , L=
2 , and L≈

2 , L≈

4 .

The signed subformula property guarantees that in a proof of the sequent ·; · 7→
L+

0 , the only axioms we require are

·; · ⊲ L∼

7 7→ L+
3

init1 and ·; · ⊲ ⊲L≈

4 7→ L+
8

init2

Consider the first of these axioms. Every left-rule either drops the stoup formula
into a context or expands it. The immediate parent of L∼

7 in the subformula
hierarchy is L−

7 , indicating that dropping L7 into the context is a permissible
operation. In fact, it is the only operation permitted by the signed subformula
property operating on labels. We can collapse this short focused thread into a
single derived big-step inference rule:

·; · ⊲ L∼

7 7→ L+

3

init1

·; L−

7 7→ L+

3

ch1
;

·; L−

7 7→ L+

3

(1)

Considering the second axiom, we note that the parent subformula of L≈

4 is L≈

2 ,
also a focused subformula. The next rule application should then be ⊃L2, with
L≈

2 as the principal formula. In fact, it is not difficult to see that since every
subformula occurrence has a unique parent subformula, the signed subformula
property operating on labels always uniquely dictates which rule may be applied.
This game continues until the end of the focused thread. In the case of the second
axiom, the immediate parent of L≈

2 is L=
2 , signalling an application of ch2 and



the end of the thread:

∆; Γ 7→ L+

3 ·; · ⊲ ⊲L≈

4 7→ L+

8

init2

∆; Γ ⊲ ⊲L≈

2 7→ L+

8

⊃L2

∆, L=
2 ; Γ 7→ L+

8

ch2

;

∆; Γ 7→ L+

3

∆, L=
2 ; Γ 7→ L+

8

(2)

Note that this thread, unlike the one concealed by (1), has open premises and
is parametric in the contexts ∆ and Γ . Finally, the signed subformula property
allows one more focused thread, starting with

∆, L=
2 ; Γ 7→ M+

∆; Γ ⊲ L∼

1 7→ M+
2L1

The immediate parent subformula of L∼

1 is L−

1 , so this thread ends here, yielding
the big-step rule

∆, L=
2 ; Γ 7→ M+

∆; Γ ⊲ L∼

1 7→ C+
2L1

∆; Γ, L−

1 7→ M+
ch1

;

∆, L=
2 ; Γ 7→ M+

∆; Γ, L−

1 7→ M+
(3)

Notice that this big step rule is schematic not only in the contexts ∆ and Γ , but
also in the goal formula M+. Since the signed subformula property allows no
other focused threads, the remainder of the proof, if one exists, may only chain
the derived big-step rules (1), (2) and (3) together with right-rule applications.
In this case, completing the proof is straightforward:

·; L−

7 7→ L+
3

(1)

L=
2 ; L−

7 7→ L+

8

(2)

L=
2 ; · 7→ L+

6

⊃R

L=
2 ; · 7→ L+

5

3R

·; L−

1 7→ L+

5

(3)

·; · 7→ L+

0

⊃R

In general, to cover all focused threads, the construction of big-step rules must
begin with focused sequents of the following kinds, where ∗ is ∼ or ≈, depending
on whether i = 1 or i = 2:

1. ·; · ⊲i L∗

j 7→ L+

k , where Lj and Lk denote the same atomic formula,

2. ·; · ⊲i L∗

j 7→ M+, where Lj denotes ⊥ and M is schematic,

3. ∆; Γ ⊲i L∗

j 7→ M+, where Lj denotes A1 ∨ A2 and M is schematic,



4. ∆; Γ ⊲i L∗

j 7→ M+, where Lj denotes 2A and M is schematic, and

5. ∆; Γ ⊲i L∗

j 7→ M+, where Lj denotes 3A and M denotes 3C, C being
schematic.

Moreover, the constructed big-step rules must end with a stoup formula dropped
into one of the contexts.

