
CADE-21
The 21

st Conference on Automated Deduction

Second International Workshop on
Logical Frameworks and Meta-Languages:

Theory and Practice
(LFMTP’07)

Editors:

Brigitte Pientka, Carsten Schürmann

Bremen, Germany, July 15
th 2007

CADE-21 Organization:

Conference Chair: Michael Kohlhase (Jacobs University Bremen)
Program Chair: Frank Pfenning (Carnegie Mellon University)

Workshop Chair: Christoph Benzmüller (University of Cambridge)
Local Organization: Event4 Event Management

Preface

These are the Proceedings of the Second International Workshop on Logi-
cal Frameworks and Meta-Languages: Theory and Practice, LFMTP’07. The
LFMTP workshop series emerged from the LFM workshop series on “Logi-
cal Frameworks and Meta-Languages” and the MERλIN workshop series on
“MEchanized Reasoning about Languages with variable BInding”.

Logical frameworks and meta-languages form a common substrate for repre-
senting, implementing, and reasoning about a wide variety of deductive systems
of interest in logic and computer science. Their design and implementation
has been the focus of considerable research over the last two decades, using
competing and sometimes incompatible basic principles. This workshop brings
together designers, implementors, and practitioners to discuss all aspects of
logical frameworks.

We received 13 submissions to the workshop of which the committee decided
to accept 10. The programme also includes one invited talk by Randy Pollack,
LFCS, University of Edinburgh. The papers included in these workshop pro-
ceedings were peer-reviewed by the program committee.

Carsten Schürmann IT University of Copenhagen (Chair)

Andreas Abel Ludwig-Maximilians-Universität München
Peter Dybjer Chalmers University of Technology
Marino Miculan University of Udine
Dale Miller Ecole Polytechnique
Brigitte Pientka McGill University
Benjamin Pierce University of Pennsylvania
Christian Urban Technical University München

The editors would like to thank the committee and external reviewers for
their excellent work. LFMTP07 is held on July 15th, 2007 in association with
CADE-21, the Conference on Automated Deduction in Bremen. We would like
to thank the CADE-21 workshop chair Christoph Benzmüller and the CADE-21
conference chair Michael Kohlhase for all their support and help with the orga-
nization of this workshop, and Andrei Voronkov for letting us use his easychair
online refereeing software. It has been a pleasure to work with all of you. Thank
you.

July 15th, 2007
Brigitte Pientka

Carsten Schürmann

Table of Contents

Locally Nameless Representation and Nominal Isabelle (invited talk) 1
Randy Pollack

Two-Level Hybrid: A System for Reasoning Using Higher-Order
Abstract Syntax (System Description) . 2

Alberto Momigliano, Alan J. Martin, Amy P. Felty

A Bidirectional Refinement Type System for LF . 11
William Lovas, Frank Pfenning

Coercive Subtyping via Mappings of Reduction Behaviour 26
Paul Callaghan

Focusing the inverse method for LF: a preliminary report 41
Brigitte Pientka, Florent Pompigne, Xi Li

Formalising in Nominal Isabelle Crary’s Completeness Proof for
Equivalence Checking . 57

Julien Narboux, Christian Urban

Towards Formalizing Categorical Models of Type Theory in Type Theory 72
Alexandre Buisse, Peter Dybjer

A Signature Compiler for the Edinburgh Logical Framework 86
Michael Zeller, Aaron Stump, Morgan Deters

Induction on Concurrent Terms . 92
Anders Schack-Nielsen

Higher-Order Proof Construction Based on First-Order Narrowing 107
Fredrik Lindblad

The λ-Context Calculus . 122
Murdoch J. Gabbay, Stephane Lengrand

Author Index

Buisse, Alexandre 72

Callaghan, Paul 26

Deters, Morgan 86
Dybjer, Peter . 72

Felty, Amy P. 2

Gabbay, Murdoch 124

Lengrand, Stephane 124
Li, Xi . 41
Lindblad, Fredrik 109
Lovas, William . 11

Martin, Alan J. 2
Momigliano, Alberto 2

Narboux, Julien 57

Pfenning, Frank 11
Pientka, Brigitte 41
Pollack, Randy . 1
Pompigne, Florent 41

Schack-Nielsen, Anders 94
Stump, Aaron . 86

Urban, Christian 57

Zeller, Michael . 86

LFMTP 2007

Invited Talk:
Locally Nameless Representation and

Nominal Isabelle

Randy Pollack1

Edinburgh University, U.K.

The idea that bound variables and free (global) variables should be represented
by distinct syntactic classes of names goes back at least to Gentzen and Prawitz. In
the early 1990’s, McKinna and Pollack formalized a large amount of the metatheory
of Pure Type Systems with a representation using two classes of names. This work
developed a style for formalizing reasoning about binding which was heavy, but
worked reliably. However, the use of names for bound variables is not a perfect
fit to the intuitive notion of binding, so I suggested (1994) that the McKinna–
Pollack approach to reasoning with two species of variables also works well with a
representation that uses names for global variables, and de Bruijn indices for bound
variables. This locally nameless representation, in which alpha equivalence classes
have exactly one element, had previously been used in Huet’s Constructive Engine
and by Andy Gordon. The locally nameless representation with McKinna–Pollack
style reasoning has recently been used by several researchers (with several proof
tools) for solutions to the POPLmark Challenge.

In this talk I discuss the current state of play with locally nameless represen-
tation and suitable styles of reasoning about it. Using Urban’s nominal Isabelle
package, it is possible to get the boilerplate definitions and lemmas about freshness
of names and swapping/permuting names for free. From nominal Isabelle and other
work there are new appraches to proving the strengthened induction principles that
reasoning with names requires. There are also some downsides to the new ideas,
which I will point out. Among my examples is an isomorphism (proved in nomi-
nal Isabelle) between nominal representation and locally nameless representation of
lambda terms.

1 Email: rpollack@inf.ed.ac.uk

1

LFMTP 2007

Two-Level Hybrid: A System for Reasoning
Using Higher-Order Abstract Syntax

Alberto Momigliano,a Alan J. Martin,b Amy P. Feltyc,b

a LFCS, School of Informatics, University of Edinburgh, U.K.& DSI, University of Milan, Italy
Email: amomigl1@inf.ed.ac.uk

b Department of Mathematics and Statistics, University of Ottawa, Canada
Email: {amart045,afelty}@site.uottawa.ca

c School of Information Technology and Engineering (SITE), University of Ottawa, Canada

Abstract

Logical frameworks supporting higher-order abstract syntax (HOAS) allow a direct and concise specification
of a wide variety of languages and deductive systems. Reasoning about such systems within the same frame-
work is well-known to be problematic. We describe the new version of the Hybrid system, implemented on
top of Isabelle/HOL (as well as Coq), in which a de Bruijn representation of λ-terms provides a definitional
layer that allows the user to represent object languages in HOAS style, while offering tools for reasoning
about them at the higher level. We briefly describe how to carry out two-level reasoning in the style of
frameworks such as Linc, and briefly discuss our system’s capabilities for reasoning using tactical theorem
proving and principles of induction and coinduction.

Keywords: higher-order abstract syntax, interactive theorem proving, induction, variable binding,
Isabelle/HOL

1 Introduction

We give a system presentation of Hybrid [4] (http://hybrid.dsi.unimi.it/), in
coincidence with the release of its new and first official version, as well as with the
porting to Isar and Coq [2,1]. Hybrid is a package that introduces a binding operator
that (1) allows a direct expression of λ-abstraction in full higher-order abstract
syntax (HOAS) style, and (2) is defined in such a way that expanding its definition
results in the conversion of a term to its de Bruijn representation [8]. The latter
makes Hybrid’s specifications compatible with principles of (co)induction, available
in standard proof assistants. The basic idea is inspired by the work of Gordon [10],
where bound variables are presented to the user as strings. Instead of strings, we
use a binding operator (LAM) defined using λ-abstraction at the meta-level. Hybrid
provides a library of operations and lemmas to reason on the HOAS level, hiding the
details of the de Bruijn representation. Hybrid originated as a (meta)language on
top of Isabelle/HOL for reasoning over languages with bindings, aiming to enrich
a traditional inductive setting with a form of HOAS. It soon became apparent

2

that it could also provide definitional support for two-level reasoning as proposed
in our previous work [9]; the latter aimed to endow Coq (in that case) with the
style of reasoning of frameworks such as FOλ∆N [12], Linc [17], and, to a lesser
extent, Twelf [16]. Hybrid is defined as an Isabelle/HOL theory (approx. 150 lines
of functional definitions and 400 lines of statements and proofs). In contrast to
other approaches such as the Theory of Contexts [11], our Isabelle/HOL theory
does not contain any axioms, which would require external justification.

Previous work has described Hybrid applied to a variety of object languages
(OLs) and their (meta)properties, as detailed in Section 4. Here we concentrate on
describing some new features of the system infrastructure, as well as recalling the
two-level approach. We briefly mention some initial tactical support for reasoning
in this setting, and describe how we state the adequacy of Hybrid’s encodings.

The main improvement of this version is an overall reorganization of the infras-
tructure, based on the internalization of the set of proper terms: those are the subset
of de Bruijn terms that are well-formed (in the sense that all indices representing
bound variable occurrences in a term have a corresponding binder in the term),
eliminating the need for adding well-formedness annotations in OL judgments. We
recall that to represent syntax in the presence of binders, we use a predicate (abstr)
that recognizes the parametric part of the function space between OL expressions.
The crucial injectivity property of the Hybrid binder LAM:

abstr f =⇒ (LAMx. f x = LAMx. g x) = (f = g).

strengthens our previous version by requiring only one of f and g to satisfy this
condition (instead of both), thus simplifying the elimination rules for inductively
defined OL judgments.

Notation: An Isabelle/HOL type declaration has the form s : : [t1, . . . tn]⇒ t. Free variables are im-

plicitly universally quantified. We use ≡ and
V

for equality by definition and universal meta-quantification.

We use the usual logical symbols for the connectives of Isabelle/HOL. A rule (a sequent) with premises
H1 . . . Hn and conclusion C will be represented as [[H1; . . . ;Hn]] =⇒ C. The keyword Inductive introduces

an inductive relation in Isabelle/HOL; similarly for datatype. We freely use infix notations, without explicit

declarations.

2 Using Hybrid

The objective of Hybrid is to provide support for HOAS via an approximation of
the following datatype definition, which is not well-formed in an inductive setting:

datatype α expr = CON α
∣∣ VAR var

∣∣ expr $ expr
∣∣ LAM (expr ⇒ expr)

where var is a countably infinite set of free variables, and the type parameter α is
used to supply object-language-specific constants. (It will henceforth be omitted,
except where instantiated.) The problem is, of course, LAM, whose argument type
involves a negative occurrence (underlined) of expr . Since it is possible to formalize
Cantor’s diagonal argument in Isabelle/HOL, such a function cannot be injective,
and thus cannot be a constructor of a datatype.

However, for HOAS it is neither necessary nor desirable for LAM to be
used with arbitrary Isabelle/HOL functions as arguments: only those func-
tions that use their arguments generically are needed. These functions will be
called abstractions; in the Hybrid system, they are recognized by a predicate
abstr : : [expr ⇒ expr]⇒ bool . Functions that are not abstractions are called exotic,

3

for example λx. if x = CON a then (x $ x) else x for some OL constant a. The pos-
sibility of introducing such functions would break the adequacy of any second-order
encoding.

As described in Section 3, Hybrid defines a type expr together with functions
of the appropriate types to replace the constructors of the problematic datatype
definition above. Distinctness of the constructors and injectivity of CON, VAR, and $
are proved. Two more properties would be needed for a datatype: injectivity of LAM
and an induction principle. In Hybrid, the former is weakened by the addition of an
abstr premise, while the latter uses a nonstandard LAM case to allow the induction
hypothesis to have the type expr ⇒ bool despite the presence of HOAS:

[[. . . ;
∧
v. P (e (VAR v)) =⇒ P (LAM e)]] =⇒ P (u : : expr)

Thus, the type expr is only a “quasi-datatype”, and it is necessary to impose
abstr conditions wherever LAM is used. Hybrid provides lemmas for proving the
resulting abstr subgoals, so that basic reasoning about expr is similar to a true
datatype. However, primitive recursion on expr is not (currently) available. Also,
induction involves the use of explicit free variables, which HOAS techniques nor-
mally seek to avoid, and this complicates the reasoning; thus, induction on OL
judgments is preferred.

From the user’s point of view Hybrid provides a form of HOAS where: object
level constants correspond to expressions of the form CON c; bound object-level
variables correspond to (bound) meta variables in expressions of the form LAM v. e;
subterms are combined with $; and free object-level variables may be represented
as VAR i (although typical examples will not use this feature).

2.1 Example

As a small example (space limitations), we consider the encoding of the types of
F<:, the subtyping language of the PoplMark challenge [6] as an OL. Types have
the form > (the maximum type), τ1 → τ2 (type of functions), or ∀x<:τ1.τ2 (bound
universal type). In the latter, x is a type variable possibly occurring in τ2, which
can be instantiated with subtypes of τ1. To represent the OL types, we define:

datatype con = cTOP
∣∣ cARR

∣∣ cUNI uexp = con expr

top ≡ CON cTOP

t1 arrow t2 ≡ CON cARR $ t1 $ t2
univ t1 (x. t2 x) ≡ CON cUNI $ t1 $ LAMx. t2 x.

Note that uexp is introduced to abbreviate an instantiated version of the “quasi-
datatype” expr , where α is replaced by the above type con that is introduced
specifically for this OL.

To illustrate the representation of judgments of an OL, we consider rules for
well-formed types, where Γ is a list of distinct type variables.

x ∈ Γ

Γ ` x Γ ` >
Γ ` τ1 Γ ` τ2

Γ ` τ1 → τ2

Γ ` τ1 Γ, x ` τ2

Γ ` ∀x<:τ1.τ2

The standard Twelf-style encoding of the right premise of the last rule would be∧
x. isTy x =⇒ isTy (T2 x), where isTy is a meta-level predicate introduced to repre-

4

sent this OL judgment. Note the negative occurrence (underlined) of the predicate
being defined (the same problem as before, but at the predicate level). Two-level
reasoning is introduced to address this problem. In particular, a specification logic
(SL) is defined inductively in Isabelle/HOL, which is in turn used to drive the en-
coding of the OL as an inductive set of Prolog-like clauses, avoiding any negative
occurrences at the meta-level.

A Hybrid user can specify his/her own SL, but we envision a library of such
logics that a user can choose from. Indeed, several such logics have been encoded
to date. We can view our realization of the two-level approach as a way of “fast
prototyping” HOAS logical frameworks. We can quickly implement and experiment
with a potentially interesting SL, without the need to develop all the building blocks
of a usable new framework, such as unification algorithms, type inference or proof
search; instead we rely on the ones provided by Isabelle/HOL.

To illustrate, we choose a simple SL, a sequent formulation of a fragment of
first-order minimal logic with backchaining, adapted from [12]. Its syntax can be
encoded directly with an Isabelle/HOL datatype:

datatype oo = tt
∣∣ 〈atm〉

∣∣ oo and oo
∣∣ atm imp oo

∣∣ all (uexp ⇒ oo)

where atm is a parameter used to represent atomic predicates of the OL and 〈 〉
coerces atoms into propositions. We use the symbol � for the sequent arrow of the
SL, in this case decorated with natural numbers to allow reasoning by (complete)
induction on the height of a proof. The inference rules of the SL are represented as
the following Isabelle/HOL inductive definition:

Inductive � : : [atm set ,nat , oo]⇒ bool
=⇒Γ �n tt

[[Γ �n G1; Γ �n G2]] =⇒Γ �n+1 (G1 and G2)
[[∀x.Γ �n G x]] =⇒Γ �n+1 (allx.G x)

[[{A} ∪ Γ �n G]] =⇒Γ �n+1 (A imp G)
[[A ∈ Γ]] =⇒Γ �n 〈A〉

[[A←− G; Γ �n G]] =⇒Γ �n+1 〈A〉

The backward arrow in A ←− G in the last rule is used to encode OL judgments
as logic programming style clauses. To reason about OLs, a small set of structural
rules of the SL is proved once and for all, such as weakening and cut elimination.
To complete our example OL, we define atm as a datatype with a single constructor
isTy uexp, thus representing the OL well-formedness judgment ‘`’ at the specifica-
tion level, and encode the OL inference rules as the following definition of (←−):

Inductive ←− : : [atm, oo]⇒ bool
=⇒ isTy top←− tt

=⇒ isTy (T1 arrow T2)←− 〈isTy T1〉 and 〈isTy T2〉
[[abstr T 2]] =⇒ isTy (univ T1 (x. T2 x))←−

〈isTy T1〉 and (allx. (isTy x) imp 〈isTy (T2 x)〉)
Note the negative occurrence of isTy now embedded in the SL. We remark that
Hybrid is (currently) untyped in the sense that OL syntax is encoded as terms of

5

type uexp; i.e., there is no new type introduced to represent well-formed types of F<:.
For this reason, the isTy predicate is necessary to identify the required subset of uexp.

For any OL represented in Hybrid, it is important to show that both terms
and judgments are adequately encoded. For our example, this means showing that
there is a bijection between object-level types of F<: and the subset of terms of
type uexp formed from only variables, the constants top, arrow, and univ, and
Isabelle/HOL λ-abstractions (the latter of which can only appear as the second
argument of univ). We write εX for the encoding function from OL terms with
free variables in X to terms in uexp, and δX for its inverse decoding. We also
need to show that substitution commutes with the encoding. For OL judgments,
the proof obligation is that whenever x1, . . . , xn ` t holds in the OL, then for
some i, (isTy x1, . . . , isTy xn) �i isTy (εx1,...,xn(t)) is provable. Conversely, whenever
(isTy x1, . . . , isTy xn) �i isTy T is provable, then T is in the domain of δx1,...,xn and
x1, . . . , xn ` δx1,...,xn(T) holds in the OL. It is also important to show the adequacy
of SL encodings. For the SL presented here, we can adapt the proof from [12]. Since
our version is defined inductively, the inversion properties of this definition play a
central role in the proof.

2.2 Tactical support

We chose to develop Hybrid as a package, rather than a standalone system mainly
to exploit all the reasoning capabilities that a mature proof assistant can provide,
in particular support for tactical theorem proving. Contrast this with a system
such as Twelf, where proofs are coded as logic programs and post hoc checked for
correctness. At the same time, our aim is to try to retain some of the conciseness
of a language such as LF, which for us means hiding most of the administrative
reasoning concerning variable binding and contexts. Because of the “hybrid” na-
ture of our approach, this cannot be completely achieved, but some simple-minded
tactics go a long way into mechanizing most of boilerplate scripting. While in
the previous version of the system we employed specific tactics to recognize proper
terms and abstractions, now this is completely delegated to Isabelle’s simplification.
Thus, we can concentrate on assisting two-level reasoning, which would otherwise
be encumbered by the indirection in accessing OL specifications via the SL. Luck-
ily, Twelf-like reasoning consists, at a high-level, of three basic steps: inversion,
backchaining (filling, in Twelf’s terminology) and recursion. This corresponds to
highly stereotyped proof scripts that we have abstracted into:

(i) an inversion tactic defL tac, which goes through the SL and applies as an
elimination rule one of the OL clauses. This is complemented by the eager
application of other safe elimination rules (viz. invertible SL rules such as
conjunction elimination). This contributes to keeping the SL overhead to a
minimum;

(ii) a dual backchaining tactic defR tac; the latter is integrated into the tactic
2lprolog_tac, which performs automatic depth first search (or other searches
supported by Isabelle) on Prolog-like goals;

(iii) a complete induction tactic, to be fired when given the appropriate derivation
height by the user.

6

These tactics have been tested most extensively on the minimal SL, while more
human intervention is required when using sub-structural logics (such as Olli [15]),
given the non-deterministic nature of their context management.

3 Definition of Hybrid in Isabelle/HOL

The Hybrid system defines the type expr in terms of an Isabelle/HOL datatype dB
that uses de Bruijn indices to represent bound variables:

datatype α dB = CON′α
∣∣ VAR′ var

∣∣ BND′ bnd
∣∣ dB $′ dB

∣∣ ABS′ dB
∣∣ ERR′

where the type bnd of de Bruijn indices is defined to be the natural numbers, and
the type parameter α is the same as for expr .

Each occurrence of BND′ i refers to the variable implicitly bound by the (i+1)th

enclosing ABS′ node. If there are not enough enclosing ABS′ nodes, then it is called
a dangling index. A term without dangling indices is called proper, and expr should
consist of the proper terms of type dB ; but since the subterms of a proper term are
not always proper, a more general notion of level is needed. Thus, Hybrid defines a
predicate level : : [nat , dB]⇒ bool by primitive recursion; the meaning of level i s is
that the term s would have no dangling indices if enclosed in at least i ABS′ nodes.

Using Isabelle/HOL’s typedef mechanism, the type expr is defined as a bijective
image of the set { s : : dB | level 0 s }, with inverse bijections dB : : expr ⇒ dB
and expr : : dB ⇒ expr . In effect, typedef makes expr a subtype of dB , but since
Isabelle/HOL’s type system does not have subtyping, the conversion function dB
must be explicit. The notation psq = dB s and xsy = expr s will be used below,
although dB and expr will still be used when referring to them as functions 1 . At
this point three of the four constructors of expr can be defined:

CON a ≡ xCON′ay VAR n ≡ xVAR′ny s $ t ≡ xpsq $′ ptqy

To define the predicate abstr and the remaining constructor LAM, it is helpful
first to explicitly represent the structure of abstractions. Thus, Hybrid defines a
polymorphic datatype dB fn:

datatype (β, α) dB fn = ATOM∗ (β ⇒ α dB)
∣∣ CON∗α

∣∣ VAR∗ var
∣∣

BND∗ bnd
∣∣ dB fn $∗ dB fn

∣∣ ABS∗ dB fn
∣∣ ERR∗

(where the type parameter α will once again be left implicit), together with a func-
tion -? : : β dB fn ⇒ (β ⇒ dB) that maps the constructors of β dB fn to corre-
sponding constructors of dB applied pointwise, e.g., (S $∗ T)? = λx. (S? x) $′ (T? x),
except that (ATOM∗ f)? = f .

A function is called ordinary if it is the image under -? of a term whose root node
is not ATOM∗ , and a term of type β dB fn is called full if in all of its occurrences
of ATOM∗ f , the function f is not ordinary. Every function f : : β ⇒ dB can be
written uniquely in the form T? for some full term T : : β dB fn: the non-ATOM∗

constructors represent the common structure of f x for all values of x, while the

1 The function expr in the Isabelle/HOL theory is actually modified from the one provided by typedef, to
produce a well-behaved result even when presented with a term of nonzero level. In particular, we will have
ps $ tq = psq $′ ptq without any level assumption.

7

ATOM∗ constructors represent the places where f x depends on x. That is, -? is
bijective on full terms; its inverse shall be denoted dB fn : : (β ⇒ dB)⇒ β dB fn.

Establishing this bijection is a significant part of the Isabelle/HOL theory, and
it allows functions on expr ⇒ dB to be defined by primitive recursion, and their
properties proved by induction, on expr dB fn 2 .

Now abstr is defined by abstr f ≡ Abstr f?, where f? = dB fn (dB ◦ f) and
the auxiliary predicate Abstr is defined by primitive recursion on expr dB fn; the
essential case is Abstr (ATOM∗ f) = (f = dB). Note that ATOM∗ dB = (λx. x)? in
f? stands in for the bound metavariable in f .

Similarly, LAM is defined by LAM f ≡ Lambda f?, where

Lambda S ≡ if Abstr S then xABS′ (Lbind 0 S)y else xERR′y.

The conditional construction serves to distinguish LAM of an abstraction from LAM
of an exotic function. The function Lbind : : [bnd , expr dB fn]⇒ dB is defined by
primitive recursion:

Lbind i (ATOM∗ f) = BND′ i

Lbind i (S $∗ T) = (Lbind i S) $′ (Lbind i T)
Lbind i (ABS∗S) = ABS′

(
Lbind (Suc i) S

)
where Lbind i S = S? arbitrary in the remaining cases. Note that the Abstr condition
ensures that all occurrences of ATOM∗ f passed to Lbind have f = dB.

With these definitions, statements such as the following are provable:

LAMx. LAM y.CON c $ x $ y $ VAR 3 =

xABS′ (ABS′ (CON′ c $′ BND′ 1 $′ BND′ 0 $′ VAR′ 3))y

Indeed, application of dB or expr triggers simplification rules that convert between
HOAS and de Bruijn form.

4 Conclusion

Materials related to Hybrid, including source code, case studies and previous papers,
can be found at http://hybrid.dsi.unimi.it/. Ready-to-use SLs are minimal
and ordered linear logic. Several case studies have been carried out, only the first
three being one-level:

• Encodings and proofs of simple properties of quantified propositional formulae
(conversion to normal forms), and of the higher-order π-calculus (structural con-
gruence and reaction rules) [4].

• A Howe-style proof that applicative bisimulation in the lazy λ-calculus is a con-
gruence [13].

• A subject reduction theorem [5] for the intermediate language MIL-lite of the
MLj compiler.

• The two-level approach with Coq as the meta-language is first introduced in [9];

2 In previous versions of Hybrid [4], a related induction principle on dB ⇒ dB , called abstraction induct,
was used directly. A generalization of it is still used in establishing the bijection. Other instances of dB fn
may be useful in generalizing abstr to functions of more than one variable.

8

subject reduction and uniqueness of typing of Mini-ML are re-proved and com-
pared to the proofs in McDowell’s thesis.

• In [14] we verified the correctness of a compiler for (a fragment) of Mini-ML into
an environment machine. To deal with recursion more succinctly, we enriched
the language with Milner & Tofte’s non-well-founded closures, and checked, via
coinduction, a type preservation result.

• Properties of continuation machines are investigated in [15] with an ordered linear
logic as SL, e.g. internalizing the instruction stack in the ordered context.

Future work will tackle the issue of formulating SLs capable of performing induc-
tion over open terms, required, for example, to complete the PoplMark challenge.
We also plan to add primitive recursion principles for defining functions directly on
the higher-order syntax, following on [5, 7]. On the practical side, we are looking
into presenting Hybrid as a “lightweight” HOAS package, as opposed to Urban’s
nominal package [18], which is more concerned with a machine assisted reconstruc-
tion of the informal “Barendregt” style of mathematical reasoning in presence of
binders. Our package would include some facilities that would automatically turn
a user signature into appropriate Hybrid-based Isabelle/HOL theories, in the spirit
of OTT [3]. The aim is to aid the user’s focus on the problem at hand by further
separating him from the machinery of defining an OL, such as CON instantiation,
simplifier setup and customization of the tactics we have discussed earlier.

Acknowledgement

Felty and Martin acknowledge the support of the Natural Sciences and Engineering Research Council of

Canada and the University of Ottawa. Momigliano is partially supported by the European Project Mobius

within the frame of IST 6th Framework.

References

[1] The Coq proof assistant, v.8.0, http://coq.inria.fr/.

[2] Isabelle/Isar 2005, http://isabelle.in.tum.de/Isar.

[3] Ott, http://www.cl.cam.ac.uk/~pes20/ott/.

[4] Ambler, S., R. Crole and A. Momigliano, Combining higher order abstract syntax with tactical theorem
proving and (co)induction, in: Fifteenth International Conference on Theorem Proving in Higher-Order
Logics, Springer-Verlag LNCS 2342, 2002, pp. 13–30.

[5] Ambler, S. J., R. L. Crole and A. Momigliano, A definitional approach to primitive recursion over higher
order abstract syntax, in: ACM SIGPLAN Workshop on Mechanized Reasoning about Languages with
Variable Binding (2003), pp. 1–11.

[6] Aydemir, B. E. et al., Mechanized metatheory for the masses: the PoplMark challenge, in: Eighteenth
International Conference on Theorem Proving in Higher-Order Logics, Springer-Verlag LNCS 3605,
2005, pp. 50–65.

[7] Capretta, V. and A. Felty, Combining de Bruijn indices and higher-order abstract syntax in Coq, in:
Proceedings of TYPES 2006, Springer-Verlag LNCS 4502, 2007, pp. 63–77.

[8] de Bruijn, N. G., Lambda-calculus notation with nameless dummies: a tool for automatic formula
manipulation with application to the Church-Rosser theorem, Indagationes Mathematicæ 34 (1972),
pp. 381–392.

[9] Felty, A., Two-level meta-reasoning in Coq, in: Fifteenth International Conference on Theorem Proving
in Higher-Order Logics, Springer-Verlag LNCS 2342, 2002, pp. 198–213.

9

[10] Gordon, A., A mechanisation of name-carrying syntax up to α-conversion, in: Higher Order Logic
Theorem Proving and its Applications, Springer-Verlag LNCS 780, 1993, pp. 414–426.

[11] Honsell, F., M. Miculan and I. Scagnetto, An axiomatic approach to metareasoning on nominal algebras
in HOAS, in: 28th International Colloquium on Automata, Languages and Programming, Springer-
Verlag LNCS 2076, 2001, pp. 963–978.

[12] McDowell, R. and D. Miller, Reasoning with higher-order abstract syntax in a logical framework, ACM
Transactions on Computational Logic 3 (2002), pp. 80–136.

[13] Momigliano, A., S. Ambler and R. Crole, A Hybrid encoding of Howe’s method for establishing
congruence of bisimilarity, Electronic Notes in Theoretical Computer Science 70 (2002), pp. 60–75.

[14] Momigliano, A. and S. J. Ambler, Multi-level meta-reasoning with higher order abstract syntax, in:
Sixth International Conference on Foundations of Software Science and Computational Structures,
Springer-Verlag LNCS 2620, 2003, pp. 375–391.

[15] Momigliano, A. and J. Polakow, A formalization of an ordered logical framework in Hybrid with
applications to continuation machines, in: ACM SIGPLAN Workshop on Mechanized Reasoning about
Languages with Variable Binding (2003), pp. 1–9.

[16] Pfenning, F. and C. Schürmann, System description: Twelf — a meta-logical framework for deductive
systems, in: Sixteenth International Conference on Automated Deduction, Springer-Verlag LNCS 1632,
1999, pp. 202–206.

[17] Tiu, A., “A Logical Framework for Reasoning about Logical Specifications,” Ph.D. thesis, Pennsylvania
State University (2004).

[18] Urban, C. and C. Tasson, Nominal techniques in Isabelle/HOL, in: Twentieth International Conference
on Automated Deduction, Springer-Verlag LNCS 3632, 2005, pp. 38–53.

10

LFMTP 2007

A Bidirectional Refinement Type System for LF

William Lovas1 Frank Pfenning2

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA, USA

Abstract

We present a system of refinement types for LF in the style of recent formulations where only canonical forms
are well-typed. Both the usual LF rules and the rules for type refinements are bidirectional, leading to a straight-
forward proof of decidability of type-checking even in the presence of intersection types. Because we insist on
canonical forms, structural rules for subtyping can now be derived rather than being assumed as primitive. We
illustrate the expressive power of our system with several examples in the domain of logics and programming
languages.

Keywords: LF, refinement types, subtyping, dependent types, intersection types

1 Introduction

LF was created as a framework for defining logics [6]. Since its inception, it has
been used to formalize reasoning about a number of deductive systems (see [13] for
an introduction). In its most recent incarnation as the Twelf metalogic [14], it has
been used to encode and mechanize the metatheory of programming languages
that are prohibitively complex to reason about on paper [3,9].

It has long been recognized that some LF encodings would benefit from the
addition of a subtyping mechanism to LF [12,2]. In LF encodings, judgements are
represented by type families, and many subsyntactic relations and judgemental
inclusions can be elegantly represented via subtyping.

Prior work has explored adding subtyping and intersection types to LF via
refinement types [12]. Many of that system’s metatheoretic properties were proven
indirectly by translation into other systems, though, giving little insight into a
notion of adequacy or an implementation strategy. We present here a refinement
type system for LF based on the modern canonical forms approach, and by doing so
we obtain direct proofs of important properties like decidability.

1 Email: wlovas@cs.cmu.edu
2 Email: fp@cs.cmu.edu

11

mailto:wlovas@cs.cmu.edu
mailto:fp@cs.cmu.edu

In canonical forms-based LF, only β-normal η-long terms are well-typed — the
syntax restricts terms to being β-normal, while the typing relation forces them
to be η-long. Since standard substitution might introduce redexes even when
substituting a normal term into a normal term, it is replaced with a notion of
hereditary substitution that contracts redexes along the way, yielding another normal
term. Since only canonical forms are admitted, type equality is just α-equivalence,
and typechecking is manifestly decidable.

Canonical forms are exactly the terms one cares about when adequately encod-
ing a language in LF, so this approach loses no expressivity. Since all terms are
normal, there is no notion of reduction, and thus the metatheory need not directly
treat properties related to reduction, such as subject reduction, Church-Rosser, or
strong normalization. All of the metatheoretic arguments become straightforward
structural inductions, once the theorems are stated properly.

By introducing a layer of refinements distinct from the usual layer of types,
we prevent subtyping from interfering with our extension’s metatheory. We also
follow the general philosophy of prior work on refinement types [5,4] in only
assigning refined types to terms already well-typed in pure LF, ensuring that our
extension is conservative.

In the remainder of the paper, we describe our refinement type system alongside
several illustrative examples (Section 2). Then we explore its metatheory and give
proof sketches of important results, including decidability (Section 3). We note that
our approach leads to subtyping only being defined on atomic types, but we show
that subtyping at higher types is already present in our system by proving that the
usual declarative rules are sound and complete with respect to an intrinsic notion
of subtyping (Section 4). Finally, we discuss some related work (Section 5) and
summarize our results (Section 6).

2 System and Examples

We present our system of LF with Refinements, LFR, through several examples. In
what follows, R refers to atomic terms and N to normal terms. Our atomic and
normal terms are exactly the terms from canonical presentations of LF.

R ::= c | x | R N atomic terms
N,M ::= R | λx.N normal terms

In this style of presentation, typing is defined bidirectionally by two judgements:
R ⇒ A, which says atomic term R synthesizes type A, and N ⇐ A, which says
normal term N checks against type A. Since λ-abstractions are always checked
against a given type, they need not be decorated with their domain types.

Types are similarly stratified into atomic and normal types.

P ::= a | P N atomic type families
A,B ::= P | Πx:A.B normal type families

The operation of hereditary substitution, written [N/x]A , is a partial function
which computes the normal form of the standard capture-avoiding substitution of

12

N for x. It is indexed by the putative type of x, A, to ensure termination, but neither
the variable x nor the substituted term N are required to bear any relation to this
type index for the operation to be defined. We show in Section 3 that when N and
x do have type A, hereditary substitution is a total function on well-formed terms.

