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Chapter 1

Introduction

Logic provides computer science with both a unifying foundational framework and a
tool for modelling. In fact, logic has been called ”the calculus of computer science”,
playing a crucial role in diverse areas such as artificial intelligence, computational
complexity, distributed computing, database systems, hardware design, program-
ming languages, and software engineering

These notes are designed to provide to give a thorough introduction to modern
constructive logic, its numerous applications in computer science, and its mathemati-
cal properties. In particular, we provide an introduction to its proof-theoretic founda-
tions and roots. Following Gentzen’s approach we define the meaning of propositions
by introduction rules, which assert a given proposition and explain how to conclude
a given proposition, and elimination rules, which justify how we can use a given
proposition and what consequences we can derive from it. In proof-theory, we are
interested in studying the structure of proofs which are constructed according to ax-
ioms and inference rules of the logical system. This is in contrast to model theory,
which is semantic in nature.

From a programming languages point of view, understanding the proof-theoretic
foundations is particularly fascinating because of the intimate deep connection be-
tween propositions and proofs and types and programs which is often referred to as
the Curry-Howard isomorphism and establishes that proofs are isomorphic to pro-
grams. This correspondence has wide-ranging consequences in programming lan-
guages: it provides insights into compiler and program transformations; it forms the
basis of modern type theory and directly is exploited in modern proof assistants such
as Coq or Agda or Beluga where propositions are types and proofs correspond to
well-typed programs; meta-theoretic proof techniques which have been developed
for studying proof systems are often used to establish properties and provide new in-
sights about programs and programming languages (for example, type preservation
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or normalization).

These lecture notes provide an introduction to Gentzen’s natural deduction sys-
tem and its correspondance to the lambda-calculus. We will also study meta-theoretic
properties of both the natural deduction system and the well-typed lambda-calculus
and highlight the symmetry behind introduction and elimination rules in logic and
programming languages. Starting from intuitionistic propositional logic, we extend
these ideas to first-order logic and discuss how to add induction over a given domain.
This gives rise to a simple dependently typed language (i.e. indexed types) over a
given domain. Finally, we will study consistency of our logic. There are two dual
approaches: the first, pursued by Gentzen, concentrates on studying the structure of
proofs; we establish consistency of the natural deduction system by translating it to
a sequent calculus using cut-rule; subsequently we prove that the cut-rule is admis-
sible. As a consequence, every natural deduction proof also has a cut-free proof (i.e.
normal proof). However, the sequent calculus is interesting in its own since we can
further study the structure of proofs and gain insights into how to eliminate further
redundancy in proofs leading to focused sequent calculi which have been for example
used to provide a type-theoretic foundation for pattern matching and different eval-
uation strategies. The second approach show consistency concentrates on studying
the structure of programs and we prove that every program normalizes using logical
relations following Tait. This is a more direct proof than the syntactic cut-elimination
proof which relies on proof translations.



Chapter 2

Natural Deduction

“Ich wollte nun zunichst einmal einen Formalismus aufstellen, der dem
wirklichen Schliel3en moglichst nahe kommt. So ergab sich ein “Kalkiil
des nattirliche SchlieRens”.

Untersuchungen tiber das logische Schliefsen [Gentzen(1935)]

In this chapter, we explore the fundamental principles of defining logics by revis-
iting Gentzen’s system NJ [Gentzen(1935)], the calculus of natural deduction. The
calculus was designed and developed by Gentzen to capture mathematical reasoning
practice; his calculus stands in contrast to the common systems of logic at that time
proposed by Frege, Russel, and Hilbert all of which have few reasoning reasoning
principles, namely modus ponens, and several axioms. In Gentzen’s system on the
other hand we do not in general start from axioms to derive eventually our proposi-
tion; instead, we reason from assumptions. The meaning of each logical connective
is given by rules which introduce it into the discourse together with rules which elim-
inate it, i.e. rules which tell us how to use the information described by a logical
connective in the discourse. To put it differently, the meaning of a proposition is its
use. An important aspect of Gentzen’s system is that the meaning (i.e. the introduc-
tion and elimination rules) is defined without reference to any other connective. This
allows for modular definition and extension of the logic, but more importantly this
modularity extends to meta-theoretic study of natural deduction and greatly simpli-
fies and systematically structures proofs about the logical system. We will exploit this
modularity of logics often throughout this course as we consider many fragments and
extension.

Gentzen’s work was a milestone in the development of logic and it has had wide
ranging influence today. In particular, it has influenced how we define programming
languages and type systems based on the observation that proofs in natural deduc-
tion are isomorphic to terms in the A-calculus. The relationship between proofs and
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programs was first observed by Curry for Hilbert’s system of logic; Howard subse-
quently observed that proofs in natural deduction directly correspond to functional
programs. This relationship between proofs and programs is often referred as the
Curry-Howard isomorphism. In this course we will explore the intimate connection
between propositions and proofs on the one hand and types and programs on the
other.

2.1 Propositions

There are two important ingredients in defining a logic: what are the valid propo-
sitions and what is their meaning. To define valid propositions, the simplest most
familiar way is to define their grammar using Backus-Naur form (BNF). To begin
with we define our propositions consisting of true (T), conjunction (/\), implication
(D), and disjunction (V).

Propositions A,B,C === T|AAB|ADB|AVB

We will use A, B, C to range over propositions. The grammar only defines when
propositions are well-formed. To define the meaning of a proposition we use a judge-
ment “A true”. There are many other judgements one might think of defining: A false
(to define when a proposition A is false), A possible (to define when a proposition is
possible typical in modal logics), or simply A prop (to define when a proposition A is
well-formed giving us an alternative to BNF grammars).

2.2 Judgements and Meaning

We are here concerned with defining the meaning of a proposition A by defining
when it is true. To express the meaning of a given proposition we use inference
rules. The general form of an inference rule is

u name
J
where ]y, ..., ], are called the premises and | is called the conclusion. We can read
the inference rule as follows: Given the premises J;, ..., J,, we can conclude J. An

inference rule with no premises is called an axiom. We now define the meaning of
each connective in turn.



Conjunction We define the meaning of A A B true using introduction (i.e. how
to introduce the connective) and elimination rules (i.e. how to use the information
contained in the connective).

A true B true
A /A B true

NI

A /A B true E A /A B true
A true ¢ B true ’

The name AI stands for “conjunction introduction”. Given A true and B true,
we can conclude that A /A B true. The connective /\ internalizes the “and” as a
proposition. The rule AI specifies the meaning of conjunction. How can we use the
information contained in A /\ B true? To put it differently, what can we deduce from
A /A B true? - Clearly, for A A B true to hold, we must have A true and also B true.
Note that we can have only one conclusion and we cannot write

A /A B true
A true B true

BAD FORMAT

Instead, we simply define two elimination rules: /AE, (getting the left part of the
conjunction) and /\E, (getting the right part of the conjunction).

We will see later how to guarantee that these introduction and elimination rules
fit together harmonically.

Truth The proposition “truth” is written as T. The proposition T should always
be true. As a consequence, the judgement T true holds unconditionally and has no
premises. It is an axiom in our logical system.

T true Tl

Since T holds unconditionally, there is no information to be obtained from it;
hence there is no elimination rule.

A simple proof Before we go on and discuss other propositions, we consider what it
means to prove a given proposition. Proving means constructing a derivation. Since
these derivation take the form of a tree with axioms at the leafs, we also often call it
a proof tree or derivation tree.

= T1
1 T true T true

T true T /AT true Al
TA(TAT) true

TI
/AN




Derivations convince us of the truth of a proposition. As we will see, we distin-
guish between proof and derivation following philosophical ideas by Martin Lofs. A
proof, in contrast to a derivation, contains all the data necessary for computational
(i.e. mechanical) verification of a proposition.

2.3 Hypothetical judgements and derivations

So far, we cannot prove interesting statements. In particular, we cannot accept as a
valid derivation

A /N (BAC) true

B A C true
B true AL

r

While the use of the rule Al and Ar is correct, A /A (B /A C) true is unjustified.
It is certainly not true unconditionally. However, we might want to say that we can
derive B true, given the assumption A /\ (B /\ C) true. This leads us to the important
notion of a hypothetical derivation and hypothetical judgement. In general, we may
have more than one assumption, so a hypothetical derivation has the form

Ji Jn

J
We can derive | given the assumptions Ji, ..., J,,. Note, that we make no claims as
to whether we can in fact prove J, ..., J,,; they are unproven assumptions. However,
if we do have derivations establishing that J; is true, then we can replace the use of

the assumption J; with the corresponding derivation tree and eliminate the use of
this assumption. This is called the substitution principle for hypothesis.

Implications Using a hypothetical judgement, we can now explain the meaning of
A D B (i.e. A implies B) which internalizes hypothetical reasoning on the level of
propositions.

We introduce A D B true, if we have established A true under the assumption
B true.



u
A true

B true

ADBtrueDI

The label u indicates the assumption A true; using the label as part of the name
D I* makes it clear that the assumption u can only be used to establish B true, but it is
discharged in the conclusion A D B true; we internalized it as part of the proposition
A D B and the assumption A true is no longer available. Hence, assumptions exist
only within a certain scope.

Many mistakes in building proofs are made by violating the scope, i.e. using
assumptions where they are not available. Let us illustrate using the rule D [ in a
concrete example.

A true v B true \/)\I
A /\ B true 5T
B D (A AB) true

A>SBDO (AAB) true —

Note implications are right associative and we do not write parenthesis around
B D (A A B). Also observe how we discharge all assumptions. It is critical that all
labels denoting assumptions are distinct, even if they denote the “same” assumption.
Consider for example the following proof below.

u v
A true A true
A /A A true /\VI
A D (ANA) true

ADAD (AAA) true —
We introduce A true twice giving each assumption a distinct label. There are in

fact many proofs we could have given for A D A D (A/AA). Some variations we give
below.

A true Y A true v Al A true Y A true Y Al A true v A true v Al
A /\ A true ST A /\ A true S A /\ A true It
A D (ANA) true . A D (ANA) true N A D (ANA) true

ADAD(A/\A)trueDI ADAD(A/\A)trueDI ADAD(AAA)trueDI

The rightmost derivation does not use the assumption u while the middle deriva-
tion does not use the assumption v. This is fine; assumptions do not have to be used



and additional assumptions do not alter the truth of a given statement. Moreover, we
note that both trees use an assumption more than once; this is also fine. Assumptions
can be use as often as we want to. Finally, we note that the order in which assump-
tions are introduced does not enforce order of use, i.e. just because we introduce
the assumption u before v, we are not required to first use u and then use v. The
order of assumptions is irrelevant. We will make these structural properties about
assumptions more precise when we study the meta-theoretic properties of our logical
system.

Since we have ways to introduce an implication A O B, we also need a rule
which allows us to use an implication and derive information from it. If we have a
derivation for A O B and at the same time have a proof for A, we can conclude B.
This is justified by the substitution principle for hypothetical derivations.

A D B true A true
B true

OE

A few examples using hypothetical derivations We give here a few examples.
Consider first constructing a derivation for (A A B) D (B /A A) true. We do it here in-
crementally. A good strategy is to work from the conclusion towards the assumptions
by applying a series of intro-rules; once we cannot apply any intro-rules any more,
we try to close the gap to the assumptions by reasoning from the assumptions using
elimination rules. Later, we will make this strategy more precise and show that this
strategy is not only sound but also complete.

Employing this strategy, we first use O I followed by Al to find the derivation for
(AAB) D (BAA) true.

A /A B true u

B true A true
B A\ A true

(AAB)S (BAA) true = |

NI

u

We now try to close the gap by reasoning from the assumption A /A B true; this
can be accomplished by using the elimination rules /Al and Ar.



A/\Btrueu A/\Btrueu

B true T A true /\I/\EL
B A A true S

(AAB) D (BAA) true

Note again that we re-use the assumption .

In the next example, we prove distributivity law allowing us to move implications
over conjunctions. We again follow the strategy of applying all introduction rules
first.

AD(B/\C)trueLL A true AD(B/\C)trueLL A true
B true . C true .
A D B true o1 ADCtrue/\I o1

(A DB)/A (A DC) true
ASBAC)S>(ASBIA(ASC)) true — 1

u

We now close the gap by using elimination rules O E and AE, (/\E, respectively).

/\D(B/\C)trueLL AtruevE AD(B/\C)trueLL A true

B /A C true - B/\Ctrue/\E o E
B true 5 Ilv C true S fv
A D B true A D C true A

(A DB)A (A DC) true
(AD(BAC))D((ADB)A(A D C)) true

oIt

Disjunction We now consider disjunction A \V B (read as “A or B”). This will use
the concepts we have seen so far, but is slightly more challenging. The meaning of
disjunction is characterized by two introduction rules.

A true B true
AV B true VI AV B true VI

How should we define the elimination rule for AV B? - We may think to describe
it as follows



AV B true

A true BAD RULE

This would allow us to obtain a proof for A from the information A \VV B true; but
if we know A \V B true, it could well be that A is false and B is true. So concluding
from A VV B is unsound! In particular, we can derive the truth of any proposition A.

Thus we take a different approach. If we know A V B true, then we consider two
cases: A true and B true. If in both cases we can establish C true, then it must be the
case that C is true!

A true u B true u
AV B true C true C true
C \/‘ELL,V
true

We again use hypothetical judgement to describe the rule for disjunction. Note
the scope of the assumptions. The assumption A true labelled u can only be used in
the middle premise, while the assumption B true labelled v can only be used in the
rightmost premise. Both premises are discharged at the disjunction elimination rule.

Let us consider an example to understand how to use the disjunction elimination
rule and prove commutativity of disjunction.

AV B true u

BV A true
(AVB) S (BVA) true — |

At this point our strategy of continuing to apply introduction rules and working
from the bottom-up, does not work, since we would need to commit to prove either
A true or B true. Instead, we will use our assumption A \VV B true and then prove
AV B true under the assumption A true and separately prove A \V B true under the
assumption B true.

u

v w
u A true B true VI
AV B true BV A true = BV A true .,y
VEY
BV A true 5

(AVB) D (BVA) true



Falsehood Last but not least, we consider the rule for falsehood (written as ).
Clearly, we should never be able to prove (directly) L. Hence there is no introduction
rule which introduces 1. However, we might nevertheless derive | (for example
because our assumptions are contradictory or it occurs directly in our assumptions)
in the process of constructing a derivation. If we have derived 1, then we are able to
conclude anything from it, since we have arrived at a contradiction.

1 true

C true LE

It might not be obvious that | is very useful. It is particularly important in allow-
ing us to define —A (read as “not A) as A D L. More on this topic later.

2.4 Local soundness and completeness

One might ask how do we know that the introduction and elimination rules we have
given to define the meaning for each proposition are sensible. We have earlier al-
luded to the unsound proposal for the disjunction rule. Clearly, the meaning is not
just defined by any pair of introduction and elimination rules, but these rules must
meet certain conditions; in particular, they should not allow us to deduce new truths
(soundness) and they should be strong enough to obtain all the information con-
tained in a connective (completeness) [Belnap(1962)]. This is what sometimes is
referred to as harmony by [Dummett(1993)].
let us make this idea more precise:

e Local Soundness: if we introduce a connective and then immediately eliminate
it, we should be able to erase this detour and find a more direct derivation
ending in the conclusion. If this property fails, the elimination rules are too
strong, i.e. they allow us to derive more information than we should.

e Local completeness: we can eliminate a connective in such a way that it retains
sufficient information to reconstitute it by an introduction rule. If this property
fails, the elimination rules are too weak: they do not allow us to conclude
everything we should be able to.