The question now is how these forward-constructed big-step rules can comple-
ment backward proof search. The key observation is that every focused thread
of an MJF

IS4
derivation can be converted into a focused thread of an MJIS4

derivation simply by applying weakening, reducing valid focused sequents to fo-
cused sequents and omitting the now unecessary signs of subformula labels. For
instance,

∆; Γ 7→ L+

3 ·; · ⊲ ⊲L≈

4 7→ L+

8

init2

∆; Γ ⊲ ⊲L≈

2 7→ L+

8

⊃L2

∆, L=
2 ; Γ 7→ L+

8

ch2

can be converted into

∆, L2; Γ → L3 ∆, L2; Γ ⊲ L4 → L8

init

∆, L2; Γ ⊲ L2 → L8

⊃L

∆, L2; Γ → L8

ch2

This makes it possible to construct big-step rules for MJIS4. The benefit of
performing backward proof search over these big-step rules and the remaining
right rules is that it requires no loop-detection, with one requirement: that every
big-step rule is used at most once along every branch of the proof, from root to
leaf. The following result of MJF

IS4
guarantees that this requirement does not

cost us completeness.

Theorem 4. Every derivation of a sequent ∆=; Γ− 7→ M+ or ∆=; Γ− ⊲i L∗ 7→
M+, i ∈ {1, 2}, has the property that no branch (from root to leaf) contains two
focused sequents ∆=

1 ; Γ−

1 ⊲j K∗ 7→ M+

1 and ∆=
2 ; Γ−

2 ⊲j K∗ 7→ M+

2 , j ∈ {1, 2}
with the same stoup formula occurrence (K∗).

Proof. Assuming that a stoup formula occurrence is repeated along a branch can
be shown to contradict the fact that no subformula occurrence may be duplicated
in the contexts. ⊓⊔

Since the identity of a focused thread depends on the identities of the focused
formulas it contains, and since focused threads contain at least one focused
sequent, we obtain the following important corollary.

Corollary 1. Every derivation of a sequent ∆; Γ 7→ M or ∆; Γ ⊲i L 7→ M ,
i ∈ {1, 2} has the property that no focused thread occurs twice along a branch.



The consequence of this result is that if a sequent is provable in MJF

IS4
, it

is provable without using any big-step rule twice along a branch. This means
that there exists a corresponding proof in MJIS4 that also uses every big-step
rule at most once along every branch. With the observation that every right
rule of MJIS4 reduces the complexity of the goal formula, this means that every
rule application during proof search either reduces the number of available big-
step rules along the current branch, or leaves the number of available big-step
rules unmodified but reduces the complexity of the goal formula. This measure
gives an immediate termination guarantee without the need for loop-detection.
All that is needed is a way of keeping track of which big-step rules have been
applied along a branch.

Note that the idea of deterministically constructing big-step rules can also be
exploited in forward proof search, in that the big-step rules described above can
take the place of left rules in the inverse method. The main advantages here are
that the big-step rules are more relevant to proof search for a given query formula,
and that the number of intermediate sequents added to the knowledge base
during proof search is reduced, since no focused sequents need to be maintained.

6 Bidirectional Natural Deduction Method

In the backward bidirectional sequent calculus method, we construct big-step
rules to conceal all required focused threads. Notice that the focused threads of
MJF

IS4
correspond naturally to segments of NJN

IS4
proofs consisting of elimi-

nation rule applications, that is, ↓ sequents. The beginnings of focused threads,
where formulas are placed into the stoup, correspond to reversing rules in NJN

IS4
.

These are the ↑↓ rule, as well as all elimination rules with ↑ sequents as their
conclusions. The ends of focused threads, on the other hand, where the stoup
formula is dropped into a context, correspond to using a hypothesis with appli-
cations of hyp1 or hyp2.

This means that the process of building a big-step MJF

IS4
rule in a top-down

way corresponds to building a natural deduction big-step rule by beginning with
an application of a reversing rule, and growing it upwards until we reach a leaf.
Just as the construction of big-step rules in the sequent calculus is determined
uniquely by the form of the query formula, so these natural deduction big-step
rules can be deterministically constructed before proof search even begins.