Our layer of refinements uses metavariables Q for atomic sorts and S for nor-
mal sorts. These mirror the definition of types above, except for the addition of
intersection and “top” sorts.

Q ::= s | Q N atomic sort families
S,T ::= Q | Πx::S@A.T | > | S1 ∧ S2 normal sort families

Sorts are related to types by a refinement relation, S @ A (“S refines A”), discussed
below. A term of type A can be assigned a sort S only when S @ A. We occasionally
omit the “@ A” from function sorts when it is clear from context.

2.1 Example: Natural Numbers

For the first running example we will use the natural numbers in unary notation.
In LF, they would be specified as follows

nat : type. zero : nat. succ : nat→ nat.

Suppose we would like to distinguish the odd and the even numbers as refine-
ments of the type of all numbers.

even @ nat. odd @ nat.

The form of the declaration is s @ a where a is a type family already declared and
s is a new sort family. Sorts headed by s are declared in this way to refine types
headed by a. The relation S @ A is extended through the whole sort hierarchy in a
compositional way.

Next we declare the sorts of the constructors. For zero, this is easy:

zero :: even.

The general form of this declaration is c :: S, where c is a constant already declared
in the form c : A, and where S @ A. The declaration for the successor is slightly
more difficult, because it maps even numbers to odd numbers and vice versa. In
order to capture both properties simultaneously we need to use intersection sorts,
written as S1 ∧ S2. 3

succ :: even→ odd ∧ odd→ even.

In order for an intersection to be well-formed, both components must refine the
same type. The nullary intersection > can refine any type, and represents the
maximal refinement of that type. 4

s @ a ∈ Σ

s N1 . . .Nk @ a N1 . . .Nk

S @ A T @ B

Πx::S.T @ Πx:A.B

S1 @ A S2 @ A

S1 ∧ S2 @ A > @ A

3 Intersection has lower precedence than arrow.
4 As usual in LF, we use A→ B as shorthand for the dependent type Πx:A.B when x does not occur in B.

13

Canonical LF LF with Refinements

Γ, x:A ` N⇐ B

Γ ` λx.N⇐ Πx:A.B

Γ ` R⇒ P′ P′ = P

Γ ` R⇐ P

x:A ∈ Γ

Γ ` x⇒ A

c:A ∈ Σ

Γ ` c⇒ A

Γ ` R⇒ Πx:A.B Γ ` N⇐ A

Γ ` R N⇒ [N/x]A B

Γ, x::S@A ` N⇐ T

Γ ` λx.N⇐ Πx::S@A.T
(Π-I)

Γ ` R⇒ Q′ Q′ ≤ Q

Γ ` R⇐ Q
(switch)

x::S@A ∈ Γ

Γ ` x⇒ S
(var)

c :: S ∈ Σ

Γ ` c⇒ S
(const)

Γ ` R⇒ Πx::S@A.T Γ ` N⇐ S

Γ ` R N⇒ [N/x]A T
(Π-E)

To show that the declaration for succ is well-formed, we establish that even→ odd ∧
odd→ even @ nat→ nat.

The refinement relation S @ A should not be confused with the usual subtyping
relation. Although each is a kind of subset relation, they are quite different: Sub-
typing relates two types, is contravariant in the domains of function types, and is
transitive, while refinement relates a sort to a type, so it does not make sense to
consider its variance or whether it is transitive. We will discuss subtyping below
and in Section 4.

Now suppose that we also wish to distinguish the strictly positive natural
numbers. We can do this by introducing a sort pos refining nat and declaring that
the successor function yields a pos when applied to anything, using the maximal
sort.

pos @ nat. succ :: · · · ∧ > → pos.

Since we only sort-check well-typed programs and succ is declared to have type
nat→ nat, the sort > here acts as a sort-level reflection of the entire nat type.

We can specify that all odds are positive by declaring odd to be a subsort of pos.

odd ≤ pos.

Although any ground instance of odd is evidently pos, we need the subsorting
declaration to establish that variables of sort odd are also pos.

Now we should be able to verify that, for example, succ (succ zero) ⇐ even. To
explain how, we analogize with pure canonical LF. Recall that atomic types have
the form a N1 . . .Nk for a type family a and are denoted by P. Arbitrary types A
are either atomic (P) or (dependent) function types (Πx:A.B). Canonical terms are
then characterized by the rules shown in the left column above.

There are two typing judgements, N⇐ A which means that N checks against A
(both given) and R⇒ A which means that R synthesizes type A (R given as input,
A produced as output). Both take place in a context Γ assigning types to variables.
To force terms to be η-long, the rule for checking an atomic term R only checks it
at an atomic type P. It does so by synthesizing a type P′ and comparing it to the

14

given type P. In canonical LF, all types are already canonical, so this comparison is
just α-equality.

On the right-hand side we have shown the corresponding rules for sorts. First,
note that the format of the context Γ is slightly different, because it declares sorts
for variables, not just types. The rules for functions and applications are straight-
forward analogues to the rules in ordinary LF. The rule switch for checking atomic
terms R at atomic sorts Q replaces the equality check with a subsorting check and
is the only place where we appeal to subsorting (defined below). For applications,
we use the type A that refines the type S as the index parameter of the hereditary
substitution.

Subsorting is exceedingly simple: it only needs to be defined on atomic sorts,
and is just the reflexive and transitive closure of the declared subsorting relation-
ship.

s1≤s2 ∈ Σ

s1 N1 . . .Nk ≤ s2 N1 . . .Nk Q ≤ Q

Q1 ≤ Q′ Q′ ≤ Q2

Q1 ≤ Q2

The sorting rules do not yet treat intersections. In line with the general bidirec-
tional nature of the system, the introduction rules are part of the checking judgement,
and the elimination rules are part of the synthesis judgement.

Γ ` N⇐ S1 Γ ` N⇐ S2

Γ ` N⇐ S1 ∧ S2
(∧-I)

Γ ` N⇐ >
(>-I)

Γ ` R⇒ S1 ∧ S2

Γ ` R⇒ S1
(∧-E1)

Γ ` R⇒ S1 ∧ S2

Γ ` R⇒ S2
(∧-E2)

Note that although LF type systhesis is unique, sort synthesis is not, due to the
intersection elimination rules.

Now we can see how these rules generate a deduction of succ (succ zero)⇐ even.
The context is always empty and therefore omitted. To save space, we abbreviate
even as e, odd as o, pos as p, zero as z, and succ as s, and we omit reflexive uses of
subsorting.

` s⇒ e→ o ∧ (o→ e ∧ > → p)
` s⇒ o→ e ∧ > → p

` s⇒ o→ e

` s⇒ e→ o ∧ (. . .)
` s⇒ e→ o

` z⇒ e
` z⇐ e

` s z⇒ o
` s z⇐ o

` s (s z)⇒ e
` s (s z)⇐ e

Using the ∧-I rule, we can check that succ zero is both odd and positive:

...
` s z⇐ o

...
` s z⇐ p

` s z⇐ o ∧ p

15

Each remaining subgoal now proceeds similarly to the above example.
To illustrate the use of sorts with non-trivial type families, consider the definition

of double in LF.

double : nat→ nat→ type.
dbl-zero : double zero zero.
dbl-succ : ΠX:nat.ΠY:nat. double X Y→ double (succ X) (succ (succ Y)).

With sorts, we can now directly express the property that the second argument to
double must be even. But to do so, we require a notion analogous to kinds that may
contain sort information. We call these classes and denote them by L.

K ::= type | Πx:A.K kinds
L ::= type | Πx::S@A.L | > | L1 ∧ L2 classes

Classes L mirror kinds K, and they have a refinement relation L @ K similar to
S @ A. (We elide the rules here.) Now, the general form of the s @ a declaration is
s @ a :: L, where a : K and L @ K; this declares sort constant s to refine type constant
a and to have class L.

We reuse the type name double as a sort, as no ambiguity can result. As before,
we use > to represent a nat with no additional restrictions.

double @ double :: > → even→ type.
dbl-zero :: double zero zero.
dbl-succ :: ΠX::>.ΠY::even. double X Y→ double (succ X) (succ (succ Y)).

After these declarations, it would be a sort error to pose a query such as
“?- double X (succ (succ (succ zero))).” before any search is ever attempted. In
LF, queries like this could fail after a long search or even not terminate, depending
on the search strategy.

The tradeoff for such precision is that now sort checking itself is non-deterministic
and has to perform search because of the choice between the two intersection elim-
ination rules. As Reynolds has shown, this non-determinism causes intersection
type checking to be PSPACE-hard [16], even for normal terms as we have here [15].
Using techniques such as focusing, we believe that for practical cases they can be
analyzed efficiently for the purpose of sort checking. 5

2.2 A Second Example: The λ-Calculus

As a second example, we use an intrinsically typed version of the call-by-value
simply-typed λ-calculus. This means every object language expression is indexed
by its object language type. We use sorts to distinguish the set of values from the
set of arbitrary computations. While this can be encoded in LF in a variety of ways,
it is significantly more cumbersome.

tp : type. % the type of object language types
ê : tp→ tp→ tp. % object language function space
%infix right 10 ê .

5 The present paper concentrates primarily on decidability, though, not efficiency.

16

exp : tp→ type. % the type of expressions
cmp @ exp. % the sort of computations
val @ exp. % the sort of values
val ≤ cmp. % every value is a (trivial) computation

lam :: (val A→ cmp B)→ val (A ê B).
app :: cmp (A ê B)→ cmp A→ cmp B.

In the last two declarations, we follow Twelf convention and leave the quan-
tification over A and B implicit, to be inferred by type reconstruction. Also, we
did not explicitly declare a type for lam and app. We posit a front end that can
recover this information from the refinement declarations for val and cmp, avoiding
redundancy.

The most interesting declaration is the one for the constant lam. The argument
type (val A → cmp B) indicates that lam binds a variable which stands for a value
of type A and the body is an arbitrary computation of type B. The result type
val (A ê B) indicates that any λ-abstraction is a value. Now we have, for example
(parametrically in A and B): A::>@tp,B::>@tp ` lam λx. lam λy. x ⇐ val (A ê (B ê

A)).
Now we can express that evaluation must always returns a value. Since the

declarations below are intended to represent a logic program, we follow the logic
programming convention of reversing the arrows in the declaration of ev-app.

eval :: cmp A→ val A→ type.
ev-lam :: eval (lam λx.E x) (lam λx.E x).
ev-app :: ΠE′1::(val A→ cmp A).

eval (app E1 E2) V
← eval E1 (lam λx.E′1 x)
← eval E2 V2
← eval (E′1 V2) V.

Sort checking the above declarations demonstrates that evaluation always returns
a value. Moreover, due to the explicit sort given for E′1, the declarations also ensure
that the language is indeed call-by-value: it would be a sort error to ever substitute
a computation for a lam-bound variable, for example, by evaluating (E′1 E2) instead
of (E′1 V2) in the ev-app rule. An interesting question for future work is whether type
reconstruction can recover this restriction automatically—if the front end were to
assign E′1 the “more precise” sort cmp A→ cmp A, then the check would be lost.

2.3 A Final Example: The Calculus of Constructions

As a final example, we present the Calculus of Constructions. Usually, there is a
great deal of redundancy in its presentation because of repeated constructs at the
level of objects, families, and kinds. Using sorts, we can enforce the stratification
and write typing rules that are as simple as if we assumed the infamous type : type.

term : type. % terms at all levels

17

hyp @ term. % hyperkinds (the classifier of “kind”)
knd @ term. % kinds
fam @ term. % families
obj @ term. % objects

tp :: hyp ∧ knd.
pi :: fam→ (obj→ fam)→ fam ∧ % dependent function types, Πx:A.B

fam→ (obj→ knd)→ knd ∧ % type family kinds, Πx:A.K
knd→ (fam→ fam)→ fam ∧ % polymorphic function types, ∀α:K.A
knd→ (fam→ knd)→ knd. % type operator kinds, Πα:K1.K2

lm :: fam→ (obj→ obj)→ obj ∧ % functions, λx:A.M
fam→ (obj→ fam)→ fam ∧ % type families, λx:A.B
knd→ (fam→ obj)→ obj ∧ % polymorphic abstractions, Λα:K.M
knd→ (fam→ fam)→ fam. % type operators, λα:K.A

ap :: obj→ obj→ obj ∧ % ordinary application, M N
fam→ obj→ fam ∧ % type family application, A M
obj→ fam→ obj ∧ % polymorphic instantiation, M [A]
fam→ fam→ fam. % type operator instantiation, A B

The typing rules can now be given non-redundantly, illustrating the implicit over-
loading afforded by the use of intersections. We omit the type conversion rule and
auxiliary judgements for brevity.

of :: knd→ hyp→ type ∧
fam→ knd→ type ∧
obj→ fam→ type.

of-tp :: of tp tp.

of-pi :: of (pi T1 λx.T2 x) tp
← of T1 tp
← (Πx::term. of x T1 → of (T2 x) tp).

of-lm :: of (lm U1 λx.T2 x) (pi U1 λx.U2 x)
← of U1 tp
← (Πx::term. of x U1 → of (T2 x) (U2 x)).

of-ap :: of (ap T1 T2) (U1 T2)
← of T1 (pi U2 λx.U1 x)
← of T2 U2.

Intersection types also provide a degree of modularity: by deleting some conjuncts
from the declarations of pi, lm, and ap above, we can obtain an encoding of any
point on the λ-cube.

3 Metatheory

In this section, we present some metatheoretic results about our framework. These
follow a similar pattern as previous work using hereditary substitutions [17,11,7].
To conserve space, we omit proofs that are similar to those from prior work, and

18

only sketch novel results. We refer the interested reader to the companion technical
report [10], which contains complete proofs of all thoerems.

3.1 Hereditary Substitution

Hereditary substitution is defined judgementally by inference rules. The only
place β-redexes might be introduced is when substituting a normal term N into an
atomic term R: N might be a λ-abstraction, and the variable being substituted for
may occur at the head of R. Therefore, the judgements defining substitution into
atomic terms are the only ones of interest.

First, we note that the type index on hereditary substitution need only be a
simple type to ensure termination. To that end, we denote simple types by α and
define an erasure to simple types (A)−.

α ::= a | α1 → α2 (a N1 . . .Nk)− = a (Πx:A.B)− = (A)− → (B)−

We write [N/x]n
A M = M′ as short-hand for [N/x]n

(A)− M = M′.
We denote substitution into atomic terms by two judgements: [N0/x0]rr

α0
R = R′,

for when the head of R is not x, and [N0/x0]rn
α0

R = (N′, α′), for when the head of R
is x. The former is just defined compositionally; the latter is defined by two rules:

[N0/x0]rn
α0

x0 = (N0, α0)
(rn-var)

[N0/x0]rn
α0

R1 = (λx.N1, α2 → α1)
[N0/x0]n

α0
N2 = N′2 [N′2/x]n

α2
N1 = N′1

[N0/x0]rn
α0

R1 N2 = (N′1, α1)
(rn-β)

The rule rn-var just returns the substitutend N0 and its putative type index α0. The
rule rn-β applies when the result of substituting into the head of an application is a
λ-abstraction; it avoids creating a redex by hereditarily substituting into the body
of the abstraction.

A simple lemma establishes that these two judgements are mutually exclusive.

Lemma 3.1

(i) If [N/x]rr
A R = R′, then the head of R is not x.

(ii) If [N/x]rn
A R = (N′, α′), then the head of R is x.

Proof. By induction over the given derivation. �

Substitution into normal terms has two rules for atomic terms R, one which
calls the “rr” judgement and one which calls the “rn” judgement.

[N0/x0]rr
α0

R = R′

[N0/x0]n
α0

R = R′
(subst-n-atom)

[N0/x0]rn
α0

R = (R′, a′)

[N0/x0]n
α0

R = R′
(subst-n-atomhead)

Note that the latter rule requires both the term and the type returned by the “rn”
judgement to be atomic.

Every other syntactic category’s substitution judgement is defined composi-
tionally.

19

3.2 Decidability

A hallmark of the canonical forms/hereditary substitution approach is that it allows
a decidability proof to be carried out comparitively early, before proving anything
about the behavior of substitution, and without dealing with any complications
introduced by β/η-conversions inside types. Ordinarily in a dependently typed
calculus, one must first prove a substitution theorem before proving typechecking
decidable. (See [8] for a typical non-canonical account of LF definitional equality.)

If only canonical forms are permitted, then type equality is just α-convertibility,
so one only needs to show decidability of substitution in order to show decidability
of typechecking. Since LF encodings represent judgements as type families and
proof-checking as typechecking, it is comforting to have a decidability proof that
relies on so few assumptions.

Lemma 3.2 If [N0/x0]rn
α0

R = (N′, α′), then α′ is a subterm of α0.

Proof. By induction on the derivation of [N0/x0]rn
α0

R = (N′, α′). In rule rn-var, α′

is the same as α0. In rule rn-β, our inductive hypothesis tells us that α2 → α1 is a
subterm of α0, so α1 is as well. �

Theorem 3.3 (Decidability of Substitution) Hereditary substitution is decidable. In
particular:

(i) Given N0, x0, α0, and R, either ∃R′. [N0/x0]rr
α0

R = R′, or @R′. [N0/x0]rr
α0

R = R′,

(ii) Given N0, x0, α0, and R, either ∃(N′, α′). [N0/x0]rn
α0

R = (N′, α′), or
@(N′, α′). [N0/x0]rn

α0
R = (N′, α′),

(iii) Given N0, x0, α0, and N, either ∃N′. [N0/x0]n
α0

N = N′, or @N′. [N0/x0]n
α0

N = N′,

and similarly for other syntactic categories

Proof. By lexicographic induction on the type subscript α0, the main subject of the
substitution judgement, and the clause number. For each rule defining hereditary
substitution, the premises are at a smaller type subscript, or if the same type
subscript, then a smaller term, or if the same term, then an earlier clause. The case
for rule rn-β relies on Lemma 3.2 to know that α2 is a strict subterm of α0. �

Theorem 3.4 (Decidability of Subsorting) Given Q1 and Q2, it is decidable whether
or not Q1 ≤ Q2.

Proof. Since the subsorting relation Q1 ≤ Q2 is just the reflexive, transitive closure
of the declared subsorting relation s1 ≤ s2, it suffices to compute this closure and
check whether the heads of Q1 and Q2 are related by it. �

We prove decidability of typing by exhibiting a deterministic algorithmic system
that is equivalent to the original. Instead of synthesizing a single sort for an atomic
term, the algorithmic system synthesizes an intersection-free list of sorts, ∆.

∆ ::= · | ∆,Q | ∆,Πx::S@A.T

One can think of ∆ as the intersection of all its elements. Instead of applying
intersection eliminations, the algorithmic system eagerly breaks down intersections

20

using a “split” operator, leading to a deterministic “minimal-synthesis” system.

split(Q) = Q split(S1 ∧ S2) = split(S1), split(S2)
split(Πx::S@A.T) = Πx::S@A.T split(>) = ·

c::S ∈ Σ c:A ∈ Σ

Γ ` cV split(S)

x::S@A ∈ Γ

Γ ` xV split(S)

Γ ` RV ∆ Γ ` ∆ @ N = ∆′

Γ ` R NV ∆′

The rule for applications uses an auxiliary judgement Γ ` ∆ @ N = ∆′ which
computes the possible types of R N given that R synthesizes to all the sorts in ∆. It
has two key rules:

Γ ` · @ N = ·

Γ ` ∆ @ N = ∆′ Γ ` NW S [N/x]s
A T = T′

Γ ` (∆,Πx::S@A.T) @ N = ∆′, split(T′)

The other rules force the judgement to be defined when neither of the above two
rules apply. Finally, to tie everything together, we define a new checking judgement
Γ ` NW S that makes use of the algorithmic synthesis judgement; it looks just like
Γ ` N⇐ S except for the rule for atomic terms.

Γ ` RV ∆ Q′ ∈ ∆ Q′ ≤ Q

Γ ` RW Q

This new algorithmic system is manifestly decidable.

Theorem 3.5 Algorithmic type checking is decidable. In particular:

(i) Given Γ and R, there is a unique ∆ such that Γ ` RV ∆.

(ii) Given Γ, N, and S, it is decidable whether or not Γ ` NW S.

(iii) Given Γ, ∆, and N, there is a unique ∆′ such that Γ ` ∆ @ N = ∆′.

Proof. By induction on the term, R or N, the clause number, and the sort S or the
list of sorts ∆. For each rule, the premises are either known to be decidable, or at a
smaller term, or if the same term, then an earlier clause, or if the same clause, then
either a smaller S or a smaller ∆. �

Note that the algorithmic synthesis system always outputs some ∆; if the given
term has no sort, then the output will be ·.

It is straightforward to show that the algorithm is sound and complete with
respect to the original bidirectional system.

Theorem 3.6 (Soundness of Algorithmic Typing)

(i) If Γ ` RV ∆, then for all S ∈ ∆, Γ ` R⇒ S.

(ii) If Γ ` NW S, then Γ ` N⇐ S.

(iii) If Γ ` ∆ @ N = ∆′, and for all S ∈ ∆, Γ ` R⇒ S, then for all S′ ∈ ∆′, Γ ` R N⇒ S′.

Proof. By straightforward induction on the given derivation. �

21

Lemma 3.7 If Γ ` ∆ @ N = ∆′ and Γ ` R V ∆ and Πx::S@A.T ∈ ∆ and Γ ` N W S
and [N/x]s

A T = T′, then split(T′) ⊆ ∆′.

Proof. By straightforward induction on the derivation of Γ ` ∆ @ N = ∆′. �

Theorem 3.8 (Completeness for Algorithmic Typing)

(i) If Γ ` R⇒ S, then Γ ` RV ∆ and split(S) ⊆ ∆.

(ii) If Γ ` N⇐ S, then Γ ` NW S.

Proof. By straightforward induction on the given derivation. In the application
case, we make use of the fact that Γ ` ∆ @ N = ∆′ is always defined and apply
Lemma 3.7. �

Decidability theorems and proofs for other syntactic categories’ formation judge-
ments are similar, so we omit them.

3.3 Identity and Substitution Principles

Since well-typed terms in our framework must be canonical, that is β-normal and
η-long, it is non-trivial to prove S → S for non-atomic S, or to compose proofs of
S1 → S2 and S2 → S3. The Identity and Substitution principles ensure that our
type theory makes logical sense by demonstrating the reflexivity and transitivity of
entailment. Reflexivity is witnessed by η-expansion, while transitivity is witnessed
by hereditary substitution.

The Identity Principle effectively says that synthesizing (atomic) objects can be
made to serve as checking (normal) objects. The Substitution Principle dually says
that checking objects may stand in for synthesizing assumptions, that is, variables.

Theorem 3.9 (Substitution) If ΓL ` N0 ⇐ S0 , and ` ΓL, x0::S0@A0,ΓR ctx , and
ΓL, x0::S0@A0,ΓR ` S @ A , and ΓL, x0::S0@A0,ΓR ` N ⇐ S , then [N0/x0]γA0

ΓR = Γ′R
and ` ΓL,Γ′R ctx , and [N0/x0]s

A0
S = S′ and [N0/x0]a

A0
A = A′ and ΓL,Γ′R ` S′ @ A′ , and

[N0/x0]n
A0

N = N′ and ΓL,Γ′R ` N′ ⇐ S′ , and similarly for other syntactic categories.

Proof. The staging of the substitution theorem is somewhat intricate. First, we
strengthen its statement to one that does not presuppose the well-formedness
of the context or the classifying types, but instead presupposes that substitution
is defined on them. This strengthened statement may be proven by induction on
(A0)− and the derivations being substituted into. In the application case, we require
a lemma about how hereditary substitutions compose, analogous to the fact that
for ordinary substitution, [N0/x0] [N2/x2] N = [[N0/x0] N2/x2] [N0/x0] N. �

A more in-depth discussion of the proof of substitution for core canonical LF can
be found in [7]. The story for LFR is quite similar, and is detailed in the companion
technical report [10].

Theorem 3.10 (Expansion) If Γ ` S @ A and Γ ` R⇒ S, then Γ ` ηA(R)⇐ S.

Proof. By induction on S. The Πx:A2.A1 case relies on the auxiliary fact that
[ηA2(x)/x]s

A2
S1 = S1. �

Corollary 3.11 (Identity) If Γ ` S @ A, then Γ, x::S@A ` ηA(x)⇐ S.

22

4 Subsorting at Higher Sorts

Our bidirectional typing discipline limits subsorting checks to a single rule, the
switch rule when we switch modes from checking to synthesis. Since we insist on
only typing canonical forms, this rule is limited to atomic sorts Q, and consequently,
subsorting need only be defined on atomic sorts.

As it turns out, though, the usual variance principles and structural rules for
subsorting at higher sorts are admissible with respect to an intrinsic notion of
higher-sort subsorting. The simplest way of formulating this intrinsic notion is as
a variant of the identity principle: S is a subtype of T if Γ, x::S@A ` ηA(x) ⇐ T.
This notion is equivalent to a number of other alternate formulations, including a
subsumption-based formulation and a substitution-based formulation.

Theorem 4.1 (Alternate Formulations of Subsorting) The following are equivalent:

(i) If Γ ` R⇒ S1, then Γ ` ηA(R)⇐ S2.

(ii) Γ, x::S1@A ` ηA(x)⇐ S2.

(iii) If Γ ` N⇐ S1, then Γ ` N⇐ S2.

(iv) If ΓL, x::S2@A,ΓR ` N⇐ S and ΓL ` N1 ⇐ S1,
then ΓL, [N1/x]γA ΓR ` [N1/x]n

A N⇐ [N1/x]s
A S.

Proof. Using Identity and Substitution, and the fact that [N/x]n
A ηA(x) = N.

i =⇒ ii: By rule, Γ, x::S1@A ` x⇒ S1. By i, Γ, x::S1@A ` ηA(x)⇐ S2.

ii =⇒ iii: Suppose Γ ` N ⇐ S1. By ii, Γ, x::S1@A ` ηA(x) ⇐ S2. By Theorem 3.9
(Substitution), Γ ` [N/x]n

A ηA(x)⇐ S2. Thus, Γ ` N⇐ S2.

iii =⇒ iv: Suppose ΓL, x::S2@A,ΓR ` N ⇐ S and ΓL ` N1 ⇐ S1. By iii, ΓL ` N1 ⇐

S2. By Theorem 3.9 (Substitution), ΓL, [N1/x]γA ΓR ` [N1/x]n
A N⇐ [N1/x]s

A S.

iv =⇒ i: Suppose Γ ` R ⇒ S1. By Theorem 3.10 (Expansion), Γ ` ηA(R) ⇐ S1. By
Corollary 3.11 (Identity), Γ, x::S2@A ` ηA(x) ⇐ S2. By iv, Γ ` [ηA(R)/x]n

A ηA(x) ⇐
S2. Thus, Γ ` ηA(R)⇐ S2. �

All of the rules in Fig. 1 are sound with respect to this intrinsic notion of
subsorting.

Theorem 4.2 If S ≤ T, then Γ, x::S@A ` ηA(x)⇐ T.

Proof. By induction, making use of the alternate formulations given by Theo-
rem 4.1. �

The soundness of the rules in Fig. 1 demonstrates that any subsumption rela-
tionship you might want to capture with them is already captured by our checking
and synthesis rules. More interesting is the fact that the usual rules are complete
with respect to our intrinsic notion. Space limitations preclude more than a brief
overview here; the companion technical report contains a detailed account.

We demonstrate completeness by appeal to an algorithmic subtyping system
very similar to the algorithmic typing system from Section 3.2. This system is
characterized by two judgements: ∆ ≤ S and ∆ @ (N :: ∆1) = ∆2. With the

23

S1 ≤ S2

S ≤ S
(refl)

S1 ≤ S2 S2 ≤ S3

S1 ≤ S3
(trans)

S2 ≤ S1 T1 ≤ T2

Πx::S1.T1 ≤ Πx::S2.T2
(S-Π)

S ≤ >
(>-R)

T ≤ S1 T ≤ S2

T ≤ S1 ∧ S2
(∧-R)

S1 ≤ T

S1 ∧ S2 ≤ T
(∧-L1)

S2 ≤ T

S1 ∧ S2 ≤ T
(∧-L2)

> ≤ Πx::S.>
(>/Π-dist)

(Πx::S.T1) ∧ (Πx::S.T2) ≤ Πx::S. (T1 ∧ T2)
(∧/Π-dist)

Fig. 1. Derived structural rules for subsorting.

appropriate definition, we can prove the following by induction on the type A and
the derivation E.

Theorem 4.3 Suppose Γ ` R⇒ A. Then:

(i) If Γ ` RV ∆ and E :: Γ ` ηA(R)W S, then ∆ ≤ S.

(ii) If Γ ` RV ∆ and E :: Γ ` ∆0 @ ηA(R) = ∆′, then ∆0 @ (ηA(R) :: ∆) = ∆′.

From this and Theorem 3.8 we obtain a completeness theorem:

Theorem 4.4 If Γ, x::S@A ` ηA(x)⇐ T, then split(S) ≤ T.

Finally, we can complete the triangle by showing that the algorithmic formula-
tion of subtyping implies the original declarative formulation:

Theorem 4.5 If split(S) ≤ T, then S ≤ T.

5 Related Work

The most closely related work is [12], which also sought to extend LF with re-
finement types. We improve upon that work by intrinsically supporting a notion
of canonical form. Also closely related in Aspinall and Compagnoni’s work on
subtyping and dependent types [2,1]. The primary shortcoming of their work is its
lack of intersection types, which are essential for even the simplest of our examples.

6 Summary

In summary, we have exhibited a variant of the logical framework LF with a notion
of subtyping based on refinement types. We have demonstrated the expressive
power of this extension through a number of realistic examples, and we have
shown several metatheoretic properties critical to its utility as a logical framework,
including decidability of typechecking.

Our development was drastically simplified by the decision to admit only
canonical forms. One effect of this choice was that subsorting was only required to

24

be judgementally defined at base sorts; higher-sort subsorting was derived through
an η-expansion-based definition which we showed sound and complete with re-
spect to the usual structural subsorting rules.

There are a number of avenues of future exploration. For one, it is unclear
how subsorting and intersection sorts will interact with the typical features of
a metalogical framework, including type reconstruction, unification, and proof
search, to name a few; these questions will have to be answered before refinement
types can be integrated into a practical implementation. It is also worthwhile to
consider adapting the refinement system to more expressive frameworks, like the
Linear Logical Framework on the Concurrent Logical Framework.

References

[1] David Aspinall. Subtyping with power types. In Peter Clote and Helmut Schwichtenberg, editors, CSL,
volume 1862 of Lecture Notes in Computer Science, pages 156–171. Springer, 2000.

[2] David Aspinall and Adriana B. Compagnoni. Subtyping dependent types. Theoretical Computer Science,
266(1-2):273–309, 2001.

[3] Karl Crary. Toward a foundational typed assembly language. In G. Morrisett, editor, Proceedings of the 30th
Annual Symposium on Principles of Programming Languages (POPL ’03), pages 198–212, New Orleans, Louisiana,
January 2003. ACM Press.

[4] Rowan Davies. Practical Refinement-Type Checking. PhD thesis, Carnegie Mellon University, May 2005.
Available as Technical Report CMU-CS-05-110.

[5] Tim Freeman. Refinement Types for ML. PhD thesis, Carnegie Mellon University, March 1994. Available as
Technical Report CMU-CS-94-110.

[6] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of the Association
for Computing Machinery, 40(1):143–184, January 1993.

[7] Robert Harper and Daniel R. Licata. Mechanizing metatheory in a logical framework. Journal of Functional
Programming, 2007. To appear. Available from http://www.cs.cmu.edu/˜drl/.

[8] Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF type theory. Transactions
on Computational Logic, 6:61–101, January 2005.

[9] Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mechanized metatheory of Standard ML. In
Matthias Felleisen, editor, Proceedings of the 34th Annual Symposium on Principles of Programming Languages
(POPL ’07), pages 173–184, Nice, France, January 2007. ACM Press.

[10] William Lovas and Frank Pfenning. A bidirectional refinement type system for LF. Technical Report CMU-
CS-07-127, Department of Computer Science, Carnegie Mellon University, 2007.

[11] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory. Transactions on
Computational Logic, 2007. To appear.

[12] Frank Pfenning. Refinement types for logical frameworks. In Herman Geuvers, editor, Informal Proceedings
of the Workshop on Types for Proofs and Programs, pages 285–299, Nijmegen, The Netherlands, May 1993.

[13] Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning, chapter 17, pages 1063–1147. Elsevier Science and MIT Press, 2001.

[14] Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-logical framework for
deductive systems. In H. Ganzinger, editor, Proceedings of the 16th International Conference on Automated
Deduction (CADE-16), pages 202–206, Trento, Italy, July 1999. Springer-Verlag LNAI 1632.

[15] John C. Reynolds. Even normal forms can be hard to type. Unpublished, marked Carnegie Mellon University,
December 1, 1989.

[16] John C. Reynolds. Design of the programming language Forsythe. Report CMU–CS–96–146, Carnegie
Mellon University, Pittsburgh, Pennsylvania, June 28, 1996.

[17] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent logical framework I:
Judgments and properties. Technical Report CMU-CS-02-101, Department of Computer Science, Carnegie
Mellon University, 2002. Revised May 2003.

25

http://www.cs.cmu.edu/~drl/

LFMTP 2007

Coercive subtyping via Mappings of
Reduction Behaviour

Paul Callaghan1,2

Department of Computer Science
University of Durham

Durham, UK.

Abstract

This paper reports preliminary work on a novel approach to Coercive Subtyping that is based on
relationships between reduction behaviour of source and target types in coerced terms. Coercive Subtyping
is a superset of record-based subtyping, allowing so-called coercion functions to carry the subtyping.
This allows many novel and powerful forms of subtyping and abbreviation, with applications includ-
ing interfaces to theorem provers and programming with dependent type systems. However, the use
of coercion functions introduces non-trivial overheads, and requires difficult proof of properties such as
coherence in order to guarantee sensible results. These points restrict the practicality of coercive subtyping.

We begin from the idea that coercing a value v from type U to a type T intuitively means that we wish to
compute with v as if it was a value in T, not that v must be converted into a value in T. Instead, we explore
how to compute on U in terms of computation on T, and develop a framework for mapping computations
on some T to computations on some U via a simple extension of the elimination rule of T. By exposing how
computations on different types are related, we gain insight on and make progress with several aspects of
coercive subtyping, including (a) distinguishing classes of coercion and finding reasons to deprecate use of
some classes; (b) alternative techniques for proving key properties of coercions; (c) greater efficiency from
implementations of coercions.

Keywords: Coercive subtyping, type theory, inductive families, implementation.