2.4.1 Conjunction

We revisit here the harmony of the given introduction and elimination rules for con-
junction and check our intuition that they are sensible. If we consider the rule NI as



a complete definition for A /\ B true, we should be able to recover both A true and
B true.

Local soundness

Dy D,
A true B true
NI
A /A B true
A t /\El D]
rue = A true
and symmetrically
D; D,
A true B true
NI
A /A B true AE
A true ' — D,
B true

Clearly, it is unnecessary to first introduce a conjunction and then immediately
eliminate it, since there is a more direct proof already. These detours are what makes
proof search infeasible in practice in the natural deduction calculus. It also means
that there are many different proofs for a give proposition many of which can collapse
to the more direct proof which does not use the given detour. This process is called
normalization - or trying to find a normal form of a proof.

Local completeness We need to show that A /A B true contains enough information
to rebuild a proof for A /A B true.

D D
A /A B true A /A B true
—— N\Eg — AL,
A true B true
D A
= A /A B true

A /\ B true

2.4.2 Implications

Next, we revisit the given introduction and elimination rules for implications. Again,
we first verify that we can introduce A O B followed by eliminating it without gaining
additional information.



u

A true
D E
B true E A true
- D Iu
A D B true A true D
OE
B true — B true

Given the hypothetical derivation D which depends on the assumption A true, we
can eliminate the use of this assumption by simply referring to £ the proof for A true.
We sometimes write

&
A true

D more compactly as £/ulD
B true B true

This emphasizes the true nature of what is happening: we are substituting for
the assumption u the proof £. Note that this local reduction may significantly in-
crease the overall size of the derivation, since the derivation £ is substituted for each
occurrence of the assumption labeled u in D and may thus be replicated many times.

Local completeness We now check whether our elimination rules are strong enough
to get all the information out they contain, i.e. can we reconstitute A D B true given
a proof for it?

D

u
A D B true A true
OE
D B true -
A D B true - A D B true

2.4.3 Disjunction

We can now see whether we understand the principle behind local soundness and
completeness.



Local soundness We establish again that we cannot derive any unsound informa-
tion from first introducing A \V B and then eliminating it. Note that the rule VE*Y
ends in a generic proposition C which is independent of A and B. We note that we
have a proof £ for C which depends on the assumption A true. At the same time we
have a proof D which establishes A true. Therefore by the substitution principle, we
can replace and justify any uses of the assumption A true in £ by the proof D.

u u D
D A true B true
A VI, £ F A true
AV B C true C true E
\/Eu,\)
C true - C true
Similarly, we can show
u u D
D A true B true
B VI < F B true
AV B C true C true F
VEWY
C true — C true
Local completeness
u Y
D A true VI, B true T
D AV B true AV B true AV B true
VEWY
AV B true = AV B true

2.4.4 Negation

So far we have simply used —A as an abbreviation for A O | and at any point we
can expanded —A exposing its definition. How could we define the meaning of —A
direction? - In order to derive —A, we assume A and try to derive a contradiction.
We want to define —A without reference to | ; to accomplish this we use a parametric
propositional parameter p which stands for any proposition. We can therefore estab-
lish —A, if we are able to derive any proposition p from the assumption A true. Note
that p is fixed but arbitrary once we pick it.



u

A true
p true [P —A true A true .
—A true C true

We can check again local soundness: if we introduce —A and then eliminate it,
we have not gained any information.

u
A true
D &
p true - & m
—A true A true [C/p]D
C true ot — C true

Since p denotes any proposition and D is parametric in p, we can replace p with
C; moreover, since we have a proof £ for A, we can also eliminate the assumption u
by replacing any reference to u with the actual proof £.

The local expansion is similar to the case for implications.

D
—A true A true

u

DL
D Pp true

—A true e —A true

>

It is important to understand the use of parameters here. Parameters allow us to
prove a given judgment generically without committing to a particular proposition.
As a rule of thumb, if one rule introduces a parameter and describes a derivation
which holds generically, the other must is a derivation for a concrete instance.

2.5 First-order Logic

So far, we have considered propositional logic and the programming language arising
from it is very basic. It does not allow us to reason about data-types such as natural
numbers or booleans for example.



In this chapter, we develop first-order logic which allows us to quantify over data.
This will allow us to reason about data and from a proof about a given property we
are able to extract a programs manipulating data. The resulting program is correct-
by-construction. In practice, we rarely formally prove our programs to be correct -
for real programs with mutable state or concurrency the specification of what a pro-
gram is supposed to do may be challenging. Moreover, we cannot mechanically and
automatically establish that a program satisfies a given invariant. However, partial
invariants are useful in practical programming.

2.5.1 Universal and Existential Quantification

In this section, we introduce logical quantifiers. We extend our grammar for logical
formulae with universal quantification, written as Vx:1.A(x), and existential quantifi-
cation Ix:t.A(x).

Terms t n= x| f(ty,y...,th)
Type T
Propositions A,B,C == ...|P(t)|Vxt.A(x) | Ix:T.A(X)

We can read Vx:t.A(x) as “for all elements, the proposition A(x) holds”. We hence
quantify over terms of type 1. P(t) describes some basic predicate which depends
on terms. We keep the grammar of terms abstract and simply state that terms are
formed with variables and via some predefined function symbols f. First-order logic
abstracts over the concrete data we are reasoning about, but it may nevertheless be
useful to see specific instances where we choose T to be nat. In this instance, our
terms contain variables, 0 (nullary function symbol or constant), and suc t where suc
is a unary function symbol. We can then state some simple facts about even and odd
numbers using two predicates even and odd.

Vx:nat.even x O odd (suc x)
even 0
Vx:nat.even x D even (suc suc x)

The meaning of logical quantifiers is however independent of the concrete domain
T we are reasoning about. We will come back and introduce concrete domains when
we extend our logic with induction.

For now, we may ask: what does Vx:t.A(x) true mean? Intuitively, we must
require that A(x) be valid for arbitrary x, since we do not choose a specific domain .
We note that we now introduce an assumption about the new parameter x. Hence, we
have two kinds of assumptions in proofs now: hypothetical assumptions of the form



A true as for example introduced by the rules O I or VE and parametric assumptions
of the form x:t.

T
Ala) true Vx:T.A(x) true tT
vIe VE
Vx:T.A(x) true A(t) true

If our domain 7 is finite, we might hope to check for each element t; in T that
A(t;) true. However, our domain may be infinite which makes this approach infea-
sible. Instead, we make no commitment as to what shape or property the element
might have and pick one representative a. Note that a is arbitrary and fresh, i.e.
it cannot have been used before in the same derivation. If we are able to establish
A(a) true then it is indeed the case that Vx:t.A(x) true, because we have proven A
generically for an arbitrary a.

If we have a proof of Vx:1.A(x) true, then we know that A(x) is true for arbitrary
x. Hence, we should be able to obtain specific instances by instantiating x with a
concrete term of type T. In the rule VE, we explicitly establish the fact that t has
type T using the judgment t:t. We keep the definition of t.t abstract at this point, but
keep in mind for every concrete domain T we can define terms belonging to it. For
example, for the domain nat, we might define

t: nat
No —————— Nguc

0: nat suc t: nat

We return to other domains shortly.
We can now prove some simple statements which are true for any domain t such
as the following:

u —_— u —_—

Vx:t.P(x) A Q(x) true a:T Vx:t.P(x) A Q(x) true b:t
P(a) A Q(a) true vE AEL P(b) A Q(b) true vE AE.
P(a) true Q(b) true
vIe \V/Ib
Vx:T.P(x) true Vx:t.Q(x) true
(Vxt.P(x)) A (VxiT.Q(x)) true a .
D u

(Vxt.P(x) A Q(x)) D (Vxet.P(x)) N (Vx:t.Q(x)) true



We note that the parameter a in the left branch is different from the parameter
b in the right branch; we chose different names for clarity, however note since their
scope is different, choosing the same name in both branches would still be fine and
they would still refer be distinct.

To check that our introduction and elimination rules are harmonic, we give local
soundness and completeness proofs.

X:T
E
A(x) true & t:t
Vv
Vx:T.A(x) true tT [t/x]D
VE
A(t) true — A(t) true

Since the derivation D is parametric in x, we can simply replace all instances of x
with concrete terms t of the same type.

We now check whether our elimination rules are strong enough to get all the
information out they contain, i.e. can we reconstitute Vx:t.A(x) true given a proof
for it?

D _
Vx:T.A(X) true X:T
VE
D A(x) true .
VXx:T.A true = Vx:T.A(X) true

Let us now define the meaning of existential quantification. (Finite) universal
quantification corresponds to conjunction; dually, (finite) existential quantification
corresponds to disjunction. To prove Ix:t.A(x), we pick a term t from t and show
A(t) true. Note that we require that t actually exists. This is an important distinction
in reasoning constructively. It means we require that the type T is in fact inhabited,
i.e. elements exist and it is not empty. Classically, we are not required to provide an
element explicitly. As a consequence, one might argue that constructive reasoning
allows us to make more fine-grained distinction between when a domain is empty
and when it is not. In fact, constructively, we can interpret the empty type as false
which is often exploited in practice.

Our existential introduction rule is similar to disjunction in that we need to pick
a t belonging to t. It involves a choice.



_
a:t  Afa) true

A(t) true t:T Ix:t.A(x) C true
E|I HEa,u
Ix:t.A(x) true C true

What can we deduce given a proof for Ix:1.A(x)? - Although we know that there
exists some element a in T such that A(a) true, we don’t know which one. Recall
again the elimination rule for disjunction where we had a similar dilemma. Although
we have A V B true, we do not know whether A true or B true. We therefore split
the proof into two cases: Assuming A true we can prove C true and assuming B true
we can prove C true. We will define existential elimination similarly; if the domain
T were finite, we would have n cases to consider: assuming A(t;) true we prove
C true for all T < i1 < n. However, we do not make any assumptions about our
domain. Hence, we hence pick a fresh arbitrary parameter a and assuming A(a) true
we establish C true. Since a was arbitrary and we have a proof for Ix:t.A(x), we
have established C true.

Let us consider an example to see how we prove statements involving existential
quantification.

(Ix:T.P(x) V Q(x)) D (Ix:1.P(x)) V (Ix:1.Q(x)) true

We show the proof in two stages, since its proof tree is quite large.

P(a)V Q(a) true art

DGV'LL
dx:t. V (Ix:T.
Fxt.P(x) V Q(x) trueLL (Ixt.P(x)) V (IxT.Q(x)) true
(FIeT.P(x) V (IT.Q(x)) true JE 1
D u

(Ix:t.P(x) V Q(x)) D (Ix:t.P(x)) V (Ix:T.Q(x)) true

We now give the derivation D*"; we write the assumptions available as a super-
script.



- W -
P(a) true T
=

Ix:t.P(x) true
P(a) V Q(a) true Y (Ix:t.P(x)) V (IxiT.Q(x)) true
(Ix:t.P(x)) V (Ix:1.Q(x)) true

VI
S pes

To understand better the interaction between universal and existential quantifi-
cation, let’s consider the following statement.

Ix:t.—A(x) D ~VxiT.A(X) true

u -
Vx:T.A(x) true T
VE —V
A(a) true —A(a) true
u OE
Ix:t.—A(x) true 1 true
HEGV
1 true
o

—Vx:T.A(x) true
O™

Ixit.—A(x) D =Vx:T.A(X) true
Let’s consider the converse;
(—Vx:Tt.A(x)) D Ixit.—A(X) true

After using implication introduction, we are in the following situation:

u

—Vx:T.A(X) true

Ix:t.—A(X) true
o™

(=Vx:Tt.A(x)) D Ixit.—~A(X) true

But now we are stuck; to use the rule 31 we need a concrete witness for x, which
we do not have, since we know nothing about the domain t. We also cannot do
anything with the assumption —Vx:t.A(x) which is equivalent to Vx:t.A(x) O L. To
eliminate it, we would need a proof of Vx:t.A(x).



u N
—Vx:T.A(X) true ¢t

A(c) true
u vI¢
—Vx:T.A(X) true Vx:T.A(X) true

1 true

OE

1E
Ix:t.—A(x) true
oI

(—Vx:T.A(x)) D Ixit.—A(x) true

But how should we obtain a proof for A(c) given —Vx:t.A(x) true. There is not
much we can do; we can attempt again to derive a contradiction using O E, but this
simply leads to a loop. At the moment we do not have the syntactic tools to argue
why this statement is not provable, so this argument may seem unsatisfying. We will
get back to more syntactic methods of arguing why something is not provable later.
It turns out that if a proof exists, it must exist without any detours (i.e. without any
combinations of intro-elim rules) and moreover every proof in first-order logic must
satisfy the subformula property, i.e. we can concentrate on using only introduction
and elimination rules for connectives which occur in the formula we are trying to
prove.

An alternative is to give a counter example by choosing a specific domain and
specific predicate instantiation for A.

2.6 Localizing Hypothesis

So far, we have considered Gentzen’s style natural deduction proofs where assump-
tions in the proof are implicit. Reasoning directly from assumptions results in com-
pact and elegant proofs. Yet this is inconvenient for several reasons: it is hard to
keep track what assumptions are available; it is more difficult to reason about such
proofs via structural induction over the introduction and elimination rules since we
do not have an explicit base case for assumptions; it is more difficult to state and
prove properties about assumptions such as weakening or substitution properties.
For these reasons, we will introduce an explicit context formulation of the natural
deduction rules we have seen so far making explicit some of the ambiguity of the two-
dimensional notation. We therefore introduce an explicit context for bookkeeping,
since when establishing properties about a given language, it allows us to consider
the variable case(s) separately and to state clearly when considering closed objects,
i.e., an object in the empty context. More importantly, while structural properties of
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Figure 2.1: Natural Deduction with Explicit Context for Assumptions

contexts are implicitly present in the above presentation of inference rules (where
assumptions are managed informally), the explicit context presentation makes them
more apparent and highlights their use in reasoning about contexts.

Typically, a context of assumptions is characterized as a sequence of formulas
listing its elements. More formally we define contexts as follows.

Context ' == -|T,wA true

We hence generalize our judgment A true to I' = A true which can be read as
“given the assumptions in I' we can prove A. We interpret all our inference rules
within the context I' (see Fig. 2.1).

We can now state more succinctly structural properties about our logic

1. Weakening Extra assumptions don’t matter.
2. Exchange The order of hypothetical assumptions does not matter.

3. Contraction An assumption can be used as often as we like.



as actual theorems which can be proven by structural induction.
Theorem 2.6.1.
1. Weakening. If ;T' F A true then I, u: B true, " F A true.

2. Exchange If T, x : By true,y : B; true, T’ = A true
then T}y : B, true,x : By true, " F A true.

3. Contraction If T, x : B true,y : B true,I"" - A true then T} x : B true, "' - A true.

In addition to these structural properties, we can now also state succinctly the
substitution property.

Theorem 2.6.2 (Substitution).
IfTx: A true, T+ B trueand ' - A true then I, T’ I B true.