This approach is best demonstrated by an example such as the one given in
Sect. 5. For instance, given the pair L≈

4 and L+

8 from that example, we begin
with the coercion

∆; Γ ⊢ L≈

4 ↓

∆; Γ ⊢ L+

8 ↑
↑↓

Since the immediate parent of L≈

4 in the signed subformula hierarchy is L≈

2 ,
denoting A ⊃ B, the rule application above this coercion must be an application



of ⊃E:
∆; Γ ⊢ L≈

2 ↓ ∆; Γ ⊢ L+
3 ↑

∆; Γ ⊢ L≈

4 ↓
⊃E

∆; Γ ⊢ L+
8 ↑

↑↓

The focused thread continues along the the first premise, but the parent of L≈

2

is L=
2 , indicating the end of this focused thread by an application of init2:

L=
2 ∈ ∆

∆; Γ ⊢ L≈

2 ↓
init2

∆; Γ ⊢ L+

3 ↑

∆; Γ ⊢ L≈

4 ↓
⊃E

∆; Γ ⊢ L+

8 ↑
↑↓

;

∆, L=
2 ; Γ ⊢ L+

3 ↑

∆, L=
2 ; Γ ⊢ L+

8 ↑
(2)

In similar constructions, L∼

1 , denoting 2(A ⊃ B), and the pair L∼

7 , L+

3 produce
the natural deduction big-step rules

L−

1 ∈ Γ

∆; Γ ⊢ L∼

1 ↓
init1

∆, L=
2 ; Γ ⊢ M+ ↑

∆; Γ ⊢ M+ ↑
2E

;

∆, L=
2 ; Γ, L−

1 ⊢ M+ ↑

∆; Γ, L−

1 ⊢ M+ ↑
(3)

and
L−

7 ∈ Γ

∆; Γ ⊢ L∼

7 ↓
init1

∆; Γ ⊢ L+
3 ↑

↑↓
;

∆; Γ, L−

7 ⊢ L+

3

(1)

The rest of the proof then uses only these big-step rules and introduction rules:

L=
2 ; L−

1 , L−

7 ⊢ L+

3 ↑
(1)

L=
2 ; L−

1 , L−

7 ⊢ L+

8 ↑
(2)

L=
2 ; L−

1 ⊢ L+
6 ↑

⊃I

L=
2 ; L−

1 ⊢ L+

5 ↑
3I

·; L−

1 ⊢ L+

5 ↑
(3)

·; · ⊢ L+
0 ↑

⊃I

In general, the approach for constructing natural deduction big-step rules is
analogous to the method for the backward bidirectional sequent calculus, only
turned upside-down, in the sense that the rule at the beginning of an MJF

IS4

focused thread determines the reversing rule at the bottom of the natural de-
duction focused thread, while the final application of init dictates the “principal
formula” of the ensuing big-step natural deduction rule.



Histories Inverse Bidirectional

Formula Size Modalities Provable Time Time Rules Time Rules

32 49 0 N > 1000 1.36 33 0.01 33
36 175 0 Y 0.08 > 1000 159 > 1000 592
37 68 9 Y 84.79 1.18 60 < 0.01 28
39 42 3 N 8.46 1.83 31 < 0.01 15
44 49 14 Y 75.13 > 1000 51 37.11 21
50 44 7 Y 7.38 > 1000 49 48.76 25

Table 1. Selection of experimental results.

Proof search over natural deductions can then be performed in a backward
direction. The only nondeterminism is in whether to apply a big-step rule or
an introduction rule, the premises of which are uniquely determined by their
conclusions. Note that to guarantee termination, we again disallow using a big-
step rule more than once along any branch of a proof.