1 Introduction

Coercive subtyping is an abbreviation mechanism which handles mismatches of type
between a value and its context of use with implicit insertion of functions to bridge
the gap. It has many natural uses, such as providing a form of record subtyping
on nested algebraic structures or conversions between simple types. In the context
of dependent types and inductive families, coercions can be used for many other
interesting purposes, not least modelling of semantics of words in natural languages
and providing a bridge between simply and dependently typed data. As a running
example, consider the coercions between conventional lists and sized vectors. A

1 This work is supported by the TYPES Working Group, a coordination action in the EU 6’th Framework
programme.
2 Email: mailto:p.c.callaghan@durham.ac.uk

26

mailto:p.c.callaghan@durham.ac.uk

vector can be used wherever a list is expected by implicitly coercing the vector with
function v2l, or in the reverse direction with l2v (though note the dependency to
find the size of the vector):

v2l : (A : Type)(n : N) Vec A n→ List A

l2v : (A : Type) (l : List A) Vec A (length A l)

However, the use of coercions relies on non-trivial proofs of key properties such
as coherence (uniqueness of result up to conversion) and transitivity elimination.
Progress has been made on some sub-classes of coercions (between restricted groups
of types), but establishing results beyond these classes and establishing them in a
satisfactory (i.e., elegant and/or natural) way is an open problem. For practical
purposes, such as flexible implementation within proof tools, such proofs should
ideally be automatable and not require the user to provide difficult justifications.
There are also issues of efficiency: the standard formulation implies some overheads
during computation, e.g. conversion of at least some of a vector to a list before any
computation can proceed. A final concern is with how intermediate computations
on coerced values appear to the user of proof tools.

One view is that the standard formulation of coercive subtyping is too strong, in
the sense that it allows very powerful coercion functions to be conceived but which
are problematic for practical use. This view is based on the author’s experience of
earlier implementation and experimentation with many kinds of coercion function.
The author also prefers that use of this intuitively ‘natural’ mechanism of coercion
should not be limited by the need to consider or to understand non-trivial details
of how classes of coercion interact. Too much complexity and the claim of being a
flexible abbreviation mechanism is significantly weakened.

This paper explores one novel alternative. We start from the idea that coercion
means that we wish to use a value v in source type U as if it was a value in
target type T , or more specifically, that we wish to compute with v in terms of T .
This intention does not force us to convert v into a representation in T . Instead,
a mapping is constructed between the computation behaviours of U and of T in
terms of the elimination operators of both types which allows easy transformation
of operations on T into operations on U . This clearly avoids converting v to T , but
we suggest there are several other important benefits, including (a) the links between
source and target type are made explicit and are in terms which are fundamental
to both types, so it is thus clearer why and how U can be treated as T ; (b) making
such information more explicit has several benefits in establishing key properties,
not least simplifying some of the proofs; (c) it provides a framework to discuss
and characterise different proposed coercions, and possibly to impose meaningful
structure on sets of coercions.

The following summarises the key ideas and contributions. We first observe that
summation on lists (of N) can be translated to summation on vectors by modification
of the arguments of the elimination operator. In fact, all functions on lists can be
converted to functions on vectors in exactly the same way. The modification reflects
how the types are related and this is independent of actual functions. We aim to use
this relationship to allow computation on a source value in terms of the target type,

27

without converting the source value. A particular form of elimination operator is
proposed to encode this relationship in a clear way: operators EXY should take the
parameter, motive, and branch function arguments of the eliminator for type X,
but take a value in type Y as the elimination target, and should be defined in terms
of EY . For the vector-to-list example, this means:

C : List A→ Type f0 : C (nilA) f1 : (a : A)(l : List A)C l→ C (consA a l)
ELV A C f0 f1 : (n : N)(v : Vec A n)C (coV A n v)

ELV A C f0 f1 =df EV A ([n : N][v : Vec A n]C (coV A n v)) f0

([m : N][x : A][v : Vec A m]f1 x (coV A m v))

Which other combinations of types support the definition of a EXY term? A conser-
vative answer is the combinations whose conversion (from Y to X) is invertible. This
covers many useful conversions, including functorial maps and natural conversions
between different container types.

To use these terms, we propose that coercion becomes a two-stage process. Ini-
tially, a coerced term is marked (with a form of constructor), and when this reaches
an eliminator of the target type, the EXY term is used to map the computation to
the source type. Hence no conversion (of value) takes place, and nothing happens
until a computation acts on the coerced value. This process is clearly type-safe,
although formal metatheory relating to canonicity and convertibility remain to be
studied as further work. (Some preliminary remarks are made.) We briefly consider
how the EXY terms affect the proof of relevant properties. The key point is that
composition via EXY terms eventually reduces to elimination on the source type.

We first review the background type theory and some relevant earlier results
on Coercive Subtyping. The central idea is presented through an expansion of
the list and vector examples, then formalised as a relationship between elimination
operators. Consequences of this formalisation are then explored, through further
examples. The paper ends with comments on metatheory and implementation.

2 Preliminaries

2.1 Inductive families and their elimination

This paper concerns relationships between inductive families which are not tied to
specific type theories, hence we assume a ‘vanilla’ dependent type theory. Briefly,
there is a dependent product type (x : K)K ′ (where x may occur free in K ′), and we
often write K → K ′ for dependent products with no dependency. Type is the sort
of all types, i.e. A : Type means A is a type. Notation [x : K]k denotes λ-terms.
The system includes an η rule, i.e. [x : K]f x = f : (x : K)K ′, x 6∈ FV (f).

Inductive types [7,8,11] may be introduced through a schema [12], summarised
as the grammar Θ = X | (x : K)Θ | Φ→ Θ and Φ = (x : K)X. It identifies a class
of inductive types which recurse through strictly positive operators and specifies
how the elimination operators and computation rules are formed for each type. X
is a placeholder for the type being defined. Small types K,Ki are those which don’t
contain Type. Inductive type T is constructed from a sequence Θ which represents
the types of T ’s constructors. The types of the constructors and the elimination

28

operator, and the computation rules for the constructors, are constructed by analysis
of the schemata. Inductive types can also be parametrized, e.g. to give polymorphic
lists. The type of the elimination operator and associated computation rules are as
follows. (We adopt elements of natural deduction style from [17].)

C : List A→ Type f0 : C (nil A)

f1 : (x : A)(xs : List A)C xs→ C (cons A x xs)

EL A C f0 f1 : (z : List A)C z

EL A C f0 f1 (nil A) = f0

EL A C f0 f1 (cons A x xs) = f1 x xs (EL A C f0 f1 xs)

The result type of the elimination is determined by the motive argument (C
in these examples) [17]. Computation over the constructors are handled by the
“case functions” or “branch functions” (f0 and f1 above), one for each constructor.
Finally, we have the ‘target’ z to eliminate, and the corresponding result C z.

Inductive families [8] are a generalisation of inductive types, where a family of
types is inductively defined. An extended schema [12] replaces constant X with an
indexed form X q and modifies the construction of operators to insert indices at
appropriate places. These indices are different in nature from the parameters above:
parameters are fixed for any instance of a type, but the indices may vary inside the
value depending on how it has been constructed.

A standard example is the family of vectors, Vec : N→ Type, indexed by length,
with constructors vnil : (A : Type)Vec A zero and vcons : (A : Type)(n : N)A →
Vec A n→ Vec A (succ n). The cons operation only extends a vector by one unit
of size. There are no other ways to build vectors. These constraints are reflected in
the type and behaviour of the elimination operator.

A : Type C : (n : N)Vec A n→ Type f0 : C zero (vnil A)

f1 : (n : N)(x : A)(xs : Vec A n)C n xs→ C (succ n) (vcons A n x xs)

EV A C f0 f1 : (m : N)(z : Vec A m)C m z

EV A C f0 f1 zero (vnil A) = f0

EV A C f0 f1 (succ n) (vcons A n x xs) = f1 n x xs (EL A C f0 f1 n xs)

2.1.1 Computation on inductive families
This section ends with some examples of definitions via elimination operators. These
terms will be used in examples of coercion execution later.

• plus =df [x, y : N]EN ([n : N]N) y ([m : N][p : N]succ p) x : N→ N→ N
• Summing up a list of numbers, sumL : List N→ N, and
sumL =df EL N ([l : List N]N) zero ([x : N][l : List N][s : N]plus x s)

29

• Converting a vector to a list, v2l : (A : Type)(n : N)Vec A n→ List A, where

v2l =df [A : Type][n : N]EV A ([m : N][v : Vec A m]List A) (nil A)

([m : N][x : N][l : Vec A m][t : List A]cons A x t)

• The opposite direction (a list to a vector) is less simple. We must provide size
information, hence the definition of length. Term l2v is often described as a
dependent coercion [16], where the target type depends on the source value.

length : (A : Type) List A→ N

=df [A : Type] EL A ([l : List A]N) zero ([x : A][l : List A][t : N]succ t)

l2v : (A : Type) (l : List A)Vec A (length A l)

=df [A : Type] EL A ([l : List A]Vec A (length A l)) (vnil A)

([x : A][t : List A]vcons A (length A t) x)

2.2 Coercive subtyping

The wider conception of coercive subtyping in this paper derives from [13]. A
coercion is a function c : K0 → K, which lifts an object of type K0 to type K. The
meaning of coercion use may be expressed via the coercive definition rule [13]:

f : (x : K)K ′ k0 : K0 K0 <c K

f(k0) = f(c(k0)) : [c(k0)/x]K ′

This says that term f(k0) abbreviates and is definitionally equal to a term where the
coercion is made explicit, namely f(c(k0)), when a coercion c exists to lift object k0

to the type expected by the functional operation f . Notice that coercions are only
used in a context where the expected type is known, i.e. where we know both K0

and K. This paper does not consider coercions on higher types, e.g. contravariant
sub-typing on dependent products.

Users can declare ‘primitive’ coercions, and ‘derived’ coercions can be synthe-
sised by combining new coercions with old. The conventional transitivity rule gen-
erates A <h C with h = g ◦ f from A <f B and B <g C. We also allow ‘nesting’ of
coercions, e.g. lifting of coercions on element types to coercions over lists or vectors
[6]. There are limits on what is allowed as a coercion: the resulting coercion set must
satisfy coherence, the property that coercions between any two types are unique up
to conversion. In any sizeable example, it is not unusual that several coercion terms
may be derivable for a given source and target, particularly if arising from different
combinations of transitivity and nesting of coercions. Thus we must be sure that
all possibilities lead to the same result. So-called “coherence checking” of a set of
coercions is in principle undecidable, and thus an interesting question for practical
implementations. Coherence is a major problem for parametrized coercions, which
are essential for realistic (i.e., large-scale) use. A related problem is elimination of
transitivity of coercion formation, to avoid unbounded search.

Forms of coercive subtyping have been implemented in Lego [3], Coq [19], Plas-
tic [5], and Matita [2]. The coherence checking provided in [3] and [19] is decidable
because both use a restricted form of coercion (based on syntactic matching of head

30

type constructor). Matita’s implementation is based on Coq though it supports a
wider range of coercions by virtue of its more powerful handling of multiple inher-
itance via pullbacks in the coercion graph [18]. Plastic’s implementation is more
experimental: it allows full conversion tests to be used, and provides very powerful
forms of coercion, but there are open problems to solve.

Several meta-theoretic results have been established over type theories such as
UTT, subject to coherence. Elimination of transitivity in sub-typing has been
proved for subsets of inductive types (and families) [9,10]. (The limitation is to non-
recursive container types whose coercions are defined using projections rather than
by direct elimination, and this enables various proofs to go through. The current
work can be understood as a generalisation of this technique to recursive types.)
Some work has explored weaker notions of transitivity [9]. Issues of structural
subtyping in parametrized types are considered in [14]; proofs of coherence and
transitivity are obtained by extending the underlying framework with new equalities
that represent functorial properties of individual parametrized types, e.g. map f ◦
map g = map (f ◦ g) for lists. More tentatively, efforts like “Observational type
theory” [1], which carefully add forms of extensionality to intensional type theories,
may also provide sufficient leverage for some of the problems discussed here.

Coercive subtyping generalises previous notions of subtyping. There are many
applications, many of which provide useful abbreviations that ease use of complex
constructions. The classic example is the use of coercions between levels of algebraic
structure, where one may supply a value representing a group where (e.g.) a set
is required: one just ‘forgets’ the additional structure. This facility has been much
used in substantial formalization work. In the richer context of dependent type
theory, coercions allow novel and interesting forms of subtyping, e.g. in representa-
tion of Natural Language lexical semantics [15], or in providing a bridge between
easy-to-use simple types and more precise dependent types [6].

Coercions are also useful in programming with inductive families: coercions may
be lifted functorially over inductive types, e.g. coercing a List of element type A to
a List of element type B given a coercion c : A → B [13,4]. We are also finding
interesting applications through regular use in Plastic. The parametrized coercion
from function spaces (i.e., non-dependent Π-types) to the (dependent) Π-types is
proving very useful: N-ary functions can be written in a simple notation but then
coerced automatically to the required complex type. Subtyping also has applications
with universes [5]. Such coercions help to simplify interfaces to proof tools.

2.3 Discussion

Coercive subtyping is potentially a powerful and useful framework. It has shown
benefits in recent formalization work, and shows promise as a tool in user interfaces
for proof systems and in programming with dependent types.

There are significant limitations, however. Current implementations require
restrictions on coercions in order to guarantee key properties. For theory, some
progress has been made beyond the implemented classes of coercion, but only for
certain subsets and the strength of results is not uniform across the subsets. (A
uniform treatment is arguably easier for users to understand, e.g. they don’t have

31

to learn a mixture of restrictions or analyze which ones might have applied when
their abbreviation is rejected!) There are important classes of conversions for which
no results have been established (e.g. between related container classes). It is
important to make progress on these issues if coercive subtyping is to justify the
claim of being a good abbreviation mechanism.

Why do these problems arise? The author’s view is that the conventional presen-
tation of Coercive Subtyping is too powerful, in the sense of not adequately limiting
how it is used, and that many problems arise by trying to understand or to control
the power at later stages. The conventional presentation also seems too divorced
from how computation works on inductive families in an intensional theory.

One possibility is to find a more constrained presentation that provides a better
balance between flexibility and ease of establishing key properties.

3 A different approach

3.1 A motivating example

Consider the coercion v2l from vectors to lists (section 2.1.1) and its use when sumL

over lists is applied to vectors of numbers, e.g. in sumL < 1, 2, 3 >. (For conve-
nience, numerals denote equivalent values in the N type, and inferrable arguments
are often omitted.) The conventional approach implies a conversion of the vector
< 1, 2, 3 > to a list, giving overheads of three new cons nodes to be allocated and
time taken to do the extra work. This is wasteful, especially with the intuition
that the folding could, in some sense, just traverse the vector structure and pick
out the useful information. Can sumV (sum on vectors) be defined in terms of how
summation works on lists? The composition of sumL with v2l works, but a better
(e.g. more efficient) version is possible when we have access to the arguments to
the elimination operator inside sumL. That is, when:

sumL =df EL N C zero f1

C =df [x : List N]N

f1 =df [x : N][xs : List N][h : N]plus x h

then we can define sumV as the following, assuming coercion function 3 v2l:

sumV =df EV N C ′ zero f ′1

C ′ =df [n : N][v : Vec A n]C (v2l A n v)

f ′1 =df [n : N][x : A][v : Vec A n][h : C ′ n v]f1 x (v2l A n v) h

Thus we have defined sumV purely by modification of the arguments of the elimina-
tor in sumL. This sumV is convertible with the direct definition on vectors. In fact,
given arbitrary C, f0, f1, we can transfer any elimination on lists to one over vectors.
We aim to use this kind of transformation as the basis for coercive subtyping.

3 It appears here that we still retain the coercions, but this is informal notation representing the coercion
of sub-values via the new mechanism, and will be made more precise later. Notice that in this example,
both C and f1 will discard the coerced terms passed to them. This is true for all ‘iterative’ or folding
computations (as opposed to primitive recursive ones).

32

3.2 Characterisation of applicable coercions

For which pairs of types can this transformation be done? And how is the trans-
formation calculated? In this paper, we give a conservative answer, based on prior
existence of a coercion function, i.e. a term generated by standard schema (e.g. for
functorial maps [14]) or nominated by the user. (It may be possible to calculate the
smallest function between the a given pair of types that unambiguously preserves
appropriate information, if it exists. We leave this question for another paper.)

Given an existing coercion term, the criterion is that for each constructor of the
target type, we can uniquely determine how it maps to source type constructors,
and hence how the relevant elimination argument for the target type constructors
should be transformed. This covers all functions whose injectivity is decidable, and
so encompasses functorial maps and many of the natural transformations between
‘similar’ datatypes (similar in the sense that none of the core data content is lost).
It does not, however, include terms like first projection on dependent pairs (Σ-
types) – see section 3.8. We also have to transform the motive (denoted C,C ′ in
the examples); this is more straightforward and can be determined by inspection of
the family indices of the types concerned.

As a first attempt, the transformations will be expressed as a particular fixed
form of eliminator: the parameters, motive and branches (i.e. functions for each
constructor) will be based on the target type, but indices and the value to eliminate
over will be based on the source type. The head symbol of the function body will
also be the eliminator of the source type. Defining this as a well-typed term also
guarantees the type correctness of a transformation. For the vector to list example,
this means a term ELV as defined below. (Such terms are henceforth named EXY ,
where X is the target type and Y the source type.)

C : List A→ Type f0 : C (nilA) f1 : (a : A)(l : List A)C l→ C (consA a l)
ELV A C f0 f1 : (n : N)(v : Vec A n)C (coV A n v)

ELV A C f0 f1 =df EV A ([n : N][v : Vec A n]C (coV A n v)) f0

([m : N][x : A][v : Vec A m][H : C (coV A m v)]

f1 x (coV A m v) H)

The term contains occurrences of symbol coV in places where where conversions
from vectors to lists may still be required, specifically in the motive’s main argument
and in branch functions where recursive sub-values must be converted. For now,
coV should be read as a constructor rather than as a function: the reasons for this
are explained in section 3.3.

The definition of ELV is not a case of shifting a problem elsewhere or of intro-
ducing circularity. Firstly, it is correct wrt. type checking – that’s the result type
we must expect since C etc are not yet known. Secondly, consider the three possible
futures for each occurrence: (a) the coerced value is discarded without examining
it; (b) some elimination is performed on it; or (c) no computation occurs, e.g. in
the case of C being a type constructor or a variable. Cases (a) and (b) are certainly
fine, since either way the coerced term will eventually disappear. Note that case (a)
tends to be more frequent, i.e. C doesn’t often examine the elimination target. For

33

case (b), the elimination will be over lists, and the coerced (sub-)term is handled in
the same way as the original term. In case (c), the blocked term will only be tested
with conversion. The interaction with conversion is considered later.

Observe that ELV precisely explains how to transform computations on lists to
computations on vectors, and does so in a way that is central to the meaning of
the types – via their eliminators. This statement of coercibility is arguably more
meaningful than just providing some function to convert from one to the other,
in the sense that it shows why and how coercion is possible. Such structure is
very useful in establishing proofs of relevant properties (section 3.5), compared to
the conventional conversions which are effectively opaque and unanalysable in an
intensional setting. The proposal is to use the EXY terms as the basis of coercive
subtyping.

Currently, terms like ELV are defined manually by inspection of the conventional
coercion terms (e.g. from v2l). Automatic derivation by inversion of such terms or
by analysis of the inductive schemata of two types is planned as further work.

3.3 Modifying the ι-reduction mechanism

We now consider how these transformations are used. Firstly, instead of inserting
a coercion function when a type mismatch is found, we insert a marker represent-
ing a coerced term. Currently, the marker bears a label for the source type and
the parameters and indices such that the resulting term is well-typed, e.g. a co-
erced vector v is represented as (coV A n v), where the label is assigned the type
(A : Type)(n : N)Vec A n → List A. Note that well-typedness ensures that the
target type is known and does not need to be labelled explicitly. This constant
wrapper delays action on the coerced value until we know what computation is to
be performed on it. To ‘activate’ the coercion, the marker must reach an elimination
operator of the target type, at which point the appropriate EXY term is used. We
represent this by adding a further computation rule for Lists:

EL A C f0 f1 (coV A n v) 7→ELVA C f0 f1 n v

Should other coercion transformations be required (subject to conditions, e.g.
that a suitable EXY term can be defined and that coherence is preserved), they
will each result in an additional computation rule in a form similar to the last line.
Note that the form of the new reductions reflects those for decoding Tarski-style
universes [5], e.g. Ti+1(ti+1(a)) = Ti(a) : Type, where decoding of a lifted name is
handled by decoding the unlifted name.

3.4 Canonicity and interaction with conversion

There are two aspects to canonicity: first, what happens when coerced values are
compared with other values in the target type; and second, the extent to which the
coercion markers act as constructors for the target type.

The first situation concerns questions such as the convertibility of a list with a
vector value coerced to a list, i.e. n : N, v : Vec A n, l : List A ` (coV A n v) = l,
or convertibility of values coerced from two different source types into the same
target type. In the standard approach, (a) the coercion function performs the

34

transformation on non-blocked terms and convertibility can proceed; or (b) the
term is blocked, e.g. as a variable, so the coercions remain in place and conversion
fails unless the coerced values are convertible.

It is different in the new scheme, because the transformation is implicit in some
elimination, and convertibility (by itself) does not add eliminations. But there
is a computation that can be applied safely to a term to remove the coercion at
its head: the identity elimination for the target type. Note that this does not
imply significant overheads for convertibility: in a sense, it performs a conversion
that was delayed from an earlier time, and performs work that is identical to the
conventional transformation function. 4 In cases where the reduction is blocked, we
are in no worse a situation than the same case in the original scheme.

To clarify, the proposal is add reductions (not equivalences) of the form below,
where CId(X) is the identity elimination motive for inductive type X and fId(X) the
identity branch functions for X. This form is necessary to ensure that the coercion
marker is removed. Such reductions will only apply to coerced terms. Note that
such reductions are similar to η rules on inductive types, and that η rules are not
problem-free [12, p. 198], but the limitation to coercions and only to complete
delayed coercions may prove sufficient. (This will be investigated as further work.)

coY p q y 7→ EXY p CId(X) fId(X) q y

The second situation is less clear. The question is whether and to what extent
coerced terms, particularly blocked ones (which can’t progress with computation),
are to be taken as canonical values of the target type. Subtyping does blur the
notion of canonicity. An answer to this question has bearing on how reductions of
the form above are used. We leave this issue for further work.

A related question is how much of the coercion process is revealed to the user,
particularly in the context of a proof assistant where intermediate terms may be
partially computed. Do we show details of the source type, of the target type, or a
mixture? What is suitable for helping the user understand the state of his or her
proof? One possibility is that reduction of EXY should be extended to compute
out the EY portions, i.e. to extract data from the source value and show a term
containing original branch functions and extracted data. For example, sumL <

1, 2, 3 > could be reduced directly to something like plus 1 (plus 2 (plus 3 0)). The
labelling framework from Epigram [17] may also help: it is designed to give clear
information about computations at a level above raw eliminators. We also remark
on the parallels between views in Epigram and the source-target relationship in
coercions, in that one can provide coercions from a source type to its view types.

3.5 Compositions of EXY terms and transitivity

We now consider how the EXY terms behave under composition. The transitivity
rule of coercive subtyping forms new coercions by composition, and coherence re-
quires a check that new coercions are consistent with existing coercions. A related
case is where values are coerced to one type and in the course of later computa-

4 That is, ELV A CId(L) fId(L) n v = v2l A n v, and this is easily proved. This property shows that the
relevant EXY term was correctly constructed, so it is a useful check to make.

35

tion are coerced again, possibly back to the original type, that is where a term
coY p′ q′ (coZ p′′ q′′ v) is formed (p and q represent parameters and indices).

As a concrete example, consider the coercions between lists and vectors, and the
cases of list-vector-list and vector-list-vector. Intuitively, the result should be an
identity operation on lists (resp. vectors). In general, such “identity coercions” are
excluded in coercive subtyping. One practical reason is that the resulting composi-
tion is in general not intensionally equal to identity, meaning that we would have to
choose one direction (X to Y) or the other, but can not have both. We will examine
the two combinations of ELV (defined earlier) and EVL (defined below).

A : Type C : (n : N)Vec A n→ Type f0 : C zero (vnil A zero)

f1 : (m : N)(a : A)(v : Vec A m)C m v → C (succ m) (vcons A m a v))

EVL A C f0 f1 : (z : List A)C (length A z) (coL A l)

EVL A C f0 f1 =df EL A ([l : List A]C (length A l) (coL A l)) f0

([x : A][t : List A]f1 (length A t) x (coV A m v))

We consider the composition of ELV with EVL under arbitrary A,C, f0, f1 and a
coerced list value l. It shows the effect of two coercions in sequence. The composition
is not direct, i.e. does not take the usual form f a◦g b, since we will require reduction
of ELV to compute changed arguments for EVL. In the third line, EVL is ‘activated’
to transfer the computation on vectors to one on the (coerced) list.

ELV A C f0 f1 (length A l) (coL A l)

=δβ EV A ([n : N][v : Vec A n]C (coV A n v)) f0

([m : N][a : A][v : Vec A m][H : C (coV A m v)]f1 a (coV A m v) H)

(coL A l)

=co EVL A ([n : N][v : Vec A n]C (coV A n v)) f0

([m : N][a : A][v : Vec A m][H : C (coV A m v)]f1 a (coV A m v) H) l

=δβ EL A ([k : ListA]C (coV A (length A k) (coL A k))) f0

([a : A][k : ListA][H : C (coV A (length A k) (coL A k))]

f1 a (coV A (length A k) (coL A k)))

l

We require that this computation is identical to that done directly on l, so compare
it with term EL A C f0 f1 l. There are disagreements in the motive and step-case
function, shown here as required conversions (in η-long form):

C = [k : List A]C (coV A (length A k) (coL A k))

f1 = [a : A][k : ListA][H : C (coV A (length A k) (coL A k))]

f1 a(coV A (length A k) (coL A k)) H

36

The problem here is the equation k = coV A (length A k) (coL A k), i.e.
whether the two coercions together correspond to an identity. However, note that
coV and coL are constructors and they only have meaning when some elimination is
applied. Section 3.3 suggested application of the relevant identity elimination. This
still leaves the problem of k = EL A CId(X) fId(X) k, i.e. of whether the identity
elimination really is an identity elimination. For now, we take it as a premiss of
the proposition and conclude this: if the identity elimination(s) are identities for
conversion, then we can prove coherence of the composed coercions.

The other direction is less straightforward, from vectors to lists to vectors as the
composition of EVL with ELV . Under arbitrary A,C, f0, f1, and coerced vector v
of size n, the critical equations are:

C n v = C (length A (coV A n v)) (coL A (coV A n v))

f1 m x v = f1 (length A (coV A m v)) x (coL A (coV A m v))

Assuming the properties of identity eliminations suggested above, convertibility
is blocked here only by the vector length component, i.e. (length A (coV A n v)) = n

is not derivable intensionally. It can be proved extensionally by induction over n
or v. Note that this is still a computation applied to a coercion, but reduction via
ELV does not help: the EV elimination can not be reduced further. 5

To summarise, a composition of ELV with EVL is intensionally equal to the
uncoerced computation under assumption of properties of identity eliminations.
The opposite direction is blocked by an equation on the vector’s size parameter. We
suggest that coherence is provable in a similar way for a wider range of types for
which EXY terms can be defined: (a) all inductive types (i.e. no family indices); (b)
inductive families with non-recursive indices; (c) inductive families where the EXY

terms do not exhibit dependencies across the result of composition. The justification
is that the EXY terms avoid recursion on intermediate values and the critical terms
to check (arguments to the elimination operators) are convertible by virtue of how
the EXY are constructed. Note that this conjecture covers both compositions of
coercions within the same type (including the functorial coercions studied in [14]),
AND the more general compositions involving two or three different types (on which
no work has yet been done). The issues of inductive family parameter behaviour in
composed coercions requires further study.

The value of such a result (when formally proved) is to provide an intensional
and simple to automate method to check coherence of a wider range of coercion
combinations, particularly those arising from transitive closure of coercions.

3.6 Preliminary remarks on metatheory

The mechanism proposed in section 3.3 is a modification of how coercions are speci-
fied and of their reduction behaviour, with subsequent effects on how key properties
are stated. The modification exposes details of how computation on one type is
mapped to computation on the other, and delays the action of ‘coercion’ until it is

5 It may possible to get round this particular case by introducing a coercion from vectors to their lengths,
i.e. to express computation on N in terms of a vector traversal and thus avoid the elimination on vectors,
but this is hardly a general solution.

37

known what computation to apply (else applies an identity elimination).
The new ι-reductions are sound wrt. types because of the fixed form of the EXY

terms and the way in which they are used in ι-reductions. (Indeed, preliminary
experiments have been developed and checked in Plastic [5].) Correctness of the
definition of EXY terms can be stated by comparison with the conventional con-
version function (possibly from which the definition has been extracted), and easily
proved by applying the identity elimination. That is, the EXY term is correct if
the original conversion function is correct. (In future, we may require EXY terms
to be defined from the structure of the relevant inductive schemata, which will give
a stronger guarantee of correctness.)

Use of the default identity elimination in conversion appears safe, in the sense
that redexes arise because of a delayed computation and the reduction effectively
executes the conversion of representation originally specified by the user (again, this
gives rise to a proof obligation which is easily proved by induction). This redex is
thus equivalent to the situation in the standard approach of forcing reduction on
an implicitly coerced value, and relevant results from the literature should apply.

3.7 Implementation details, and efficiency

Preliminary experiments have been carried out in Plastic [5], a system which im-
plements Luo’s LF with Coercive Subtyping. Several EXY terms have been defined
and the additional ι-reductions (of eliminators) simulated via ‘back door’ access to
the inductive families implementation. (This back door allows non-standard induc-
tive types to be defined manually. The proposed reductions are checked for type
safety, but termination is not checked.) Relevant proofs have been developed in
Plastic, where feasible, or the reasons for failure analysed.

The full mechanism, including identity elimination reductions in conversion,
will be straightforward to implement. Identity eliminators can be derived from
schemata. The types of EXY terms can be generated automatically from the rele-
vant schemata. Derivation of definitions of EXY terms may be possible for simple
cases, else the user can develop the definition by refinement. The existing algorithms
for generating and matching coercions will not need changes.

Improvements in efficiency of coercion execution are expected. Firstly, there is
no intermediate structure to be built and then traversed: computations are applied
directly to the original data (this technique has parallels with deforestation in func-
tional programming). Secondly, the EXY computations can be improved in several
ways, not least some form of partial evaluation or Normalization by Evaluation on
the branch functions to avoid repeated work later, or the collapsing of chains of
coercions (e.g. projections on algebraic structures) to simpler functions.

3.8 Further examples

We briefly consider two different examples. Firstly, projections from Σ-types. Some
authors suggest π1 as a useful coercion, though one recent study identifies prob-
lematic interactions of this coercion with functorial mappings on Σ [9]. That work
suggests a two-stage application of coercions, effectively constraining how these two
groups of coercion can be composed: π1 is used only in the second stage, after all

38

other applicable coercions have been inserted.

Σ : (A : Type)(B : A→ Type)Type

π1 : (A : Type)(B : A→ Type)Σ A B → A

π2 : (A : Type)(B : A→ Type)(s : Σ A B)→ B (π1 A B s)

In the new framework, can π1 be expressed as a coercion? The first question
is whether (and how) we can transfer computation on A to computation on the
Σ value. Nothing is known about A, hence the answer is negative and we reject
π1 as a coercion: it makes no sense. 6 Note that the functorial mappings on Σ are
expressible as EXY -style terms (see below for a similar example).

The second example involves lifting a coercion over a container data type, specif-
ically lifting a coercion on element types to a coercion on lists of that element. Such
a rule can be applied recursively, hence used to convert arbitrarily nested lists.
(Such recursive coercions have been implemented in Plastic for the conventional
approach [6,4].) The basic form of ELL is given below, expressing computation on
List A values in terms of List B computations. Notice that two extra parameters
are needed: the type of the source list elements and a coercion function on the ele-
ments. The precise representation of such ‘nested’ coercions has not been decided;
for now, the simplest representation is chosen. The key detail below is that the
modified step-case function applies the element conversion function to the head el-
ement before proceeding. Relevant coherence properties hold intensionally for this
term, similarly to the ELV − EVL composition. Observe that ELL pre-composes
with ELV etc.

ELL : (B : Type)(C : [l : List B]Type)(f0 : C nil)

(f1 : (x : B)(xs : List B)(H : C xs)C (cons B x xs))

(A : Type)(f : A→ B)(l : List A)C (coLL A B f l)

ELL = EL A([l : List A]C (coLL A B f l)) f0

([x : A][xs : List A]f1 (f x) (coLL A B f xs))

3.9 Discussion and future work

This work is still in early stages, but early results are promising and there are
several interesting extensions to pursue. The work contributes in several ways: (a)
characterising an important subset of coercion functions; (b) enabling proof of key
properties of this subset; (c) supporting greater efficiency of coercion use. Progress
has been made towards simpler proofs on functorial coercions, and towards new
proofs for more general cases of coercion combination (e.g. compositions involving
several distinct types) that were previously identified as problematic. All of these
aspects are important to promote Coercive Subtyping as a useful and practical
abbreviation mechanism.

6 It may be interesting to consider a weaker conversion term, say of type (A→ C)→ Σ A B → C which
reflects that A will be transformed to C. Investigating such terms and the possibility of integration with
the main mechanism is planned as further work.

39

Future work includes formal proofs, full implementation in Plastic to enable
larger studies, and further study on the class of EXY terms - including automatic
derivation and the study of restrictions (e.g. indices of inductive families). Coercions
that extend compatibility of inductive family indices appear particularly interesting,
e.g. Eq m n→ Vec A m→ Vec A n.

Acknowledgements

Thanks to the referees and Zhaohui Luo for their interesting and useful comments.

References

[1] Altenkirch, T. and C. McBride, Towards observational type theory, Manuscript, available online (2006).

[2] Asperti, A., C. Sacerdoti Coen, E. Tassi and S.Zacchiroli, Crafting a proof assistant (2006), submitted
for publication to the TYPES06 Post Proceedings.

[3] Bailey, A., “The Machine-checked Literate Formalisation of Algebra in Type Theory,” Ph.D. thesis,
University of Manchester (1998).

[4] Callaghan, P., Coercions in Plastic, Lecture notes, TYPES Summer School 2002 (2002),
http://www-sop.inria.fr/certilab/types-sum-school02/.

[5] Callaghan, P. and Z. Luo, An Implementation of LF with Coercive Subtyping & Universes, Journal of
Automated Reasoning (Special Issue on Logical Frameworks) 27 (2001), pp. 3–27.