2.7 Proofs by structural induction

We will here review how to prove properties about a given formal system; this is in
contrast to reasoning within a given formal system. It is also referred to as “meta-
reasoning”.

One of the most common meta-reasoning techniques is “proof by structural in-
duction on a given proof tree or derivation”. One can always reduce this structural
induction argument to a mathematical induction purely based on the height of the
proof tree. We illustrate this proof technique by proving the substitution property.

Theorem 2.7.1. If ;u: A true,I"" F C true and T' - A true then I, T’ I C true.

Proof. By structural induction on the derivation [[u : A true, " = C true. We consider
here a few cases, although for it to be a complete proof we must consider all rules.
There are three base cases to consider; to be thorough we write them out.

Case D= TI.
Lu:Atrue, " T true
LT'E T true by TI
Case D= u.
Lu:A true, T’ - A true
' A true by assumption

LT+ A true by weakening



v:Ctrue € (IT)

v
Lu:A true, '+ C true
LT E C true by rule v

Case D=

We now consider some of the step cases. The induction hypothesis allos us to assume
the substitution property holds for smaller derivations.

F &
Lw: A true, " = C true Lw:A true, " - B true
Case D= VAN
Lu:A true,T' = C /B true
' A true by assumption
T F C true by i.h. using F and assumption
LT F B true by i.h. using £ and assumption
LT C/AB true by rule NI

The other cases for AE, AE,, D E, VI, VI, or LE follow a similar schema. A
bit more interesting are those cases where we introduce new assumptions and the
context of assumptions grows.

&
uw: A true, ', v:B true - C true
Case D= O
Luw:A true," B D C true
' A true by assumption
I T/v: B true - C true by i.h. using £
LT'FB D Ctrue by rule O I".

Note that the appeal to the induction hypothesis is valid, because the height of
the derivation £ is smaller than the height of the derivation D. Our justification is
independent of the fact that the context in fact grew. O

2.8 Exercises

Exercise 2.8.1. Assume someone defines conjunction with the following two rules:



AAB C A B

AE®Y —ANI
C A /AB

Are these rules sound and complete? — Show local soundness and completeness.

Exercise 2.8.2. Give a direct definition of “A iff B”, which means “A implies B and
B implies A”.

1. Give introduction and elimination rules for iff without recourse to any other
logical connectives.

2. Display the local reductions that show the local soundness of the elimination
rules.

3. Display the local expansion that show the local completeness of the elimination
rules.

Exercise 2.8.3. A/\B is usually defined as —(A /A B). In this problem we explore the
definition of nand using introduction and elimination rules.

1. Give introduction and elimination rules for nand without recourse to any other
logical connectives.

2. Display the local reductions that show the local soundness of the elimination
rules.

3. Display the local expansion that show the local completeness of the elimination
rules.

Exercise 2.8.4. Extend the proof of the substitution lemma for the elimination rules
for conjunction (/A\E;) and disjunction (\VE).






Chapter 3

Proof terms

“For my money, Gentzens natural deduction and Churchs lambda calcu-
lus are on a par with Einsteins relativity and Diracs quantum physics for
elegance and insight. And the maths are a lot simpler. “

Proofs as Programs: 19th Century Logic and 21 Century Computing, P.
Wadler [?]

In this chapter, we describe the relationship between propositions and proofs on the
one hand and types and programs on the other. On the propositional fragment of
logic this is referred to as the Curry-Howard isomorphism. Martin Lof developed this
intimate relationship of propositions and types further leading to what we call type
theory. More precisely, we will establish the relationship between natural deduction
proofs and programs written in Church’s lambda-calculus.

3.1 Propositions as Types

In order to highlight the relationship between proofs and programs, we introduce a
new judgement M : A which reads as “M is a proof term for proposition A”. Our
intention is to capture the structure of the proof using M. As we will see there are
also other interpretations of this judgement:

M is a proof term for proposition A

M:A M is a program of type A

These dual interpretations are at the heart of the Curry-Howard isomorphism. We
can think of M as the term that represents the proof of A true or we think of A as the
type of the program M.

Our intention is that

31



M: A iff A true

However, we want in fact that that the derivation for M : A has the identical
structure as the derivation for A true. This is stronger than simply whenever M : A
then A true and vice versa. We will revisit our natural deduction rules and annotate
them with proof terms. The isomorphism between M : A and A true will then become
obvious.

Conjunction Constructively, we can think of A /A B true as a pair of proofs: the
proof M for A true and the proof N for B true.
M:A N:B
(M, N):AAB

AN

The elimination rules correspond to the projections from a pair to its first and
second element.

l\/l:A/\BAEL M:AANB

fst M: A snd M : B

In other words, conjunction A /A B corresponds to the cross product type A x B.
We can also annotate the local soundness rule:

AE,;

D, D,
M:A N:B
AN
(M, N):AAB
/\E1 ‘D]
fst (M, N): A — M: A
and dually
Dy D,
M:A N:B
NI
(M, N): AAB
/\El Dz
snd (M, N): A — N-B

The local soundness proofs for A give rise to two reduction rule:

fst (M, N) = M
snd (M, N) — N



We can interpret

M = M’ M reduces to M’

A computation then proceeds by a sequence of reduction steps:

M=M= ... = M,

We reduce M until we (hopefully) reach a value which is the result of the com-
putation (or until we are stuck). The annotated local soundness proof can be inter-
preted as:

IEM:Aand M = M'then M’: A

We can read it as follows: If M has type A, and M reduces to M’, then M’
has also type A, i.e. reduction preserves types. This statement is often referred to
as subject reduction or type preservation in programming languages. Wright and
Felleisen [?] were the first to advocate using this idea to prove type soundness for
programming languages. It is proven by case analysis (and induction) on M —
M'. Our local soundness proof for /\ describes the case for the two reduction rules:
fst (M, N) =— Mandsnd (M, N) = N. We will more elaborate on reductions
and their theoretical properties later.

Truth Constructively, T corresponds to the unit element ().

(O):T
— T

T in type theory corresponds to the unit type often written as unit or 1. There is
no elimination rule for T and hence there is no reduction. This makes sense, since ()
is already a value it cannot step.

Implication Constructively, we can think of a proof for A O B as a function which
given a proof for A, knows how to construct and return a proof for B. This function
accepts as input a proof of type A and we returns a proof of type B”. We characterize
such anonymous functions using A-abstraction.

xA

M:B
AXAM:ADB

D IX,LL



We distinguish here in the derivation between the variable x corresponding to A
and the assumption which states x has type A. Here x is a proof term, while u the
name of the assumption x : A. Consider the trivial proof for (A /A A) D A true.

u
x:A

fstx: A
M:(ANA)fstx: (ANA)DA

A\

XU

A different proof where we extract the right A from AAA, can results in a different
proof term.

u
x: A

snd x: A
A:(AANA)sndx: (AANA)DA

AE,

X,

The probably simplest proof for A O A can be described by the identity function
AX:ALX.

The elimination rule for D E corresponds to function application. Given the proof
term M for proposition (type) A D B and a proof term N for proposition (type) A,
characterize the proof term for B using the application M N.

M:ADB N:A
MN:B

OE

An implications A D B can be interpreted as a function type A — B.The introduc-
tion rule corresponds to the typing rule for function abstractions and the elimination
rule corresponds to the typing rule for function application.

Note that we continue to recover the natural deduction rules by simply erasing
the proof terms. This will continue to be the case and highlights the isomorphic
structure of proof trees and typing derivations.

As a second example, let us consider the proposition (A /A B) D (B /A A) whose
proof we’ve seen earlier as

— AE, — Ak,
A/NB A/NB

B true A true
B /A A) true
(AAB) D (BAA) true

Al

oI



We now annotate the derivation with proof terms.

x:/:’/\B/\Er X:AU’/\B/\EI
snd x: B fstx: A
(snd x, fstx) : B/AA)
Ax:A AB.(snd x, fstx) : (AAB) D (BAA)

Let us revisit the local soundness proof for O to highlight the interaction between
function abstraction and function application.

NI

O™

u
XA
D E
) - u
M:B pou £ N:A
AXAB:ADB N:A [N/x]D
OE
(AX:A.M) N :B IN/x]M : B

—

This gives rise to the reduction rule for function applications:

(AxXxAM)N = [N/x]M

The annotated soundness proof above corresponds to the case in proving that the
reduction rule preserves types. It also highlights the distinction between x which
describes a term of type A and u which describes the assumption that x has type A.
In the proof, we appeal in fact to two substitution lemmas:

1. Substitution lemma on terms: Replace any occurrence of x with N

2. Substitution lemma on judgements: Replace the assumption N : A with a proof
& which establishes N : A.

Disjunction Constructively, a proof of A\ B says that we have either a proof of A or
a proof of B. All possible proofs of A \V B can be described as a set containing proofs
of A and proofs of B. We can tag the elements in this set depending on whether they
prove A or B. Since A occurs in the left position of \VV, we tag elements denoting
a proof M of A with in* M; dually B occurs in the right position of \V and we tag



elements denoting a proof N of B with inr® N. Hence, the set of proofs for A \V B
contains inl* My, ...,inI" M,, i.e. proofs for A, and inr® Ny, ...,inr® Ny,, i.e. proofs
for B. From a type-theory point of view, disjunctions correspond to disjoint sums,
often written as A + B. The introduction rules for disjunction correspond to the left
and right injection.

M:A N:B
in*M:AVB in® N:AVB

We annotate inl and inr with the proposition A and B respectively. As a conse-
quence, every proof term correspond to a unique proposition; from a type-theoretic
perspective, it means every program has a unique type.

The elimination rule for disjunctions corresponds to a case-construct which dis-
tinguishes between the left and right injection. To put it differently, know we have a
proof term for A \V B, we know it is either of the form inl* x where x is a proof for A
or of the form inr® y where vy is a proof for B.

u —V
XA y:B

M:AVB N.: C N, : C
\/Ex,u,y,v

case M of inl* x — Ny |infPy = N, : C

Note that the labelled hypothesis u which stands for the assumption x : A is only
available in the proof N, for C. Similarly, labelled hypothesis v which stands for the
assumption y : B is only available in the proof N, for C. This is also evident in the
proof term case M of inl* x — N, | inrf® y — N,. The x is only available in Ny, but
cannot be used in N, which lives within the scope of y.

As before (left to an exercise), the local soundness proof for disjunction gives rise
to the following two reduction rules:

case (in* M) of in* x = Ny [infPy = N, = [M/xIN,
case (inf® M) of in* x = Ny Jinffy = N, = [M/yIN,

Falsehood Recall that there is no introduction rule for falsehood (). We can there-
fore view it as the empty type, often written as void or 0.

From a computation point of view, if we derived a contradiction, we abort the
computation. Since there are no elements of the empty type, we will never be able to
construct a value of type void; therefore, we will never be able to do any computation
with it. As a consequence, there is no reduction rule for abort.



M: L

—— |E
abort* M : C

To guarantee that abort® M has a unique type, we annotate it with the proposition
C.

Summary The previous discussion completes the proofs as programs interpretation
for propositional logic.

Propositions | Types

T (JorO Unit type

A/NAB A x B Product type
ADB A — B  Function type
AV B A+ B Disjoint sum type
L void or 1 Empty type

The proof terms we introduced corresponds to the simply-typed lambda-calculus
with products, disjoint sums, unit and the empty type.

Terms M,N == x
| (M, N)|fst M |snd M
| AxXA.M|MN
| inl* M |inr® N | case M of inl* x = Ny |inrf® y — N,
| abort® M | ()

Remarkably, this relationship between propositions and types can be extended to
richer logics. As we will see, first-order logic gives rise to dependent types; second-
order logic gives rise to polymorphism and what is generally known as the calculus
System F. Adding fix-points to the logic corresponds to recursive data-types in pro-
gramming languages. Moving on to non-classical logics such as temporal logics their
computational interpretation provides a justification for and guarantees about re-
active programming; modal logics which distinguish between truths in our current
world and universal truths give rise to programming languages for mobile comput-
ing and staged computation. The deep connection between logic, propositions and
proofs on the one hand and type theory, types, and programs on the other provides
a rich and fascinating framework for understanding programming languages, reduc-
tion strategies, and how we reason in general.



3.2 Proving = Programming

One important consequence of the relationship between a proof and a well-typed
program, is that instead of constructing a derivation for a proposition A, we simply
write a program of type A. By the Curry-Howard isomorphism, this program will be
correct by construction!

As computer scientists, we are familiar with writing programs, maybe more than
writing proof derivations. It is often also a lot more compact and less time consuming,
to directly write the program corresponding to a given type A. We can then simply
check that the program has type A, which boils down to constructing the proof tree
which establishes that A is true. The good news is that such proof checking can be
easily implemented by a small trusted type checker, a program of a few lines. In fact,
Tutch gives you the option of either writing a proof for a proposition A, writing an
annotated proof of a proposition A, or simply writing a term whose type is A.

We've already seen some simple programs, such as the identity function, or the
function which given a pair returns the first or second projection of it. Let’s practice
some more.

Function composition The proposition ((A > B) /A (B D C)) D A D C can be read
computationally as function composition. Given a pair of functions, where the first
element is a function f : A O B and the second element is a function g : B O C, we
can construct a function of type A O C, by assuming x:A, and then first feeding it to
f, and passing the result of fx to g, i.e. returning a function Ax:A.g (f x).

Since our language does not use pattern matching to access the first and second
element of a pair, we write fst u instead of f and snd u instead of g, where u denotes
the assumption (A D B) A (B D C).

Given this reasoning, we can write function composition as

AMu(A D B)A (B D C).Ax:Asnd u ((fst u) x)

3.3 Proof terms for first-order logic

Similar to proof terms for propositional logic, we can introduce proof terms for quan-
tifiers. The proof term for introducing an existential quantifier, encapsulates the wit-
ness t together with the actual proof M. It is hence similar to a pair and we write
it as (M, t) overloading the pair notation. The elimination rule for existentials is
modeled by let (u,a, =)M in N where M is the proof for Ix:t.A(x) and N is the
proof depending on the assumption u: A(a) and a : 7.



The proof term for introducing a universal quantifier is modeled by lambda-
abstaction. Elimination is modeled by application. We again overload abstaction
and application.

Terms M,N := AatTM|Mt|(M, t)]|let(u, a)=MinN

LatkM:A(a) e N'-M:vxt.A(x) TEtT
'EAa:t.M:Vxt.A(x) "'EMt:A(t)

'EM:A(t) THtT 1 N -=M:Ixt.A(x) LHat,wA(a)FN:C
MNE (M, t) : Ixt.Ax) MNelet (u, a) =M inN:C

We obtain two additional reduction rules.

Aat.M) t —  [t/aM
let (u, a) = (M, t)inN =  [M/u]lt/a]M

Note that we also overload our substitution operation writing [M/u] to replace a
proof assumption u with the proof term M and writing [t/a] to replace a parameter a
with the term t from our reasoning domain. We assume that substitution is capture-
avoiding.

3.4 Meta-theoretic properties

We consider here additional properties of the proof terms, typing and reductions. For
this discussion it is useful to have all the typing and reduction rules in one place.