7 Experimental Results

While benchmark formulas are available for intuitionistic propositional logic and
classical modal logics, we are not aware of any benchmark libraries specific to
propositional IS4. In order to evaluate the performance of our bidirectional ap-
proach, we put together a benchmark set of 50 formulas for IS4, mostly problems
from Raths et al.’s Intuitionistic Logic Theorem Proving (ILTP) library [17] to
which we introduced modalities, making them specific to IS4. Our benchmark
set is available at http://www.cs.mcgill.ca/∼sheila1/is4/

We have implemented three IS4 decision procedures in SML: (1) a sequent
calculus-based backward prover with a history mechanism for loop-detection, (2)
a conventional inverse method prover without big-step rules, and (3) our bidi-
rectional natural deduction prover. The loop-detection prover uses MJIS4 as a
basis for backward proof search, maintaining two histories to detect repeated
sequents. One, the modal history, identifies repeated applications of the modal
rules 2R and 3L, while the other identifies applications of the other rules in
between these modal rule applications. This approach is a generalization and
extension of Howe’s decision procedure [11]. The inverse method prover is based
directly on MJF

IS4
but operates on subformulas rather than subformula occur-

rences. Note that the behaviour of our backward bidirectional sequent calculus
prover corresponds exactly to that of the bidirectional natural deduction prover,
so we have only implemented the more elegant natural deduction prover.

On many of the smaller problems, there was little measurable difference in
the performance of the provers, but some of the problems that did ellicit notice-
ably different performances are highlighted in table 1. The size column shows
the complexity of each formula, computed inductively in the usual way, while
the modalities column shows the number of modal operators. Times are in sec-



onds.1 For the inverse method and bidirectional provers, we show the number of
inference rules generated (big-step rules in the case of the bidirectional prover).

As our results demonstrate, the bidirectional natural deduction prover is a
competitive alternative to the more conventional provers, equalling or outper-
forming them on most problems. Comparing the average proving time for prob-
lems that were solved, it is far superior. We detected, however, two pathological
formulas on which our bidirectional prover was significantly outperformed (for-
mulas 36 and 50 in table 1). Interestingly, there is not always a clear connection
between the number of big-step rules generated and the time required to solve
a problem in the bidirectional prover. Presumably, the problematic cases were
those whose big-step rules where the shortest and thus least useful.

8 Related and Future Work

Although IS4 has undergone thorough proof-theoretical studies, there has been
little work in developing proof search strategies specific to it. We have presented
a comprehensive proof-theoretical study of proof search formalism for IS4, high-
lighting the duality between backward and forward search. Moreover, we have
demonstrated how to combine the benefits of both to yield bidirectional decision
procedures based on sequent calculi and natural deduction. Our experimental
results reveal that combining the two traditionally disparate paradigms can be
fruitful. While our implementations are naive and incorporate no optimizations,
we hope that our results might encourage further study of bidirectional proof
search, particularly in other logics.

For instance, in the contextual modal logic of Nanevski, Pfenning, and Pien-
tka [14], structural modality is generalized by relativizing the validity judgement
and the modal operators. The techniques discussed in this paper extend very
naturally to contextual modal logic, yielding sequent calculi suitable for both
backward and forward proof search, but the exact nature of how the general-
ization to contextual modal logic affects proof search is yet to be explored. The
reconciliation of forward and backward proof search has recently been investi-
gated by Chaudhuri and Pfenning [3], who, in the context of linear logic, propose
a focusing inverse method prover incorporating big-step rules constructed in a
backward way and searched over in a forward direction, opposite to our ap-
proach. Unlike their work, which builds on Andreoli’s focusing property [1], we
extend ideas by Dyckhoff and Pinto [6] and develop a focusing calculus which
directly gives rise to a bidirectional natural deduction proof search procedure

In the future, we plan to explore extensions to the first-order case. Although
the idea of big-step rules extends, in principle, to first-order quantifiers, the
constructed big-step rules become parametric in terms. The useful property of
MJF

IS4
that eliminated the need for loop-detection in our bidirectional method

now only holds for particular instantiations of the terms of the parametric big-
step rules. Unfortunately, requiring the storage of rule instantiations reintroduces

1 All timing results were obtained on a Pentium III 850MHz with 256MB of RAM,
running SML/NJ 110.60.



a form of loop-detection. How to overcome this problem and what the proof-
theoretical relationship between first-order bidirectional decision procedures and
natural deduction provers is remains to be investigated.
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