[6] Callaghan, P., Z. Luo and J. Pang, Object languages in a type-theoretic meta-framework, in: Proc.
Workshop on Proof Transformations, Proof Presentations and Complexity of Proofs (PTP’01), 2001.

[7] Coquand, T. and C. Paulin-Mohring, Inductively defined types, LNCS 417 (1990).

[8] Dybjer, P., Inductive sets and families in Martin-Löf’s type theory and their set-theoretic semantics,
in: G. Huet and G. Plotkin, editors, Logical Frameworks (1991).

[9] Luo, Y., “Coherence and Transitivity in Coercive Subtyping,” Ph.D. thesis, U. of Durham (2004).

[10] Luo, Y. and Z. Luo, Coherence and transitivity in coercive subtyping, in: Proc. 8th Intl. Conf. on Logic
for Programming, Artificial Intelligence, and Reasoning, 2001, pp. 249–265, (LNAI 2250).

[11] Luo, Z., A unifying theory of dependent types: the schematic approach, Proc. Symposium on Logical
Foundations of Computer Science (Logic at Tver’92), LNCS 620 (1992).

[12] Luo, Z., “Computation and Reasoning: A Type Theory for Computer Science,” OUP, 1994.

[13] Luo, Z., Coercive subtyping, Journal of Logic and Computation 9 (1999), pp. 105–130.

[14] Luo, Z. and R. Adams, Structural subtyping for inductive types with functorial equality rules, Math.
Struct. in Comp. Science (2007), (to appear).

[15] Luo, Z. and P. Callaghan, Coercive subtyping and lexical semantics (ext’d abstr.), LACL’98 (1998).

[16] Luo, Z. and S. Soloviev, Dependent coercions, The 8th Inter. Conf. on Category Theory and Computer
Science (CTCS’99), Edinburgh, Scotland. Electronic Notes in Theoretical Computer Science 29 (1999).

[17] McBride, C. and J. McKinna, The view from the left, J. Functional Programming 14 (2004), pp. 69–111.

[18] Sacerdoti Coen, C., A Presentation of Matita (2006), slides from talk at CHIT/CHAT Workshop.

[19] Säıbi, A., “Outils Génériques de Modélisation et de Démonstration pour la Formalisation des
Mathématiques en Théorie des Types. Application à la Théorie des Catégories,” Ph.D. thesis (1999).

40

LFMTP 2007

Focusing the inverse method for LF:
a preliminary report

Brigitte Pientka and Xi Li1

School of Computer Science
McGill University
Montreal, Canada

Florent Pompigne

ENS Cachan
94235 Cachan cedex, France

Abstract

In this paper, we describe a proof-theoretic foundation for bottom-up logic programming based on uniform
proofs in the setting of the logical framework LF. We present a forward uniform proofs calculus which
is a suitable foundation for the inverse method for LF and prove its correctness. We also present some
preliminary results of an implementation for the Horn Fragment as part of the logical framework Twelf,
and compare its performance with the tabled logic programming engine.

1 Introduction

Logic programming is typically thought of as a backward proof search method
where we start with the query and apply backchaining. We first try to find a
clause head which unifies with a given query and then try to solve its subgoals.
Proof-theoretically backchaining in logic programming can be elegantly explained
by uniform proofs [MNPS91] which serves as a foundation for higher-order logic pro-
gramming systems such as as λ-Prolog [NM99], Twelf [PS99], or Isabelle [Pau86].
These frameworks provide a general meta-language for the specification and imple-
mentation of formal systems, and execution of these specifications is based on the
operational semantics of backchaining logic programming. However, the backchain-
ing semantics has also several disadvantages. Many straightforward specifications
may not be directly executable, thus requiring more complex and sometimes less
efficient implementations and performance may be severely hampered by redun-
dant computation. The tabled logic programming engine [Pie02a,Pie05] in Twelf

1 Email: bpientka@cs.mcgill.ca

41

mailto:bpientka@cs.mcgill.ca

addresses these concerns. It allows the logic programming interpreter to memoize
subcomputations and re-use their result later, thereby eliminating infinite and re-
dundant computation. However, a critical potential bottleneck in this system is
that the memo-table may grow large and there are a large number of suspended
goals. The overhead of freezing and storing a given proof search state such that it
can be resumed later on is substantial.

An alternative to backchaining in logic programming is forward chaining where
we start with some axioms, and then satisfy the subgoals to conclude new facts.
This idea of forward chaining has been exploited in bottom-up logic programming
as found for example in magic sets [Ram91]. Forward logic programming has po-
tentially many advantages over the more traditional backwards logic programming
approaches, since suspending computation and storing a global state, as in tabled
logic programming, is completely unnecessary. It provides a sound and complete
proof search procedure, where only true statements are generated and only those
must be stored. Forward chaining in this sense can be naturally explained by proof
search based on the inverse method (see for example [CPP06]). In this paper, we
lay the foundation for exploring forward chaining in the logical framework Twelf,
and present a forward uniform proof calculus together with its correctness proof.
Building on this theoretical discussion, we discuss how to turn theory into a prac-
tical implementation and report on our experience with a prototype for the Horn
fragment.

This paper is structured: Section 2 we introduces briefly the syntax of LF, and
Section 3 gives some example specification in LF. Section 4 we present uniform
calculus together with a lifted version which has meta-variables. In Section 5, we
present a forward uniform proof system together with a lifted version which is
a suitable basis for inverse method for LF. Section 6, we discuss implementation
issues, and report on some some preliminary results for the Horn fragment and
compare it to the tabled higher-order logic programming engine.

2 Background: The logical framework LF

Our main interest in this paper is in designing a forward inverse method prover for
the logical framework Twelf. Twelf supports the specification of deductive systems,
given via axioms and inference rules, together with the proofs about them, and
has been extensively used over the past few years in several applications. The
theoretical foundation for Twelf is the logical framework LF [HHP93]. The LF
language, a dependently typed lambda-calculus, can be briefly described as follows:

Kinds K ::= type | Πx:A.K

Types A ::= a M1 . . .Mn | A1 → A2 | Πx : A1.A2

Normal Objects M ::= λx.M | R

Neutral Objects M ::= x | c | R M

We follow recent formulations which only concentrate on characterizing normal
forms [NPP06], however this is not strictly necessary. Objects provided by the logi-

42

cal framework LF include lambda-abstraction, application, constants and variables.
To preserve canonical forms in the presence of substitution, we rely on hereditary
substitutions as defined in [NPP06]. Types classify objects, and range over type
constants a which may be indexed by objects M1 . . .Mn, as well as non-dependent
and dependent function types. Viewing types as propositions, LF types can be in-
terpreted as logical propositions. Atomic type a M1 . . .Mn correspond to an atomic
proposition, non-dependent function type A1 → A2 corresponds to an implication,
and the dependent function type Πx:A.B can be interpreted as the universal quan-
tifier. We will use types and formulas interchangeably.

3 Example: Bounded polymorphic subtyping

As a motivating example which illustrates also many challenges we face when design-
ing an inverse method prover for Twelf, we consider bounded subtype polymorphism
(see also Ch. 26 [Pie02b]). In this system, we enrich polymorphic types such as ∀α.T
with a subtype relation and refine the universal quantifier to carry a subtyping con-
straint. This example was proposed as part of the POPLmark challenge [ABF+05]
to study different meta-theoretic properties about bounded subtype polymorphism.
Here our focus is primarily in executing the given specification and experimenting
with it. The syntax of types can be defined as follows:

Types T ::= top | α | T1 ⇒ T2 | ∀α ≤ T1.T2

Context Γ ::= · | Γ, w:α ≤ T

In ∀α ≤ T1.T2, the type variable α only binds occurrences of α in T2. The typing
context Γ keeps track of constraints such as α ≤ T . Next, we describe a subtyping
algorithm using the judgment:

Γ ` T ≤ S Type T is a subtype of S in the context Γ

Γ ` T ≤ top
sa-top α ≤ T ∈ Γ

Γ ` α ≤ T sa-hyp
Γ ` α ≤ α sa-ref-tvar

Γ ` T1 ≤ S1 Γ ` S2 ≤ T2

Γ ` S1 ⇒ S2 ≤ T1 ⇒ T2
sa-arr Γ ` α ≤ U Γ ` U ≤ V

Γ ` α ≤ V sa-tr-tvar

Γ ` T1 ≤ S1 Γ, w:α ≤ T1 ` S2 ≤ T2

Γ ` ∀α ≤ S1.S2 ≤ ∀α ≤ T1.T2
sa-allα,w

The description is algorithmic in the sense that general rules for reflexivity and
transitivity are admissible, and for each type constructor, top, ∀ and⇒ there is one
rule which can be applied. However, it is worth pointing out that while the presented
characterization has pleasant meta-theoretic properties, it does not eliminate all
non-determinism. While the rule for transitivity is restricted to type variables on
the left side of the subtyping relation, we can satisfy the left premise with four
possible rules, i.e. the rule sa-top, sa-hyp, sa-ref-tvar, and sa-tr-tvar. However, only

43

the rule sa-hyp is really fruitful. A crucial question therefore is not only how we can
implement this formal system in the logical framework, but also what is the right
paradigm to execute this implementation.

We begin by encoding the object-language of polymorphic types in LF using
higher-order abstract syntax, i.e. type variables α in the object language will be
represented as variables in the meta-language. This is standard practice.

tp:type.
top: tp.

arr: tp -> tp -> tp.
all: tp -> (tp -> tp) -> tp.

We define an LF type called tp, with the constructors top, arr, and all. The
type for the constructor all takes in two arguments. The first argument stands for
the bound and has type tp, while the second argument represents the body of the
forall-expression and is represented by the function type (tp -> tp).

Next we consider the implementation of the subtyping relation. Since we rep-
resent variables of the object language implicitly, we cannot generically represent
sa-ref and sa-tr where both these rules are applicable for all type variables. Instead
of a general variable rule, we will add rules for reflexivity and transitivity for each
type variable. Reflexivity and transitivity rules are dynamically introduced for each
type variable.

We are now ready to show the encoding of these subtyping rules in LF. We first
define the constant sub which describes the subtyping relation. Next, we represent
each inference rule in the object-language as a clause consisting of nested universal
quantifiers and implications. Upper-case letters denote logic variables which are
implicitly bound by a Π-quantifier at the outside.

sub : tp -> tp -> type.
sa top : sub S top.
sa arr : sub S2 T2 -> sub T1 S1

-> sub (arr S1 S2) (arr T1 T2) .
sa all : (Πa:tp.

(ΠU.ΠV.sub U V -> sub a U -> sub a V) ->
sub a T1 -> sub a a ->
sub (S2 a) (T2 a))

-> sub T1 S1
-> sub (all S1 (λa.(S2 a))) (all T1 (λa.(T2 a))).

Using a higher-order logic programming interpretation based on backchaining,
we can read the clause sa arr as follows: To prove the goal sub (arr S1 S2) (arr
T1 T2), we must prove sub T1 S1 and then sub S2 T2. Similarly we can read the
clause sa all: To prove sub (all S1 (λa.(S2 a))) (all T1 (λa.(T2 a))), we
need to prove first sub T1 S1, and then assuming tr:ΠU.ΠV. sub U V -> sub a
U -> sub a V, w:sub a T1, and ref:sub a a, prove that sub (S2 a) (T2 a) is
true where a is a new parameter of type tp.

Unfortunately, this specification cannot directly be executed using the backward
logic programming engine, since the transitivity rule does not eliminate all non-
determinism. Tabled logic programming memoizes previously encountered subgoals
and allows us to reuse the results later on. This enables us to execute the specifica-
tion for bounded subtype polymorphism. However, tabled logic programming has

44

also a substantial overhead of storing encountered goals together with their answer
substitution, and freezing and suspending computation to resume it later.

In this paper, we explore an alternative paradigm, a forward logic programming.
This means we start from some axioms and then apply the given rules in a forward
direction. In this example, sub T top is an axiom and so is for example, sub a a
for any variable a. The clause sa arr is then interpreted in a forward direction as
follows: Given a proof for sub T1 S1 and a proof for sub S2 T2, we can derive sub
(arr S1 S2) (arr T1 T2). We present first a theoretical foundation for forward
proof search, and then outline the basic idea and challenges when implementing an
inverse method search engine based on it. Finally, we conclude with a discussion
of some preliminary results of our current prototype implementation. While our
prototype only concentrates on the Horn fragment, it nevertheless provides some
interesting preliminary results and analysis especially when compared to tabled logic
programming.

4 Uniform Proofs

A standard proof-theoretic characterization for backchaining in logic programming
is based on uniform proofs [MNPS91]. The essential idea in uniform proofs is to
chain all invertible rules eagerly, and postpone the non-invertible rules lead to a
uniform sequent calculus. In a uniform calculus, we distinguish between uniform
phase, where we apply all the invertible rules, and focusing phase, where we pick
and focus on a non-invertible rule. We can characterize uniform proofs by two main
judgments:

Γ =⇒ A There is a uniform proof for A from the assumptions in Γ

Γ� A =⇒ P There is a focused proof for the atom P focusing on the
proposition A using the assumptions in Γ

Next, we present a proof system characterizing uniform proofs.

Γ� A =⇒ P A ∈ Γ
Γ =⇒ P

choose Γ� P =⇒ P
hyp

Γ, c:A1 =⇒ A2

Γ =⇒ A1 → A2
→ R

Γ =⇒ A1 Γ� A2 =⇒ P
Γ� A1 → A2 =⇒ P

→ L

Γ, x:A =⇒ B

Γ =⇒ Πx:A.B ΠR
Γ� [M/x]A =⇒ P Γ `M : A

Γ� Πx:A.B =⇒ P
ΠL

We note that our context Γ keeps track of dynamic assumptions which are
introduced in the rule→R and can be used during proof search as well as parameter
assumptions which are introduced in the rule ΠR but cannot be used in proof search.
Our goal is to enforce that every proposition is well-typed, so in the sequent Γ =⇒ A

we have that A is a well-formed type in the context Γ, and similarly in the sequent

45

Γ � A =⇒ P we have that A and P are a well-formed types in the context Γ.
Moreover, we require in the rule ΠL that M has type A in the context Γ.

In practice, we typically do not guess the correct instantiation for the univer-
sally quantified variables in the ΠL rule, but introduce a meta-variable which will be
instantiated with unification later. Previously[Pie03] , we have been advocating the
use of meta-variables. Meta-variables are associated with a postponed substitution
σ which is applied as soon as we know what the meta-variable stands for. A for-
mal treatment for meta-variables based on contextual modal types can be found in
[Pie03,NPP06]. This allows us to formally distinguish between the ordinary bound
variables introduced by ΠR or a λ-abstraction and meta-variables u which are sub-
ject to instantiation. An advantage of this approach is that we localize dependencies
while allowing in-place updates. Moreover, we can present all meta-variables that
appear in a given term in a linear order and ensure that the types and contexts
of meta-variables further to the right may mention meta-variables. When a meta-
variable is introduced it is created as u[idΓ] meaning it can depend on all the bound
variables occurring in Γ. During search Γ is concrete and idΓ will be unfolded.
Moreover, we can easily characterize all the meta-variables occurring in a formula
or sequent. The distinction between ordinary bound variables and meta-variables
provides a clean basis for describing proof search. We will therefore enrich our
lambda-calculus with first-class meta-variables denoted by u.

Neutral Terms M ::= . . . | u[σ]

Meta-variable context ∆ ::= · | ∆, u::A[Ψ]

The type of a meta-variable is A[Ψ] denoting an object M which has type A
in the context Ψ. We briefly highlight how contextual substitution into types and
objects-level terms is defined to give an intuition, but refer the interested reader
to [NPP06] for more details. We write [[Ψ̂.M/u]] for replacing a meta-variable u
with an object M . Ψ̂ characterizes the ordinary bound variables occurring in M .
This explicit listing of the bound variables occurring in M is necessary because
of α-renaming issues and can be eliminated in an implementation. We only show
contextual substitution into objects here.

[[Ψ̂.M/u]](λy.N) = λy.N ′ if [[Ψ̂.M/u]]N = N ′

[[Ψ̂.M/u]](u[σ]) = M ′ if [[Ψ̂.M/u]]σ = σ′ and [σ′/Ψ]M = M ′

[[Ψ̂.M/u]](u′[σ]) = u′[σ′] if u′ 6= u and [[Ψ̂.M/u]]σ = σ′

[[Ψ̂.M/u]](R N) = (R′ N ′) if [[Ψ̂.M/u]]R = R′ and [[Ψ̂.M/u]](N) = N ′

[[Ψ̂.M/u]](x) = x

[[Ψ̂.M/u]](c) = c

We note that there are no side-conditions necessary when substituting into λ-
abstraction, since the objects M we substitute for u is closed with respect to Ψ̂.
When we encounter a meta-variable u[σ], we first apply [[Ψ̂.M/u]] to the substitution

46

σ yielding σ′ and then replace u with M and apply the substitution σ′. Note because
of α-renaming issues we must possibly rename the domain of σ′.

Simultaneous contextual substitution can be defined following similar principles.
A simultaneous contextual substitution maps the meta-variables in its domain ∆′

to another meta-variable context ∆ which describes its range. More formally we
can define simultaneous contextual substitutions as well-typed as follows:

∆ ` · : ·
∆ ` θ : ∆′ ∆; Ψ `M : A

∆ ` (θ, Ψ̂.M/u) : ∆′, u::A[Ψ]

Finally, we are in the position to give a uniform calculus which introduces meta-
variables in the rule ΠL, and delays their instantiation to the hyp rule where we
rely on higher-order unification to find the correct instantiation. Since higher-order
unification is undecidable in general we restrict it to the pattern fragment.

∆; Γ =⇒ A/(θ,∆′) There is a uniform proof for A from the assumptions
in Γ where θ is a contextual substitution which instan-
tiates the meta-variable in ∆ and has range ∆′

∆; Γ� A =⇒ P/(θ,∆′) There is a focused proof for the atom P focusing on
the proposition A using the assumptions in Γ where
θ is a contextual substitution which instantiates the
meta-variable in ∆ and has range ∆′

In the rule ΠL we introduce a new meta-variable u[idΓ] of type A[Γ]. This means
we introduce a meta-variable whose instantiation can depend on all the parameters
occurring in Γ. In the hypothesis rule, we rely on higher-order pattern unification
to find the most general unifier θ of P ′ and P , s.t. [[θ]]P ′ = [[θ]]P .

∆; Γ� A =⇒ P/(θ,∆′) A ∈ Γ
∆; Γ =⇒ P/(θ,∆′)

∆; Γ ` P ′ .= P/(θ,∆′)
∆; Γ� P ′ =⇒ P/(θ,∆′)

∆; Γ, A1 =⇒ A2/(θ,∆′)
∆; Γ =⇒ A1 → A2/(θ,∆′)

∆; Γ =⇒ A1/(θ1,∆1)
∆1; [[θ1]]Γ� [[θ1]]A2 =⇒ [[θ1]]P/(θ2,∆2)

∆; Γ� A1 → A2 =⇒ P/([[θ2]]θ1,∆2)

∆; Γ, x:A =⇒ B/(θ,∆′)
∆; Γ =⇒ Πx:A.B (θ,∆′)

∆, u::A[Γ]; Γ� [u[idΓ]/x]B =⇒ P/((θ, Γ̂.M/u),∆′)
∆; Γ� Πx:A.B =⇒ P/(θ,∆′)

Next, we prove that this system is sound and complete with the uniform proofs
where we guess the correct instantiation for the meta-variables.

Theorem 4.1 (Soundness)

(i) If ∆; Γ =⇒ A/(θ,∆′) then for any grounding substitution · ` ρ : ∆′ we have
·; [[ρ]][[θ]]Γ =⇒ [[ρ]][[θ]]A.

47

(ii) If ∆; Γ � A =⇒ P/(θ,∆′) then for any grounding substitution · ` ρ : ∆′ we
have ·; [[ρ]][[θ]]Γ� [[ρ]][[θ]]A =⇒ [[ρ]][[θ]]P .

Proof. By structural induction on the first derivation (see also [Pie03]). 2

Theorem 4.2 (Completeness)

(i) If ·; [[ρ]]Γ =⇒ [[ρ]]A for a modal substitution ρ, s.t. · ` ρ : ∆
then ∆; Γ =⇒ A/(∆′, θ) for some θ and ρ = [[ρ′]]θ for some ρ′ s.t. · ` ρ′ : ∆′.

(ii) If ·; [[ρ]]Γ� [[ρ]]A =⇒ [[ρ]]P for a modal substitution ρ s.t. · ` ρ : ∆
then ∆; Γ � A =⇒ P/(∆′, θ) for some θ and ρ = [[ρ′]]θ for some ρ′, s.t.
· ` ρ′ : ∆′.

Proof. Simultaneous structural induction on the first derivation (see also [Pie03]).2

5 Inverse method and focusing

An interesting alternative to backward proof search, is forward proof search based
on the inverse method. This has potentially many advantages. While backward
logic programming based depth first search is incomplete and requires backtracking,
forward search provides a complete search strategy without backtracking. Similar
to tabling, it also allows us to execute some specifications which were not previously
executable. Next, we present a forward uniform proof system where we guess the
correct instantiation. We derive this forward calculus from the uniform proof system
presented earlier which models backchaining. Hence our system will only distinguish
between the left focusing and right uniform phase. To obtain a more general proof-
theoretic foundation, one could distinguish between a right-focusing and a left-
focusing phase (see for example [CPP06]). Finally, we describe a lifted version with
meta-variables.

Γ
f

=⇒A A has forward uniform proof using the assumptions in Γ

Γ� A
f

=⇒P P has a forward focused proof focusing on the proposition
A using the assumptions in Γ

The context Γ is now interpreted differently, in that sequents Γ
f

=⇒A and
Γ � A

f
=⇒P assert that all assumptions in Γ as well as A, if the sequent is fo-

cused are needed to prove the conclusion. General weakening is thus disallowed but
incorporated in the rule f→R2. Since our context Γ keeps track of dynamic assump-
tion and parameters, we do not require it to be completely empty in the rule f-ax.
Instead we can think of it as the strongest context in which P is well-typed. Since
we want to preserve that contexts Γ are well-typed, we must make sure in the rule
f→L that the union two context Γ1 and Γ2 is well-typed and preserves the present
dependencies between parameter assumptions and dynamic assumptions. The rule
f-drop was called in the backwards uniform calculus choose. In the forward direction
there is no choice but rather we must drop the formula out of the focus.

48

Γ� A
f

=⇒P
Γ ∪ {A} f

=⇒P
f-drop

Γ� P
f

=⇒P
f-ax

Γ, c:A1
f

=⇒A2

Γ
f

=⇒A1 → A2

f→R1
Γ

f
=⇒A2

Γ
f

=⇒A1 → A2

f→R2
Γ1

f
=⇒A1 Γ2 � A2

f
=⇒P

Γ1 ∪ Γ2 � A1 → A2
f

=⇒P
f→L

Γ, x:A
f

=⇒B

Γ
f

=⇒Πx:A.B
fΠR

Γ� [M/x]B
f

=⇒P Γ `M : A

Γ� Πx:A.B
f

=⇒P
fΠL

Next, we prove soundness and completeness of this forward uniform calculus.

Theorem 5.1 (Soundness)

(i) If Γ
f

=⇒A then Γ =⇒ A

(ii) If Γ� A
f

=⇒P then Γ� A =⇒ P .

Proof. Straightforward structural induction. 2

Theorem 5.2 (Completeness)

(i) If Γ =⇒ A then Γ′
f

=⇒A where Γ′ ⊆ Γ.

(ii) If Γ� A =⇒ P then Γ′ � A
f

=⇒P where Γ′ ⊆ Γ

Proof. Straightforward structural induction. 2

The forward uniform proof system presented gives rise to a proof search method
based on the inverse method central to which is the notion of subformula. We outline
the notion of subformulas and present a lifted calculus following the development set
out in [DV01]. We adapt the standard definition of subformulas to the higher-order
setting where objects may contain meta-variables. The immediate free subformula of
the negative occurrence of the formula Πx:A.B in the context Γ is then [u[idΓ]/x]B.
The immediate ground subformula of the negative occurrence of the formula Πx:A.B
in the context Γ is [M/x]B. Free signed subformulas and its immediate signed
subformulas are defined inductively as follows:

signed subformula free signed subformula immediate signed subformula

(A→ B)− A+, B− A+, B−

(A→ B)+ A−, B+ A−, B+

(Πx:A.B)− ([u[idΓ]/x]B)− ([M/x]B)−

(Πx:A.B)+ ([a/x]B)+ ([a/x]B))+

Definition 5.3 [Subformula property]

49

(i) Every derivation of a uniform sequent Γ =⇒ A consists of signed ground sub-
formulas of signed formulas in Γ− and A+.

(ii) Every derivation of a focused Γ � A =⇒ P consists of signed ground subfor-
mulas of signed forumlas in Γ− and A+.

Theorem 5.4 (Ground subformula property of uniform proofs)

(i) Let D be a derivation of a signed uniform sequent Γ− =⇒ A+ then every
signed uniform sequent Γ−0 =⇒ A+

0 or signed focused sequent Γ−1 � A−1 =⇒ P1

occurring in D fulfills the subformula property, i.e. [Γ−0 , A
+
0] < [Γ−, A+] or

[Γ−1 , A
−
1 , P

+
1] < [Γ−, A+] .

(ii) Let D be a derivation of a signed focused sequent Γ− � A− =⇒ P+ then every
signed uniform sequent Γ−0 =⇒ A+

0 or signed focused sequent Γ−1 � A−1 =⇒ P1

occurring in D fulfills the subformula property, i.e. [Γ−0 , A
+
0] < [Γ−, A−, P+]

or [Γ−1 , A
−
1 , P

+
1] < [Γ−, A−, P+].

Proof. By routine inspection of the inference rules for uniform and focused proofs.2

Thus when we search for a proof of a particular signed sequent Γ =⇒ A or
Γ � A =⇒ P resp. we can restrict our search to sequents consisting of signed
subformulas of [Γ−, A+]. When [Γ−, A+] contains quantifiers, it may have an infinite
number of signed subformulas, so the subformula property does not restrict the
search space good enough. However any signed formula has only a finite number of
free signed subformulas.

Next, we consider free signed subformula property. We will often represent signed
subformulas of a given uniform sequent Γ− =⇒ A+ in the form [[θ]]Γ−0 =⇒ [[θ]]A+

0 ,
where θ is a substitution from the meta-variables ∆ to some ground instance, i.e.
· ` θ : ∆ and ∆; Γ−0 =⇒ A−0 . We call this the representation via free signed
subformula. Similarly we often represent signed subformulas of a given focused
sequent Γ− � A− =⇒ P+ in the form [[θ]]Γ−0 � [[θ]]A− =⇒ [[θ]]P+. Moreover, we
often write S = [Γ−, A+] as an abbreviation for the sequent Γ =⇒ A, and ∆ ` S
as an abbreviation for ∆; Γ =⇒ A.

Lemma 5.5 Let S0 = [Γ−0 , A
+
0], and S1 = [Γ−1 , A

+
1] be free signed subformulas s.t.

∆0 ` S0 and ∆1 ` S1. Then [Γ−1 , A
+
1] < [Γ−0 , A

+
0] i.e. S1 is a signed subformula of

S0, iff S1 = [[θ]]S for some signed sequent S s.t. S is a free signed subformula of
S0, where ∆1 ` θ : ∆ and ∆ ` S and ∆ ∩∆0 = ∅.

Proof. By inspection of the definition of signed subformulas. 2

Every signed subformula of a closed signed formula can be obtained from a free
signed subformula by applying a contextual substitution. We now reformulate the
subformula property.

Corollary 5.6 (Free subformula property) Let D be a derivation of a closed
signed uniform sequent S = Γ− =⇒ A+ or closed signed focused sequent Γ− �
A− =⇒ P+. Every signed sequent occurring in D has the form [[θ]]S0 for a free
signed sequent S0 of S and a substitution θ s.t. ∆ ` S0 and · ` θ : ∆.

Suppose we want to check the provability of a closed signed sequent S. By the

50

previous corollary, we can restrict signed formulas occurring in the derivation to
signed sequents of the form [[θ]]S0 where S0 is a free signed sequent of S s.t. ∆ ` S0

and · ` θ : ∆. Since this applies to axioms as well, every axiom has the form
Γ � [[θ]]([[ρ]]P) → [[θ]]P ′ where P and P ′ are atomic free signed subformulas of the
sequent S and [[θ]]([[ρ]]P) = [[θ]]P ′, and ρ is a renaming of meta-variables occurring in
P , and Γ characterizes the parameters occurring in [[θ]]P ′ and [[θ]]([[ρ]]P) respectively.
For any given P , P ′ there may be an infinite number of such axioms because of
different choices for substitutions θ, but there is only a finite number of pairs of free
signed sequents. We can choose a most general axiom that represents all axioms.

We will now introduce a forward calculus FA for the inverse method with meta-
variables. The calculus is based on the idea of representing sequents through free
subformulas and using most general unifiers. Since higher-order unification is only
decidable for patterns, we restrict our attention for now to this fragment. A sequent
S in the original forward calculus for closed sequents, is an instance of a sequent
[[θ]]S0 in the calculus FA if there exists a grounding substitution ρ s.t. [[ρ]][[θ]]S0 = S.
Unlike more standard presentation where we associate a substitution θ with each
of the formulas in Γ and the conclusion A, we will associate a substitution θ with
a sequent. The judgment (Γ → A) · θ denotes a sequent where [[θ]]Γ → [[θ]]A. This
will be easier to implement, and models more closely our prototype.

(∆; Γ� A
f

=⇒P) · θ

(∆; Γ ∪ {A} f
=⇒P) · θ

∆; Γ ` [[ρ]]P ′ .= P/θ

(∆; Γ� [[ρ]]P ′
f

=⇒P) · θ

(∆; Γ
f

=⇒B) · θ

(∆; Γ
f

=⇒(A→ B)) · θ

(∆; Γ, c:A1
f

=⇒A2) · θ

(∆; Γ
f

=⇒(A1 → A2)) · θ

(∆1; Γ1
f

=⇒A1) · θ1 (∆2; Γ2 � A2
f

=⇒P) · θ2

(((∆1 ∪∆2); Γ1 ∪ Γ2)� (A1 → A2)
f

=⇒P) · [[θ]]θ′1

where ext(∆1 ∪∆2, θ1) = θ′1
ext(∆1 ∪∆2, θ2) = θ′2
mgu(θ′1, θ

′
2) = θ

(∆; Γ, x:A
f

=⇒B) · θ

(∆; Γ
f

=⇒(Πx:A.B) · θ

(∆, u::A[Γ]; Γ� [u[idΓ]/x]B
f

=⇒P) · (θ, Γ̂.M/u) u is new

(∆; Γ� (Πx:A.B)
f

=⇒P) · θ

In the hypothesis rule where we unify the assumption [[ρ]]P ′ with P we keep a
context Γ which describes the parameters occurring in P ′ and P . As mentioned
earlier, typical formulations of forward calculi require the context to be empty,
since they do not keep track explicitly of the parameters introduced during proof
search. Due to the dependent nature of our calculus, and the fact that we would
like to preserve that all propositions are well-typed, we keep track of parameters
explicitly and allow the context Γ in this hypothesis rule to be non-empty. Our
intention is that Γ describes all the parameters occurring in P and P ′. This is
largely straightforward. In the implication left rule, we must union not only the
assumptions in Γ1 and in Γ2, but we also must union the meta-variables occurring
in both branches. Since meta-variables occurring in both branches of the proof, may
have been instantiated differently, we must reconcile their different instantiations in

51

θ1 and θ2 by unifying them. Before we can unify them we first extend them with
identity substitution s.t. they share the same domain. This extension is denoted
with ext(∆1 ∪∆2, θ1) = θ′1 and ext(∆1 ∪∆2, θ2) = θ′2 respectively.

Theorem 5.7 (Soundness)

(i) If (Γ
f

=⇒A) · θ then for any grounding substitution ρ,

we have [[ρ]]([[θ]]Γ)
f

=⇒[[ρ]][[θ]]A.

(ii) If (Γ� A
f

=⇒P) · θ then for any grounding substitution ρ,

we have [[ρ]]([[θ]]Γ)� [[ρ]]([[θ]]A)
f

=⇒[[ρ]][[θ]]P .

Proof. Proof by induction on the first derivation. 2

Theorem 5.8 (Completeness) Suppose Γ
f

=⇒[[θ]]A (resp. Γ � [[θ]]A
f

=⇒[[θ]]P)
and Γ = [[θ1]]A1, . . . [[θn]]An where A+, A−1 , . . . A

−
n are signed free subformulas of

the goal. Then there exist a substitution θ′ and a grounding substitution ρ such
that:

(i) (A1, . . . An
f

=⇒A) · θ′ (resp. (A1, . . . An � A
f

=⇒P) · θ′)
(ii) [[ρ]][[θ′]](Ai) = θi(Ai) and [[ρ]][[θ′]](A) = [[θ]](A) (resp. and [[ρ]][[θ′]](P) = [[θ]](P))

Proof. Proof by induction on the first derivation. 2

6 Implementation of an inverse method prover for LF

In this section, we discuss the implementation of an inverse method prover for LF
by considering the example given earlier. The first step in the inverse method
is computation of subformulas. Given a signed formula we compute the set N
of negative subformulas and the set P of positive subformulas. Each subformula
is denoted as ∆; Γ ` a M1 . . .Mn where ∆ characterizes the meta-variables, and
Γ describes the parameters occurring in a M1 . . .Mn Given the set N of negative
subformulas and the set P of positive subformulas, we can generate a focused axioms,
if a negative subformula unifies with a positive subformula. We compute the minimal
set F of focused axioms by checking forward and backward subsumption of newly
generated axiom. Following Chaudhuri et al., our implementation creates big-step
derived rules by chaining all the focused rules together to form a focused thread
and chaining all the uniform rules together to form a uniform thread. Our compiled
rules are therefore of the following form

f
=⇒P1 . . .

f
=⇒Pn

f
=⇒P

After this pre-compilation phase is finished, we delete the focused axiom, and
search over the set F of uniform facts and the set R of pre-compiled derived rules.

6.1 Top-level of the inverse method

Next, we must iterate over the set F of uniform facts and the set R of pre-compiled
derived rules to generate new facts by forward chaining. Essentially we need to plug

52

the facts into the open premises to generate new facts. There are essentially two
possible loop structures which we both briefly discuss. Both of these two loops have
been implemented and tested for the Horn fragment.