If we look back at our reduction rules we notice that reduction does not always
take place at the top-level. A redex, i.e. a term which matches one of the left hand
sides of our reduction rules, may be embedded in a given term. For example, we may
want to evaluate:

AY:AL(( A XY, y)

Here the redex ( Ax:A.x)y is burried underneath a lambda-abstraction and a pair.
In order to allow reduction of a redex which is not at the top-level, we need to intro-
duce additional reduction rules for M = M’ allowing us to get to the redex inside
another term. This is accomplished by so-called congruence rules. Note our congru-
ence rules are non-deterministic; they also reduce under a lambda-abstraction. Both



r'EM:A FI—N:B/\I

N'fst M:AAB 'Fsnd M:AAB
Ay

FF(M, N):AAB FEM:A FM:B

NwAFM:B m T[EM:AOB TEN:A
TEACAM:ASB T'FMN:B

OE

''EN:A I'EN:B
. B \/Il A
'EinP N:AVB 'Eint* N:AVB

T

'EM:AVB TTu:AFN:C LCv:BFEN,:C
I'kcase M of in* B — N |inr" A—= N,:C

VE®

Ik abort® M : | u:Aerl

T LB IFEuA

re():T ''e|M:C

u

LatkM:A(a) N-MmM:vxt.A(x) Tkt
vie VE

MN-Aa:t.M:Vx1.A(X) Fr'EMt:A(t)

''EM:A(t) Tkt N -=M:3Ixt.A(x) Lat,wA(a)FN:C

MNE(M, t) : It Ax) & MFlet (u, a)=MinN:C

Figure 3.1: Summary of typing rules
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of these characteristics may not be wanted if we are to define a determinstic call-
by-value evaluation strategy. However, at this point, we retain as much flexibility as
possible.

Exercise 3.4.1.

Define corresponding congruence rules for universal and existentials.

3.4.1 Subject reduction

We prove here a key property: Subject reduction.
Theorem 3.4.1. f M =— M’and ' M : C thenT - M': C.

Proof. By structural induction on M — M.
The reduction rules for each redex form the base cases in the proof. We consider
here the rule for reducing (Ax:A.M) N one as an example.

Case D= (MWA.M)N = [N/xJM

N (AxA.M)N:C by assumption
FEAXAM:A’'DC

FEN:A/ by rule O E
Nx:AFM:Cand A=A’ by rule D I*
M= [N/xIM: C by substitution lemma

We next consider a representative from the step cases which arise due to the
congruence rules.

D/
M= M’
Case D=
AxAM = Ax:A.M'
N=AxA.M:C by assumption
Lx:AFM:BandC=A DB by rule D I*
Nx:AFM':B by i.h. on D’
FEAXAM :ADB by rule D I*

]

3.4.2 Type Uniqueness



Reduction rules for redexes

fst (M, N) — M
snd (M, N) — N
(Ax:A.M) N —  [N/x]M
case (in* M) of in* x = Ny |infPy = N, = [M/x]N,
case (infP M) of in* x = N [infFy =N, =  [M/yIN,
Aat.M) t —  [t/a]M
let (u, a) = (M, t)in N = M /u][t/a]M
Congruence rules
M= M’ N = N’ M= M’ M= M’

(M, Ny = (M, N} (M, N) => (M, N} fst M = fst M’ snd M = snd M’

M= M’ M= M’ N =N’
ACAM = Ax:A.M’ MN = M'N MN=—MN'

M= M’ M= M’
in®M = in®PM’ inMl*M = inr* M’

M= M’

case M of inl® u— Ny |inf* v 5 N, = case M’ of inl® u — N | inf* v = N,

Ny = N/

case M of inl® u — Ny [inr* v — N, = case M of inl® u — N/ [ inr* v = N,

N, = N/

case M of inl® u — Ny [inr* v = N, = case M of inl® u — N/ | inr* v — N/

Figure 3.2: Summary of reduction rules



Chapter 4

Induction

So far, we have seen first-order logic together with its corresponding proof-terms.
First-order logic corresponds to the dependently typed lambda-calculus. However, if
we are to write meaningful programs we need two more ingredients: 1) we need
to reason about specific domains such as natural numbers, lists, etc 2) we need
to be able to write recursive programs about elements in a given domain. Proof-
theoretically, we would like to add the power of induction which as it turns out
corresponds to being able to write total well-founded recursive programs.

4.1 Domain: natural numbers

First-order logic is independent of a given domain and the reasoning principles we
defined hold for any domain. Nevertheless, it is useful to consider specific domains.
There are several approaches to incorporating domain types or index types into our
language: One is to add a general definition mechanism for recursive types or induc-
tive types. We do not consider this option here, but we return to this idea later. An-
other one is to use the constructs we already have to define data. This was Church’s
original approach; he encoded numerals, booleans as well as operations such as ad-
dition, multiplication, if-statements, etc. as lambda-terms using a Church encoding.
We will not discuss this idea in these notes. A third approach is to specify each type
directly by giving rules defining how to construct elements of a given type (introduc-
tion rule) and how to reason with elements of a given type (elimination rule). This
is the approach we will be pursuing here.
We begin by defining concretely the judgement

t:t Termt has type t
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which we have left more or less abstract for now for concrete instances of T.

4.1.1 Defining for natural numbers

We define elements belonging to natural numbers via two constructors z and suc.
They allow us to introduce natural numbers. We can view these two rules as intro-
duction rules for natural numbers.

t:nat
natl, ——— natl,

Z : nat suct : nat

4.1.2 Reasoning about natural numbers
To prove inductively a property A(t) true, we establish three things:
1. tis a natural number and hence we know how to split it into different cases.

2. Base case: A(z) true
Establish the given property for the number z

3. Step case: For any n : nat, assume A(n) true (I.LH) and prove A(sucn) true.
We assume the property holds for smaller numbers, i.e. for n, and we establish
the property for sucn.

More formally, the inference rule capturing this idea is given below:

i.h
n:nat A(n) true

t:nat A(z) true A(sucn) true

natE™i
A(t) true

Restating the rule using explicit contexts to localize all assumptions:

N-t:nat ' A(z) true I, nunat, ihtA(n) true - A(sucn) true

tETl,ih
I+ A(t) true na

Let us prove a simple property inductively, to see how we use the rule.
Note the rule natE™" has implicitly a generalization built-in. If we want to estab-
lish a property A(42) true, we may choose to prove it more generally for any number



proving that A(z) true (i.e. the property A holds for z) and proving A(sucn) true (i.e.
the property A holds for sucn) assuming the property A holds for n. Since we now
have proven that A holds for all natural numbers, it also must hold for 42.

Let’s look at an example; we first encode definitions which will form our signature
S.

lez :Vxmnat. z<x
le_suc : Vx:nat.Vy:mnat. x <y DO sucx <sucy

Then we would like to prove: S F Vx:nat. x < x true. For better readability, we
omit true in the derivations below.

Dz Dsuc
S, a:nat - a: nat S, anat-z<z S, acnat, ninat, thn <nk sucn <sucn .
natE™"
S, anatFa<a
vIe
S FVxinat. x <x
We consider the base case D, and the step case D,,. separately. We also write the
derivations using implicit context representations to keep them compact.
—lez nat,
Vx:nat.z < x z > nat
D, = VE
z<z
le_suc
Vx:nat.Vy:nat. x <y D sucx < sucy T : nat
VE
Vymnat. n <y DO sucn <sucy 1 : nat
VE ih
n<n>Dsucn <sucn n<n
Dsuc = OF
sucn < sucn
4.1.3 Proof terms
We assign a recursive program to the induction rule.
'E+t:nat 'eEM,:A(z) I, minat, f ntA(n) true F Mg, : A(sucn)
natE™fm

It rec™ AN ¢ with f z — M, | f (sucn) — Mg @ A(t)



The proof term uses the variable f to denote the function we are defining; in some
sense, this definition is similar to programs allowing defining functions by equations
using simultaneous pattern as in Haskell.

From the proof above for S F Vx:nat. x < x we can synthesize the following
program:

Aa:nat. rec”xnat XSX g with
| fz = lezz
| f(sucn) = lesucnn(fn)

How to extend our notion of computation? We will have two reduction rules
which allow us to reduce a recursive program:

rec? z withfz —= M, |f (sucn) = Mge = M,
rec (suct) withfz — M, |f (sucn) = My =  [t/n]r/fn]Ma.c
where v = rec® t with f z — M, | f (sucn) — Mgy

Note that we unroll the recursion by replacing the reference to the recursive call
fn with the actual recursive program rec* t with f z — M, | f (sucn) — M.

We might ask, how to extend our congruence rules. In our setting, were reduc-
tions can happen at any given sub-term, we will have two additional congruence
rules. Note that we do not have a rule which evaluates t, the term we are recursing
over; at the moment, the only possible terms we can have are those formed by z and
suc or variables. We have no computational power on for terms t of our domain.

Congruence rules

N, = N/

rec® t with f z — N, | f (sucn) — Nge = rec? t with f z — N/ | f (sucn) — Ngue

Noye = N;uc

rec® t with f z — N, | f (sucn) — Nge = rec t withfz — N, | f (sucn) — N/

suc

Proving subject reduction We also revisit subject reduction, showing that the ad-
ditional rules for recursion preserve types. This is a good check that we didn’t screw

up.
Theorem 4.1.1. f M =— M’and ' M : C thenT - M': C.
Proof. By structural induction on M — M.



Case D =rec” (suct)withfz — M, |f (sucn) = Mge = [t/n]lr/fn]Mgc
where T = rec* t with f z — M, | f (sucn) — Mgy

I rec? (suct)with f z — M, | f (sucn) — Mg, : C by assumption
['Fsuct: nat
=M, :A(z)
I, munat,fn: A(n) F Mg : A(sucn) where C = A(suct) by inversion on natE
' t:nat by natIsuc
I rec? twith f z — M, | f (sucn) — Mg : A(t) by rule natE
(t/n][r/fn]Mg, : A(suct) by substitution lemma (twice)
D/
N, = N/
Case D=
rec* t with f z — N, | f (sucn) — Ny = rec* t with f z — N/ | f (sucn) — Ny
IMNFrec® twithfz — N, |f (sucn) — Ngc : C by assumption
I'Ft:nat
I, munat,fn: A(n) F Ngy : A(sucn)
' N,:A(z) where C = A(t) by inversion on natE
NEN:A(z) by i.h.
It rec? twithfz — N/ | f (sucn) — Ng, : C by rule natE O

Erasing terms We will next prove next Vx:nat.—(x = z) D 3y : nat.sucy = x. For
simplicity, we define equality using reflexivity: ref : Vx:nat.x = x.

D

S,a:natF—(a=1z) D 3Jy:natsucy =a

vIe
S F Vxinat.—(x = z) D Jy : nat.sucy = x
To prove D we will use the rule natE™™"; in particular, we need to prove the
following base and step case:
Base case:

B EE— f
—(z=12) z:zre

OE

1E
Jy:nat. sucy =z

oI
—(z=12) D Jy:nat. sucy =z



Step case:

ref
suc (n) =suc(n) n: nat

I

Jy:nat. suc (y) = suc (n)
oI

—(suc (n) = z) D Jy:nat. suc (y) = suc (n)

Therefore, we have established Vx:nat.—(x = z) D Jy : nat.sucy = x. Note that
we only used the induction rule to split the proof into two different cases, but we did
not actually use the induction hypothesis in the proof.

It is particularly interesting to extract the corresponding proof term; we omit the
type annotation on the rec for better readability.

Aa:nat. rec a with
| fz = Aw—(x = z).abort (u (refl z))
| f(sucn) = Aw—(x =z).(n, refl z)

Can you guess what program it implements? - If we erase all subterms pertaining
propositions, it becomes even more obvious:

Aa:nat. rec a with
| fz = _
| f(sucn) = n

We have obtained a verified predecessor function!

4.2 Domain: Lists

Similar to natural numbers, we can define lists.
We can define lists by two constructors nil and cons. We concentrate on defining
lists of natural numbers here to avoid problems with polymorphism.

h : nat 1: list
nil : list consh l: nat

To prove inductively a property A(t) true, we establish three things:

1. tis a natural number and hence we know how to split it into different cases.

2. Base case: A(nil) true
Establish the given property for the number z



3. Step case: For any h : nat, t : list, assume A (t) true (I.H) and prove A (consht) true.
We assume the property holds for smaller lists, i.e. for t, and we establish the
property for cons h t.

More formally the induction rule then takes on the following form:

Ik s:list ' A(nil) ILn:nat,t:list,ih: A(t) F A(consn t)

li tEn,t,ih
MEAls) *

The corresponding annotated rule takes on the form below giving us the ability
to write recursive functions about lists.

Ik s:list 't M, - A(nil) I, hinat, tilist, f t:A(t) true - Mgons : A(cons h t)

I rec”™ AN s with f nil — My | f (cons ht) — Meons : A(s)

listE™™m

rec™ nil with f nil = My | f (consht) = Meons = M
rec* (cons h’t/) with f nil = My | f (consht) = Mepns =— (h'/h][t"/t][r/f t)Mcons
where T = rec? t’ with f nil = M, | f (cons h t) — Mecons

Let’s practice writing recursive functions. How would we write the function which
given a list reverses it. Its type is: T = list D list. We will write it in a tail-recursive
manner and write first a helper function of type S = list D list D list.

AL : list.rec® 1 with f nil — Ar : list.t | f (cons h t) — Ar : list.f t (cons h 1)

4.3 Extending the induction principle to reasoning about
indexed lists and other predicates

Often when we want to program with lists, we want more guarantees than simply
that given a list, we return a list. In the previous example, we might want to say that
given a list 11 of length n1 and an accumulator 12 of length n2, we return a list 13 of
n3 where n3 = n1 + n2.

First, how can we define lists which keep track of their length?

h : nat L:listn

nil : list z cons{n} hl:listsucn




We mark the argument denoting the length in cons with curly braces. This high-
lights the difference between the definition for lists which do not carry the length
information and our definition here which is aware of its length. In practice, depen-
dently typed programming languages such as Agda, Coq, Beluga, etc. will reconstruct
the arguments marked in curly braces.

We can encode the list containing zeroes and ones as follows where we write
implicit parameters in curly braces simply to emphasize this information is there, but
you typically can omit the information in curly braces.

[. cons {2} z (cons {1} (suc z) (cons {0} z nil )) ]

So far we have seen how to reason inductively about natural number and terms.
But how can we support structural induction on lists which are indexed by their
length, i.e. lists 1 of type list n? - We will refine our induction principle as follows:
First, we observe that the property we are trying to prove depends not only on 1 but
also on n.

To prove inductively a property A(n,1l) about a list 1 of length n, we establish
three things:

1. n is a natural number and 1 is a list of length n; and hence we know how to
split 1 into different cases.

2. Base case: A(z, nil) true
Establish the given property for a list nil of length z.

3. Step case: For any mu:nat, h:nat, t:list m, assume A(m,t) true (I.H) and prove

A(m, cons{m} ht) true.

We assume the property holds for smaller lists, i.e. a list t of length m, and we
establish the property for (cons {m} h t), a list of length (sucm).

