
Appendix to “Reasoning with Higher-Order
Abstract Syntax and Contexts: A

Comparison” [1]

Amy Felty1 and Brigitte Pientka2

1 SITE, University of Ottawa, Ottawa, Canada
afelty@site.uottawa.ca

2 School of Computer Science, McGill University, Montreal, Canada
bpientka@cs.mcgill.ca

A Appendix

This appendix includes and expands Section 2 of the paper [1] in order to make
a more complete version of the sample problems available electronically. The
expanded material includes definitions that were omitted from the paper as well
as some additional theorems.

We intend to also make available implementations in various systems, as well
as additional problems and their implementations. Some implementations are
already available at http://complogic.cs.mcgill.ca/beluga/benchmarks.

A.1 Equality reasoning for lambda-terms

We begin by defining the syntax of the (untyped) lambda-calculus together with
a declarative definition of equality which includes reflexivity and transitivity in
addition to the structural rules, and then the algorithmic version of equality,
which concentrates only on the structural rules. We model the declarative defi-
nition of equality by the judgment Ψ ` equal M N and the algorithmic one by
the judgment Φ ` eq M N and carefully define the context Ψ and Φ. The goal
is to prove these two versions of equality to be equivalent.

Term M ::= y | lamx.M | app M1 M2 Context Φ ::= · | Φ, equal x x
Context Ψ ::= · | Ψ, eq x x

Algorithmic Equality

eq x x ∈ Ψ
Ψ ` eq x x

Ψ, eq x x ` eq M N

Ψ ` eq (lamx.M) (lamx.N)
Ψ ` eq M1 N1 Ψ ` eq M2 N2

Ψ ` eq (app M1 M2) (app N1 N2)

Declarative Equality

equal x x ∈ Φ
Φ ` equal x x

Φ, equal x x ` equal M N

Φ ` equal (lamx.M) (lamx.N) Φ ` equal M M

Φ ` equal M1 N1 Φ ` equal M2 N2

Φ ` equal (app M1 M2) (app N1 N2)
Φ ` equal M L Φ ` equal L N

Φ ` equal M N

It may be slightly unusual to keep the fact that a variable is equal to itself as
a declaration in the context in both formulations. It is only strictly necessary in
the first. There are two main reasons. 1) Explicitly introducing the appropriate
assumption about each variable is a general methodology which scales to more
expressive assumptions. For example, when we specify typing rules, we must
introduce a typing context that keeps track of the fact that a given variable
has a certain type. 2) Choosing this formulation will also make our proofs more
elegant and compact, while at the same time highlight the issues which arise
when working with two formal systems each using different assumptions.

We begin by proving that reflexivity and transitivity are indeed admissible
from the algorithmic definition of equality.

Theorem 1 (Admissibility of Reflexivity and Transitivity).

1. If Ψ contains premises for all the free variables in M , then Ψ ` eq M M .
2. If Ψ ` eq M L and Ψ ` eq L N then Ψ ` eq M N .

The first theorem can be proven by induction on M . The second can be
proven by induction on the first derivation. We now state that when we have a
proof for equal M N then we also have a proof using algorithmic equality.

Attempt 1 (Completeness). If Φ ` equal M N then Ψ ` eq M N .

However, we note that this statement does not contain enough information
about how the two contexts Φ and Ψ are related. In the base case, where we have
that Φ ` equal x x, we must know that for every variable x in Φ there exists
a corresponding assumption such that eq x x in Ψ . There are two solutions to
this problem. 1) We state how two contexts are related and then assume that if
this relation holds the theorem holds. 2) We generalize the context used in the
theorem such that it contains both assumptions as follows

Generalized context Γ ::= · | Γ, eq x x, equal x x

where we deliberately state that the assumption eq x x always occurs together
with the assumption equal x x, and then apply weakening and strengthening as
needed to apply the equality inference rules. Both approaches can be mechanized
and we discuss some of the trade-offs later. For now we will concentrate on the
latter approach and state the revised generalized theorem.

Theorem 2 (Completeness). If Γ ` equal M N then Γ ` eq M N .

Proof. Proof by induction on the first derivation. We show three cases which
highlight the use of weakening and strengthening.

Case 1: Assumption from context
We know Γ ` equal x x where equal x x ∈ Γ by assumption. Because of the
definition of Γ , we know that whenever we have an assumption equal x x, we
also must have an assumption eq x x.

2

Case 2: Reflexivity rule
If the last step applied in the proof was the reflexivity rule Γ ` equal M M ,
then we must show that Γ ` eq M M . By the reflexivity lemma, we know that
Ψ ` eq M M . By weakening the context Ψ , we obtain the proof for Γ ` eq M M .