Iteration over facts The first loop follows essentially ideas used by K. Chaudhuri
in his implementation of the inverse method for linear logic [Cha06]. We pick a fact
f from the set F of fact and then use this fact f to generate new pre-instantiated
rules and new facts from the set R. Given a rule with the premises P1, . . . , Pn,
we try to unify each Pi with the fact f and generate all pre-instantiated rules for
this given fact f . If the fact f unifies with k premises, then we generate possibly
up to 2k − 1 pre-instantiated rules where k is less than n. If k is equal to n, i.e.
all premises can be satisfied, a new fact P is generated which is added to the set
F if there is no fact f ′ in F s.t. P is an instance of f ′. The set of rules therefore
may grow exponentially during execution. However, an advantage is that every fact
f will be chosen only once, and only once we unify it with a given premise. We
terminate if no new facts have been generated.

Iterate over rules In this alternative implementation, we keep the two sets of
facts F and Fn and iterate over the set R of rules. Initially, all facts generated
during the pre-compilation phase are in the set Fn and F is empty. Given a rule
with the premises P1, . . . , Pn, we try to find a fact f from the set Fn which unifies
with P1 up to Pn. If we succeed in unifying with Pi, we continue to search over the
set F and Fn to find instantiations of the remaining premises. If all the premises
are unifiable with some fact f , we generate a new fact P which is temporarily added
to a set F ′, if there is no fact f ′ in F , Fn or F ′ s.t. P is an instance of f ′. This
stage will terminate if all rules have been tried with the facts from Fn. Now we
add Fn to the set of facts F and F ′ will be used as our new set of facts Fn. In this
loop, the size of R remains constant. On the other hand, we may unify multiple
times a given premise Pi with a given fact from F . We terminate if no new facts
are generated, i.e. F ′ is empty.

6.2 Experimental results

So far we have completed a prototype for the Horn fragment of LF. In this section, we
discuss our preliminary experience and compare the performance with the tabled
logic programming engine. We will pay particular attention to the two different
implementation strategies of the inverse method. To evaluate and understand the
current limitations, we will concentrate here on two examples, the first one computes
the Fibonacci numbers, and the second one parses propositional formulas. All
experiments are done on a machine with the following specifications: 3.4GHz Intel
Pentium, 4.0GB RAM. We are using SML of New Jersey 110.55 under the Linux
distribution Gentoo 16.14.under Linux. Times are measured in seconds, and the ∞
indicates we terminated the process after 30min.

Fibonacci example Computing the Fibonacci numbers is an interesting example,
because a depth-first search will yield an exponential algorithm. Memoization allows
us to re-use the computation of previous subgoals, and we expect its performance to
be linear. Similarly, forward search has the potential of re-using results, and should
yield a linear time algorithm. We compare the two different implementations for

53

the inverse method, and the tabled logic programming engine.

IR IF Tab

k fib(k) Facts Time Time Time]Entries

14 377 377(add) + 14(fib) 1.48 2.75 0.46 (0.08) 403

15 610 610(add) + 15(fib) 4.41 102.37 1.210 (0.07) 638

16 987 987(add) + 16(fib) 11.19 ∞ 3.135 (0.10) 1017

17 1597 1597(add) + 17(fib) 34.10 ∞ 6.861 (0.10) 1629

18 2584 2584(add) + 18(fib) 193.79 ∞ 139.826 (0.16) 2618

IF describes the inverse method where we iterate over facts and generate pre-
instantiated rules, and IR denotes the inverse method where we iterate over the
rules and the number of rules remains constant. The column Tab lists the runtime
when all predicates are tabled. In parenthesis, we list the time if we selectively table
only the fib predicate. The number of rules generated by the IF loop is 1470 for
k = 14 and 2302 for k = 15. This is a staggering number compared to the 2 rules
used in the IR loop. The high number of rules generated also yields a severe per-
formance penalty. Tabling still outperforms inverse method search, even if we table
all predicates in the program. As we can see, there is a severe penalty for tabling
if we do not table selectively. In fact, selective tabling yields the best performance
and does also outperform depth-first search.

Parsing Parsing algorithms are interesting since we typically would like to mix right
and left recursive program clauses to model the right and left associativity prop-
erties of implications, conjunctions and disjunction. Clauses for conjunction and
disjunction are left recursive, while the program clause for implication is right re-
cursive. This program is not executable via depth-first search, and we compare the
performance between the two implementations of the inverse method and tabling.

IR IF Tab

tokens time]facts time]fact time]entries

5 0.860 138 0.109 2214 0.016 6

7 1.359 138 29.828 3702 0.015 10

9 1.016 138 33.391 3846 0.032 10

11 ∞ ∞ 0.171 18

While the number of rules generated by the IF loop is not quite as large as
for Fibonacci, it is still substantial. For 3 tokens, we generate 54 rules up to 182
rules for 9 tokens. This is compared to 13 rules which are generated during the pre-
compilation phase in the IR method. These results clearly demonstrate that tabling
cannot easily be outperformed. The inverse method is costly, and especially in the
implementation IF the number of facts is growing substantially more. Our other
implementation of the inverse method where the number of rules remain constant

54

has fair performance, although it cannot rival tabling.
To gain a better understanding of where the bottleneck lies in the inverse method

implementation compared to a tabled implementation, we measured the number of
unification failures. Unification is at the heart of proof search, and its performance
affects in a crucial way the global efficiency of each of these applications. This is
especially the case for the inverse method, since we rely on it to instantiate premises
of rules, and to check for subsumption, i.e. is a newly derived uniform fact subsumed
by an existing uniform fact. In the parsing example for example, we have over 3
million unification failures during subsumption checking, and over 21,000 unification
failures when unifying a premise with a given fact. Let us contrast this to tabled
logic programming where we count 70 unification failures all of which are in fact
handled by the linear assignment algorithm. To check whether a new subgoal is
already in the table no higher-order subsumption check is performed since we only
check for α-variance. This strikingly illustrates that the performance of unification
has a much greater impact on the inverse method than on tabled proof search.

7 Future Work and Conclusion

We presented the basis for an inverse method prover for the logical framework LF.
Following standard development, we presented a forward uniform proof calculus
and lifted it to allow for subformulas which may contain meta-variables. While we
concentrate here on the logical framework LF, which is the basis of Twelf, it seems
possible to apply the presented approach to λProlog [NM88] or Isabelle [Pau86],
which are based on hereditary Harrop formulas. Moreover, we proved the cor-
rectness of forward uniform proof calculus. Finally, we discuss challenges when
implementing an inverse method prover for the logical framework LF.

In the future we intend to extend our implementation of the inverse method to
hereditary Harrop formulas and cover the full higher-order fragment. To achieve a
basic implementation seems not that difficult, however to build an inverse method
prover with competitive performance we must tackle several issues. The first issue is
efficient higher-order unification which seems central to the inverse method. Related
to this issue is the fact that our theoretical development and implementation only
deals with higher-order patterns where unification is decidable. To handle the full
fragment of higher-order terms, we carefully need to revisit the issue of constraints.

Another important question is how to bound the inverse method search. While
we do get a decision procedure when we execute the parsing algorithm with tabling,
the inverse method does not directly yield a decision procedure. One way of ad-
dressing this problem may be to incorporate ideas from Chaudhuri et al. [CPP06]
and distinguish not only between left focusing and uniform proofs, but also intro-
duce a right focusing phase. As observed in [CPP06], this may have a substantial
effect on performance. However, it remains unclear how to in general classify atoms
as being left or right biased or mix the two biases. Extending the given theoretical
framework to consider different bias for atoms is in principle possible.

Finally an important question is how to bring some goal-directed search into
the inverse method. While the subformula property restricts the proof search on
the level of formulas, it does not restrict the possible instantiations for the objects

55

occurring in formulas. This has been already observed in the logic programming
community and lead to the development of magic sets [Ram91]. Magic sets trans-
form the original program in such a way that a forward chaining logic programming
engine is goal-directed and will only generate the relevant subgoals for a given
query. Incorporating magic sets into the inverse method could substantially reduce
the number of generated intermediate goals, and only generate relevant subgoals
thereby yielding a competitive engine compared to backward chaining logic pro-
gramming.

References

[ABF+05] B. Aydemir, A. Bohannon, M. Fairbairn, J. Foster, B. Pierce, P. Sewell, D. Vytiniotis,
G. Washburn, S. Weirich, and S. Zdancewic. Mechanized metatheory for the masses: The
poplmark challenge. In Joe Hurd and Thomas F. Melham, editors, Proceedings of the Eighteenth
International Conference on Theorem Proving in Higher Order Logics (TPHOLs), Oxford, UK,
August 22-25, volume 3603 of Lecture Notes in Computer Science(LNCS), pages 50–65. Springer,
2005.

[Cha06] Kaustuv Chaudhuri. The focused inverse method for linear logic. Technical report, Department
of Computer Science,, December 2006. CMU-CS-06-162.

[CPP06] Kaustuv Chaudhuri, Frank Pfenning, and Greg Price. A logical characterization of forward and
backward chaining in the inverse method. In U. Furbach and N. Shankar, editors, Proceedings
of the Third International Joint Conference on Automated Reasoning, Seattle, USA, Lecture
Notes in Artificial Intelligence (LNAI). Springer-Verlag, 2006.

[DV01] Anatoli Degtyarev and Andrei Voronkov. The inverse method. In John Alan Robinson and
Andrei Voronkov, editors, Handbook of Automated Reasoning, pages 179–272. Elsevier and MIT
Press, 2001.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of
the Association for Computing Machinery, 40(1):143–184, January 1993.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a
foundation for logic programming. Annals of Pure and Applied Logic, 51:125–157, 1991.

[NM88] Gopalan Nadathur and Dale Miller. An overview of λProlog. In Kenneth A. Bowen and
Robert A. Kowalski, editors, Fifth International Logic Programming Conference, pages 810–
827, Seattle, Washington, August 1988. MIT Press.

[NM99] Gopalan Nadathur and Dustin J. Mitchell. System description: Teyjus – a compiler and abstract
machine based implementation of Lambda Prolog. In H. Ganzinger, editor, Proceedings of the
16th International Conference on Automated Deduction (CADE-16), pages 287–291, Trento,
Italy, July 1999. Springer-Verlag LNCS.

[NPP06] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. A contextual modal type theory.
ACM Transactions on Computational Logic (accepted, to appear in 2007), page 56 pages, 2006.

[Pau86] Lawrence C. Paulson. Natural deduction as higher-order resolution. Journal of Logic
Programming, 3:237–258, 1986.

[Pie02a] Brigitte Pientka. A proof-theoretic foundation for tabled higher-order logic programming. In
P. Stuckey, editor, 18th International Conference on Logic Programming, Copenhagen, Denmark,
Lecture Notes in Computer Science (LNCS), 2401, pages 271 –286. Springer-Verlag, 2002.

[Pie02b] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[Pie03] Brigitte Pientka. Tabled higher-order logic programming. PhD thesis, Department of Computer
Sciences, Carnegie Mellon University, December 2003. CMU-CS-03-185.

[Pie05] Brigitte Pientka. Tabling for higher-order logic programming. In Robert Nieuwenhuis, editor,
20th International Conference on Automated Deduction (CADE), Talinn, Estonia, volume 3632
of Lecture Notes in Computer Science, pages 54–68. Springer, 2005.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-logical framework
for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th International Conference
on Automated Deduction (CADE-16), pages 202–206, Trento, Italy, July 1999. Springer-Verlag
Lecture Notes in Artificial Intelligence (LNAI) 1632.

[Ram91] Raghu Ramakrishnan. Magic templates: a spellbinding approach to logic programs. Journal of
Logic Programming, 11(3-4):189–216, 1991.

56

LFMTP 2007

Formalising in Nominal Isabelle Crary’s
Completeness Proof for Equivalence Checking

Julien Narboux1 and Christian Urban2

TU Munich, Germany

Abstract

In the book on Advanced Topics in Types and Programming Languages, Crary illustrates the reasoning technique of logical
relations in a case study about equivalence checking. He presents a type-driven equivalence checking algorithm and verifies
its completeness with respect to a definitional characterisation of equivalence. We present in this paper a formalisation of
Crary’s proof using Isabelle/HOL and the nominal datatype package.

Keywords: logical relations, proof assistants, formalisations, Isabelle/HOL, nominal logic work.

1 Introduction

Logical relations are a powerful reasoning technique for establishing properties about pro-
gramming languages. The idea of logical relations goes back to Tait [8] and is usually
employed for showing strong normalisation results. However this technique has wide ap-
plicability. Crary illustrates this by using a logical relation argument to prove completeness
of an equivalence checking algorithm [3]. One reason for formalising proofs involving log-
ical relations is that they are fairly intricate: First they require a logic that is sufficiently
strong (see comment in [4, Page 58]). Also in the final step of such proofs, one has to
establish by induction a property under a closing substitution. These substitutions might,
however, interfere with binders and one has to be careful that the proof covers all cases that
are required by the induction. We will show in this formalisation that there are a few places
where one has to pay attention to this issue and that the strong induction principles [10]
that have the variable convention already built in are quite convenient to get the formal
arguments through.

There have already been a number of formalisations of proofs involving logical re-
lations. For example Altenkirch [1] formalises the usual strong normalisation proof for

1 Email: narboux(at)in.tum.de
2 Email: urbanc(at)in.tum.de

57

mailto:narboux(at)in.tum.de
mailto:urbanc(at)in.tum.de

System F in the theorem prover LEGO. To our knowledge all these formalisations use de
Bruijn indices to represent α-equated terms. We attribute this to the fact that proofs us-
ing logical relations heavily rely on terms being a representation for α-equivalence classes.
We assume that this is the reason why a formalisation based on a concrete (un-quotioned)
representation has never been attempted.

One practical reason why we do not wish to formalise Crary’s proof using de Bruijn
indices is that we like to stay as faithful as possible to the source and thus do not need to
invent any of the formal arguments ourselves. This intention materialised quite a bit in our
formalisation, except in one place where we developed a completely different argument
than the one Crary had mind, but did not completely spell out its details (we found this out
after we completed the formalisation by communicating with Crary about our proof). Even
so we also had to spend considerable work to implement the informal rules presented by
Crary and to justify that our implementation captures the intended behaviour of these rules.

Our formal proof is carried out in Isabelle/HOL and relies much on the infrastructure
provided by the nominal datatype package [9,10,11]. This package uses many ideas from
the nominal logic work by Pitts [6]. The ability to directly define in the nominal datatype
package α-equivalent terms and obtain automatically recursion combinators and strong in-
duction principles that have the usual variable convention already built was of great help in
our formalisation. There is one place were we had to derive manually some infrastructure,
which we hope can be derived automatically in the future. In the rest of the paper we give
a guided tour through our formalisation.

2 Terms, Types and Substitution

Terms, types and substitutions are relatively standard and follow closely Crary’s notes.
Terms are given by the grammar

Definition 2.1 (Terms)
trm ::= Var name | App trm trm | Lam name.trm | Const nat | Unit

where in the Lam-clause, as usual, a variable is bound; there is also an infinite supply
of constants all represented by natural numbers. By stating this definition in the nomi-
nal datatype package we immediately obtain α-equivalent terms. Types are given by the
grammar

Definition 2.2 (Types) ty ::= TBase | TUnit | ty→ty

where there is no binding. We define the usual size function for types (details omitted), as
this will be the measure over which we define the logical relation later on.

The most important operation we need for our terms is that of applying simultaneous
substitutions, which we represent as finite lists of (name,trm)-pairs. Crary defines them
as functions from some set of variables to terms. One reason for our choice is that it
is easier to deal with finitary structures in the nominal datatype package than with infinite
ones (functions are considered as infinitary structures and would require additional theorem
prover code). Using our list representation we define:

58

Definition 2.3 (Simultaneous Substitution)
θ(Var x) = lookup θ x
θ(App t1 t2) = App θ(t1) θ(t2)
θ(Lam x.t) = Lam x.θ(t) provided x # θ
θ(Const n) = Const n
θ(Unit) = Unit

where in the first clause we use the auxiliary function lookup defined by the clauses:

lookup [] x = Var x
lookup ((y, T)::θ) x = if x = y then T else lookup θ x

Single substitutions are a derived concept by defining e[x:=e ′] def= [(x, e ′)](e) with [(x, e ′)]
being a singleton list.

Note that in the Lam-clause we attach the side-condition about x being fresh for θ (written
x # θ), which is equivalent to x being not free in the list of (name,trm)-pairs. Despite im-
posing this side-condition, the definition above yields a total function, since we work with
α-equivalence classes where renamings are always possible. Because we define a function
over the structure of α-equated terms, we must be careful to not introduce any inconsisten-
cies [9]. The reason is that we can specify functions over the structure of such terms that
do not respect α-equivalence (for example the function that calculates the bound names of
a term or returns the immediate subterms) and consequently lead to inconsistencies in Is-
abelle/HOL. In our formalisation this means that we have to give two four-line proofs that
ensure that simultaneous substitutions respect α-equivalence.

3 Typing and Definitional Equivalence

Next, we define the typing judgements for our terms. In order to stay faithful to Crary’s
notes we introduce the notion for when a typing context Γ is valid, namely when it includes
only a single association for every variable occurring in Γ . Again we use lists to represent
these typing contexts; this time because Isabelle/HOL does not provide out-of-the-box a
type of finite sets. Using the lists we can define the notion of validity by the two rules:

valid []

valid Γ x # Γ

valid ((x, T)::Γ)

where we attach in the second rule the side-condition that x must be fresh for Γ , which in
case of our typing contexts is equivalent to x not occurring in Γ . The typing rules are then
defined as:

valid Γ (x, T) ∈ Γ
Γ ` Var x : T

T-Var
Γ ` e1 : T1→T2 Γ ` e2 : T1

Γ ` App e1 e2 : T2

T-App

x # Γ (x, T1)::Γ ` t : T2

Γ ` Lam x.t : T1→T2

T-Lam

valid Γ

Γ ` Const n : TBase
T-Const

valid Γ

Γ ` Unit : TUnit
T-Unit

where we ensure that only valid contexts appear in typing judgements by including validity
in the rules for variables and Units. To preserve validity in the rule T-Lam, we have the
side-condition that x must be fresh for Γ . (We can infer this freshness condition also from

59

the premise (x, T1)::Γ ` t : T2 and the fact that in typing-judgements contexts are always
valid, but this requires a side-lemma.) In rule T-Var we use the notation (x, T) ∈ Γ to stand
for list-membership.

The completeness of the typing algorithm is proved with respect to some rules charac-
terising definitionally the equivalence between typed terms. The corresponding judgements
Crary is using for this are of the form Γ ` s ≡ t : T where s and t are terms and T is a type.
We formalise his rules of definitional equivalence as follows:

Γ ` t : T

Γ ` t ≡ t : T
Q-Refl

Γ ` t ≡ s : T

Γ ` s ≡ t : T
Q-Symm

Γ ` s ≡ t : T Γ ` t ≡ u : T

Γ ` s ≡ u : T
Q-Trans

Γ ` s1 ≡ t1 : T1→T2 Γ ` s2 ≡ t2 : T1

Γ ` App s1 s2 ≡ App t1 t2 : T2

Q-App

x # Γ (x, T1)::Γ ` s2 ≡ t2 : T2

Γ ` Lam x.s2 ≡ Lam x.t2 : T1→T2

Q-Abs

x # (Γ , s2, t2) (x, T1)::Γ ` s1 ≡ t1 : T2 Γ ` s2 ≡ t2 : T1

Γ ` App (Lam x.s1) s2 ≡ t1[x:=t2] : T2

Q-Beta

x # (Γ , s, t) (x, T1)::Γ ` App s (Var x) ≡ App t (Var x) : T2

Γ ` s ≡ t : T1→T2

Q-Ext

Γ ` s : TUnit Γ ` t : TUnit

Γ ` s ≡ t : TUnit
Q-Unit

Validity of the typing contexts are implied by the validity in the typing rules, which are
included in the premises of Q-Refl and Q-Unit, and by having the side-condition about x
being fresh for Γ in Q-Abs, Q-Beta and Q-Ext.

Comparing our rules with the ones given by Crary, slightly unusual are the side-condi-
tions x # (s2, t2) in the rule Q-Beta and x # (s, t) in the rule Q-Ext. In the former case
we can relatively easily show that our Q-Beta is equivalent to

(x, T1)::Γ ` s1 ≡ t1 : T2 Γ ` s2 ≡ t2 : T1

Γ ` App (Lam x.s1) s2 ≡ t1[x:=t2] : T2

Q-Beta’.

However this requires explicit α-conversions and the fact that all typing contexts in the def-
initional equivalence judgements are valid. In light of this equivalence, the question arises
why we insist on the more restricted rule: The reason is that based on those constraints the
nominal datatype package can automatically derive a strong induction principle that has the
variable convention already built in. This will be very convenient in some proofs later on.
To do the same without those constraints is possible, but slightly more laborious.

In case of Q-Ext the side-conditions represent the fact that the extensionality rule should
hold for a fresh variable x only. By imposing x # (Γ , s, t) we can show that Q-Ext is
equivalent to

∀ x. x # Γ −→ (x, T1)::Γ ` App s (Var x) ≡ App t (Var x) : T2

Γ ` s ≡ t : T1→T2

Q-Ext’

The argument for this uses the some/any-property from [6] and relies on the fact that the
definitional equivalence is equivariant; by this we mean it is invariant under swapping of
variables, namely Γ ` s ≡ t : T implies (x y)·Γ ` (x y)·s≡ (x y)·t : T for all x and y (see

60

[10,11] for more details). The side-conditions in Q-Ext are not explicitly given by Crary
and the equivalence with Q-Ext’ gave us confidence to have captured with them the “idea”
of an extensionality rule.

4 The Equivalence Checking Algorithm

One feature of Crary’s equivalence checking algorithm is that it includes a fair amount of
optimisations, in the sense that in some circumstances two lambda terms are not completely
normalised but only transformed into a weak-head normal-form. For this Crary introduces
the following four rules:

App (Lam x.t1) t2 ; t1[x:=t2]
QAR-Beta

t1 ; t1 ′

App t1 t2 ; App t1 ′ t2
QAR-App

s ; t t ⇓ u

s ⇓ u
QAN-Reduce

t 6;
t ⇓ t

QAN-Normal

The algorithm is then defined by two mutual recursive judgements, called respectively al-
gorithmic term equivalence and algorithmic path equivalence. The former is written as
Γ ` s⇔ t : T and the latter as Γ ` s↔ t : T. Their rules are

s ⇓ p t ⇓ q Γ ` p↔ q : TBase

Γ ` s⇔ t : TBase
QAT-Base

x # (Γ , s, t) (x, T1)::Γ ` App s (Var x)⇔ App t (Var x) : T2

Γ ` s⇔ t : T1→T2

QAT-Arrow

valid Γ

Γ ` s⇔ t : TUnit
QAT-One

valid Γ (x, T) ∈ Γ
Γ ` Var x↔ Var x : T

QAP-Var

Γ ` p↔ q : T1→T2 Γ ` s⇔ t : T1

Γ ` App p s↔ App q t : T2

QAP-App

valid Γ

Γ ` Const n↔ Const n : TBase
QAP-Const

following quite closely Crary’s definition. One difference, however, is the inclusion of
the validity predicate in the rules QAT-One, QAP-Var and QAP-Const ensuring that only
valid typing contexts appear in the judgements. Another, more interesting, difference is
the fact that by imposing the side-condition x # (s, t) in the rule rule QAT-Arrow we
explicitly restricting the algorithm to consider only fresh variables. Recall that we imposed
a similar restriction in the rule Q-Beta given in Sec. 3. There, however, the side-condition
was innocuous as we could show that the rule with the side-condition is equivalent to the
one without the side-condition. With rule QAT-Arrow the situation is different—the side-
condition is a “real” restriction, meaning that

x # Γ (x, T1)::Γ ` App s (Var x)⇔ App t (Var x) : T2

Γ ` s⇔ t : T1→T2

61

and QAT-Arrow are not interderivable. (The reason for this is that in the judgement Γ ` s
⇔ t : T the free variables of s and t do not necessarily need to be contained in Γ . Therefore
we cannot infer from x # Γ that x # (s, t) holds, as we did with Q-Beta.) While this
restriction seems reasonable from an algorithmic point of view, it will turn out that it is
actually crucial in our proofs: in order to get the inductions through for the properties
of transitivity and monotonicity for the rules given above, we like to assume a sort of
variable convention for x. That means we like to structure our argument so that the x
in case of QAT-Arrow is fresh not just for Γ , s and t, but also for some other variables
specified in the lemma at hand. This is very much like the informal reasoning using the
variable convention, except that x in QAT-Arrow is not a binder. Still the nominal datatype
package is able to derive automatically a strong induction principle, which allows us later
on to make the reasoning with the variable convention completely formal. One proviso for
deriving this strong induction principle is however that we formulate the QAT-Arrow as
we have (essentially we have to make sure that the variable x does not occur freely in the
conclusion of the corresponding rule; for more details we refer again to [10]). To see the
improvement we obtain with the strong induction principle, consider the usual induction
principle that comes with the rules specified above:

. . .
∀xΓ s t T1 T2.

x#(Γ, s, t) ∧ P1 ((x : T1) ::Γ) (App s (V ar x)) (App t (V ar x))T2

−→ P1 Γ s t (T1 → T2)
. . .

Γ ` s⇔ t : T −→ P1 Γ s t T Γ ` s↔ t : T −→ P2 Γ s t T

This induction principle states that if one wants to prove two properties P1 and P2 by mu-
tual induction over the rules for algorithmic term equivalence and algorithmic path equiv-
alence, then one can assume in the QAT-Arrow the side-condition x#(Γ, s, t) and P1 for
the premise, and one has to establish P1 for the conclusion. The strong induction principle
is similar

. . .
∀xΓ s t T1 T2 c.

x#c ∧ x#(Γ, s, t) ∧ (∀c. P1 c ((x : T1) ::Γ) (App s (V ar x)) (App t (V ar x))T2)
−→ P1 c Γ s t (T1 → T2)

. . .

Γ ` s⇔ t : T −→ P1 c Γ s t T Γ ` s↔ t : T −→ P2 c Γ s t T

except that it includes an induction context c in the properties P1 and P2, and we can
assume that in the QAT-Arrow-case the x is fresh with respect to this induction context
(see highlighted box). Over this induction context we have control when we set up an
induction: if we want to employ the variable convention in our formal proofs, we just need
to instantiate this induction context appropriately.

Before we can describe our proofs in detail we need two more definitions. We need
to formalise Crary’s notion of logical equivalence, written Γ ` s is t : T, and the logical
equivalence of two simultaneous substitutions, say θ1 and θ2, over a context Γ . The latter
is a derived concept and will be written as Γ ′ ` θ is θ ′ over Γ . The former is defined by
recursion over the size of the types. The clauses are as follows:

62

Γ ` s is t : TUnit def= true

Γ ` s is t : TBase def= Γ ` s⇔ t : TBase

Γ ` s is t : (T1→ T2)
def= ∀Γ ′ s ′ t ′. Γ ⊆ Γ ′∧ valid Γ ′∧ Γ ′ ` s ′ is t ′ : T1 −→

Γ ′ ` (App s s ′) is (App t t ′) : T2

using in the last clause the notion of a weaker context, written Γ ⊆ Γ ′ (for Γ ′ to be
weaker than Γ , every (name,type)-pair in Γ must also appear in Γ ′). Logical equivalence
for simultaneous substitutions over a context Γ is defined as

Γ ′ ` θ is θ ′ over Γ def= ∀ x T. (x,T) ∈ set Γ −→ Γ ′ ` θ(Var x) is θ ′(Var x) : T

With this we have all necessary definitions in place.

5 Proofs

The first mayor property we need to establish is transitivity for algorithmic term equiva-
lence and algorithmic path equivalence. These proofs are not detailed in Crary’s notes and
we diverged in our formalisation from the proofs he had in mind. We first show that type
unicity holds for algorithmic path equivalence

Lemma 5.1 (Type Unicity)
If Γ ` s↔ t : T and Γ ` s↔ u : T ′ then T = T ′.

and subsequently show symmetry for both the algorithmic path equivalence and the algo-
rithmic term equivalence.

Lemma 5.2 (Algorithmic Symmetry)
If Γ ` s⇔ t : T then Γ ` t⇔ s : T.
If Γ ` s↔ t : T then Γ ` t↔ s : T.

Both proofs are by relatively straightforward inductions over Γ ` s⇔ t : T and Γ ` s↔ t : T .
This then allows us to prove transitivity, where we need the strong induction principle in
order to get the induction through.

Lemma 5.3 (Algorithmic Transitivity)
If Γ ` s⇔ t : T and Γ ` t⇔ u : T then Γ ` s⇔ u : T.
If Γ ` s↔ t : T and Γ ` t↔ u : T then Γ ` s↔ u : T.

Proof. By mutual induction over Γ ` s ⇔ t : T and Γ ` s ↔ t : T where we instantiate
the induction context with the term u. In the QAP-App-case we then have the induction
hypotheses

ih1: ∀ u. Γ ` q↔ u : T1→T2 −→ Γ ` p↔ u : T1→T2

ih2: ∀ u. Γ ` t⇔ u : T1 −→ Γ ` s⇔ u : T1

and the assumptions

(i): Γ ` App q t↔ u : T2 and (ii): Γ ` p↔ q : T1→T2

From the first assumption we obtain by inversion of the typing rule an r, T ′
1 and v such that

63

(iii): Γ ` q↔ r : T ′
1→T2 (iv): Γ ` t⇔ v : T ′

1

and u = App r v hold. From the second assumption we obtain Γ ` q ↔ p : T1→T2 by
symmetry of↔ (Lemma 5.2), and then can use this and (iii) to find out by the type unicity
of↔ (Lemma 5.1) that T ′

1→T2 = T1→T2 holds. This in turn implies that T ′
1 = T1, which

allows us to use (iii) and (iv) in the induction hypotheses. This gives us

Γ ` s⇔ v : T1 and Γ ` p↔ r : T1→T2 .

Hence we know that Γ ` App p s↔ u : T2 holds by the rule QAP-App and the equation u
= App r v.

The case QAT-Base uses the fact that normalisation produces unique results, that is if t
⇓ q and t ⇓ q ′ then q = q ′.

In the QAT-Arrow case we have Γ ` t⇔ u : T1→T2 and thus can infer that the judge-
ment (x, T1)::Γ ` App t (Var x)⇔ App u (Var x) : T2 holds. By induction we obtain fur-
ther that (x, T1)::Γ ` App s (Var x)⇔ App u (Var x) : T2 holds. Finally we can infer the
proof obligation in this case, namely Γ ` s⇔ u : T1→T2, provided we know x # (Γ ,s,u).
The freshness for Γ and s is given by the side-conditions of QAT-Arrow. The freshness
for u is given by the strong induction principle (recall that we instantiated the induction
context with u). Thus we are done. 2

Next we prove closure under weak-head reductions, but we restrict our argument to the
single step case (Crary proves closure under multiple steps) as this is easier to prove (ac-
tually it can be derived automatically by Isabelle’s automatic search tools) and is sufficient
for our formalisation.

Lemma 5.4 (Algorithmic Weak-Head Closure)
If Γ ` s⇔ t : T and s ′ ; s and t ′ ; t then Γ ` s ′⇔ t ′ : T.

This lemma is by a simple induction over Γ ` s⇔ t : T. The following lemma establishes
a kind of weakening property for the judgements of the algorithm.

Lemma 5.5 (Algorithmic Monotonicity)
If Γ ` s⇔ t : T and Γ ⊆ Γ ′ and valid Γ ′ then Γ ′ ` s⇔ t : T.
If Γ ` s↔ t : T and Γ ⊆ Γ ′ and valid Γ ′ then Γ ′ ` s↔ t : T.

Proof. By mutual induction using the strong induction principle. This time we instantiate
the induction context with Γ ′. The only interesting case (that is the one which is not
automatic) analyses the rule QAT-Arrow: There we have by assumption Γ ⊆ Γ ′ from
which we can infer (x,T1)::Γ ⊆ (x,T1)::Γ ′. In order to apply the induction hypotheses, we
need the fact that valid ((x, T1)::Γ ′) holds. At this point the usual induction would start
to become ugly since explicit renamings need to be performed. However we based our
argument on the strong induction principle with the induction context being instantiated
with Γ ′. This gives us x # Γ ′ from which we can easily infer the desired fact. We can
then conclude in this case with appealing to the induction hypotheses. 2

The next lemma will help us to establish the fact that logical equivalence implies algorith-
mic equivalence.

Lemma 5.6 (Algorithmic Path Equivalence implies Weak-Head-Normal Form)
If Γ ` s↔ t : T then s 6; and t 6;.

64

This is by straightforward induction on Γ ` s↔ t : T. The main lemma in Crary’s proof is
then stated as follows (where we had to include in our formal version of this lemma that Γ
is valid).

Lemma 5.7 (Main Lemma)
If Γ ` s is t : T and valid Γ then Γ ` s⇔ t : T.
If Γ ` p↔ q : T then Γ ` p is q : T.

Proof. The proof is by simultaneous induction over T generalising over Γ , s, t, p and q.
The non-trivial case is for T = T1 → T2. For the first property we have the induction
hypotheses

ih1: ∀Γ s t. Γ ` s is t : T2 ∧ valid Γ −→ Γ ` s⇔ t : T2

ih2: ∀Γ s t. Γ ` s↔ t : T1 −→ Γ ` s is t : T1

and the assumptions Γ ` s is t : T1→T2 and valid Γ . We choose a fresh x (fresh w.r.t. Γ ,
s and t). We can thus derive that valid ((x, T1)::Γ) holds and hence (x, T1)::Γ ` Var x
↔ Var x : T1. From this we can derive (x, T1)::Γ ` Var x is Var x : T1 using the second
induction hypothesis. Using the our assumptions we can then derive (x, T1)::Γ ` App s
(Var x) is App t (Var x) : T2 which by the first induction hypothesis leads to (x, T1)::Γ `
App s (Var x)⇔ App t (Var x) : T2. Because we chosen x to be fresh, we can then derive
Γ ` s⇔ t : T1→T2, as needed. The proof for the other property uses Lemma 5.5, but we
omit the details. 2

In his notes Crary carefully designs the logical equivalence so that it has the following
property:

Lemma 5.8 (Logical Monotonicity)
If Γ ` s is t : T and Γ ⊆ Γ ′ and valid Γ ′ then Γ ′ ` s is t : T.

whose proof is by induction on the definition of the logical equivalence, appealing in the
TBase-case to Lemma 5.5. From logical monotonicity we can deduce the following corol-
lary:

Corollary 5.9 (Logical Monotonicity for Substitutions)
If Γ ′ ` θ is θ ′ : Γ and Γ ′⊆ Γ ′′ and valid Γ ′′ then Γ ′′ ` θ is θ ′ : Γ .

The next three lemmas infer some properties about logical equivalence needed in the
fundamental theorems. They are all by relatively routine inductions over the type T , so we
only state them here.