Our annotated induction rule, then takes on the following form:

(WFEs:listn
(2)T F M : A(z, nil)
(3)T, munat, h:nat, t:list, f{m} t:A(m,t) true = Mcons : A(s m, cons {m} h t)

I F rec'mnat¥xlistnAmX) o with f {2} nil = Mp | f {sucm} (cons {m} h t) = Mcons : A1, s)

Our recursion expression now performs a simultaneous pattern mach on all the
arguments the property we are proving depends on.

listEm flmt



In some sense, indexed lists are just a predicate about lists and we have just
inferred a reasoning principle about predicates. We can generalize this idea of rea-
soning about general predicates which are inductively defined.

For example, we might want to prove vn : nat.¥vm : natn < m D n < sucm.
Proving this statement by induction on n is not straightforward; we need a case
analysis on both m.

It would be more convenient to interpret:

lez :Vxinat. z <x
le_suc : Vx:nat.¥y:nat. x <y D sucx <sucy

as inference rules

X<Y
le_z ————— lesuc
z< X suc X <sucY

and then argue that le_z denotes a proof of height 0 and forms our base case and
le_suc gives us a step case where we can assume the property holds for X <Y and we
establish the property for suc X < sucY.

To allow induction over the given definition of <, we generalize our induction
rule. First, we allow our property A to take in more than one argument and write
A(X,Y, X <Y). We omit true from the rule below to simplify it.

I, X:nat, Y:nat, sucY, D': X <Y,
rN-D:N<M M= A(z Y, lez{Y}) th:A(X, Y, D) F A(suc X, le_suc {X}{Y} D)

I~ A(N, M, D)

This justifies writing recursive programs directly by pattern matching on the deriva-
tion tree. Formally, we write:

rec D with f {z} {Y} le_z {Y} — M,
| f {X}{Y}le_suc {X}{Y} D'— Mgy
Let’s look at a simple proof of transitivity.
Theorem 4.3.1. If M < N and N < K then M < K.

Proof. Induction on the derivation D : M < N.

Base case D =

le_z
z<X

We need to show that assuming X < K, we have a derivation for z < K. This is
justified by the rule le_z.



<
Step case D = X——Y le_suc

sucX <sucY

We can assume the property we want to prove holds for X <Y, i.e. if X <Y and
Y < K then X < K.

sucY < sucK by assumption from the statement we need to prove
Y <K by inversion using le_suc
X <K by i.h.
suc X < sucK by using le_suc

O

In the proof above, we hide a few obvious logical steps such as universally quanti-
fying over M, N, and K; introducing quantifiers, eliminating quantifiers, implication
introductions and eliminations, etc. It might be useful to see how we can use the
induction rule to justify the given proof;

e We first observe that we are proving VM : nat, VN : nat. M < N D VK : nat.N <
K D M < K. Note that we have slightly rewritten the statement.

e We are proving VK : nat.N < K D M < K under the assumptions
M :nat,N :nat,D: M < N;

In other words, the property A(M, N, D) we are proving by induction is
VK : nat.N < K D M < K and our assumptions represent the context I" in the

induction rule above.

Rewriting the proof making the intermediate steps explicit, we get.

Base case We need to prove

A(z,X,lez) =VK:nat. X <K>z<K

K': nat by assumption
X <K by assumption u
VX:nat. z< X by le_z
z:nat by rule for natl,
z<K by vt
X<K>z<K by O I*

VK:nat.X <K >z<K by VIK



Step Case We need to prove

A(sucX,sucY,lesuc {X}{Y}D;) =VK:natsucX < K DsucY <K

under the assumptions:

X :nat, Y:nat, Di:X <Y, ith:A(X, Y, D)
where A(X, Y, D;) =VK:nat. X <KDY <K

K : nat by assumption
sucX <K by assumption u
X < K’"and K = suc K’ by inversion on le_suc
VK:nat X <KDY <K by i.h.
X<K DY<K by VE
Y <K’ by D E
sucY < sucK’ by rule le_suc
sucY < K since K = suc K’
suc X < KDsucY <K by O I*
VK : nat.suc X < K DsucY < K by VIK.

As this development shows, all steps in the proof (except the inversion step, which
technically is a lemma), are justified by logical rules. Writing proofs in such excruciat-
ing detail is usually avoided - however, it highlights that in principle we can automate
developing these proofs.

In dependently-typed proof environments, such a proof can be represented in a
remarkably succinct way. We show here the example in Beluga syntax, but one can
equally take Agda or Coq (left as an exercise). In Beluga, we can write the proof

compactly as a recursive functions of type
trans: [leq M N] -> [leq N K] -> [leq M K] =

Just as we omitted the explicit quantifiers in our theorem statement, we omit
them in the type and let type reconstruction infer them.

The transitivity proof is then implemented as a recursive function on [leq M NJ.
The function deviates slightly from the formal proof. While we could have imple-
mented the function of type [leq M NI->{K: [nat]l}[leq N K1->[leq M N}, the func-
tion we write below is more elegant, as we are not restricted to writing primitive
recursive functions.
rec trans: [leq M N] -> [leq N K] -> [leq M K] =

fn d => fn e => case d of
| [le_z ] => [le_z]

| [le_s D] =>



let [1le_s E] = e in
let [F] = trans [D] [E] in
[le_s F]

We observe that every step in the proof corresponds exactly to one step in our
informal proof; Beluga let’s you hide “logical” details (i.e. universal introduction and
eliminations) which polluted our detailed formal proof above, but we concentrate on
the essential steps in the proof. Avoiding such clutter is essential in making writing
realistic proofs feasible!

To summarize:

On paper In Beluga
Case analysis Case analysis

Appeal to induction hypothesis | Recursive call

Inversion Case analysis with one case
usually using a let-expression

4.4 First-order Logic with Domain-specific Induction

More generally, we can extend our first-order logic with specific domains which we
call U. We embed predicates belonging to the domain U into first-order formulas
using the necessity modality, written as [U]. This is related to Moggi’s monadic lan-
guage. Here we separate domain-specific definitions/knowledge from our generic
first-order logic.

To support inductive reasoning about a domain U we need the domain to have
certain properties: for example it must be decidable when two objects of the domain
U are equal. We also must have a way of splitting an object into different cases and
have a measure according to which an object of the domain is considered smaller
than another object. These ingredients are essential to generate induction principles
for the given domain.



Chapter 5

Sequent Calculus

In this chapter, we prove consistency of our formal system described by natural de-
duction rules. We employ a classic approach already used by Gentzen in his original
paper. We observe that in natural deduction there are many derivations which are
not “normal” and the reasoning system admits detours. Consider the following two
proofs for A O B D A. The proof on the left is normal while the one one the right is
not; it contains a detour, i.e. /AI followed by /\E;, which can be eliminated by using
a local reduction.

—Uu —V
A B
NI
ANB
—V A\Eq
A . A
O O
BDOA BOA
— D> I* o
ADBDA ADBDA

It is these detours which make it difficult to argue that our system is consistent,
i.e. from no assumptions we cannot derive falsehood. Gentzen hence introduced
as a technical device another calculus, a sequent calculus, where such detours are
not present. In fact, it is fairly obvious that falsehood is not derivable in the sequent
calculus when we have no assumptions. Hence, consistency of the sequent calculus is
obvious. He then showed that the sequent calculus plus one additional rule, the cut-
rule, is equivalent to the natural deduction system. This is fairly easy. The hard part
is to show that the cut-rule is admissible, i.e. it is not necessary. As a consequence, we
know something stronger: all propositions provable in the natural deduction system
are also provable in the sequent calculus without cut. Since we know that the sequent
calculus is consistent, we hence also know that the natural deduction calculus is.
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The sequent calculus is not only of interest because it is a convenient technical
device for establishing consistency of natural deduction. It also gives rise to proof
search procedures. In fact, we can study its proof-theoretic properties further and
arrive at proof systems where proof search is feasible and amendable to efficient
implementations.

5.1 Normal Natural Deductions

As a technical device, we introduce a natural deduction calculus where we restrict
derivations to normal derivations, i.e. derivations which do not admit detours. As
we have seen when we considered proof terms for the natural deduction system, a
detour meant we had a redex in our proof term, i.e. a subterm which can be reduced;
our proof term is in normal form. In fact, it might be helpful to consider the subset of
terms consisting of lambda-terms, applications, pairs and projections to characterize
normal forms more precisely. We will subsequently add the other proof terms as well.

Normal Terms M,N == AxA.M| (M, N)|()|R
Neutral Terms R = x|fstR|snd R|RN

As we can see, a term Ax:A.(Ay:A.y) x is not valid normal term, because we have
a redex (Ay:A.y) x which reduces to x. According to our grammar of normal and
neutral terms (Ay:A.y) x is ill-formed.

The normal natural deduction calculus, the proof calculus which only admits nor-
mal terms, captures also a very intuitive simple strategy which we already used in-
formally when constructing proofs. When proving a proposition, we use introduction
rules reasoning bottom-up (from the proposed theorem towards the hypothesis) and
elimination rules top-down (from the assumptions towards the proposed theorem)
meeting the result of the intro-rules.

We will introduce two new judgements to describe this proof strategy:

M :A T Proposition A has a normal deduction described by the normal term M
R :A | Proposition A is extracted from a hypothesis described the the neutral term R

We immediately give the judgements annotated with proof terms; this highlights
that we are only constructing normal terms. However, we will often simply write
A T and A |, if the proof term itself is not of interest to us.

All assumptions will be written as x : A |, and hence the localized form, i.e. the
form where explicitly list our assumptions, can be described as



WAL Ly unAn L F MEA T
WAL Ly unAn L F R AL

We write T'! for a context wi:Ay | ,..., U A, L.
Let us know revisit the natural deduction rules.

Hypothesis The general hypothesis rule simply reflects the fact that from a list of
assumptions, we can extract one.

u
M wA |, TFFu:A |

Coercion The introduction and elimination rules must be able to meet and we need
to be able to switch to extracting information from the assumptions. From the proof
term point of view, every neutral term is also a normal term. This is achieved by a
coercion.

MER:A |

rr-R:A T

Note that the opposite direction is not allowed; not all normal terms are neutral
terms. It would also contradict our intended strategy.

Conjunction The rules for conjunction are straightforward.

rrEM:A T FH—N:BT/\
MeE(M, NY:AAB T

I

MrFR:AAB | rMr-R:AAB |
NE, A
MNEfstR:A | MtsndM:B |

Truth The rule for truth, is also straightforward. As it is an introduction rule, it
constructs a normal derivation.

——TI
MEQ:TT



Implication The rule for implication follows a similar recipe as before. In the in-
troduction rule, we add a new assumption labelled as neutral. In the elimination
rule, we extract from the assumptions in I'* a proof R for A O B; we now can verify
that A has a normal derivation described by M and are able to extract a proof for B
described by the neutral term R M.

rwA [FM:B T : MNrFR:ADB | rEM:A T .
O D)
MNEAxXAM:ADB T NM-RM:B |

Disjunction The introduction rules can easily be annotated with norm. For the
elimination rule we again extract the premise A \V B, hence annotating it with | . We
choose to identify the main conclusion C with a normal term annotating it with T.

re-M:A 7 Nr-N:B 7T
VI VI
MNEin*M:AVB T r'EinlPN:AVB T
NrFR:AVB | MoxA [FM:CT rbyB [FM,:CT

VE®Y
M FcaseRofin*x = M |infPy =M, :C 7T

It would also be consistent to allow the derivations of C to be extractions, but it is
not necessary to obtain a complete search procedure and complicates the relation to
the sequent calculus. It also complicates our computational reading of the disjunc-
tion rule, since it would mean we extract a proposition C; in the first branch and a
(possibly another) proposition C, in the second branch, and we then need to check
that they are the same.

Falsehood If we can synthesize a contradiction, then we have constructed a proof
for C. It would not make sense to have C being synthesized, i.e. being annotated
with |, since it would be completely unrestricted.

MER:L |
abort* M: C 7

1E

Exercise 5.1.1.
Annotate the rules for universal and existential quantifiers

Exercise 5.1.2.



Annotate the rules for negation

Nu:Abp = TH-A M- A
M- —A r-C

Theoretical properties It is quite easy to see that normal and neutral derivations
are sound with respect to natural deduction. In order to state and prove this theorem,
we introduce some conventions, namely we can obtain I' = uj:A4,...,u:A,, from
't simply by dropping the | annotation from each assumption. In the opposite
direction, we simply add the | annotation to each assumption to obtain a 't from T

Theorem 5.1.1 (Soundness). 1. IfT'-M:A T thenT - M : A and
2. IfT'FR:A | thenT - R:A.

Proof. By induction on the structure of the given derivation. We show only three
cases, since the proof is straightforward.

Case D= X
FhxA [, TyEx:A |

Then we can construct directly I, x:A, 7 - A.

D/

MNrER:A |
Case D=

MNER:A T
"-R:A by i.h. on D’

D/

rMxA |[FM:B 7T
Case D= o*

MEAxAM:ADB T
I xAFM:B by i.h. on D’
N'-AxAB:ADB by D I

]



However, we note that we restricted what derivations we allow; so clearly, it is
not obvious that we can translate every natural deduction derivation into a normal
natural deduction proof. For example, the derivation we have given at the beginning
of the chapter cannot be annotated with our rules.

—u —V
A | B | oo
AAB “Tl
Al
AE;
AT
OV
BOAT
oI
ADBDAT

The problem is that while from A AB | we can extract A |, we cannot construct
A AB |. Given our assumptions A | we can turn it into A T; similarly, we can turn
B | into B T, and conclude A A B T. But there is not way to go from A AB T to
A AB | - only the opposite direction is allowed!

To resurrect completeness, we temporarily allow the conversion

MEM:AT
= (M:A) A |

Computationally, we can read this rule as follows: we can synthesize a type A for
the expression M : A, if M checks against A. We keep the proposition we check M
against as part of the proof term we construct as evidence in the conclusion. Hence,
this rule allows explicit type annotations where we transition.

With this rule | T we can now of course translate also the non-normal derivation
above. We will distinguish between the bi-directional natural deduction system with
1 T rule, written as 't =+ ], and the bi-direction natural deduction system without
L T, written as T'* I J. In other words ' =+ ] contains all the bi-directional rules

from I'* I J, but in addition we can mark and identify the transitions where our
derivation is not normal. These places are justified by the | T rule.

M F M:A7
- R:A|
I M:A T
M+ R :A |

Characterize only normal derivations

Characterize all normal derivations and identify non-
normal derivations via the rule | T.

It is easy to show that the extended bi-directional natural deduction system is
sound and complete with respect to the original natural natural deduction system.



Theorem 5.1.2 (Soundness).

1. FTLF* M A T thenTHM: A.
2. FTLF*R:A | thenTFR:A.

Proof. By simultaneous structural induction over the structure of the given deriva-
tions. ]

Since adding proof terms complicates the completeness theorem and the proof
slightly, we omit the proof terms in the statement and proof below. In essence, the
proof terms we have in the original system are not exactly the same as the ones in
the bi-directional system, because we have type annotations at normal terms which
are embedded within neutral terms.

Theorem 5.1.3 (Completeness of annotated natural deduction).

1. fTFAthenT! YA Tand THE A .

Proof. By induction over the structure of the given derivation. We show only two
cases. We oftenreferto A T as (1) and ' -+ A | as (2).