Case 3: Equality rule for lambda-abstractions
Γ ` equal (lamx.M) (lamx.N) by assumption
Γ, equal x x ` equal M N by decl. equality rule for lambda-abstraction
Γ, eq x x, equal x x ` equal M N by weakening
Γ, eq x x, equal x x ` eq M N by i.h.
Γ, eq x x ` eq M N by strengthening
Γ ` eq (lamx.M) (lamx.N) by alg. equality rule for lambda-abstraction

This proof demonstrates many issues related to the treatment of bound vari-
ables and the treatment of contexts. First, we need to be able to apply a lemma
which was proven in a context Ψ in a different context Γ . Second, we need to
apply weakening and strengthening in the proof. Third, we need to be able to
know the structure of the context and we need to be able to take advantage of
it. We focus here on these structural properties of contexts, but of course many
proofs also need the substitution lemma.

A.2 Reasoning about variable occurrences

In this example, we reason about the shape of terms instead of equality of terms.
The idea is to compare terms up to variables. For example lamx. lam y. app x y
would have the same shape as lamx. lam y. app y x but these two terms are
obviously not equal. We use the judgment Φ ` shape M1 M2 to describe that
the term M1 and the term M2 have the same shape or structure. Thinking of
the lambda-terms being described by a syntax tree, comparing the shape of two
terms corresponds to comparing two syntax trees where we do not care about
specific variable names which are at the leaves of it.

To define whether two lambda-terms have the same shape, we use two dif-
ferent judgments:

Ψ ` shape M N Terms M and N have the same shape
Ψ ` varT x x is a term variable

The context Ψ will have the following structure:

Context Ψ ::= · | Ψ, varT x

Next, we define when two lambda-terms have the same shape as follows:

varT x ∈ Ψ varT y ∈ Ψ
Ψ ` shape x y

Ψ ` shape M1 N1 Ψ ` shape M2 N2

Ψ ` shape (app M1 M2) (app N1 N2)

Ψ, varT x ` shape M E

Ψ ` shape (lamx.M) (lamx.E)

3

Finally, we define a judgment which counts how often variables occur in a
lambda-term as follows:

Ψ ` varT−occ M K There are K variables in the term M

varT x ∈ Ψ
Ψ ` varT−occ x 1

Ψ, varT x ` varT−occ T N

Ψ ` varT−occ (lamx. T) N

Ψ ` varT−occ T1 N1 Ψ ` varT−occ T2 N2 N = N1 +N2

Ψ ` varT−occ (app T1 T2) N

First, we state that if two terms are equal they must have the same shape.

Theorem 3. If Ψ ` eq M1 M2 then Φ ` shape M1 M2.

The proof of this theorem is a simpler version of the completeness proof we
have given in the previous section. As in that proof, we need to either establish
a context invariant which states the relationship between these two contexts or
create a generalized context which contains both assumptions from Ψ and Φ.

We now prove that if M1 and M2 have the same shape, then they must have
the same number of variables using the judgment Φ ` var−occ M I where I
describes the total number of variable occurrences in the termM . So for example,
the total number of variable occurrences in the term lamx. lam y. app (app y x) x
is 3. If we think of the lambda-term as a syntax tree, then I describes the number
of leaves in the syntax tree described by the term M . We give three different
variations, intended to show differences among systems.

Theorem 4.

1. If Φ ` shape M1 M2

then there exists an I such that Φ ` var−occ M1 I and Φ ` var−occ M2 I.
Furthermore I is unique.

2. If Φ ` shape M1 M2

then for all I. Φ ` var−occ M1 I implies Φ ` var−occ M2 I.
3. If Φ ` shape M1 M2 and Φ ` var−occ M1 I then Φ ` var−occ M2 I.

A.3 Reasoning about subterms in lambda-terms

For the next example, we define when a given lambda-term M is a subterm of
another lambda-term N and hence we consider M to be structurally smaller
than (or equal to) N using the following judgment:

Ψ ` lt M N Term M is strictly smaller than N
Ψ ` le M N Term M is smaller than or equal to N

Next, we define these judgments.

4

Term M is strictly smaller than N

Ψ, eq x x ` le N M

Ψ ` lt N (lamx.M)
Ψ ` le N M1

Ψ ` lt N (app M1 M2)
Ψ ` le N M2

Ψ ` lt N (app M1 M2)

Term M is smaller than or equal to N

Ψ ` eq M N

Ψ ` le M N
Ψ ` lt M N
Ψ ` le M N

We concentrate here on stating a very simple intuitive theorem that says that
if for all terms N , if N is smaller than K implies that N is also smaller than L,
then clearly K is smaller than L.

Theorem 5. If for all N . Ψ ` le N K implies Ψ ` le N L then Ψ ` le K L.

This theorem is interesting because in order to state it, we nest quantifica-
tion and implications placing them outside the fragment of propositions directly
expressible in systems such as Twelf.

References

1. Amy Felty and Brigitte Pientka. Reasoning with higher-order abstract syntax and
contexts: A comparison. In Matt Kaufmann and Lawrence Paulson, editors, In-
ternational Conference on Interactive Theorem Proving (ITP), Lecture Notes in
Computer Science. Spinger, 2010.

5