Lemma 5.10 (Logical Symmetry)
If Γ ` s is t : T then Γ ` t is s : T.

Lemma 5.11 (Logical Transitivity)
If Γ ` s is t : T and Γ ` t is u : T then Γ ` s is u : T.

Lemma 5.12 (Logical Weak Head Closure)
If Γ ` s is t : T and s ′ ; s and t ′ ; t then Γ ` s ′ is t ′ : T.

Note that in Lemma 5.12 we prove again only the case of closure under single weak-head
reductions since this is sufficient for the the fundamental theorems, which are shown next.

65

Theorem 5.13 (Fundamental Theorem 1)
If Γ ` t : T and Γ ′ ` θ is θ ′ : Γ and valid Γ ′ then Γ ′ ` θ(t) is θ ′(t) : T.

Proof. By induction over the definition of Γ ` t : T . We use the strong induction principle
for typing and instantiate the induction context so that binders avoid the substitutions θ and
θ′. This will give us the two facts

(∗) (x, s)::θ(t) = θ(t)[x:=s] and (x, s)::θ ′(t) = θ ′(t)[x:=s]

which state how we can pull apart a simultaneous substitution such that we obtain a separate
single substitution. These facts will be crucial in our induction argument since the left-hand
sides correspond to what we have by the induction hypotheses and the right-hand sides will
correspond to what we have to prove. These facts do, however, not hold for general x, only
for ones that are fresh for the substitution. Since we can assume that x is fresh for θ and θ′,
our argument goes through smoothly. In the T-Lam-case we have the induction hypothesis

ih: ∀Γ ′ θ θ ′. Γ ′ ` θ is θ ′ : (x, T1)::Γ ∧ valid Γ ′−→ Γ ′ ` θ(t2) is θ ′(t2) : T2

and we can assume Γ ′ ` θ is θ ′ : Γ and further that x # (Γ , θ, θ ′) (the first freshness
assumption comes from the T-Lam rule; the second and third from the strong induction).
We need to show that Γ ′ ` θ(Lam x.t2) is θ ′(Lam x.t2) : T1→T2 holds. For this it is
sufficient to show for all Γ ′′, s′ and t′ that

Γ ′′ ` App (Lam x.θ(t2)) s ′ is App (Lam x.θ ′(t2)) t ′ : T2

whereby we can assume that Γ ′⊆ Γ ′′, Γ ′′` s ′ is t ′ : T1 and valid Γ ′′. From these assump-
tions we obtain by Lemma 5.8 that Γ ′′ ` θ is θ ′ : Γ holds and by the freshness conditions
also that Γ ′′` (x, s ′)::θ is (x, t ′)::θ ′ : (x, T1)::Γ (we proved that logical equivalence can be
so extended in a side-lemma). Now by induction hypothesis we can infer that

Γ ′′ ` (x, s ′)::θ(t2) is (x, t ′)::θ ′(t2) : T2

holds. Now we can apply the facts mentioned under (∗) to obtain

Γ ′′ ` θ(t2)[x:=s ′] is θ ′(t2)[x:=t ′] : T2

Since we know that

App (Lam x.θ(t2)) s ′ ; θ(t2)[x:=s ′]

App (Lam x.θ ′(t2)) t ′ ; θ ′(t2)[x:=t ′]

hold, we can apply Lemma 5.12 to conclude with Γ ′′ ` App (Lam x.θ(t2)) s ′ is App (Lam
x.θ ′(t2)) t ′ : T2. This completes, the proof as the T-Lam-case is the only non-automatic
case in our formal proof. 2

The second fundamental lemma shows that logical equivalence is closed under simultane-
ous substitutions.

Theorem 5.14 (Fundamental Theorem 2)
If Γ ` s ≡ t : T and Γ ′ ` θ is θ ′ : Γ and valid Γ ′ then Γ ′ ` θ(s) is θ ′(t) : T.

Proof. By strong induction over the definition of the definitional equivalence Γ ` s ≡ t :
T. The induction context is again instantiated with θ and θ′. There are several interesting

66

cases. However we only show the cases for Q-Abs, Q-Beta and Q-Ext.
In the first case we have the induction hypothesis

ih: ∀Γ ′ θ θ ′. Γ ′ ` θ is θ ′ : (x, T1)::Γ ∧ valid Γ ′−→ Γ ′ ` θ(s2) is θ ′(t2) : T2

and need to show that

Γ ′ ` θ(Lam x.s2) is θ ′(Lam x.t2) : T1→T2

holds. Because by the strong induction principle, we can assume that x # (θ, θ ′), we are
able to immediately move the substitutions under the lambdas, i.e. we have to proceed with
showing

Γ ′ ` Lam x.θ(s2) is Lam x.θ ′(t2) : T1→T2.

This can be done by establishing Γ ′′ ` App (Lam x.θ(s2)) s ′ is App (Lam x.θ ′(t2)) t ′ : T2

for all Γ ′′, s′ and t′. The reasoning is similar to Theorem 5.13 and therefore omitted.
In the second case we need to establish that Γ ′ ` θ(App (Lam x.s1) s2) is θ ′(t1[x:=t2])

: T2 holds. Again, by the convenience afforded by the strong induction principle we can
immediately move the substitution inside the terms, that is we have to show

Γ ′ ` App (Lam x.θ(s1)) θ(s2) is θ ′(t1)[x:=θ ′(t2)] : T2

We omit the other details, because they just amount to using the induction hypotheses and
adjusting substitutions appropriately.

In the third case we do not have additional freshness assumptions about θ and θ′ (we
do not need them in this case). However, the side-conditions about x being fresh for s and
t will turn out to be crucial. The reason is that we can then simplify the terms

(∗∗) (x, s ′)::θ(s) = θ(s) and (x, t ′)::θ ′(t) = θ ′(t)

The induction hypothesis in this case is

∀Γ ′ θ θ ′. Γ ′ ` θ is θ ′ over (x,T1)::Γ ∧ valid Γ ′

−→ Γ ′ ` θ(App s (Var x)) is θ ′(App t (Var x)) : T2.

and we have the assumptions that Γ ′` θ is θ ′ : Γ , valid Γ ′ and x # (Γ , s, t). We show that
Γ ′` θ(s) is θ ′(t) : T1→T2 holds which by the assumption about the validity of Γ ′ amounts
to showing that

Γ ′′ ` App θ(s) s ′ is App θ ′(t) t ′ : T2

holds for all Γ ′′, s′ and t′, using the assumption about Γ ′⊆ Γ ′′, Γ ′′` s ′ is t ′ : T1 and valid
Γ ′′. Using Lemma 5.8 we can infer that

Γ ′′ ` θ is θ ′ : Γ

holds, from which we obtain

Γ ′′ ` (x, s ′)::θ is (x, t ′)::θ ′ : (x, T1)::Γ .

Using the induction hypothesis gives us then

Γ ′′ ` (x, s ′)::θ(App s (Var x)) is (x, t ′)::θ ′(App t (Var x)) : T2.

67

Moving the substitutions inside and using the facts (∗∗) we can conclude with

Γ ′′ ` App θ(s) s ′ is App θ ′(t) t ′ : T2

This completes the proof. 2

Completeness of the algorithm is now a simple consequence of the Theorem 5.14 by using
the fact that Γ ` Var x is Var x : T holds by Lemma 5.7 and that Γ ` [] is [] : Γ holds.

Corollary 5.15 (Completeness)
If Γ ` s ≡ t : T then Γ ` s⇔ t : T.

Thus we have formally verified that the algorithm says “yes” for all equivalent terms. The
soundness property is left as an exercise in [3]. We have not formalised this part.

6 About the Formalisation

We can generally remark that having a formalised proof allows one to quickly test changes
whether they affect the whole proof. This proved convenient for testing if lemmas or defini-
tions need to be strengthened or can be weakened. Having the formal proof at our disposal
also made it easy to compile this paper, as Isabelle has an extensive infrastructure for using
formal definitions in papers and providing sanity checks. This is especially useful to keep
formalisations and papers synchronised. The inductive rules and the statements of the lem-
mas and theorems presented in this paper have been generated from the formal definitions.

More specifically we can say that our formalisation follows a good deal the informal
reasoning of Crary (see Figure 1 which shows the first fundamental lemma as an example
in the Isar proof language [12]). The strong induction principles proved crucial in order
to get the inductions through. Such strong induction principles are derived automatically
for any nominal datatype (which can at the moment only include lambda-type of bindings,
but they can occur iterated and can bind different kinds of variables). The strong induction
principles are also derived automatically for inductive definition satisfying certain freshness
conditions (see [10]).

The only sore point we see in our formalisation is the lack of automation in inversion
lemmas. While this is not a serious problem in the formalisation of Crary’s chapter (we
only need one such inversion lemma and that can be proved in 5 lines), it can be painful in
other formalisations. We hope this problem can be solved in the future. To see what the
issues are, re-consider the T-Lam-rule:

x # Γ (x, T1)::Γ ` t : T2

Γ ` Lam x.t : T1→T2

T-Lam

and assume that we have given the typing judgement Γ ` Lam x.t : T . In in formal
reasoning we can match this judgement against all typing rules, which is only successful in
case of T-Lam. The informal matching would then produce that there exists an T1 and T2

such that T = T1→T2 and that (x, T1)::Γ ` t : T2 as well as x # Γ hold. However, this
is not how we can proceed in the nominal datatype package, where terms are α-equivalent
classes. There we obtain for the assumption Γ ` Lam x.t : T the “matcher” that there
exists Γ ′, x′, t′, T ′

1 and T ′
2 so that Γ = Γ ′, Lam x.t = Lam x ′.t ′ and T = T ′

1 → T ′
2. As

properties we obtain Γ ′ ` Lam x ′.t : T ′ and x ′ # Γ ′. Solving these equation would be no

68

theorem fundamental-theorem-1:
assumes a1: Γ ` t : T
and a2: Γ ′ ` θ is θ ′ over Γ
and a3: valid Γ ′

shows Γ ′ ` θ(t) is θ ′(t) : T
using a1 a2 a3

proof (nominal-induct Γ t T avoiding: θ θ ′ arbitrary: Γ ′ rule: typing.strong-induct) (**)
case (T-Lam x Γ T1 t2 T2 θ θ

′Γ ′)
have vc: x # θ x # θ ′ by fact (variable convention)
have fs: x #Γ by fact (freshness condition from the rule)
have asm1: Γ ′ ` θ is θ ′ over Γ by fact
have ih:

∧
θ θ ′Γ ′. [[Γ ′ ` θ is θ ′ over (x,T1)::Γ ; valid Γ ′]] =⇒ Γ ′ ` θ(t2) is θ ′(t2) : T2

by fact (induction hypothesis)
show Γ ′ ` θ(Lam x . t2) is θ ′(Lam x . t2) : T1→T2 using vc (*)
proof (simp, intro strip) (unfolding the definition of logical equivalence)
fix Γ ′′ s ′ t ′

assume sub: Γ ′⊆ Γ ′′

and asm2: Γ ′′̀ s ′ is t ′ : T1

and val: valid Γ ′′

from asm1 val sub have Γ ′′ ` θ is θ ′ over Γ using logical-subst-monotonicity by blast
with asm2 vc fs have Γ ′′ ` (x,s ′)::θ is (x,t ′)::θ ′ over (x,T1)::Γ (*)

using equiv-subst-ext by blast
with ih val have Γ ′′ ` ((x,s ′)::θ)(t2) is ((x,t ′)::θ ′)(t2) : T2 by auto
with vc have Γ ′′̀ θ(t2)[x::=s ′] is θ ′(t2)[x::=t ′] : T2 by (simp add: psubst-subst) (*)
moreover
have App (Lam x . θ(t2)) s ′ ; θ(t2)[x::=s ′] by auto
moreover
have App (Lam x . θ ′(t2)) t ′ ; θ ′(t2)[x::=t ′] by auto
ultimately show Γ ′′̀ App (Lam x . θ(t2)) s ′ is App (Lam x . θ ′(t2)) t ′ : T2

using logical-weak-head-closure by auto
qed

qed (auto) (all other cases are automatic)

Fig. 1. The complete formalised proof of the first fundamental lemma (Lemma 5.13) in the readable Isar proof-language. In
the places marked with a single star, one appeals in informal reasoning to the variable convention about the binder x. This
variable convention is given in our proof by the strong induction principle and by declaring that x should avoid θ and θ′ (see
line marked with two stars). The fact logical-subst-monotonicity is Corollary 5.9; equiv-subst-ext establishes that for a fresh
x one can extend the logical equivalence of simultaneous substitutions; and psubst-subst is a lemma that allows us to pull
apart a simultaneous substitution in order to obtain a single substitution. We can do this provided the variable convention
about x holds.

problem if we had term-constructors that are injective (that is a characteristics of standard,
unquotioned datatypes). However, our constructors for α-equivalence classes are clearly
not injective. What we have to do is to analyse Lam x.t = Lam x ′.t ′ according to the built-
in notion of the nominal datatype package for α-equivalence. We end up with two cases:
one is simple and the other needs explicit renamings. However these reasoning maneuvers
should really be performed automatically by the nominal datatype package.

69

7 Conclusion

We presented a formalisation of Crary’s case study about logical relations. This is in ad-
dition to the usual strong normalisation proof of the simply-typed lambda-calculus, which
has been part of the nominal datatype package for quite some time. It remains to be seen
whether the nominal datatype package is up to the task of formalising strong normalisation
for System F, where also types have binders. In this case the definition of logical relations
is not completely trivial like in the completeness proof we presented above.

We are aware of work by Schürmann and Sarnat about formalising logical relation
proofs in Twelf [7]. This involves a clever trick of implementing an object logic in Twelf
and coding the logical relation proof in this object logic. We unfortunately do not know
how convenient this style of reasoning is. We are also aware that Aydemir et al [2] use
a locally nameless approach (which goes back to work by McKinna and Pollack [5]) to
representing binders and work on formalising programming language theory. It would be
interesting to compare in detail our formalisation and the approach taken by Aydemir et al.
Our initial opinion is that in our formalisation we do not have to deal with the concepts of
open and closed terms; and that we do not have to discard any pre-terms.

The sources of our formalisation are included in the nominal datatype package (see
http://isabelle.in.tum.de/nominal/). From the web-page of the first author
one can also download a longer version of the documented proofs.

Acknowledgements:
We thank Karl Crary for the discussions about his proof. We are also very grateful to
Carsten Schürmann who made us aware of typos and omissions in an early version of this
paper.

References
[1] T. Altenkirch. A Formalization of the Strong Normalisation Proof for System F in LEGO. In Proc. of TLCA, volume

664 of LNCS, pages 13–28, 1993.

[2] B. Aydemir, A. Charguéraud, B. C. Pierce, and S. Weirich. Engineering Aspects of Formal Metatheory, 2007.
Submitted for publication.

[3] K. Crary. Logical Relations and a Case Study in Equivalence Checking. In B. C. Pierce, editor, Advanced Topics in
Types and Programming Languages, pages 223–244. MIT Press, 2005.

[4] R. Harper and D. Licata. Mechanizing Metatheory in a Logical Framework. Journal of Functional Programming,
2007. To appear.

[5] J. McKinna and R. Pollack. Pure Type Systems Formalized. In Proc. of the International Conference on Typed Lambda
Calculi and Applications (TLCA), number 664 in LNCS, pages 289–305. Springer-Verlag, 1993.

[6] A. M. Pitts. Nominal Logic, A First Order Theory of Names and Binding. Information and Computation, 186:165–193,
2003.

[7] C. Schürmann and J. Sarnat. Towards a Judgemental Reconstruction of Logical Relation Proofs. Submitted, 2007.

[8] W. W. Tait. Intensional Interpretations of Functionals of Finite Type I. Journal of Symbolic Logic, 32(2):198–212,
1967.

[9] C. Urban and S. Berghofer. A Recursion Combinator for Nominal Datatypes Implemented in Isabelle/HOL. In Proc. of
the 3rd International Joint Conference on Automated Reasoning (IJCAR), volume 4130 of LNAI, pages 498–512, 2006.

[10] C. Urban, S. Berghofer, and M. Norrish. Barendregt’s Variable Convention in Rule Inductions. In Proc. of the 21th
International Conference on Automated Deduction (CADE), 2007. To appear.

[11] C. Urban and C. Tasson. Nominal Techniques in Isabelle/HOL. In Proc. of the 20th International Conference on
Automated Deduction (CADE), volume 3632 of LNCS, pages 38–53, 2005.

70

http://isabelle.in.tum.de/nominal/

[12] M. Wenzel. Isar — A Generic Interpretative Approach to Readable Formal Proof Documents. In Proc. of the 12th
International Conference on Theorem Proving in Higher Order Logics (TPHOLs), number 1690 in LNCS, pages 167–
184, 1999.

71

LFMTP 2007

Towards Formalizing Categorical Models
of Type Theory in Type Theory

Alexandre Buisse1

Department of Computer Science and Engineering
Chalmers University of Technology
Rännvägen 6, S-41296 Göteborg

Peter Dybjer2

Department of Computer Science and Engineering
Chalmers University of Technology
Rännvägen 6, S-41296 Göteborg

Abstract

This note is about work in progress on the topic of “internal type theory” where we investigate the internal
formalization of the categorical metatheory of constructive type theory in (an extension of) itself. The
basic notion is that of a category with families, a categorical notion of model of dependent type theory. We
discuss how to formalize the notion of category with families inside type theory and how to build initial
categories with families. Initial categories with families will be term models which play the role of canonical
syntax for dependent type theory. We also discuss the formalization of the result that categories with finite
limits give rise to categories with families. This yields a type-theoretic perspective on Curien’s work on
“substitution up to isomorphism”. Our formalization is being carried out in the proof assistant Agda 2
developed at Chalmers.

1 Introduction

Most work on the metatheory of constructive type theory use standard informal
mathematical metalanguage. Although such metatheory often have an intuitive
constructive character it is striking that most authors rely on classical set-theoretic
notions when explaining concepts rigorously. For example, when building models of
constructive type theory it is common to first build a partial interpretation function
mapping raw terms to their meaning, and only afterwards show that the meaning
of well-typed terms is defined. The constructive meaning of this is not obvious, at
least if we use constructive type theory itself as the metalanguage. The functions
in this theory are all total, so partial functions need to be encoded as total func-
tions, and this will have formal repercussions. Another example is the treatment

1 Email: buisse@cs.chalmers.se
2 Email: peterd@cs.chalmers.se

72

mailto:buisse@cs.chalmers.se
mailto:peterd@cs.chalmers.se

of the inductive-recursive definitions which are needed in certain model construc-
tions and normalization proofs. Although such definitions are constructively valid
[12,13,14,15] most authors rely on their interpretation in set theory [23,3,1,2] and
this also has formal repercussions.

In this project we plan to show that it is possible to rely entirely on constructive
notions on the metalevel. The idea of doing such constructive model theory goes
back to Martin-Löf [19]. However, Martin-Löf relied on an informal constructive
metalanguage, while we here are more specific and work with suitable versions of
Martin-Löf type theory as formal metalanguages. We are checking our proofs in
the proof assistant Agda 2 which is currently under development by Ulf Norell at
Chalmers. In this way we are turning constructive metamathematics into metapro-
gramming. A proof of an abstract result such as “any category with finite limits
is a category with families” turns into a “compiler” which maps any input data
structure representing a category with finite limits into an output data structure
representing a category with families. The type-system will ensure that this com-
piler is correct. When we program this compiler in the Agda system we can actually
run it on concrete examples.

It is worth-while pointing out that Martin-Löf type theory is intended to be a
full-scale language for constructive mathematics just as Zermelo-Fraenkel set theory
is a full-scale language for classical mathematics. Just as it might be necessary to
postulate the existence of certain additional large cardinals in order to discuss the
metatheory of set theory inside set theory, we will here need to add certain analogues
of large cardinals to constructive type theory.

Previous work on constructive model theory which use a formal constructive
metalanguage includes Pollack’s work on Lego in Lego [22] and Barras’ work on
Coq in Coq [4]. Both authors deal with the usual lambda calculus based syntax of
constructive type theory. Here we will instead base our work on a categorical notion
of model of type theory. The formal system of type theory will be represented
abstractly as an initial category with families (with extra structure). A category
with families (cwfs) [11] is a notion of model of (the most basic rules of) dependent
type theory, and the initial such is the “term model”. There are several reasons
for choosing a categorical approach. One of them is to achieve more “canonical”
results. Syntactic approaches tend to depend on a number of detailed choices.
Should we choose ordinary named variables or de Bruijn’s nameless ones, or should
we use de Bruijn levels? Is the rule of substitution a primitive or derived rule?
Etc. Categorical notions tend to be more stable and canonical, although it must be
admitted that certain representation issues remain. Other arguments for basing our
approach on category theory are well-known from categorical type theory: we get
a clear notion of model, access to many powerful results in category theory, and a
mathematically elegant approach which hopefully also leads to a more economical
formalization.

Our work builds on the second author’s paper “Internal Type Theory” [11].
In that paper the notion of a category with families was introduced as a notion
of model of dependent type theory with a particularly straightforward connection
to syntax. The formalization of cwfs inside type theory is also discussed. Such a
formalization is called an ”internal type theory” since it is analogous to the notion

73

of internal category. In any category with suitable extra structure (finite limits) we
can define what it means to be an internal category object. Similarly, in any cwf
with extra structure (modelling Π-types, Σ-types and universes) we can define a
notion of internal cwf.

Our work will rely on previous experience of formalization of category theory
inside constructive type theory, see for example the development of elementary
category theory in Huet and Saibi’s book on Constructive Category Theory [18].

Plan of the note.
In Section 2 we present the notion of a cwf in classical metalanguage. In Section

3 we explain some of the features of the proof assistant Agda 2 which we use for
our formalization. In Section 4 we present the usual approach to the formalization
of categories inside type theory, continue with the formalization of the category
of families of sets, and then arrive at the notion of category with families inside
type theory. In Section 5 we sketch how to formalize the result that categories
with finite limits give rise to cwfs. We discuss the close relationship to Curien’s
paper “Substitution up to Isomorphism” [7] and contrast it to a similar result by
Hofmann [16] formulated using classical categorical notions. In Section 6 we discuss
the construction of initial categories with families.

2 Categories with families

Categories with families (cwfs) [11,17] are variants of Cartmell’s categories with
attributes [16,21]. The point of the reformulation is to get a more direct link to the
syntax of dependent types. In particular we avoid reference to pullbacks, which give
rise to a conditional equation when formalized in a straightforward way. Cwfs can
therefore be formalized as a generalized algebraic theory in Cartmell’s sense with
clear similiarities to Martin-Löf’s substitution calculus for type theory [20].

Let Fam be the category of families of sets, where an object is a family of sets
(B(x))x∈A and a morphism with source (B(x))x∈A and target (B′(x′))x′∈A′ is a pair
consisting of a function f : A→ A′ and a family of functions g(x) : B(x)→ B′(f(x))
indexed by x ∈ A.

The components of a cwf are named after the corresponding syntactic notions.

Definition 2.1 A category with families consists of the following four parts:

• A base category C. Its objects are called contexts and its morphisms are called
substitutions.

• A functor T : Cop → Fam. We write T (Γ) = (Γ ` A)A∈Type(Γ), where Γ is
an object of C, and call it the family of terms indexed by types in context Γ.
Moreover, if γ is a morphism of C then the two components of T (γ) interpret
substitution in types and terms respectively. We write A[γ] for the application
of the first component to a type A and a[γ] for the application of the second
component to a term a.

• A terminal object [] of C called the empty context.
• A context comprehension operation which to an object Γ of C and a type A ∈

74

Type(Γ) associates an object Γ;A of C; a morphism pΓ,A : Γ;A → Γ of C (the
first projection); and a term qΓ,A ∈ Γ;A ` A[pΓ,A] (the second projection). The
following universal property holds: for each object ∆ in C, morphism γ : ∆→ Γ,
and term a ∈ ∆ ` A[γ], there is a unique morphism θ = 〈γ, a〉 : ∆ → Γ;A, such
that p ◦ θ = γ and q[θ] = a.

A basic example of a cwf is obtained by letting C = Set, the category of small
sets, Type(Γ) be the set of Γ-indexed small sets, and

Γ ` A=
∏
x∈Γ

A(x)

A[δ](x) =A(δ(x))
a[δ](x) = a(δ(x))

[] = 1

Γ;A=
∑
x∈Γ

A(x)

Definition 2.2 Let (C, T) denote a cwf with base category C and functor T . A
morphism of cwfs with source (C, T) and target (C ′, T ′) is a pair (F, σ), where
F : C → C ′ is a functor and σ : T → T ′F is a natural transformation, such that
terminal object and context comprehension are preserved on the nose.

Small cwfs and morphisms of cwfs form a category Cwf .
As already mentioned the notion of a category with families can be formalized

as a generalized algebraic theory in the sense of Cartmell [6]. It is instructive to look
at the rules of this theory, but we do not have room in this short note to display
them, and refer the reader to Dybjer [11].

3 The proof assistant Agda 2

We will work in Martin-Löf’s constructive type theory and use the proof assistant
Agda 2 for our formalization. Agda 2 is an implementation of Martin-Löf’s logical
framework with support for adding new inductively defined sets and recursively de-
fined functions using pattern matching. It is thus suitable for implementing various
fragments of Martin-Löf type theory. It can also be viewed as a dependently typed
programming language. Its syntax is quite close to Haskell. The main difference to
Haskell (and other standard functional languages such as OCAML) is that it has
dependent types. It is important to point out that Agda does not itself force the
user to define only well-founded data types and terminating functions, although at
a later stage such termination and well-foundedness checkers will be available. Cur-
rently it is up to the user to make sure that a specific logical discipline is followed
and to explain and justify this discipline.

If we remove Agda’s dependent types, we get a language rather close to Haskell.
However, Agda doesn’t have the implicit Hindley-Milner polymorphism of Haskell.
In Haskell we have for example the polymorphic identity function

id :: a -> a

stating that for any type a we have an identity funciton on it. In Agda we have to

75

explicitly quantify over the type Set of small types. We write

id : (A : Set)→ A→ A

which means that for any small type A we have an identity function idA : A→ A.
(In general Agda uses the notation (x : α)→ β for the type of functions which map
an object x of type α into a result in β, where the result type β may depend on x.)
This is why one says that Agda is an implementation of Martin-Löf’s monomorphic
type theory: id has a unique type.

However, it is cumbersome to work in monomorphic type theory since one has
to manipulate large expressions. Therefore Agda allows you to suppress certain
arguments when they can be inferred from the context. We call such arguments
implicit. For example, whenever the function id gets a second argument a, Agda
tries to infer the first argument A, which is the type of a. The user can inform Agda
that the first argument of id is such an implicit argument by enclosing it in braces:

id : {A : Set} → A→ A

Thus, during type-checking of an expression id a the system will know that a is the
second argument and try to infer the first argument.

Sometimes a user may want to give an implicit argument explicitly, for example,
in situations where the system cannot infer it. Such explicit implicit arguments are
enclosed in braces. For example, in

id {Bool} : Bool→ Bool

the user has made the first argument Bool explicit.
Agda 2 has a notion of record, that is a type of tuples with named components

(field). To instantiate it, one needs to instantiate all the fields. A record is really a
module, and thus the field A of a record r of type R can be accessed with the syntax
R.A r: declaring the record type R automatically creates a module with the same
name and one projection function for each field, which take as their first argument
a structure of type R.

Here is an example. A record for equivalence relations on a given set A consists
of four fields: a binary relation on A together with proofs of reflexivity, symmetry,
and transitivity. Formally:

record Equivalence (A : Set) : Set1 where
== : A→ A→ Set

refl : {x : A} → x == x

sym : {x y : A} → x == y → y == x

trans : {x y z : A} → x == y → y == z → x == z

Note that the record is a large type, that is, a member of the universe Set1.
The central notion of a setoid, that is, a set with an equivalence relation, will

be used extensively:

record Setoid : Set1 where
car : Set
rel : Equivalence car

76

To get a nicer notation, we’ll define a function to access directly to the carrier
of a setoid:

| | : (S : Setoid)→ Set

|S|=Setoid.carS

4 Categories with families in type theory

We will follow the recipe for formalizing categories with families in type theory
(internal cwfs) described in Dybjer [11]. It is well-known how to formalize basic
categorical notions such as category, functor, natural transformation, etc [18] in
type theory. It is also well-known how to formalize the type-theoretic analogue Set
of the category of sets in type theory. The objects of this category are setoids (or
E-sets) that is sets with equivalence relations. The arrows are functions respecting
equivalence relations.

The crucial issue for the formalization of cwfs is the formalization of the category
Fam, and we follow the approach in the paper Internal Type Theory [11]. (We will
however also investigate an alternative proof-irrelevant definition of setoid-indexed
families used in a recent implementation of the category of setoids in Agda 2 by
Thierry Coquand and Ulf Norell.)

Once we have defined the category Fam it is straightforward to formalize the
rest of the cwf-structure in type theory. Note that if a cwf is formally represented as
a quadruple consisting of the base category, the family valued functor, the terminal
object, and context comprehension, where each of these components itself is a tuple,
we can “flatten” this structure into a tuple where each component corresponds to
a rule in a substitution calculus for type theory. This calculus is closely related to
the calculus of explicit substitutions used by Curien [7]. Like this calculus there is
an explicit construction for the type conversion rule [11]. We can thus see how the
type-theoretic perspective gives a rational reconstruction of Curien’s calculus.

4.1 Categories

A category in type theory consists of a set of objects, hom-setoids for each pair of
objects, an identity arrow for each object, composition respecting equivalence of the
arrows in the hom-setoids, and proofs of the identity and associativity laws. (Note
that we have explicit proof objects for each law.)

open Setoid

record Cat : Set2 where
Obj : Set1
−→ : Obj → Obj → Setoid

id : {A : Obj} → |A −→ A|
◦ : {A B C : Obj} → |B −→ C| → |A −→ B| →

|A −→ C|
. . .

77

idL : {A B : Obj} {f : A −→ B} → == (rel(A −→ B))
(id ◦ f) f

. . .

We have chosen to formalize a notion of locally small category where hom-setoids
must be “small” (the carrier is a set), but an object can be “large” (a member of
the universe Set1 of large sets). Examples of such locally small categories is the
category Set of setoids and the category Fam of setoid-indexed families of setoids.
Note also the type of locally small categories is “very large” (a member of a second
universe Set2 of very large sets).

4.2 The category Fam

To define the category Fam, we need the notions of setoid-indexed family of setoids,
and of morphism between such (the respecitve objects and arrows of Fam). We have
seen in section 3 how to define a setoid as a record. The next step is to define a
morphism between setoid as a function between the carriers together with a proof
that it maps equivalent elements to equivalent elements:

record ⇒ (S1 S2 : Setoid) : Set where
map : |S1| → |S2|
stab : {x y : |S1|} → x == 3 y → (map x) == (map y)

Identity and composition of setoid morphisms are easy to add. For instance,

id : {S : Setoid} → S ⇒ S

id= record {map = \x→ x ; stab = \p→ p}

We also add an extensional equality ==⇒:

==⇒ : {S1 S2 : Setoid} → S1 ⇒ S2 → S1 ⇒ S2 → Set

F1 ==⇒ F2 = (forall x→ (map F1 x) ==⇒ (map F2 x))→ True

We are now ready to define the notion of a family of setoids indexed by a given
setoid S: a fibre map that indexes setoids by elements of the carrier of the indexing
setoid, a reindexing function ι that maps the equivalence relation of the indexing
setoid into the indexed setoids and proofs that this reindexing function is coherent
with the fact that the relation is an equivalence.

record SetoidFam (S : Setoid) : Set1 where
fibre : |S| → Setoid

ι : {x x′ : |S|} → x == x′ → (fibre x′)⇒ (fibre x)
idcoh : {x : |S|} → ι (refl (rel S) {x}) ==⇒ id {fibre x}

symcohL : {x y : |S|} → (p : x == y)→
ι (sym (rel S) {x} {y} p) ◦ (ι p) ==⇒ id

3 Here we redefined == with the type {S : Setoid} → Equivalence. == (rel S)

78

symcohR : . . .
transcoh : {x y z : |S|} → (p : x == y)→ (p′ : x == z)→

ι (trans (rel S) {x} {y} {z} p p′) ==⇒ (ι p) ◦ (ι p′)

The last step is to define what a morphism between objects of type SetoidFam
is. There is one map for each component: a map indexmap between the index
setoids, a map fibremap between the fibres, and a proof ιmap that reindexing
commutes with the map between fibres (see the upper part of the figure below):

record =⇒ {S1 S2 : Setoid}
(F1 : SetoidFam S1) (F2 : SetoidFam S2) : Set1 where

indexmap : S1 ⇒ S2

fibremap : (x : |S1|)→ (fibre F1 x)⇒ (fibre F2 ((map indexmap x))
ιmap : {x x′ : |S1|} → (p : x == x′)→ ((fibremap x) ◦ (ι F1 p))

==⇒ (ι F2 (stab indexmap p)) ◦ (fibremap x′)

The figure 1 illustrates the structure of a morphism in Fam.

The rest of the properties needed for Fam to be a category are then straight-
forward, though particularily tedious.

x x′

p

ι p

indexmap

fibre x′

fibremap(fibre x)
fibremap(fibre x′)

fibre x

Fig. 1. Representation of F1 =⇒ F2

79

4.3 Cwfs

Just as in the classical definition of a cwf in Section 2, a cwf inside type theory is a
quadruple consisting of a base category C, a functor T : Cop → Fam, a terminal ob-
ject of C, and a context comprehension. Above we have outlined the type theoretic
definition of a category and of the category Fam. The type-theoretic definition
of a functor is well-known [18]. Furthermore, it is clear what a terminal object
is type-theoretically, and we can express the structure of context comprehension
type-theoretically. All this leads to the definition of cwf inside type theory (i.e. the
notion of internal cwf), although we do not have room to display the details.

We remark that our formalization of locally small cwfs in type theory has only
used a logical framework with Π-types, records (we could equivalently use Σ-types),
and the universes Set, Set1, and Set2. (We don’t need Set2 if we only want to
formalize small cwfs.)

4.4 Cwfs with extra structure

The notion of cwf just models the most basic structure of dependent types: context
and variable formation and substitution in types and terms. Therefore we usually
want to work with cwfs with extra structure corresponding to adding type formers
(Π, Σ, universes, natural numbers, etc) to dependent type theory. This does not
give rise to any further formalization problems. See the Internal Type Theory paper
[11] for further explanation.