D, D,
'FADB 'EA
Case D= OE
'FB
MNrA>B | by i.h. (2)
MeEAT by i.h. (1)
reEB | by O E proving (2)
r-s 7 by T |, proving (1)
Dy
NxAFB
Case D=— - [x
'FADB
', <A |[FB T by i.h. (1)
r-A>B7 by O I* proving (1)

rr-A>B | by | T proving (2) O



Note that although natural deduction and bi-directional natural deduction ex-
tended with | T rule are very similar, they are not in a bijective correspondence.
In the bi-directional natural deduction system we can simply alternate the two co-
ercions an arbitrary number of times and they are identified explicitly, while in the
natural deduction system they are invisible.

Finally, we state some substitution properties for normal natural deductions. They
take the following form.

Lemma 5.1.4 (Substitution property for normal natural deductions).

1. IfTHhwA |,Ty-C Tand Ty - A | thenTH Ty - C 7.
2. IFTHwA |, Ty-C | and TV A | then TH T - C |,

Proof. By induction on the structure of the given derivation of C T and C | using
weakening. O

5.1.1 Sequent calculus

In this section, we develop a closely related calculus to the bi-directional natural
deduction system, called the sequent calculus. Studying meta-theoretical properties
such as consistency is easier in this system; moreover, it provides a good calculus for
proof search.

In the bi-directional natural deduction calculus, we keep the context I'* for book-
keeping, but all the action happens on the right hand side of =" (or I-). In particular,
we switch from reasoning bottom-up via introduction rules to reasoning top-down
via elimination rules; this switch is identified by the T | rule.

In the sequent calculus, we only reason from the bottom-up by turning elimina-
tion rules into left rules that directly manipulate our assumptions in the context T'.
The judgement for a sequent is written as:

urAgn, oo, A, = C

Note that the proposition C on the right directly corresponds to the proposition
whose truth is established by a natural deduction. The propositions on the left how-
ever do not directly correspond to hypothesis in natural deduction, since in general
they include hypothesis and propositions derived from assumptions by elimination
rules. It is important to keep this difference in mind when we relate sequent proofs
to natural deduction derivations.

Since the order of the propositions on the left is irrelevant, we write I wA instead
of the more pedantic [ wA,T".



Initial sequent The initial sequent allows us to conclude from our assumptions that
A is true. Note that the initial sequent does not correspond to the hypothesis rule in
natural deduction; it corresponds to the coercion rule T |, since our left hand side
contains not only assumptions introduced by for example O introduction (right), but
also additional assumptions we have extracted from it.

————— init
NwA = A

Conjunction The right and left rules are straightforward; we turn the introduction
rules into right rules and the elimination rules are turned upside-down.

r
— A F:>B/\R
= AAB
TwAAB,v:A=— C NTwAAB,v:B=—C
ALy ALy
NwAAB = C NwAAB = C

In the introduction rule, read from the bottom-up, we propagate I" to both premises.
This is similar to natural deduction and reflects the fact that we can use assumptions
as often as we like. In the elimination rule for A /A B (see the rule AL; and AL,),
the assumption A /\ B persists. This reflects that assumptions may be used more than
once. We analyze later which of these hypothesis are actually needed and which can
be “garbage collected” if all possible information has been extracted from them. For
now, however, leaving the assumptions untouched is useful since it will simplify the
translation from sequent proofs to normal natural deduction derivations.

Implication The right rule is again straightforward. The left rule however is a bit
more difficult. Given the assumption A D B, we can extract an additional assumption
B, provided we are able to prove A.

LwA = B S Ru TWwADB=—=A F,U,ZADB,\)ZB:>CD
'—ADB NTwAD>DB=C

L

Disjunction Considering disjunction does not require any new considerations.



IT=A g =8,
'— AVB '— AVB
NwAYV B,v;A — C NwAVBwB=— C

\/LV,W

NTwAVB = C

Truth Since there is no elimination rule for T, we only have to consider the intro-
duction rule which directly translates to a right rule in the sequent calculus.

—— TR
=T

Falsehood Since there is no introduction rule for |, we only consider the elimina-
tion rule which turns into a left rule.

— 1L
LTwl = C
Note that the left rule has no premise.

Exercise 5.1.3.
Derive the rules for universal and existential quantifiers in the sequent calculus.
Exercise 5.1.4.

Derive the rules for negation in the sequent calculus form.

5.1.2 Theoretical properties of sequent calculus
We first begin by stating and revisiting some of the structural properties.

Lemma 5.1.5 (Structural properties of sequents).

1. (Weakening) If T — C then I;wA — C.
2. (Contraction) If ;wA,v:A = C then A = C.
Proof. By structural induction on the first derivation. O

Next, we prove that our sequent calculus indeed characterizes normal natural
deductions.



Theorem 5.1.6 (Soundness of sequent calculus).
IfT = CthenT!= C 7.

Proof. By induction on the structure of the derivation ' = C. Surprisingly, this
proof is straightforward and we show a few cases.

Case D= ipit

MuwC — C
rwC |[FC | by hypothesis u
rbwC |[FCT by rule T |

This case confirms that initial sequents correspond to coercions T | .

D/

LwA = B
Case D= 5 R

'— ADB
rywA |[FB T by i.h. on D’
Nr-A>B 7 by rule > R%

D D,

NTWADB=—=A LwA D B,vvB= C

Case D= OL
NTwADB=C

MwA>B [FAT by i.h. D;
rwA>B |[FADB | by hypothesis u
r, wA>D|FB | by rule D E
M, wA>B |, vB [FC1T by i.h. D,
rwA>DB [FCT by substitution property 5.1.4 O

We now establish completeness: Every normal natural deduction derivation can
be translated into a sequent proof. We cannot prove this statement directly, but we
need to generalize is slightly. The readers not familiar with such generalization may
want to test their understanding and try proving the completeness statement directly
and see where such a direct proof breaks down.

Theorem 5.1.7 (Completeness of sequent calculus).

1. If T C T then I'derC.



2. IfT'FA | and T,wA = C thenT = C.

Proof. By structural induction on the structure of the given derivation I'* - C 7 and
I~ A | respectively.

Case D= u
HwA |, TfFA |

MmywA L vA = C by assumption
Nn,wA,I, = C by contraction (Lemma 5.1.5)
D/
re-c |
Case D=—"——
rnrecrt
NwC=C by init
= C by i.h. D’
D/
rywA |[FB T
Case D= o™
rNr-A>B7T
NwA —B by i.h. D’
'=—=ADB by O R*
D] DZ
r-A>B | MEAT
Case D= OE
re-B |
LuwB=—C by assumption
NwA DBuwB=C by weakening (Lemma 5.1.5)
TwWADB=—C by D L
N'—C by i.h. D,

]



Natural Deduction Normal Natural Deduction | s+c¢ Sequent Calculus

'=A MeEAT7T > > [— A
. s+c
Coercion ' Cut
s+c reErA 7 1 r— A NnwA = C
retA | r—C

Figure 5.1: Proof outline

In order to establish soundness and completeness with respect to arbitrary natural
deductions, we need to establish a connection to the bi-directional natural deduction
system extended with | T rule. We will now extend the sequent calculus with one
additional rule which will correspond to the coercion | T and is called the cut rule.

r== A NwA = C .

r==C
The overall picture of the argument is depicted in Fig below. We can so far
conclude that normal natural deduction derivations correspond to sequent deriva-
tions. However, what we still need is the link in bold black between the extended
bi-directional natural deduction system and the sequent calculus with cut. If we have
that link, we can show that for all propositions which are provable in natural deduction,

there exists a normal proof.
Soundness of the extended sequent calculus with cut is straightforward.

ut

Theorem 5.1.8 (Soundness of sequent calculus with cut). If T == C then ' ++ C 7.

Proof. Induction on the structure of the given derivation as in Soundness Theorem
5.1.6 with one additional case for handling the cut rule.

D, D,

r== A NwA == C
Case D= n cut
[— C




MLt AT by i.h. D

e A | by | T
rLviAETC T by i.h. D,
MECT By substitution (Lemma 5.1.4) generalized)

O

Indeed this highlights the fact that the cut rule corresponds to the coercion | T
from neutral to normal (read from bottom-up).
We can now establish completeness of the sequent calculus with cut.

Theorem 5.1.9 (Completeness of sequent calculus with cut).

1. IfTLHY C 7 then T = C.
2. IfTLHY C | and TwA = C then T = C.

Proof. As in the previous proof for completeness between the normal natural deduc-
tion and sequent calculus without cut with one additional case.

D/
r=tA 7T
Case D=———|
A |
= A by i.h. D’
NwA = C by assumption
r==¢C by cut

]

We are almost finished. The main theorem still missing is that the cut-rule is

not necessary. This will establish that indeed if I == C then I' = C. In fact, we
went through this detour simply because it is easier to show that the cut-rule is not
necessary rather than showing directly that all natural deduction derivations can be
translated to normal derivations.

Proving that the cut-rule is admissible, is called the cut-elimination theorem (Gentzen’s
Hauptsatz) and it is one of the central theorems of logic. As an immediate conse-
quence, we have that not every proposition has a proof, since no rule is applicable
to derive - = 1, i.e. given no assumptions we cannot derive falsehood. Hence, it
shows that our system is (weak) consistent.



5.1.3 Cut-elimination

In this section, we show one of the fundamental main theorems in logic, i.e. that the
rule of cut is redundant in the sequent calculus. First, we prove that cut is admissible,
i.e. whenever the premise of the cut rules are derivable in the sequent calculus
without cut, then the conclusion is. Intuitively, it should be clear that adding an
admissible rule to a deductive system does not change what can be derived. Formally,
we can prove by induction over the structure of derivations that may contain cuts,
ie. I == Cthenl = C.
To prove that cut is admissible, we prove the following theorem:

IfD:T=Aand £:TJA = Cthen' = C

We call A the cut formula. Moreover, recall that each left or right rule in the
sequent calculus focuses on an occurrence of a proposition in the conclusion, called
the prinipal formula of the inference.

In the proof, we reason by induction on the structure of the cut formula and on
the structure of the given derivations D and £. Either the cut formula is strictly
smaller or with an identical cut formula, we either have D is strictly smaller while £
remains the same or £ is strictly smaller while D remains the same. The proof will
first proceed by an outer induction on the structure of the cut-formula and then on
an inner induction over the structure of the derivations.

The proof is constructive, which means we show hat to transform a proof £ :
IA = C and a proof D : ' = A into a proof ' = C. The proof is divided into
several classes of cases. More than one case may be applicable which just means that
the algorithm for constructing derivations of ' = C is non-deterministic.

Theorem 5.1.10 (Admissibility of Cut).
IfD:T—= Aand £ :TJA = Cthen ' = C.

Proof. By nested induction on the structure of A, the derivation D of ' = A and £
of A = C.

Case D is an initial sequent.
D=—————init
MNA=—A

r=rsA by assumption
MAaA=—=~C by assumption &£



MAa=—=~«C by contraction
r—C

Case ¢ is an initial sequent and uses the cut formula

& =————init

NA= A
C=A by assumption
r— A by derivation D

Case ¢ is an initial sequent and does not use the cut formula

&= init

rc,A=C
r=r,C by assumption
rMc==C by rule init
'—C by using the fact that ' =T",C

Case A is the principal formula of the final inference in both D and £. We show
here some of the cases.

Subcase A = A; N\A,.

D] DZ 5]
'— Ay N'— A, DA NARA = C
D= AR and €& = AL,
'— A NA; LATNA;, = C
D :TTA = A1 NA, by weakening
]:1 . RA] — C by i.h. A] /\Az, D’ and g]
F :I'=2~C by1h A],D] and]—"1

We note that weakening D to D’ does not alter the size of the derivation. Hence,
the appeal to the induction hypothesis using D’ and &; is valid, because &; is smaller
than £. We will not be explicit about such weakening steps subsequently.



We also note that the second appeal to the induction hypothesis using D; and F;
is valid, since the cut formula A, is smaller than the original cut-formula A; N\ Aj;
hence it did not matter that we do know nothing about the size of ;.

Subcase A =A; D A,.

D; | Ex
DA = A TAI DA = A TA DALA =C
D= SR and &= OL
[— A DA, LA DA; = C
Fi: = A, by i.h. AT DA, D and &
fz = Az by i.h. A], ]:] and D]
E A, = C byih. A; D Ay, D, and &,
F :I'=~C by i.h. A,, F, and &/

Case A is not the principal formula of the last inference in D. In that case D must
end in a left rule and we can directly appeal to the induction hypothesis on one of
the premises.

D

"By AByB — A

Subcase D = AL,
"By AB,=— A
=T/ B; AB; by assumption
F’, B] AN Bz, B] — C by i.h. A, D], and £
FI,B] /\Bz - C by /\L]
D] DZ

F’,B1 D B, — B, F’,B1 DBz,BzﬁA

Subcase D = 5L
By DB, = A

'=T',By D B; by assumption
F’, B D Bz, B, —C by i.h. A, D, and £
"By DB,=C by D L using D; and the above

'—C



Case A is not the principal formula of the last inference in £.

51 52
LA = C LA = C,
Subcase ¢ = AR
LA = A C,
C=CANGC by assumption
'— C by i.h. A, D, and &,
N— G, byi.h. A, D, and &,
IderC; A C, by /AR on the above
&
I By AB,;,Bj,A=— C
Subcase €& = AL
I By AByy A= C
'=T'By AB; by assumption
F’, B] A\ Bz, B] - C by i.h. A, D, g]
FI,B] /\Bz - C by /\I—1
F:>C byF:F’,B1/\Bz
H

As mentioned above, adding an admissible rule does not change the judgements
which are derivable.

Theorem 5.1.11 (Cut Elimination).
IfT == C thenT = C

Proof. By structural induction on the given derivation I' = C. The proof is straight-
forward, and we only write out the case for cut.

Dy D;

r== A NA=c

Case D" = N cut

'—C

r— A by ih. on D 41



NA=C by i.h. on Dt 42
r—C by admissibility of cut (Theorem 5.1.10)
0

5.2 Consequences of Cut Elimination

The cut elimination theorem is the central piece to complete our proof that it suffices
to concentrate on normal natural deduction derivations to find a proof for a given
proposition, i.e. if T A then T+ - A T.

Theorem 5.2.1 (Normalization for Natural Deduction).
IfT-AthenT A T.

Proof. Direct from the previous lemmas and theorems.

N=A by assumption
r=tA 7T by completeness of natural deduction (Theorem 5.1.3)
r==— A by completeness of sequent calculus with cut (Theorem 5.1.7)
I'=— A by completeness of sequ. calc. without cut (Cut-elimination Thm. 5.1.11)
r=AT7T by soundness of sequent calculus (Theorem 5.1.6)

O

Our normalization theorem justifies that for every proof I' - A, there exists some
cut-free proof of the same theorem. This is often referred to as weak normalization:
it suffices to provide some strategy of eliminating the cut.

Another important consequence of cut-elimination is that to find a proof for A
in the natural deduction calculus, it suffices to show that there exists a proof in the
sequent calculus without cut. As a consequence, if we want a proof for L, it suffices
to show that there exists a proof - = 1. Since ' = -, it is empty, we could not
have used a left rule to derive 1. However, there is no right rule which ends with 1.
Therefore, it is impossible to derive - — .

Corollary 5.2.2 (Consistency). There is no derivation for - - L.