5 Categories with finite limits are cwfs

Here we outline the proof inside type theory that categories with finite limits are
cwfs. This proof will help us understand how cwfs relate to standard ideas in
categorical type theory: why types can be modelled as projection arrows, why
terms can be modelled as sections of these projections, and why substitution in
types can be modelled by pullbacks. We will discuss the type-theoretic perspective
on the problem of “substitution-up-to-isomorphism” and show the similarity with
Curien’s approach [7]. We will also contrast it to Hofmann [16], who used standard
categorical notions assuming set-theoretic metalanguage.

5.1 Categories with finite limits in type theory

Categories with finite limits can be formalized as categories with terminal objects
and pullback. (A category with terminal objects and pullbacks has all finite limits.)
As a type-theoretic structure a pullback is a function that given three objects and
two arrows constructs an object, two arrows, proofs of commutativity of the square,
and a proof of the universal property. Here is the formalization in Agda.

record IsPull {A B C D : Obj}(f : A −→ B)(g : A −→ C)(f ′ : C −→ D)
(g′ : B −→ D)(square : g′ ◦ f == f ′ ◦ g) : Set1 where

h : (A′ : Obj)(h1 : A′ −→ C)(h2 : A′ −→ B)(tr : f ′ ◦ h1 == g′ ◦ h2)
→ ∃ ! \(h : A′ −→ A)→ (g ◦ h == h1) ∧ (f ◦ h == h2)

80

record Pullback {B C D : Obj}(g′ : B −→ D)(f ′ : C −→ D) : Set1 where
A : Obj
f : A −→ B

g : A −→ C

square : g′ ◦ f == f ′ ◦ g
pull : isPull f g f ′ g′ square

record PullCat : Set2 where
pullprop : {B C D : Obj}(g′ : B −→ D)(f ′ : C −→ D)→ pullback g′ f ′

5.2 Slice categories

We shall recover the structure of cwfs by modelling types by objects in slice cate-
gories, and by modelling substitution in types by (the object part of) the pullback
functor between slice categories.

Given any category C and an object Γ of that category we can construct the
slice category C/Γ. The objects are pairs of objects A in C and arrows f : A −→ C.
The proof that C/Γ is a category is quite easily derived from the fact that C is also
a category.

5.3 Cwfs from categories with finite limits

We get the cwf structure from a category with finite limits in the following way:

• The base categories are the same.
• The set of types in a context Γ is the set of objects of the slice category C/Γ.

Equality of types is isomorphism in the slice category.
• The set of terms of a given type A in context Γ is the set of sections of the arrow

in C with target Γ which models A. Equality of terms is inherited from equality
of arrows in the base category. (Proofs that these arrows are sections are not
relevant to the equality.)

• Substitution in types is obtained by the pullback construction.
• Substitution in terms is also extracted from the pullback.
• Etc.

We here show part of the Agda formalization of how substitution in types is modelled
by the pullback construction (types are omitted when not important).

An object of the slice category C/Γ is an arrow, but in order to typecheck, we
need to also specify the codomain of this arrow:

record SlObj (Γ : Obj) : Set1 where
dom : Obj
arr : dom −→ Γ

A section of an arrow f : ∆→ Γ is

81

record Section (Γ : Obj) (A : SlObj Γ) : Set where
sect : Γ −→ (dom A)
idL : (arr A) ◦ sect == id

We are now ready to proceed:

Context = Obj

Subst Γ ∆ = Γ −→ ∆
Type Γ = SlObj Γ
Term Γ A = Section Γ A

subst : {Γ ∆ : Context} → Type Γ→ Subst ∆ Γ→ Type ∆
subst {Γ} {∆} T g = let p = pullprop (arr Γ T) g in

record {dom = pullback.A p; arr = pullback.g p}

We can compare our interpretation to the approach taken in the paper “Sub-
stitution up to Isomorphism” by Curien [7]. Like us, Curien interprets equality of
types as isomorphism in the slice category. Another similarity is that he uses an
explicit substitution calculus for dependent type theory not unlike our initial cwf
which has an explicit constructor for applications of the rule of type equality.

This approach can be contrasted to Hofmann’s work on interpreting type theory
in locally cartesian closed categories [16]. In this work he shows how to construct
a category with attributes from a category with finite limits using a technique due
to Bénabou [5]. Since categories with attributes are equivalent to categories with
families this ought to be highly relevant to our work. However, Hofmann uses
standard category theory relying on set-theoretic metalanguage, and his notion of
category with attributes is a “strict” one, just as our set-theoretic notion of cwf in
Section 2. To show that in this classical setting categories with finite limits form
cwfs, we cannot just interpret substitution as “chosen” pullbacks, unless this choice
satisfies the laws of substitution in types up to equality. Hofmann states that it is an
open problem to find such a choice. When working in type-theoretic metalanguage
on the other hand we have the freedom to interpret equality of types as isomorphism
of objects, and thus there is no need for Bénabou’s construction.

However, what we gain when avoiding Bénabou’s construction we have to pay
back when constructing cwfs (with extra structure) from syntax and proving their
initiality. This work is similar to the coherence problem discussed by Curien.

6 Initial cwfs (with extra structure)

If we work in set-theoretic metalanguage initial cwfs exist. This is a corollary of a
theorem of Cartmell [6] who showed that any generalized algebraic theory has an
initial model in an appropriate categorical sense.

We shall discuss two ways of constructing initial cwfs with extra structure inside
type theory. Without the extra structure the initial cwf is trivial; it is nothing
but the category with one object and one arrow, where the family valued functor
returns the empty family of sets. To get interesting extra structure we postulate the

82

existence of Π and Σ and a universe of small types. We call this an LF-cwf, since
it is the categorical analogue of Martin-Löf’s logical framework. We remark that
the discussion below is not very dependent on the exact choice of extra structure,
except that some properties will rely on normalization.

6.1 Strongly typed version

This version is obtained by taking the definition of an LF-cwf as a record and turn it
into an inductive definition. The notion of LF-cwf specifies seven different families
of sets, one corresponding to each of the seven forms of judgement. Each of these
will turn into a formation rule for seven inductively defined sets of “derivations”
of judgements. The notion of LF-cwf furthermore specifies a number of different
operations each corresponding to a rule of inference. Each of these operations will
become a constructor in the inductive definition of the initial cwf.

For instance, contexts are defined by the grammar Γ ::= [] | Γ �A where A is a
type. Correspondingly there will be two constructors for contexts in the initial cwf,
with the following types formalized in Agda:

mutual
data Ctxt : Set where

[] : Ctxt
� : (Γ : Ctxt)→ Type Γ→ Ctxt

data Type : Ctxt→ Set where
. . .

However, it is important to remark that this inductive definition falls outside the
standard schema of mutual inductive definitions in constructive type theory [10].
Nevertheless, we believe that it is a constructively meaningful definition. As part of
our investigation we plan to generalize the schema in [10,15] to cover that schema,
and also to provide set-theoretic semantics by extending [9].

6.2 The category of cwfs in type theory.

Although the above seems like a reasonable candidate for a strongly typed notion
of term model of type theory, we would like to prove formally in type theory that
we have an initial LF-cwf, that is, that it forms an initial object in the category of
LF-cwfs. In Section 2 we defined a notion of cwf morphism which preserves chosen
structure “on the nose”. However,the type-theoretic definition of a category does
not equip objects with a notion of equality. The natural notion of equality of objects
is isomorphism, and hence we would like to use a notion of cwf morphism which
preserves the cwf structure up to isomorphism. To spell out the definition of the
category of cwfs and construct an initial object (together with the unique arrow to
another object) is another part of our project. Given such a definition it should
be straightforward to see that the above strongly typed version is initial since it
means that each construction is interpreted as the corresponding notion in a given
cwf. In a sense the elimination principle is the unique arrow from the initial cwf to
an arbitrary cwf, at least roughly speaking, cf e g the proof of the correspondence
between initiality and elimination principles in [14].

83

6.3 Raw term version

An alternative definition of the initial cwf can be obtained by first defining raw
contexts, raw types, etc.

mutual
data RawCtxt : Set where

[] : RawCtxt
� : RawCtxt→ RawType→ RawCtxt

data RawType : Set where
. . .

As a second step we define a predicate “valid context” on RawCtxt, a binary relation
“valid type” between RawCtxt and RawType, etc. In this way we give a mutual
inductive definition of all the seven forms of judgement viewed as predicates on raw
notions.

Finally, we would like to show that this also yields an initial cwf by defining a
cwf-structure-preserving map into an arbitary cwf, and to show the uniqueness of
this map.

7 Conclusion and future work

As already mentioned this is work in progress. An auxiliary aim is to test the
suitability of the new proof assistant Agda 2 for the purpose of formalizing category
theory. Agda 2.0.0 was just released (June 2007) and still lacks many features of a
more mature system such as Coq or even its predecessors AgdaLight, Agda 1 and
Alfa. For example, there is still no support for equational reasoning and automatic
proof construction. The implicit argument feature of Agda 2 is used heavily in this
work, but we have encountered some performance problems.

After completing the formalizations described in this paper, we would like to add
more structure to categories with families. In particular we would like to formalize
the full Seely-Curien [24,7] interpretation of Martin-Löf type theory (understood as
categories with families with extra structure modelling Π- and Σ-types and exten-
sional equality types) in locally cartesian closed categories.

Another direction of future research would be to formalize key metatheoretical
results of Martin-Löf type theory such as decidability of equality and type-checking
based on categories with families [1,2]. This is related to the work by Danielsson [8]
who presented such a formalization of a normalization by evaluation result in the
system AgdaLight, a precursor of the Agda 2 system. Danielsson did however not
base his work on a categorical presentation of dependent type theory.

References

[1] A. Abel, K. Aehlig, and P. Dybjer. Normalization by evaluation for Martin-Löf type theory with one
universe. In ”23rd Conference on the Mathematical Foundations of Programming Semantics, MFPS
XXIII, Electronic Notes in Theoretical Computer Science, pages 17–40. Elsevier, 2007.

[2] A. Abel, T. Coquand, and P. Dybjer. Normalization by evaluation for Martin-Lf type theory with
equality judgements. In Proceedings of the 6th Annual IEEE Symposium on Logic in Computer Science,
July 2007. To appear.

84

[3] P. Aczel. Frege Structures and the Notions of Proposition, Truth, and Set, pages 31–59. North-Holland,
1980.

[4] B. Barras. Auto-validation d’un système de preuves avec familles inductives. Thèse de doctorat,
Université Paris 7, Nov. 1999.

[5] J. Benabou. Fibered categories and the foundations of naive category theory. J. Symb. Log, 50(1):10–
37, 1985.

[6] J. Cartmell. Generalized algebraic theories and contextual categories. Annals of Pure and Applied
Logic, 32:209–243, 1986.

[7] P.-L. Curien. Substitution up to isomorphism. Fundamenta Informaticae, 19(1,2):51–86, 1993.

[8] N. A. Danielsson. A formalisation of a dependently typed language as an inductive-recursive family.
In Proceedings of the TYPES meeting 2006. Springer-Verlag, 2007.

[9] P. Dybjer. Inductive sets and families in Martin-Löf’s type theory and their set-theoretic semantics.
In G. Huet and G. Plotkin, editors, Logical Frameworks, pages 280–306. Cambridge University Press,
1991.

[10] P. Dybjer. Inductive families. Formal Aspects of Computing, 6:440–465, 1994.

[11] P. Dybjer. Internal type theory. In TYPES ’95, Types for Proofs and Programs, number 1158 in
Lecture Notes in Computer Science, pages 120–134. Springer, 1996.

[12] P. Dybjer. A general formulation of simultaneous inductive-recursive definitions in type theory. Journal
of Symbolic Logic, 65(2):525–549, June 2000.

[13] P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive definitions. In J.-Y. Girard,
editor, Typed Lambda Calculi and Applications, volume 1581 of Lecture Notes in Computer Science,
pages 129–146. Springer, April 1999.

[14] P. Dybjer and A. Setzer. Induction-recursion and initial algebras. Annals of Pure and Applied Logic,
124:1–47, 2003.

[15] P. Dybjer and A. Setzer. Indexed induction-recursion. Journal of Logic and Algebraic Programming,
2006.

[16] M. Hofmann. On the interpretation of type theory in locally cartesian closed categories. In L. Pacholski
and J. Tiuryn, editors, CSL, volume 933 of Lecture Notes in Computer Science. Springer, 1994.

[17] M. Hofmann. Syntax and semantics of dependent types. In A. Pitts and P. Dybjer, editors, Semantics
and Logics of Computation. Cambridge University Press, 1996. To appear.

[18] G. Huet and A. Saibi. Constructive category theory. In Proceedings of the Joint CLICS-TYPES
Workshop on Categories and Type Theory, Göteborg, January 1995.

[19] P. Martin-Löf. About models for intuitionistic type theories and the notion of definitional equality. In
S. Kanger, editor, Proceedings of the 3rd Scandinavian Logic Symposium, pages 81–109, 1975.

[20] P. Martin-Löf. Substitution calculus. Notes from a lecture given in Göteborg, November 1992.

[21] A. M. Pitts. Categorical logic. In Handbook of Logic in Computer Science. Oxford University Press,
1997. Draft version of article to appear.

[22] R. Pollack. The Theory of Lego A Proof Checker for the Extended Calculus of Constructions. PhD
thesis, University of Edinburgh, 1994.

[23] D. S. Scott. Combinators and classes. In C. Böhm, editor, Lambda-Calculus and Computer Science
Theory, volume 37, pages 1–26, 1975.

[24] R. A. G. Seely. Locally cartesian closed categories and type theory. Proceedings of the Cambridge
Philosophical Society, 95:33–48, 1984.

85

LFMTP 2007

Signature Compilation for the
Edinburgh Logical Framework 1

Michael Zeller, Aaron Stump, and Morgan Deters

Computational Logic Group
Computer Science and Engineering Dept.

Washington University in St. Louis
St. Louis, Missouri, USA

Abstract

This paper describes the Signature Compiler, which can compile an LF signature to a custom proof checker
in either C++ or Java, specialized for that signature. Empirical results are reported showing substantial
improvements in proof-checking time over existing LF checkers on benchmarks.

Keywords: Edinburgh LF, signature compilation

1 Introduction

The Edinburgh Logical Framework (LF) provides a flexible meta-language for de-
ductive systems in several application domains [1]. A well-known example is for
proof-carrying code [2]. Another example is for proofs produced from decision pro-
cedures [5]. A single LF type checker can be used to check proofs in any deductive
system defined by an LF signature (a list of typing declarations and definitions).
LF implementations like Twelf work in an interpreting manner: first the LF sig-
nature is read, and then proofs can be checked with respect to it [4]. This system
description (LFMTP 2007 Category C) describes the Signature Compiler (“sc”)
tool, which supports a compiling approach to LF type checking: an LF signature
is translated to a custom proof checker specialized for that signature. Signature
compilation emits checkers that run much faster than existing interpreting checkers
on benchmark proofs, as shown in Section 3, including proofs produced by a QBF
solver for QBF benchmark formulas. The Signature Compiler is publicly available
from the “Software” section of http://cl.cse.wustl.edu. For space reasons, this
paper must assume familiarity with LF and its Twelf syntax.

1 This work supported by the U.S. National Science Foundation under grant numbers CCF-0448275 and
CNS-0551697.

86

http://cl.cse.wustl.edu

o : type. trm : type.

== : trm -> trm -> o. imp : o -> o -> o.

%infix left 3 ==. %infix left 5 imp.

pf : o -> type.

impi : {p:o} {q:o} (pf p -> pf q) -> pf (p imp q).
mp : pf (P imp Q) -> pf P -> pf Q.

Fig. 1. Fragment of example LF signature

2 The Signature Compiler

The intended use of sc is for generating backend checkers, which are optimized for
the case when the proof successfully checks. Thus, sc does not report useful error
information for failed proofs. Also, backend checkers allow (untrusted) proofs to
contain additional definitions, but not additional declarations, which might subvert
the deductive system defined by the (trusted) signature. The ideal case for use of
sc is when many proofs expressed with respect to the same signature need to be
checked efficiently. In such a case, reuse of the custom checker generated by sc
makes up for the time needed for signature compilation.

The Signature Compiler parses an LF signature in Twelf syntax, and generates
all the source files required for a proof checker that checks proofs expressed with re-
spect to that signature. The Signature Compiler supports fully explicit LF in Twelf
syntax, without type-level λ-abstractions (a common restriction, not essential for
sc), and where constants declared in the signature must be fully applied when used.
The checkers emitted by the Signature Compiler, but not sc itself, also support a
form of implicit LF, in which holes (“ ”) can be written in place of arguments to
constants c from the signature, as long as the values of those holes can be deter-
mined by unification in the higher-order pattern fragment from the types of other
arguments to c. Support for more aggressive compression schemes must remain to
future work (cf. [3]). The Signature Compiler is written in around 3000 lines of
C++ and can generate custom checkers in both C++ and Java.

Figure 1 gives part of a standard LF signature for an example logic with equality,
implication, and universal quantification. This logic is used for the benchmarks
below. For space reasons, the figure focuses just on implication; see the Appendix for
the complete signature. Infix directives in Twelf syntax, used after the declaration
of “imp” in the figure, are supported by Signature Compiler, and by the emitted
checkers.

The Signature Compiler emits code for custom parsers for each signature it com-
piles. Neither the emitted parsers nor sc itself relies on parser or lexer generators,
since such reliance would increase the size of the trusted computing base, and make
it more difficult to support infix directives in proofs. Simple lexer generation – in
particular, creating an inlined trie – is performed by sc for lexing efficiency in the
emitted checkers. The representation of terms is optimized by generating code for
custom classes for each expression declared or defined in the signature. The parser
generates instances of these classes when parsing. Binding expressions (λ- and Π-
expressions) are parsed in such a way that each bound variable is represented as
a distinct instance of a DefExpr class, with all uses of the variable represented as

87

case /*===*/ X61o61o_EXPR: {
/*===*/ X61o61oExpr *e = (/*===*/ X61o61oExpr *)_e;
if((areEqualNuke(computeType(e->e1),

new /*trm=*/ XtrmExpr()) &&
areEqualNuke(computeType(e->e2),

new /*trm=*/ XtrmExpr())))
return new /*o=*/ XoExpr();

throw str;
}

Fig. 2. C++ custom type computation code for ==

case /*impi=*/ Ximpi_EXPR: {
/*impi=*/ XimpiExpr *e = (/*impi=*/ XimpiExpr *)_e;
DefExpr *innervar1 =

new DefExpr("na",new /*pf=*/ XpfExpr(e->e1),
new IdExpr("na"));

if((areEqualNuke(computeType(e->e1),
new /*o=*/ XoExpr()) &&

areEqualNuke(computeType(e->e2),
new /*o=*/ XoExpr()) &&

areEqualNuke(computeType(e->e3),
new PiExpr(innervar1,

new /*pf=*/ XpfExpr(e->e2)))))
return new /*pf=*/ XpfExpr(new /*imp=*/

XimpExpr(e->e1,e->e2));
throw str;

}

Fig. 3. C++ custom type computation code for impi

references to that same instance. In the C++ checkers, this is achieved using a trie
rather than an STL hash map, for performance reasons.

The Signature Compiler inlines the code needed to compute the type of an ap-
plication of a constant declared or defined in the signature. The expected types of
arguments are hard-coded into the emitted checkers, and the substitutions which
must normally be performed at run-time to compute the return type of an ap-
plication of a dependently typed function are performed instead during signature
compilation. The emitted checkers thus completely avoid the expensive operation
of substitution when computing the return type of an application of a constant
declared or defined in the signature.

For example, the custom checker generated by sc produces the code shown in
Figures 2 and 3 for cases for == and impi in a switch statement over all possible
expressions. Note that since == cannot serve as a C++ or Java identifier, sc en-
codes this name using decimal ASCII character codes. Comments document the
connection to the original name. The function areEqualNuke tests convertibility
and additionally deletes the memory for the expressions it is given. Since the two
subexpressions of any == expression must be terms (of type trm), the custom code
for the imp case checks this condition. The type o is then returned. The code for
impi is the result of substitution during signature compilation, and hence directly
computes the appropriate substituted types.

The custom checker also has customized code for convertibility checking. For
example, consider the case of expanding defined constants of functional type where
they are applied. The exact expression resulting from substituting the arguments
for the λ-bound variables is known from the signature, and thus code to build it
directly is generated for the custom checker by Signature Compiler.

88

n size sc: C++ sc: Java Twelf sc (interp.) flea

100 464 KB 0.2 (0.1) 1.2 (1.0) 4.1 (1.5) 2.0 (0.5) 0.8

150 1.01 MB 0.4 (0.2) 2.4 (2.1) 8.7 (2.6) 4.1 (1.1) 1.6

200 1.77 MB 0.6 (0.3) 4.1 (3.5) 16.2 (5.2) 7.1 (1.9) 2.7

250 2.74 MB 0.9 (0.5) 6.2 (5.4) 26.8 (9.2) 10.9 (3.0) 4.2

300 3.92 MB 1.2 (0.7) 8.8 (7.6) 39.7 (13.1) 15.5 (4.2) 6.0

350 5.30 MB 1.7 (1.0) 11.9 (10.4) 52.3 (16.1) 21.0 (5.7) 8.2

Fig. 4. Runtime for EQ benchmarks (in seconds), explicit form

3 Benchmarks

Results on two families of benchmarks are reported in this section, using both ex-
plicit and implicit LF. The first are the EQ benchmarks, a family of proofs of
statements of the form “if f(a) = a then fn(a) = a”, for various sizes n. The proofs
are structured (via deliberate inefficiency) to use both hypothetical and parametric
reasoning, central aspects of the LF encoding methodology, as well as β-reduction
and defined constants. The second are the QBF benchmarks. To obtain these, a
simple Quantified Boolean Formula solver was written. This solver reads bench-
marks in the standard QDIMACS format, and emits proof terms showing either
that the formula evaluates to true or to false. Easy benchmark formulas, obtained
from www.qbflib.org are solved to generate the proof terms.

Results on these two families of benchmarks are obtained using five checkers:
the custom C++ and Java checkers generated by sc, Twelf, sc itself, and the flea
checker [5]. Twelf version 1.5R1 is included as a widely used interpreting checker.
The Signature Compiler itself implements an interpreting checker, using similar
infrastructure as the custom checker. Comparing sc with the generated checker
thus demonstrates the effect of the specializing optimizations. The flea checker
is a highly tuned interpreting LF checker, which additionally implements context-
dependent caching of computed types. Such caching is not implemented in sc or
the emitted checkers. Note that the flea checker does not support implicit LF, infix
directives (thus requiring prefix forms of the benchmarks), or printing of parsing
times. These checkers are the only publicly available high-performance LF checkers
the authors are aware of.

The results for the EQ benchmarks are shown in Figures 4 and 5, and for the
QBF benchmarks in Figures 6 and 7. Parsing times, where available, are shown in
parentheses. Experiments are averages of three runs on a 2GHz Pentium 4 with 1.5
GB main memory. The C++ and Java checkers emitted by sc were compiled with
g++ and gcj, respectively, version 3.4.5. For the QBF benchmarks, a timeout of 30
minutes was imposed (on the toilet 02 01.2 benchmark, Twelf finished in just under
that time on one run, so the average time for three runs is included). Note that the
redundancy in the QBF explicit benchmarks explains flea’s good performance.

4 Conclusion

The Signature Compiler is the first tool of its kind, supporting compilation of an
LF signature to optimized C++ or Java backend checkers specialized for that sig-
nature. Results on two families of benchmarks, including one family of proofs of

89

www.qbflib.org

n size Twelf size sc sc: C++ sc: Java Twelf

100 80 KB 87 KB 0.06 (0.03) 0.31 (0.26) 1.4 (0.2)

150 166 KB 176 KB 0.11 (0.05) 0.54 (0.45) 3.0 (0.4)

200 281 KB 295 KB 0.17 (0.08) 0.87 (0.68) 5.3 (1.0)

250 426 KB 444 KB 0.23 (0.11) 1.25 (1.03) 7.8 (1.9)

300 602 KB 623 KB 0.31 (0.14) 1.78 (1.34) 11.7 (2.2)

350 807 KB 833 KB 0.41 (0.18) 2.28 (1.80) 16.7 (2.5)

Fig. 5. Runtime for EQ benchmarks (in seconds), implicit form

name size sc: C++ sc: Java Twelf sc (interp.) flea

cnt01e 2.2 MB 0.9 (0.6) 6.3 (5.8) 28.6 (7.0) 6.8 (2.2) 2.8

tree-exa2-10 2.7 MB 1.3 (0.8) 7.5 (6.9) 34.4 (8.5) 9.4 (2.8) 2.9

cnt01re 3.9 MB 1.7 (1.1) 10.7 (9.6) 56.7 (12.4) 12.3 (3.9) 5.1

toilet 02 01.2 9.7 MB 4.2 (2.7) 24.5 (22.0) 1809 (35.5) 30.6 (9.5) 10.5

1qbf-160cl.0 16.6 MB 6.4 (4.6) 41.3 (38.2) timeout 44.5 (16.2) 14.6

tree-exa2-15 32.5 MB 15.9 (9.7) 86.1 (75.9) timeout 114.1 (33.6) 25.8

toilet 02 01.3 96.4 MB 42.9 (27.8) 277.7 (241.2) timeout 313.0 (99.0) 105.2

Fig. 6. Runtime on QBF benchmarks (in seconds), explicit form

name size Twelf size sc sc: C++ sc: Java Twelf

cnt01e 167 KB 184 KB 0.2 (0.1) 1.5 (1.4) 7.2 (0.6)

tree-exa2-10 345 KB 392 KB 0.4 (0.1) 2.1 (1.8) 8.9 (0.7)

cnt01re 250 KB 274 KB 0.3 (0.1) 1.9 (1.6) 12.3 (0.9)

toilet 02 01.2 0.9 MB 1.1 MB 1.0 (0.3) 4.1 (3.3) 38.0 (2.7)

1qbf-160cl.0 1.4 MB 1.5 MB 0.8 (0.4) 4.9 (4.6) 197.7 (4.5)

tree-exa2-15 3.9 MB 4.5 MB 4.7 (1.3) 14.4 (10.5) timeout

toilet 02 01.3 7.6 MB 8.5 MB 9.4 (2.4) 28.1 (19.3) timeout

Fig. 7. Runtime on QBF benchmarks (in seconds), implicit form

QBF benchmarks, show order-of-magnitude performance improvements for emit-
ted checkers over Twelf and sc itself, and substantial improvements over the flea
checker. A form of implicit arguments is supported by sc, offering further space and
performance improvements. Future work includes further support for proofs from
decision procedures: the second author is proposing LF, backed by the Signature
Compiler, as appropriate technology for a standard proof format for the SMT-LIB
(Satisfiability Modulo Theories Library) initiative.

The authors wish to thank the anonymous reviewers for their comments on the
paper.

References

[1] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics. Journal of the Association
for Computing Machinery, 40(1):143–184, January 1993.

[2] G. Necula. Proof-Carrying Code. In 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 106–119, January 1997.

[3] G. Necula and P. Lee. Efficient representation and validation of proofs. In 13th Annual IEEE Symposium
on Logic in Computer Science, pages 93–104, 1998.

[4] F. Pfenning and Carsten Schürmann. System Description: Twelf — A Meta-Logical Framework for
Deductive Systems. In 16th International Conference on Automated Deduction, 1999.

[5] A. Stump and D. Dill. Faster Proof Checking in the Edinburgh Logical Framework. In 18th International
Conference on Automated Deduction, pages 392–407, 2002.

90

o : type.
trm : type.

== : trm -> trm -> o.
imp : o -> o -> o.
all : (trm -> o) -> o.
f: trm -> trm.

%infix left 3 ==.
%infix left 5 imp.

pf : o -> type.

refl : {x:trm} pf (x == x).
symm : {x:trm} {y:trm} pf (x == y) -> pf (y == x).
trans : {x:trm} {y:trm} {z:trm}

pf (x == y) -> pf (y == z) -> pf (x == z).
congf : {x:trm} {y:trm} pf (x == y) -> pf ((f x) == (f y)).

mp : {p:o} {q:o} pf (p imp q) -> pf p -> pf q.
impi : {p:o} {q:o} (pf p -> pf q) -> pf (p imp q).

alli : {P:trm -> o} ({x:trm} pf (P x)) -> pf (all P).
alle : {P:trm -> o} {t:trm} pf (all P) -> pf (P t).

a : trm.
b : trm.
c : trm.

g : trm -> trm = [x:trm] f x.

Fig. A.1. LF signature for the EQ benchmarks

pol : type.
pos : pol.
neg : pol.

opp : pol -> pol -> type.
opp1 : opp pos neg.
opp2 : opp neg pos.

o : type.

conn : pol -> o -> o -> o.
not : o -> o.
quant : pol -> (o -> o) -> o.
bval : pol -> o.

Equiv : o -> o -> type.

%infix right 3 Equiv.

refl : {p:o} p Equiv p.
trans : {p:o}{q:o}{r:o} p Equiv q -> q Equiv r -> p Equiv r.

connc : {b:pol} {p1:o} {p2:o} {q1:o} {q2:o}
p1 Equiv p2 -> q1 Equiv q2 -> conn b p1 q1 Equiv conn b p2 q2.

connz1 : {b:pol} {bb:pol} opp b bb ->
{q:o} conn b (bval bb) q Equiv (bval bb).

connz2 : {b:pol} {bb:pol} opp b bb ->
{q:o} conn b q (bval bb) Equiv (bval bb).

connu1 : {b:pol} {q:o} conn b (bval b) q Equiv q.
connu2 : {b:pol} {q:o} conn b q (bval b) Equiv q.

nott : not (bval pos) Equiv (bval neg).
notf : not (bval neg) Equiv (bval pos).

quantz : {b:pol}{bb:pol} opp b bb ->
{a:pol}{p:o -> o} p (bval a) Equiv (bval bb) ->
quant b p Equiv (bval bb).

quantu : {b:pol}{p:o -> o}
p (bval pos) Equiv (bval b) ->
p (bval neg) Equiv (bval b) ->
quant b p Equiv (bval b).

quantn : {b:pol} {p1:o} quant b ([x:o]p1) Equiv p1.
quantc : {b:pol}{p1:o -> o}{p2:o -> o}

({x:o} (p1 x) Equiv (p2 x)) ->
quant b p1 Equiv quant b p2.

Fig. A.2. LF signature for the QBF benchmarks

91

LFMTP 2007

Induction on Concurrent Terms

Anders Schack-Nielsen1

Programming, Logics and Semantics
IT University of Copenhagen

Denmark

Abstract

This paper considers MiniML equipped with a standard big-step semantics and a destination-passing se-
mantics both represented in concurrent LF (CLF) and prove the two semantics equivalent. The proof is
then examined yielding insights into the issues concerning induction on concurrent terms. We conclude by
outlining some of the difficulties that one will need to address when designing a meta-logic for CLF.

Keywords: CLF, logical frameworks, induction, destination-passing style.

1 Introduction

CLF [1] is a logical framework with several interesting applications including ade-
quate representations of the π-calculus, protocols and programming languages em-
ploying state, concurrency, lazy computations and more. Furthermore, a large sub-
set of these semantic specifications can currently be run with LolliMon [3] which
implements parts of CLF. However, CLF currently has no notion of meta-logic and
it is therefore not possible to reason about CLF representations within CLF. In this
paper we will consider an initial case study in order to shed light on some of the
difficulties that one will need to address when designing a meta-logic for CLF.

CLF is a dependently typed lambda calculus extended by linear types and
monadic types inhabited by concurrent terms, which makes it a conservative exten-
sion of the dependently typed logical framework LF. Therefore CLF supports the
same “judgments as types, derivations as terms” methodology as LF. The Twelf
system [5] implements LF and provides a meta-logic for reasoning about LF repre-
sentations. Twelf is well-suited for formalizing functional programming languages,
their operational semantics and type systems, as well as classical and intuitionistic
logics. However, imperative and concurrent language features are hard to imple-
ment and reason about using Twelf since e.g. state has to be modelled and reasoned
about explicitly.

1 Email: anderssn@itu.dk

92

The presence of concurrent terms in CLF allows for a new representation
methodology compared to the way e.g. operational semantics has been represented
in Twelf. In Twelf the methodology is a goal-oriented approach focusing on proof-
search via backward chaining bearing much resemblance to logic programming,
whereas in CLF the canonical representation methodology is context-oriented, em-
ploying forward chaining inside the monad. As CLF is a conservative extension to
LF it allows both styles of representation to coexist.

The Twelf methodology provides means to represent meta-theory and its proofs
as higher-level judgments describing relations between derivations, and these proofs
can then be mechanically checked by checking the totality of the relation.

So the important question is whether the methodology of meta-theory represen-
tation and proof representation known from Twelf can be conservatively extended
to deal with the new CLF representations and how. The CLF extensions over LF
are linear and concurrent terms, so a conservative meta-logic for CLF would need
to extend Twelf with induction on linear and concurrent terms. The importance
of this question is emphasized by the fact that it is a main part of the uncharted
CLF-territory and contains valuable insight on the directions in which CLF could
be further developed.

The case study that we will consider in this paper is the equivalence proof of two
semantics for MiniML. On the one hand we can represent a big-step semantics com-
pletely within the LF fragment of CLF, and on the other hand we can also represent
the semantics in destination-passing style employing the distinct features of CLF.
This style of representation is based on multiset rewriting with names (destinations)
representing the holes in evaluation contexts. Furthermore, destination-passing style
is a natural way to represent semantics in CLF and it allows for easy extension of
the MiniML semantics to include lazy evaluation, futures, mutable references and
concurrency [2]. Given these two styles of semantics, the equivalence proof will
bridge the two different representation methodologies, and we will use the proof
to outline some of the difficulties that one will need to address when designing a
meta-logic for CLF.

2 CLF

2.1 Syntax

In the CLF type theory we have objects, types and kinds. In order to simplify the
meta-theory all terms are required to be in canonical form (i.e. completely beta-
reduced and completely eta-expanded), and this invariant can be maintained by
a suitable definition of substitution which performes the necessary reduction steps
(hereditary substitution).