Proof. Assume there is a proof for - - 1. Then by completeness of annotated deduc-
tion (Theorem 5.1.3) and completeness of seq. calculus with cut (Theorem 5.1.7)
and cut-elimination ( Thm. 5.1.11), it suffice to show that there is a proof for - —> 1.
Since I' = -, there is no principal formula on the left and no left rule is applicable.
There is also no right rule which ends in . Therefore - = 1 cannot be derived and
hence - - | is not derivable. ]



Another consequence, is that we can show that the excluded middle A VV —A is
not derivable. We also say that A \V —A is independent for arbitrary A.

Corollary 5.2.3 (Independence of Excluded Middle).
There is no deduction of = AV —A for arbitrary A.

Proof. Assume there is a derivation - A \V —A. By the completeness results and cut-
elimination, it suffices to show - = A \V —A. By inversion, we must have either
- = A or - = —A. The former judgement - =—> A has no derivation. The latter
judgement can only be inferred from A =— L. But there is no right rule with the con-
clusion | and we cannot prove given an arbitrary A we can derive a contradiction.
Hence, there cannot be a deduction of - A \V —A. O

Cut-elimination justifies that we can concentrate on finding a normal proof for a
proposition A. We can also observe that proofs in the sequent calculus without cut
are already much more restricted. Hence they are more amendable to proof search.
The sequent calculus is hence an excellent foundation for proof search strategies.
However, some non-determinism is still present. Should we apply a right rules or a
left rule? And if we choose to apply a left rule, which formula from I" should we pick
as our principal formula?

Without techniques to restrict some of these choices, proof search is still infea-
sible. However, the sequent calculus lends itself to study these choices by consider-
ing two important properties: inversion properties allow us apply rules eagerly, i.e.
their order does not matter (don’t care non-determinism), and focusing properties
allow us to chain rules which involve a choice and order does matter (do-care non-
determinism), i.e. we make a choice we might as well continue to make choices and
not postpone them.

5.3 Towards a focused sequent calculus

The simplest way to avoid non-determinism is to consider those propositions on the
left or right for which a unique way to apply a rule. The following property essen-
tially justifies that if we have the conclusion, then we must have had a proof of the
premises. For example, to prove A /\B, we can immediately apply the right rule with-
out loosing completeness. On the other hand, to prove AV B, we cannot immediately
apply the right rule. As a counter example, consider BV A = AV B; we need to
apply first the left rule for splitting the derivation and then apply the right rule.

Inversion property:
The premises of an inference rule are derivable, if and only if the conclusion.



Given a sequent, a number of invertible rules may be applicable. However, the
order of this choice, i.e. when to apply an invertible rule, does not matter. In other
words, we are replacing don’t know non-determinism by don’t care non-determinism.

For controlling and restricting the search space, we can refine the inversion prop-
erty as stated above further. In particular, in left rules, the principal formula is still
present in the premises which means we can continue to apply the same left rule over
and over again leading to non-termination. So we require in addition that the princi-
pal formula of a left rule is no longer needed, thereby guaranteeing the termination
of the inversion phase.

Theorem 5.3.1 (Inversion).

1. f T= AABthenT = AandI' =B

2. IfT—= A D BthenlA — B.

3. IfAANB = CthenA,B = C.

4. If TAVB = Cthen[JA = Cand B = C.

Proof. Proof by structural induction on the given derivation; or, simply taking advan-
tage of cut.

'— A/AB by assumption
NAABA=— A by init
LAAB= A by AL
r— A by cut

O

We observe that TR and LL are special; they can be applied eagerly, but they
have no premises and therefore do not admit an inversion theorem.

There is a remarkable symmetry between the rules which are invertible and which
are not. This picture is slightly spoiled by the left rule for conjunction. This can be
corrected in moving to linear logic which we will not pursue here.

Chaining all invertible rules together, already gives us a good proof search strat-
egy. However, it still leaves us with many possible choices once we have applied all
invertible rules. How should one proceed to handle such choices? For example, if we
pick a rule VR, for (A B) VV C, we now need to prove A \V B again facing a choice.
Shall we stick to our committed choice and further split A \V B or shall we revisit
other possible choices we have? - It turns out that focusing properties justify that we
can stick to a choice we have made and continue to make further choices.



Focusing properties are dual to inversion properties; while inversion properties
allow us to chain together invertible rules, focusing properties allow us to chain
together non-invertible rules committing to a choice.

The focusing property and the duality between invertible / non-invertible rules
was first observed by Andreoli in linear logic which did not show the anomaly for
conjunction. Following Andreoli, we can classify formulas into positive and negative
propositions where positive propositions are non-invertible on the right, but invertible
on the left and negative propositions are non-invertible on the left, but invertible on
the right.

Formula A,B = R|L

Positive R = PTAT VA Ixt.AlXx) | L] AT AA;
Negative L = PTJAI DA VT AX) | AT ANA,
Stable Context A = | AL

Moreover, we will describe a stable context A which only consists of negative
formulas. Intuitively, we will first consider first a formula A and apply invertible rules
on the right until we obtain a positive proposition; at this point, we shift our attention
to the context of assumptions and apply invertible left rules until our context is stable,
i.e. it contains only negative propositions. At this point we have to make a choice.
This phase is called the asynchronous phase.

From the asynchronous phase, we transition to the synchronous phase. We either
commit to work on the right hand side of the sequent (A > R) or we commit to work
on the left hand side choosing an assumption from A, i.e. A > L — R. Let us
summarize the four judgements:

A;T' = [L] Asynchronous phase (right)
A; [Tl = R Asynchronous phase (left)
A >R Synchronous phase (right)
A >L = R Synchronous phase (left)

The notation A > R and A > L = R is chosen to draw attention to the part
we focus on via >; the left hand side of > describes the narrowing the focus of our
attention.



Synchronous phase (left)

A>A A>B =R
A>ADB=—R

A>A(t) =R
A >VYx.A(x) = R

A>A; =R
A>A1/\A2$R

Asynchronous phase (left)
Aj[LA(a)] =R

A [TIxA(x)] =R

AITA]=R A [TB]l=R

Asynchronous phase (right)

AT,A = [B]

A= [ADB]

AT = [A(a)]

AT = [Vx.A(x) ]

AT = [A] AT = [B]
AT = [AAB]

Synchronous phase (right)
A > Alt)
A > IxA(x)
A>A;

AITAVB] =R
A [TA,B] =R
A ITAAB] =R

Identity (positive)
A,P > P~

Transition rules

LeA A>L=—R
Al - ]=R
A;- = [L]
A>L

choice

Blury

ALT] = R
A[TL] =R

Move-to-stable-context

AT — [R]

A>A1\/A2

A > A A> A
A>ATNA)

Identity (negative)

A>P=— P

A[T]=R
Transition-to-left



Let’s work through an example. We first specify a predicate fib(n, x) which reads
x is the fibonacci number corresponding to n.

P = fib(0,0), fib(1,1),
YnvxVvy.fib(n,x) D fib(s n, y) D fib(s s n, x +y)

We now want to prove P — fib(3,2). We will consider here the derivation
beginning with the focusing phase. Moreover, we will treat the predicate fib(m,r) as
negative. Note that focusing essentially leaves us no choice in the derivation shown
below.

P —s fib(2,1)
. . init
P = fib(1,1) P > fib(2, 1) P > fib(3,2) — fib(3,2)
P > fib(1,1) P >fib(s 1, 1) Dfib(ss1, 1+ 1) = fib(3,2)

P > fib(1,1) D fib(s 1, 1) D fib(ss 1, 1+ 1) = fib(3,2)
P > Wy.fib(1,1) D fib(s 1, y) D fib(ss 1, 1+y) = fib(3,2)
P > VxWy.fib(1,x) D fib(s 1, y) D fib(ss 1, x +y) = fib(3, 2)
P > VYnVxWy.fib(n,x) D fib(sn, y) D fib(ssn, x +y) = fib(3, 2)
P;l - 1 = fib(3,3)

Note that because we have chosen the predicate fib to be negative, we must blur
our focus in the two open derivations and also the application of the init rule is
determined. We can now in fact collapse this derivation into a “big-step” derived
rule:

P = fib(1,1) P = fib(2,1)
P = fib(3,2)

This rule exactly captures our intuition. Another “big-step” rule which can be
derived is:

P = fib(0,0) P = fib(1,1)
P — fib(2,1)

Proof search then amounts to searching over “big-step” rules - this makes proof
search more efficient and easier to interact with.

We can prove that our given focused calculus is sound and complete. It is also
interesting to note that by giving different polarities to atoms, we obtain different




proof search strategies - assigning negative polarities to atoms allows us to model
backwards proof search as we have illustrated; assigning positive polarities to atoms
in fact leads to forward proof search. Hence the system is general enough to model
different proof search strategies. This was observed by Chaudhuri and Pfenning.
Moreover, it is worth noting that we can give it a computational interpretations;
focusing calculi provide a type system for languages supporting pattern matching
and different proof strategies correspond to different evaluation strategies modelling
call-by-value or call-by-name evaluation (see for example work by Noam Zeilberger).






Chapter 6

Normalization

We discuss here an alternative proof method for proving normalization. We will focus
here on a semantic proof method using saturated sets. This proof method goes back
to Girard (1972) building on some previous ideas by Tait.

The key question is how to prove that give a lambda-term, its evaluation termi-
nates, i.e. normalizes. Recall the lambda-calculus together with its reduction rules.

Terms M,N = x|Ax.M|MN

We consider as the main rule for reduction (or evaluation) applying a term to an
abstraction, called 3-reduction.

(Ax.M)N — [N/x]M -reduction

The B-reduction rule only applies once we have found a redex. However, we also
need congruence rules to allow evaluation of arbitrary subterms.

M— M N — N’ M— M
MN — M’'N MN — MN’ AxX.M — Ax.M’

The question then is, how do we know that reducing a well-typed lambda-term
will halt? - This is equivalent to asking does a well-typed lambda-term normalize, i.e.
after some reduction steps we will end up in a normal form where there are no fur-
ther reductions possible. Since a normal lambda-term characterizes normal proofs,
normalizing a lambda-term corresponds to normalizing proofs and demonstrates that
every proof in the natural deduction system indeed has a normal proof.

Proving that reduction must terminate is not a simple syntactic argument based
on terms, since the f3-reduction rule may yield a term which is bigger than the term
we started with. We hence need to find a different inductive argument. For the
simply-typed lambda-calculus, we can prove that while the expression itself does not
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get smaller, the type of an expression is. This is a syntactic argument; it however does
not scale to polymorphic lambda-calculus. We will here instead discuss a semantic
proof method where we define the meaning of well-typed terms using the abstract
notion of reducibility candidates.

6.1 General idea

We can define the meaning of a well-typed term M in the context I' of type A as
follows: for all grounding instantiations o providing values for the variables declared
in I', [o]M is in the denotation of A. We write for the denotation of A as [A] = A.
Similarly, the denotation of I is written as [I'] = G.

[A] is interpreted as the sets of strongly normalizing terms of type A, i.e. [A] €
SN. We prove that if a term is well-typed, then it is strongly normalizing in two steps:

Step 1 If M € [A] then M € SN.
Step2 If ' M : A and o € [I'] then [c]M € [A].

Therefore, we can conclude that if a term M has type A then M € SN, i.e. M is
strongly normalizing and its reduction is finite, choosing ¢ to be the identity substi-
tution.

We remark first, that all variables are in the denotations of a type A, i.e. Var C [A],
and variables are strongly normalizing, i.e. they are already in normal form.

Next, we define the denotations of the base type o and the function type A — B.

e Aterm M € [o] iff M is strongly normalizing, i.e. M € SN.
e Aterm M € [A — B] iff M € [A] = [B], i.e. forall N € [A].M N € [B].
We often write these definitions more compactly as follows

Semantic base type [o] = SN

Semantic function type [A — B] := {M|VN € [A].M N € [B]}

6.2 Defining strongly normalizing terms

Intuitively, a term M is strongly normalizing, if there exists no infinite reduction
sequence. Constructively, we can define strong normalization as follows:



Neutral terms

R € SNe s € SN
x € SNe RM & SNe

Normal terms
R € SNe M € SN M —sy M/ M’ € SN
R € SN Ax.M € SN M € SN
Strong head reduction

N € SN R —sy R’ Ris not a A
(AXM) N —SN [N/X]M RM —SN R'M

Figure 6.1: Inductive definition of strongly normalizing terms

Definition 6.2.1. A term M is strongly normalizing, if all its reducts are strongly nor-
malizing.

Moreover, we have that if a given term M is strongly normalizing, then any sub-
term must be strongly normalizing as well. We omit the proof here and leave it to an
exercise.

Theorem 6.2.1 (Subterm property of strong normalization). Any subterm of a strongly
normalizing term is strongly normalizing itself.

Here, we define inductively the set of normal terms, SN, and the set of neutral
terms, SNe, using the following judgements:

M € SN M is in the set of normal terms
M € SNe M is in the set of neutral terms

The inductive definition given in Fig. 6.1 is often more amendable for proofs than
its informal definition, since it allows us to prove properties by structural induction.
We will sketch here that these inductive definition is sound and complete with re-
spect to our informal understanding of strongly normalizing reductions (Def. 6.2.1).



We will write M € sn for M is strongly normalizing in our “informal definition”,
i.e. all reduction sequences starting in M are finite, to distinguish it from our induc-
tive definition in Figure 6.1.

Lemma 6.2.2 (Properties of strongly normalizing terms).
1. f M € snand [N/x]M € snand N € sn then (Ax.M) N € sn.

2. If M € snand N € sn where M is not a A then M N € sn. (we also have
MN — M’'Nand M’ N € snasih.)

Proof. By induction on M € sn and N € sn. O
Lemma 6.2.3 (Closure properties of strongly normalizing terms).
. If [N/x]M € sn then M € sn.

~

2. For all variables x, x € sn.

3. If M € snand N € sn where M:xﬁ then M'N € sn.
4. If M € sn then Ax.M € sn.
5

. Expansion. If M —, M’ and M’ € sn then M € sn where

N € sn M — M' Misnota A
(Ax.M) N —, [N/x]t MN —, M'N
Proof. By case analysis and induction. O

We can now prove our inductive definition to be sound and complete.
Theorem 6.2.4 (Soundness of SN). 1. If M € SN then M € sn.

2. If M € SNe then M € sn and M = x N.

3. IfM —SN M’ then M —sn M.

Proof. By mutual structural induction on the given derivation using the closure prop-
erties. ]

Theorem 6.2.5 (Completeness of SN). 1. IfR = XW € sn then xﬁ € SNe.
2. IfR= (M.M)N N € sn then R —sy IN/XJM N.

3. If R € sn then R € SN.

Proof. By lexicographic induction on the height of the reduction tree of R and the
height of R. O



6.3 Reducibility Candidates

One might ask, what is a good definition of a semantic type? - Rather than attempting
the proof of the fundamental lemma directly and then trying to extract additional
lemmas one might need about the semantic types, we follow Girard’s technique and
characterize some key properties our semantic types need to satisfy. If a semantic
type satisfies these key properties, then our proof of the fundamental lemma will be
straightforward. To put it differently, defining these key properties, will allow for a a
modular proof of the fundamental lemma.

Definition 6.3.1 (Reducibility Candidate). A set [A] is a reducibility candidate, [A] €
CR if the following conditions hold

e CR1:IfM € [[A] then M € SN, i.e. [A] C SN.
e CR2:If M € SNe then M € [A], i.e. SNe C [A].

M —y M/ M’ e [A
e CR3: N I ]], i.e. [A] is closed under reduction.

M € [A]

The last property is often also referred to as backward closed. We show that that
all semantic types [A] satisfy the conditions above.

Theorem 6.3.1. For all types C, [C] € CR.

Proof. By induction on the structure of A. We highlight the cases below.

Case: C=o0

1. Show CR1: By definition, for all M € [o], we have that M € SN.

2. Show CR2: By assumption M € SNe. By the definition of SN, we therefore
know M € SN; by definition of [o]], M € [o].

3. Show CR3: Trivially true, since there is no step we can take with —gy.



Case: C=A — B

1. Show CR1:if M € [A — B], then M € SN, i.e. [A — B] C SN.
Assume that M € [A — B], i.e. forall N € [A], M N € [B]

x € [A] by assumption Var C [A]
M x € [B] by previous lines
M x € SN by i.h. (CR1)
M € SN by subterm property

2. Show CR2 :if M € SNe, then M € [A — B], i.e. SNe C [A — B].

M € SNe by assumption
Assume N € [A].

N € SN by i.h. (CR1)
M N € SNe by def. of SNe
M N € [B] by i.h. (CR2)
M € [A — B] by definition of [A — BJ.

3. Show CR3:if M —sy M and M’ € [A — B], then M € [A — B].

M —gy M/ by assumption
M’ e [A — B] by assumption
for all N’ € [A], M’ N’ € [B] by definition of [A — B]
Assume N € [A]
M’ N € [B] by previous lines
MN —SN M’ N by —SN
M N € [B] by i.h. (CR3)
M € [A — B] by definition of [A — B]
O

6.4 Proving strong normalization

As mentioned before, we prove that if a term is well-typed, then it is strongly nor-
malizing in two steps:

Step 1 If M € [A] then M € SN.



Step2 If ' M : A and o € [I'] then [c]M € [A].

The first part described in Step 1, is satisfied by the fact that [A] must be a
reducibility candidate. Hence by CR1 all terms in [A] are strongly normalizing. We
now prove the second step, which is often referred to as the Fundamental Lemma. It
states that if M has type A and we can provide “good” instantiation o, which provides
terms which are themselves normalizing for all the free variables in M, then [0]M is
in [A].

Lemma 6.4.1 (Fundamental lemma). If '+ M : A and o € [I'] then [c]M € [A].

Proof. By inductionon ' M : A.

MNx)=A
Case D=__
'Ex: A

o€ I
[o]x € [T(x)] = [A]

Case ,DZFI—M:A—>B 'EN:A
'-MN:B

oe I

[0]M € [A — B]

for all N’ € [A]. ([o]M) N’ € [B]
[0]N € [A]

[o]M [o]N € [B]

[0l(M'N) € [B]

Nx:AFM:B
'EAXM:A— B

Case D=

oc I

Assume N € [A]

(G,N/x) e [[x:A]

[0, N/x]M € [B]

(Ax.[oyx/x]M) N —sn [0, N/x]M
(Ax.[o,x/x]M) = [o](Ax.M)
([o]Ax.M) N € [B]

for all N € [A]. ([o]Ax.M) N € [B]
[0](Ax.M) € [A — B]

by assumption
by definition

by assumption

by i.h.

by definition of [A — B]
by i.h.

by previous lines

by subst. definition

by assumption

by definition

by i.h.

by reduction —sy

by subst. def

by CR3

by previous lines

by definition of [A — B]



Neutral terms
M e SNe N; €SN N, eSN

case Mof inlx = Ny |inry = N, € SNe

Normal terms
M € SN M € SN
inl M € SN inr M € SN

Strong head reduction

M €SN N; SN
case (inl M) of inlx = Ny |inry = Ny —sn [M/X]N;

M €SN N; € SN
case (inr M) of inlx = Ny | inry = N; —sn [M/X]N;

M —SN M’
case M of inlx = Ny | inry = N; —gny case M/ of inlx = Ny | inry = N,

Figure 6.2: Inductive definition of strongly normalizing terms - extended for case-
expressions and injections

Corollary 6.4.2. If T M : A then M € SN.

Proof. Using the fundamental lemma with the identity substitution id € [I'], we ob-
tain M € [A]. By CR1, we know M € SN. O

6.5 Extension: Disjoint sums

We will now extend our simply-typed lambda-calculus to disjoint sums.

Types A == ...|A+B
Terms M == ...|inl M |inr M | case Mof inlx = Nj |inry = N,

Let us first extend our definition of SN and SNe (see Fig. 6.2).
Next, we extend our definition of semantic type to disjoint sums. A first attempt
might be to define [A + B] as follows



Attempt 1
[A+ Bl :={intM|M € [Al}U{inr M | M € [B]}

However, this definition would not satisfy the key property CR3 and hence would
fail to be a reducibility candidate. For example, while inl y is in [A + BJ, (Ax.inl x) y
would not be in [A + B] despite the fact that (Ax.inl x) y —sy inl y.

Our definition of [A + B] is not closed under the reduction relation —gy. Let iél
denote the denotation of [A]. We then define the closure of [A] = A, written as A,
inductively as follows:

MeA M € SNe Me A N —sy M
Me A Me A Ne A

and we define

[A+B] = [infM|M e [AI}U{inr MM € [BI}

6.5.1 Semantic type [A + B] is a reducibility candidate

We first extend our previous theorem which states that all denotations of types must
be in CR.

Theorem 6.5.1. For all types C, [C] € CR.

Proof. By induction on the structure of A. We highlight the case for disjoint sums.

Case C = A +B.

1. Show CR1. Assume that M € [A+BJl. We consider different subcases and prove
by an induction on the closure defining [A + B] that M € SN.

Subcase: M € {inl N | N € [A]} . Therefore M = inl N. Since N € [A] and
by i.h. (CR1), N € SN. By definition of SN, we have that inl N € SN.

Subcase: M < {inr N | N € [B]} . Therefore M = inr N. Since N € [B] and
by i.h. (CR1), N € SN. By definition of SN, we have that inr N € SN.

Subcase: M € SNe . By definition of SN, we conclude that M € SN.



Subcase: M ¢ [A + B], if M —sy M’ and M’ € [A + B]

M —sy M’ and M’ € [A + B] by assumption
M’ € SN by inner i.h.
M € SN by reduction —sy

2. Show CR2.if M € SNe, then M € [A + B]
By definition of the closure, if M € SNe, we have M € [A + B].

3. Show CR3. if M —gy M’ and M’ € [A + B] then M € [A + B].
By definition of the closure, if M —ssy M’ and M’ € [A + B, we have M €

[A + BI.
O
6.5.2 Revisiting the fundamental lemma
We can now revisit the fundamental lemma.
Lemma 6.5.2 (Fundamental lemma). If T M : A and o € [I'] then [c]M € [AI.
Proof. By inductionon ' M : A.
Case D:FI—M:A—f—B DxAFN;:C NyBEFN;:C
I'FcaseMof inlx = Ny |inry = N;: C
oe [l by assumption
[0]M € [A + B] by i.h.

We consider different subcases and prove by induction on the closure defining [A +
B, that [o](case M of inlx = M, |inry = M,) € [C].

Subcase [0]M € {inl N | N e [A]}

[0]M = inl N for some N € [A] by assumption
N € SN by CR1
oec [IT by assumption
[o,N/x] € [l;x:A] by definition
o, N/x]M; € [C] by outer i.h.
y € [B] by definition

lo,y/yl € [y : Bl by definition



[o,y/ylM; € [C] by outer i.h.
[0, y/yIM; € SN by CR1
case (inl N) of inlx = [0, x/x]M; | inry = [0,y/yIM; —sn [0, N/Xx]M; by —sn
case (inl N) of inlx = [0, x/x]M; | inry = [0,y/ylM;

= [o](case M of inlx = M; |inry = M;) by subst. definition and [o]M = inI N
[0](case M of inlx = M, | inry = M,;) € [C] by CR3

Subcase [0]M € {inr N | N € [B]}

similar to the case above.

Subcase: [0]M € SNe

ocl by assumption
x € [Al,y € [BI by definition
[o,y/yl € [Iy : Bl by definition
lo,x/x] € [I;x: Al by definition
(o, x/x]M; € [C] by outer i.h.
lo,y/yIM; € [C] by outer i.h.
[0,y/yIM; € SN by CR1
[o,x/x]M; € SN by CR1
case [0]M of inlx = [0, x/x]M; | inry = [0,y/y]M, € SNe by SNe
[0](case M of inlx = M, | inry = M;) € SNe by substitution def.
[0](case M of inlx = M, | inry = M;) € [C] by CR2

Subcase: [c]M € [A + B], if [c]M —sy M’ and M’ € [A + B]

[0]M —sy M’ and M’ € [A + B] by assumption
case M’ of inlx = [0, x/x]M; | inry = [o,y/yIM; € [C] by inner i.h.
case [c]M of inlx = [0, x/x]M; | inry = [0,y/yIM;

—gn case M/ of inlx = [o,x/x]M; | inry = [o,y/yIM; by —sn
[0](case M of inlx = M, | inry = M,;) € [C] by CR3 O

6.6 Extension: Recursion

We now extend our simply-typed lambda-calculus to include natural numbers defined
by z and suct as well as a primitive recursion operator written as rec M with f z —
M, | f (sucn) — M, where M is the argument we recurse over, M, describes the
branch taken if M = z and M, describes the branch taken when M = suc N where n
will be instantiated with N and f n describes the recursive call.



Types A == ...|nat
Terms t == ...|z|suct|rectwithfz—t,|f (sucn)— t

To clarify, we give the typing rules for the additional constructs.

' M : nat
' z:nat ' suc M : nat

'EMz:nat THEFM,:C [n:nat, fn:CFHM;:C
'rec Mwithfz— M, |f (sucn) — M,:C

We again extend our definition of SN and SNe.

Neutral terms

M e SNe M, eSN M SN
rec M with f z — M, | f (sucn) — M, € SNe

Normal terms

M € SN
z € SN sucM € SN

Strong head reduction

M; € SN
rec zwithfz — M, | f (sucn) - My, —sy M,

NeSN M,eSN M;eSN f.=rec Nwithfz— M, |f (sucn) — M,
rec (sucN) withfz — M, | f (sucn) = My —sn [N/, /T Mg

M —SN M’
rec M with fz— M, | f (sucn) — My —gy rec M with f z — M, | f (sucn) — M,

6.7 Extension: Natural numbers

Here we add natural numbers to our language and show how the language remains
normalizing.



6.7.1 Semantic type [nat]

We define the denotation of nat as follows:

[nat] :={z} U{sucM | M € [nat]}

6.7.2 Semantic type [nat] is a reducibility candidate

We again extend our previous theorem which states that all denotations of types must
be in CR.

Theorem 6.7.1. For all types C, [C] € CR.

Proof. By induction on the structure of A. We highlight the case for nat.

Case C = nat
1. Show CR1: Assume M € nat. we consider different subcases and prove by
induction on the closure defining nat that M € SN.

Subcase M = z. By definition of SN, z € SN.

Subcase M = sucN where N € [nat]. By i.h. (CR1), N € SN. By definition
of SN, suc N € SN.

Subcase M € SNe. By definition of SN, M € SN.

Subcase M ¢ [nat], if M —sy M’ and M’ € [nat].

M —sy M’ and M’ € [nat] by assumption
M’ e SN by inner i.h.
M € SN by reduction —sy

Show CR2: By definition of the closure, M € SNe, then M € [nat].

Show CR3: M € nat, if M —sy M’ and M’ € nat. By definition of the closure, we
have that M € nat. H



6.7.3 Revisiting the fundamental lemma

We can now revisit the fundamental lemma.
Lemma 6.7.2 (Fundamental lemma). If '+ M : A and o € [I'] then [c]M € [A].

Proof. By inductionon ' M : A.

Case D=___

'+ z:nat
z € [nat] by definition.
Case D — ' M : nat

' suc M : nat
oec [IT by assumption
M € [nat] by i.h.
suc M € [nat] by definition

' M :nat 'eEM,:C Kn:nat, fn:CHM;:C
Case D —

I'Erec Mwithfz— M, |f (sucn) — M,:C

oec [IT by assumption
[0]M € [nat] by i.h.

We distinguish cases based on M € [nat] and prove by induction on M € [nat] that
[o](rec M with fz— M, | f (sucn) — M,) € [C].

Subcase [o]M =z.

n € [nat], fn € [C] by definition
[o,n/n,fn/fn] € [lin:nat,fn:C] by definition
[o,n/n,f n/f n]M; € [C] by outer i.h.
[o,n/n, f n/f n]M; € SN by CR1
[0]M; € [C] by outer i.h.
rec z with f z — [0]M, | f (sucn) — [o,n/n, f n/f n]M; —sn [0]M, by —sn
rec z with f z — [0]M, | f (sucn) — [o,n/n,f n/f n]M; = [o](rec M with f z — M, |
f (sucn) — M) by subst. def. and M =z

[o](rec M with fz — M, | f (sucn) — M, € [C] by CR3.



Subcase [0]M = suc M’ where M’ € [nat].

M’ € [nat] by assumption
M’ € SN by CR1
[0]M. € [C] by outer i.h.
[0]M, € SN by CR1
[o,n/n,f n/f n]M; € [C] by outer i.h.
[o,n/n,f n/f n]M; € SN by CR1
rec M’ with f z — [0]M, | f (sucn) — [o,n/n,f n/f n]M; € [C] by inner i.h.
[o,M'/x, rec M’ with f z — [0]M, | f (sucn) — [o,n/n,fn/fn]M;/fn] € [I[n:
nat,f n: CJ by definition

[0, M'/x, rec M" with f z — [0]M, | f (sucn) — [o,n/n, f n/f n]M,/f n]M; € [C] by
outer i.h.
rec (sucM’) with f z = [c]M, | f (sucn) — [o,n/n,f n/f n]M;

—sn [0y, M /x, rec M’ with f z — [0]M,, | f (sucn) — [o,n/n, f n/f n]M,/f n]M,
by —SN
[o](rec M with fz — M, | f (sucn) — M) € [C] by CR3.

Subcase [0]M & SNe.

[0]M, € [C] by outer i.h.
[0]M, € SN by CR1
[o,n/n,f n/f n]M; € [C] by outer i.h.
[o,n/n,f n/f n]M; € SN by CR1
rec [0]M with f z — [0]M,, | f (sucn) — [o,n/n,f n/f n]M, € SNe by SNe
[o](rec M with f z— M, | f (sucn) — M) € SNe by subst. def.
[o](rec M with f z — M, | f (sucn) — M,) € [C] by CR2.

Subcase [0]M € [nat], if [c]M —sy M’ and M’ € [nat].

[0]M —sy M’ and M’ € [nat] by assumption.
rec M’ with f z — [0]M, | f (sucn) — [o,n/n,f n/f n]M; € [C] by inner i.h.
rec [o]M with f z — [c]M, | f (sucn) — [o,n/n, f n/f n]M;

—sn rec M/ with f z — [0]M, | f (sucn) — [o,n/n, f n/f n]M; by —sn
[o](rec M with fz — M, | f (sucn) — M,) € [C] by CR3.

O
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