The CLF types are the ones known from LF (with A → B as syntactic sugar
for Πx : A. B as usual) and the linear connectives from LLF, i.e. linear implication
((), additive product (&) and top (>). Then there is multiplicative product (⊗),
the multiplicative unit (1) and dependent pair (∃) all of which are wrapped in a
monadic type constructor {S}. The complete syntax is given in figure 1. The
destinction between normal and atomic objects is simply there to enforce canonical

93

Kinds

K ::= type | Πx : A. K Kinds

Types

A,B ::= A (B | Πx : A. B | A & B | > | {S} | P Asynchronous types

P ::= a | P N Atomic type constructors

S ::= S1 ⊗ S2 | 1 | ∃x : A. S | A Synchronous types

Objects

N ::= λ̂x. N | λx. N | 〈N1, N2〉 | 〈〉 | {E} | R Normal objects

R ::= c | x | R ̂N | R N | π1 R | π2 R Atomic objects

E ::= let {p} = R in E |M Expressions

M ::= M1 ⊗M2 | 1 | [N,M] | N Monadic objects

p ::= p1 ⊗ p2 | 1 | [x, p] | x Patterns

Contexts

Γ ::= · | Γ, x : A Unrestricted contexts

∆ ::= · | ∆, x :̂ A Linear contexts

Signatures

Σ ::= · | Σ, a : K | Σ, c : A Signatures

Fig. 1. CLF syntax

forms.
Constructing objects inside the monad (i.e. expressions inside curly braces) is

supposed to model concurrent computation, and any given term consisting of a
sequence of let expressions denotes a trace of that computation. In order to facilitate
this interpretation two terms will be considered equivalent if they only differ in
the ordering of their let expressions. The equivalence ≡ is defined as the smallest
congruence relation satisfying

let {p1} = R1 in let {p2} = R2 in E ≡ let {p2} = R2 in let {p1} = R1 in E

where the bindings are independent: p1 and p2 must bind disjoint sets of variables,
no variable bound by p1 can appear free in R2 and vice versa.

2.2 Computational interpretation of CLF

The representation of meta-theory in Twelf is based on a computational interpreta-
tion of LF signatures as logic programs. With this in place a meta-logic can then be
used to state the totality of certain relations, which thereby represent constructive
proofs.

94

The basis of computation is constructing a term of a given type, by the means of
proof search. This consists of applying right-rules in the corresponding logic until
the goal is reduced to an atomic type, at which point the different constructors of
the type is tried one by one by backtracking from unsatisfiable subgoals.

The semantics of CLF is similar (it is implemented as the language LolliMon 2

and described in detail in [3]) except when encountering the monad type. At this
point the computation goes from being goal-directed to being context-directed. The
context-directed computation consists of a sequence of steps, each of which is a
nondeterministic choice between either ending the context-directed mode and con-
structing the monadic object M directly or nondeterministically choosing a term
in the context (or signature) and reduce it to its monadic head with left-rules at
which point the context gets augmented with the newly constructed types using a
let-binding: let {p} = R in E, where R is the computation step that was just taken,
p is the binding of the newly constructed types and E is the rest of the computation.

These steps are considered atomic and are not undone, backtracking is only
applied during the construction of the individual steps to make sure that the step
can actually be completed before committing to the nondeterministic choice.

2.3 CLF meta-theory

In Twelf, proofs are by structural induction since whatever is represented in Twelf
is represented as an inductively defined LF-term. Furthermore the proof objects
themselves are inductively defined LF-terms. We expect this meta-level representa-
tional methodology to extend to CLF as well, since it is a conservative extension at
both the object level and the semantic level. There are however several challenges,
and the one we will focus on is how to extend the structural induction known from
Twelf to one working with terms with implicit concurrency. 3

3 MiniML

The primary object of study in this paper will be the semantics of MiniML re-
presented in two different ways. The first representation is a big-step semantics
represented entirely in the LF fragment of CLF as it would be done in Twelf. The
second representation is done in destination-passing style employing the monad and
the linear features of CLF (see [2]). The meta-theorem that we will be examining
is the equivalence proof of these semantics.

Note that the destination-passing semantics does everything sequentially, but
since it is within the monad the potential for concurrency is still enough to generate
intersting observations as we will see below. Furthermore the destination-passing
semantics can easily be extended with e.g. concurrency, mutable references, lazy
evaluation, etc. (as shown in [2]). In section 5 we will discuss some of the compli-
cations of the proof in the context of concurrency.

2 LolliMon is not exactly CLF since for the monadic and linear types it only includes the corresponding
logic and not the terms. But currently LolliMon is as close as one gets to an implementation of CLF and
it is sufficient for execution of programs in the destination-passing semantics given in this paper.
3 As a side note, notice that the monadic terms potentially allows for a “concurrent” proof built in a more
algorithmic manner instead of the usual induction proofs. What this means is however still unclear.

95

3.1 Syntax

The fragment of MiniML that we will be considering include abstractions, applica-
tions, fixpoints and natural numbers with zero, successor and case.

e ::= x | z | s e | (case e1 of z⇒ e2 | s x⇒ e3) | λx.e | e1 e2 | fix x.e

The MiniML syntax is represented in CLF (and LF) as shown in figure 2.

exp : type.

z : exp.
s : exp → exp.
case : exp → exp → (exp → exp) → exp.
lam : (exp → exp) → exp.
app : exp → exp → exp.
fix : (exp → exp) → exp.

Fig. 2. MiniML syntax in CLF

3.2 Big-step semantics

The first semantics for MiniML is a standard call-by-value big-step semantics (fig-
ure 3) and has the standard representation where the type family ev E V is inha-
bited if and only if E evaluates to V . 4

ev : exp → exp → type.

ev_z : ev z z.
ev_s : ΠE:exp. ΠV:exp. ev E V → ev (s E) (s V).
ev_case_z : ΠE1:exp. ΠE2:exp. ΠE3:exp → exp. ΠV:exp.

ev E1 z → ev E2 V → ev (case E1 E2 E3) V.
ev_case_s : ΠE1:exp. ΠE2:exp. ΠE3:exp → exp. ΠV:exp. ΠV’:exp.

ev E1 (s V’) → ev (E3 V’) V → ev (case E1 E2 E3) V.
ev_lam : ΠE:exp → exp. ev (lam E) (lam E).
ev_app : ΠE1:exp. ΠE2:exp. ΠE1’:exp → exp. ΠV:exp. ΠV2:exp.

ev E1 (lam E1’) → ev E2 V2 → ev (E1’ V2) V
→ ev (app E1 E2) V.

ev_fix : ΠE:exp → exp. ΠV:exp. ev (E (fix E)) V → ev (fix E) V.

Fig. 3. Big-step semantics in CLF

The given representation is not strictly a CLF signature as defined in [1] since
it is not in canonical form. It can however easily be transformed into the equiva-
lent canonical form by eta expansion. In the following I will freely use any form
eta equivalent to a canonical form, since the more verbose canonical form can be
obtained by mechanical eta expansions.

4 Note that this semantics as it is given is not suitable for Twelf execution, since Twelf solves subgoals
“inside out”. If the semantics should be executed in Twelf, one would therefore have to do a simple rewriting,
reversing the order of the arguments of ev case z, ev case s and ev app.

96

3.3 Destination-passing semantics

The second semantics for MiniML is a destination-passing semantics. Destination-
passing style is based on multi-set rewriting and handles evaluation contexts (a.k.a.
continuations) implicitly by naming the context holes. The names of the holes in
the evaluation contexts are called destinations [6]. With the logic programming
semantics of CLF outlined above in mind, the destination-passing semantics of
MiniML is defined as follows. We introduce a type of destinations dest 5 , a type
family eval E D representing the instruction to evaluate E and return the result
in destination D and a type family return V D representing the returned value V
in destination D. Now the type Πd : dest. eval E d ({return V d} is inhabited
if and only if E evaluates to V .

dest : type.
return : exp → dest → type.
eval : exp → dest → type.

eval_z : ΠD:dest. eval z D ({return z D}.
eval_s : ΠE:exp. ΠD:dest.

eval (s E) D ({∃d’:dest. eval E d’ ⊗
ΠV:exp. return V d’ ({return (s V) D}}.

eval_case : ΠE1:exp. ΠE2:exp. ΠE3:exp → exp. ΠD:dest.
eval (case E1 E2 (λx. E3 x)) D (

{∃d’:dest. eval E1 d’ ⊗
((return z d’ ({eval E2 D}) &

(ΠV’:exp. return (s V’) d’ ({eval (E3 V’) D})
) }.

eval_lam : ΠE:exp → exp. ΠD:dest.
eval (lam (λx. E x)) D ({return (lam (λx. E x)) D}.

eval_app : ΠE1:exp. ΠE2:exp. ΠD:dest.
eval (app E1 E2) D (

{∃d’:dest. eval E1 d’ ⊗
(ΠE1’:exp → exp. return (lam (λx. E1’ x)) d’ (
{∃d’’:dest. eval E2 d’’ ⊗

(ΠV2:exp. return V2 d’’ ({eval (E1’ V2) D})
}

)
}.

eval_fix : ΠE:exp → exp. ΠD:dest.
eval (fix (λx. E x)) D ({eval (E (fix (λx. E x))) D}.

Fig. 4. Destination-passing semantics

The signature is given in figure 4. Notice how each constructor consumes an
eval E D to produce either a return V D representing the result, or a new
eval E′ d′ corresponding to the subexpression to be evaluated next along with a con-

5 Notice how the type dest is empty since we initially have no evaluation context and thus no holes to
name, i.e. all we will ever see are variables of type dest.

97

tinuation in the form ΠV : exp. return V d′ ({. . . }. Take for instance eval_case.
Assuming that we have an eval E D in the context with E = case E1 E2 E3 and
we aim to construct a return V D in the monad. Then eval_case can be ap-
plied to yield a fresh destination d′, an eval E1 d

′ and a continuation which can
only be applied when the result of evaluating E1 has finished. The continuation is
an additive product which means that we can only ever use one of the branches.
The eval E1 d

′ will trigger further rules and end up with a result in the form of
return V1 d

′ (assuming termination). If V1 is z we can apply the first projection
of the continuation and if V1 is s V ′ we can apply the second projection. In both
cases we end up with a new eval E′ D designating the expression to be evaluated
and this will in turn trigger further rules and if this terminates we will end up with
the result in the form of a return V D.

4 Equivalence of semantics

We would like to prove the equivalence of the two semantics presented above. More
formally, we will prove the following theorem:

Theorem 4.1 For all closed terms E and V of type exp, the type ev E V is
inhabited if and only if the type Πd : dest. eval E d ({return V d} is inhabited.

The proof consists of two parts, each being a translation from one semantics to
the other. We will start with the easy one: translating big-step into destination-
passing style.

4.1 Translation from big-step to destination-passing style

4.1.1 The paper proof

Lemma 4.2 Let E and V be closed terms of type exp and let P be a closed term
of type ev E V . Then there exists a closed term C of type Πd : dest. eval E d (
{return V d}.

Proof. The proof is a simple structural induction on P .

Case: P = ev_z
We take C = eval_z.

Case: P = ev_s E′ V ′ P ′

In this case E = s E′, V = s V ′ and P ′ is of type ev E′ V ′. We can therefore
apply the induction hypothesis to P ′ to get a C ′. Now let

C = λd.λ̂u : eval (s E′) d. {let {[d′, (p : eval E′ d′)
⊗ (f : ΠV.return V d′ ({return (s V) d})]}

= eval s E′ d ̂u in

let {r′ : return V ′ d′} = C ′ d′ ̂p in

let {r : return (s V ′) d} = f V ′ ̂r′ in

r}.

98

Case: P = ev_case_z E1 E2 E3 V P1 P2

In this case P1 is of type ev E1 z and P2 is of type ev E2 V . We apply the
induction hypothesis to P1 and P2 yielding C1 and C2. Now let

C = λd.λ̂u.{let {[d′, (p1 : eval E1 d
′)⊗ f1]} = eval case E1 E2 E3 d ̂u in

let {r′ : return z d′} = C1 d
′ ̂p1 in

let {p2 : eval E2 d} = (π1 f1) ̂r′ in

let {r : return V d} = C2 d ̂p2 in

r}.

The remaining cases are similar. The induction hypothesis is applied to all
subterms representing subevaluations (i.e. subterms of type eval E V for some E
and V), after which C is easily constructed. 2

4.1.2 Representation of the proof in CLF
Since the above proof only relies on straigtforward induction on LF-terms it should
be easy to represent in CLF for any conservative extension of the Twelf meta-theory
to CLF. This is however still very speculative. More on this below in section 4.2.2.

4.2 Translation from destination-passing style to big-step

This part of the proof is a lot trickier. We cannot simply deconstruct a term of
type eval E D ({return V D} into a constructor and subterms of the same
type schema, since this among other things relies on the implicit ordering of the
consumption of linear variables.

4.2.1 The paper proof
In order to complete the proof we will need to come up with a much stronger
induction hypothesis. We will need to reason about the continuations that can
occur in the linear context, and in order to make this precise, we will start with
a definition of normal linear contexts to be the relevant linear implications from
return . . . into a monadic type:

Definition 4.3 A linear context ∆ is called normal if it only consists of variables
with the following types:

• Πv : exp. return v D′ ({return (s v) D}
• (return z D′ ({eval E2 D})

& (Πv′ : exp. return (s v′) D′ ({eval (E3 v
′) D})

• Πe′1 : exp→ exp. return (lam (λx. e′1 x)) D′ ({∃d′′ : dest. eval E2 d
′′ ⊗

(Πv2 : exp. return v2 d
′′ ({eval (e′1 v2) D})}

• Πv2 : exp. return v2 D
′′ ({eval (E′1 v2) D}

for any instantiations of the free variables (written with capital letters).

Notice that these types correspond exactly to the continuations put in the con-
text by eval_s, eval_case and eval_app. The latter is represented with two

99

possible types, since the application of the continuation result in yet another con-
tinuation.

Now we can state the lemma:

Lemma 4.4 Let Γ be a context of destinations, Γ = d1 : dest, . . . , dn : dest, and
let ∆ be a normal linear context. Let E and V ′ be closed terms of type exp. Let d
and d′ be two (not necessarily distinct) destinations in Γ. And let C be a term with
a typing Γ; ∆ ` C : eval E d ({return V ′ d′}. Then there exists a closed term V

of type exp, a closed term P of type ev E V , a context Γ′ of destinations with Γ ⊆ Γ′

and a subterm R of C with a typing Γ′; ∆ ` R : return V d ({return V ′ d′}.

Proof. The proof is by induction on C. First of all C must have the form
λ̂u : eval E d.{. . .}. Secondly, since there is no way to construct a term of type
return . . . directly in the current context and signature, we know that C must
consist of at least one computation step (let-term). This first step must be an ap-
plication of one of the eval_?’s from the signature, since everything in the context
constructing something monadic requires a term of type return . . . to be present.

Now we can consider the different possibilities. The cases are very similar so we
will only present the zero, successor and the application cases in detail.

Case: C = λ̂u : eval z d.{let {r} = eval_z d ̂u in R′}
In this case we can take V = z, P = ev_z and R = λ̂r.{R′}.

Case: C = λ̂u : eval (s E1) d.{let {[d0, p⊗ f]} = eval_s E1 d ̂u in C ′}
We apply the induction hypothesis to Γ0; ∆0 ` λ̂p.{C ′} : eval E1 d0 (
{return V ′ d′} where Γ0 = Γ, d0 : dest and ∆0 = ∆, f :̂ Πv.return v d0 (
{return (s v) d} to get V1 : exp, P1 : ev E1 V1 and Γ′; ∆0 ` R′ :
return V1 d0 ({return V ′ d′}. Now since d0 6= d′ then R′ has to be of the form
λ̂r′.{let {r} = f V1 ̂r′ in R′′}. Then we can take V = s V1, P = ev_s P1 and
R = λ̂r.{R′′}.

Case: C = λ̂u : eval (case E1 E2 E3) d.{let {[d0, p⊗ f]} =
eval_case E1 E2 E3 d ̂u in C ′}

This is similar to the successor case above except that there is now two possible
forms for R′, each of which yields subcomputations with eval’s in the context; i.e.
R′ can be λ̂r′.{let {p′} = (π1 f) ̂r′ in C ′2} or λ̂r′.{let {p′} = (π2 f) V ′′ ̂r′ in C ′3}.
The induction hypothesis can then be applied again on C ′2 and C ′3 yielding
ev E2 V and ev (E3 V

′′) V respectively. Together with the big-step term from
the first application of the induction hypothesis we can now create a term of type
ev (case E1 E2 E3) V with either ev_case_z or ev_case_s.

Case: C = λ̂u : eval (lam E′) d.{let {r} = eval_lam E′ d ̂u in R′}
This case is similar to the zero case; i.e. we take V = lam E′, P = ev_lam E’
and R = λ̂r.{R′}.

Case: C = λ̂u : eval (app E1 E2) d.{let {[d0, p1 ⊗ f1]} =
eval_app E1 E2 d ̂u in C1}

We apply the induction hypothesis to Γ1; ∆1 ` λ̂p1.{C1} : eval E1 d0 (
{return V ′ d′}. This gives us P1 : ev E1 V1 and Γ′1; ∆1 ` R1 : return V1 d0 (
{return V ′ d′}. Now R1 has to be on the form λ̂r.{let {[d′0, p2 ⊗ f2]} =
f1 E′1 ̂r in C2}. This implies that V1 = lam E′1. Since C2 is a subterm of

100

C we can apply the induction hypothesis on Γ2; ∆2 ` λ̂p2.{C2} : eval E2 d
′
0 (

{return V ′ d′}. This gives ` P2 : ev E2 V2 and Γ′2; ∆2 ` R2 : return V2 d
′
0 (

{return V ′ d′}. Now R2 has to be on the form λ̂r.{let {p3} = f2 V2 ̂r in C3}.
Since C3 is a subterm of C2 which is a subterm of C we can apply the induction
hypothesis on Γ3; ∆ ` λ̂p3.{C3} : eval (E′1 V2) d ({return V ′ d′}. This gives
` P3 : ev (E′1 V2) V3 and Γ′; ∆ ` R3 : return V3 d ({return V ′ d′}. Now we
can set V = V3, construct P from P1, P2 and P3 using ev_app and set R = R3.

Case: C = λ̂u : eval (fix E′) d.{let {p} = eval_fix E′ d ̂u in C ′}
This case follows directly from one application of the induction hypothesis.

2

Now we can apply the lemma to d : dest; · ` C : eval E d ({return V ′ d}.
This gives Γ′; · ` R : return V d ({return V ′ d}, but since ∆ is empty and
d = d′, R has to be equal to λ̂r.{r}. This in turn implies V ′ = V which gives us the
sought ` P : ev E V ′ completing the translation from destination-passing style to
big-step semantics.

4.2.2 Representation of the proof in CLF
Currently CLF does not have a meta-theory to support the representation of proofs.
So even though it is very speculative, it is still interesting to consider the represen-
tation of the above proof in CLF, as we will gain insight in some of the unresolved
issues regarding the design of a meta-theory for CLF.

One of the main issues is how to adequately state the lemma (or theorems in
general). Some of the problems that are related to linearity arise already in the
context of linear LF (LLF) and are discussed in [7].

A natural first approach would be: 6

lemma : ΠE:exp. ΠD1:dest. ΠD2:dest. ΠV2:exp. ΠV1:exp.
(eval E D1 ({return V2 D2})
→ ev E V1

→ (return V1 D1 ({return V2 D2}) → type.
%mode lemma +E +D1 +D2 +V2 -V1 +C -P -R.

The line %mode . . . is the Twelf way of specifying which arguments should be
regarded as input (+) and which should be regarded as output (-). The type should
thus be read as “Given E, D1, D2, V2 and C where C has type eval E D1 (
{return V2 D2}, there exists V1, P and R such that P has type ev E V1 and R has
type return V1 D1 ({return V2 D2}.

The zero case can be encoded without problems:

lemma_z : lemma z D1 D2 V2 z
(λ̂u:eval z D1.{let {r’} = eval_z ^u in let {r} = R^r’ in r})
ev_z R.

But we get in trouble with the successor case:

6 We will disregard the problem with the continuation being a subcomputation of the input, since that is
already studied in the context of Twelf and can be solved.

101

lemma_s : lemma (s E) D1 D2 V2 (s V)
(λ̂u:eval (s E) D1.

{let {[d’,p⊗f]} = eval_s ^u in
let {r} = C d’ ^f ^p in r})

(ev_s P) R
← Πd’. Πf. lemma E d’ D2 V2 V (λ̂p. C d’ ^f ^p) P

(λ̂r’.{let {r’’} = f V ^r’ in let {r} = R ^r’’ in r}).

There are two problems. The first is with f. One could imagine that a hypo-
thetical CLF coverage checker doing output coverage 7 would not be able to see
that f cannot occur in R. This is because the definition of the type family gives no
indication of the relationship between the linear contexts of the given computation
trace and the returned continuation, as opposed to the paper formulation in which
we are able to state that they should be equal.

The second problem is the newly created destinations. Every time a new des-
tination is created it stays in scope for the entire rest of the computation. This is
handled in the paper proof above by stating that the continuation is typed in Γ′,
even though Γ′ \ Γ essentially is superfluous. But we cannot have a type family in
which the different arguments are typed in different contexts; and realizing when the
different destinations are no longer needed is not trivial by local observations. This
problem manifests itself in the same way as the first, namely that a hypothetical
coverage checker would not be able rule out the possibility of d’ occurring in R.

Another central issue is that of (input) coverage checking. Once we have all of
the cases from the proof, a hypothetical coverage checker would need to figure out
that all cases are indeed covered. This implies analyzing the possibilities of pattern
matching monadic objects. If we disregard reordering of let-terms then coverage
checking should not be much harder than for LF. But this is a very conservative
solution and probably not what we want (see section 5 below).

As a side note, notice that the specification of normal contexts resembles the
world declarations of Twelf.

5 Handling interleavings of let-bindings

The considered semantics are both sequential. Let us see what happens if we use
the features of CLF to make the destination-passing style concurrent. Consider the
following alternative, concurrent version of eval_app:

eval_app’ : ΠE1:exp. ΠE2:exp. ΠD:dest.
eval (app E1 E2) D (

{∃d1:dest. ∃d2:dest. eval E1 d1 ⊗ eval E2 d2 ⊗
(ΠE1’:exp → exp. ΠV2:exp.

return (lam (λx. E1’ x)) d1 (
return V2 d2 ({eval (E1’ V2) D}

)
}.

7 Output coverage checking is essentially checking the validity of inversion.

102

This version differs from the previous by adding both eval E1 d1 and eval E2 d2

to the context at the same time. This means that the subsequent evaluations
of E1 and E2 can happen in any order and the individual steps can be arbitrarily
interleaved. However, since these two computations are essentially independent, the
different traces representing different interleavings must all be equivalent modulo
let-floating; but since this fact is not immediate the proof gets more complicated.

Let us see how a proof translating this concurrent version into big-step looks
like. First of all, since there can now be multiple eval’s in the context we will have
to modify the definition of normal contexts to accomodate this, i.e. allow variables
with types eval E D and return V D to occur in a normal context. With this new
definition lemma 4.4 can be reused in its exact same formulation. Notice that this
singles out a particular eval E d to be the focus of the lemma.

Now in order to start the proof and split by cases like we did above we will need
to argue that C does indeed begin with the consumption of the eval E D that
the lemma focusses on. This is, however, no longer immediate. The computation
trace C can just as well begin with the consumption of any of the other eval’s in
the context or by the application of a Π . . . return . . . ({. . .} to a corresponding
return. Therefore we will need a let-floating-lemma to state that any C with the
type given is equivalent to a trace in which the particular eval E d is consumed
first:

Lemma 5.1 (let-floating for eval’s) Let Γ be a context of destinations, Γ = d1 :
dest, . . . , dn : dest, and let ∆ be a normal linear context. Let E and V ′ be closed
terms of type exp. Let d and d′ be two (not necessarily distinct) destinations in Γ.
And let C be a term with a typing Γ; ∆ ` C : eval E d ({return V ′ d′}. Then
there exists a term C ′ ≡ C, such that C ′ = λ̂u.{let {. . .} = . . . ̂u in C ′′}.

The dots in the form for C ′ covers all the different cases that the main proof
subsequently splits into.

The proof of this let-floating-lemma relies on the fact that there can never be
introduced anything in the (linear or unrestricted) contexts, which would allow the
linear ressource eval E d to be consumed in any different way.

With this in place we can reuse the cases of the proof for zero, lambda and fix-
point without changes. The other cases will however require their own let-floating-
lemmas. Consider for instance the successor case; after the application of the in-
duction hypothesis, we want to apply inversion to conclude that R′ begins with the
application of f , but this requires a specific let-floating-lemma stating that any R′

of the corresponding type is equivalent to a term beginning with the application of
f . Similarly for the other cases; each time inversion is used on the R resulting from
the induction hypothesis we will need a specific let-floating-lemma.

Here are two of them:

Lemma 5.2 (let-floating for the successor case) Let Γ be a context of desti-
nations, Γ = d1 : dest, . . . , dn : dest, and let ∆ be a normal linear context.
Let V and V ′ be closed terms of type exp. Let d and d′ be two (not neces-
sarily distinct) destinations in Γ and let d′′ be a destination in Γ distinct from
the other two. And let R be a term with typing Γ; ∆, f :̂ Πv. return v d′′ (
{return (s v) d}, r′ :̂ return V d ` R : {return V ′ d′}. Then there exists a term

103

R′ ≡ R, such that R′ = {let {r} = f V ̂r′ in R′′}.

Lemma 5.3 (let-floating for the concurrent app case) Let Γ be a context of
destinations, Γ = d1 : dest, . . . , dn : dest, and let ∆ be a normal linear
context. Let V1, V2 and V ′ be closed terms of type exp. Let d and d′ be
two (not necessarily distinct) destinations in Γ and let d1 and d2 be two dis-
tinct destinations in Γ distinct from the other two. And let R be a term with
typing Γ; ∆, f :̂ Πe.Πv. return (lam (λx. e x)) d1 (return v d2 (
{eval (e v) d}, r1 :̂ return V1 d1, r2 :̂ return V2 d2 ` R : {return V ′ d′}.
Then V1 is equal to lam E for some E and there exists a term R′ ≡ R, such that
R′ = {let {p} = f E V2 ̂r1 ̂r2 in R′′}.

If let-floating has to be reasoned about explicitly in CLF then we could probably
just as well have represented the concurrent features explicitly as it would be done
in Twelf. To get actual benefit from CLF it therefore seems likely that we would
have to come up with a let-floating aware coverage-checker, such that the let-floating
would be handled behind the scenes, much like substitution is handled behind the
scenes in Twelf. More specifically, in a trace where A and B can occur in either
order, we want to be able to implicitly assume that for instance A occurred first.

6 CLF signatures

All the proofs so far are working with a fixed signature and of course cannot be
expected to work with arbitrary extensions to the signature. Extending MiniML in
any way will naturally require extensions to the proofs as well. This is all good and
reasonable. If we however extend the signature with something completely different
i.e. new types and type families, we would expect the proofs to work without any
changes. So far these are just the natural expectations coming from the way Twelf
works.

In Twelf we know this is how things work, since execution is goal-oriented and
adding a new type family does not add any new constructors to the old type fam-
ilies. In CLF execution works differently. When inside the monad, the execution
semantics will simply nondeterministically perform any action possible given the
current signature and context. And since the proofs at some point have to conclude
that there can be no more computation, any signature allowing monadic objects —
and thereby computation steps — to be constructed directly will disrupt the proofs.

Therefore I propose a simple restriction on CLF signatures which will hopefully
simplify meta-theory representations a bit. Consider the number of terms N of
type ·; · ` N : {1} in some signature. Of course we can have N = {1}. But
if there are any other terms N : {1} then any computation trace constructing any
monadic type can have interjections of completely irrelevant, superfluous steps. The
proposed restriction is therefore that there can be only one term N of type {1} in
the empty context. Adding stuff like

junk : type.
junk_intro : junk.
junk_elim : junk ({1}.

104

would therefore be considered an illegal signature.
A conservative approximation of this restriction which is easy to compute, is

to simply start the proof search semantics looking for a term of type {1}. The
first step after entering the monad is a nondeterministic choice depending on the
signature. Now if the only option for this nondeterministic choice is to terminate
the forward-directed mode and construct 1 directly then we are certain that the
signature is legal, otherwise we reject the signature.

7 Conclusion and future work

We have proven a traditional big-step semantics equivalent to a destination-passing
semantics by induction on terms with an equivalence relation capable of modelling
concurrency. Examination of this proof has identified several problems regarding
meta-theory representations in CLF.

First, there is the problem of scoping; during the course of a computation in the
monad, every intuitionistically introduced term stays in the context. This means
that subcomputations cannot easily be split, since the different parts are typed in
increasingly larger contexts. One solution could perhaps be to represent proofs in
a forward-directed manner in the monad, since this would allow ∃-introductions of
variables instead of Π-introductions. In the case of the destinations they did not
actually occur; if this is the common case, another solution might be to infer this
by an automated analysis.

Second, there is the problem of linear contexts; this could though perhaps be
solved at the CLF meta-level with some sort of extended world-declaration stating
which terms should be linear in which arguments. Alternatively, the work on hybrid
metalogical frameworks [7] might be applicable.

Third, there is the problem regarding coverage in the context of let-floating.
There is a lot to be gained if a coverage checker could be devised in such a way that
the overhead of let-floating-lemmas described in section 5 could be moved to the
correctness proof of the coverage checker.

Furthermore it has been argued that restricting the CLF signatures in some
way is necessary for a CLF implementation. Specifically it seems like a good idea
to require that the type {1} is only inhabited by a single term.

Acknowledgement

I thank Andrzej Filinski and my advisor Carsten Schürmann for helpful discussions.

References

[1] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. “A concurrent logical framework
I: Judgments and properties”. Technical Report CMU-CS-02-101, Department of Computer Science,
Carnegie Mellon University, 2002.

[2] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. “A concurrent logical framework
II: Examples and applications”. Technical Report CMU-CS-02-102, Department of Computer Science,
Carnegie Mellon University, 2002.

[3] Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins. 2005. “Monadic concurrent linear logic
programming”. In Proceedings of the 7th ACM SIGPLAN international Conference on Principles and

105

Practice of Declarative Programming (Lisbon, Portugal, July 11–13, 2005). PPDP ’05. ACM Press,
New York, NY, 35–46.

[4] Andrew McCreight and Carsten Schürmann. “A Meta-Linear Logical Framework”. Proceedings of
Logical Frameworks and Meta Languages, July 2004.

[5] Frank Pfenning and Carsten Schürmann. “System description: Twelf — a meta-logical framework for
deductive systems”. In Proceedings of the 16th International Conference on Automated Deduction
(CADE-16), Trento, Italy, June 1999. H. Ganzinger, Ed. Lecture Notes In Computer Science, vol. 1632.
Springer-Verlag, London, 202-206.

[6] Frank Pfenning. “Substructural operational semantics and linear destination-passing style”. In W.-
N. Chin, editor, Proceedings of the 2nd Asian Symposium on Programming Languages and Systems
(APLAS’04), page 196, Taipei, Taiwan, Nov. 2004. Springer-Verlag LNCS 3302.

[7] Jason Reed. “A Hybrid Metalogical Framework”. Thesis Proposal Working Draft. Jan. 2007.
http://www.cs.cmu.edu/∼jcreed/papers/thesprop.pdf

106

http://www.cs.cmu.edu/~jcreed/papers/thesprop.pdf

LFMTP 2007

Higher-Order Proof Construction Based on
First-Order Narrowing

Fredrik Lindblad1

Dept. of Computer Science and Engineering
Chalmers University of Technology / Göteborg University

Gothenburg, Sweden

Abstract

We present the idea of using a proof checking algorithm for the purpose of automated proof construction.
This is achieved by applying narrowing search on a proof checker expressed in a functional programming
language. We focus on higher-order formalisms, such as logical frameworks, whereas the narrowing tech-
niques we employ are first-order. An obvious advantage of this approach is that a single representation of
the semantics can in principle be used for both proof checking and proof construction. The correctness of
the search algorithm is consequently more or less trivially provided. The question is whether this represen-
tation of the search procedure allows a performance plausible for practical use. In order to achieve this, we
add some features to the general narrowing search. We also present some small modifications which can be
applied on a proof checker and which further improve the performance. We claim that the resulting proof
search procedure is efficient enough for application in an interactive environment, where automation is used
mostly on small subproofs.

Keywords: Higher-Order Proof Construction, Narrowing, Logical Frameworks, Type Theory

1 Introduction

Narrowing is the study of efficiently evaluating declarative programs in the presence
of unknown data and non-deterministic functions. A narrowing strategy which is
complete for inductively sequential term rewrite systems[2] can be used to turn a
decidable predicate expressed in a standard functional programming language into
a search procedure for its members. Given e.g. a predicate deciding whether a list
of natural numbers is sorted,

sorted : [Nat]→ Bool,

narrowing can be used to construct sorted lists of numbers.
We propose to analogously apply this idea on a proof checking algorithm in order

to get a proof search algorithm for free, so as to speak. Given a proof checking
algorithm relating propositions and proofs,

proofCheck : Prop→ Proof→ Bool,

1 Email: fredrik.lindblad@cs.chalmers.se

107

mailto:fredrik.lindblad@cs.chalmers.se

we can fix the proposition and apply narrowing search for an unknown proof. The
general search procedure will then try to construct proofs of the given proposition.

One approach to develop a proof construction tool for a given higher-order for-
malism is to add meta variables (or logical variables) to the abstract syntax of the
proof language. These are used as place holders for unknown data. When searching
for a proof, a single meta variable is created at the start, indicating that the entire
proof term is initially unknown. The meta variable is then instantiated step-by-step,
adding new meta variables representing unknown sub-terms. While instantiating,
one keeps track of the semantics of the formalism, back-tracking whenever the cur-
rent partially instantiated proof turns out to be incorrect.

This approach entails the need of making parts of the functionality, which is
essentially shared by the proof checker and proof search, aware of meta variables.
E.g. the evaluation of terms has to be able to return a partially evaluated term if it
encounters an uninstantiated meta variable. Likewise, the term comparison needs
to be able to answer “maybe equal”. To give a third example, substitutions must
be postponed when encountering a meta variable. Otherwise the instantiation of
meta variables and evaluation of terms do not commute. This requires some extra
book-keeping, such as introducing explicit substitutions to the proof term syntax.
Apart from this the proof search algorithm is in a sense a dual representation of
the semantics, which can cause inconsistency problems between the checking and
search algorithms. Also, the search algorithm is typically larger and more intricate
than the checking algorithm. One issue that complicates the implementation of a
search algorithm is the need of a refined mechanism for deciding the order in which
the sub-terms of a proof are instantiated. In our experience, one ends up craving
for a way to control the execution and search branching on the meta level, in order
to deal with the fact that a meta variable can be encountered in a large number of
different places in the algorithm. Controlling the execution and search branching
on the meta level is exactly what narrowing does.

There would be several advantages of the proposed way of attaining proof search
from a proof checker. Instead of implementing an often intricate and tedious proof
search algorithm, the proof checker, which presumably already exists, is reused.
Apart from saving work, this entails that there is little potential for inconsistency.
In other words, given that the narrowing search procedure is sound and complete,
the same properties are inherited by the proof search. Thus the correctness of the
search is in principal directly provided. Another advantage would be that meta
variables are handled by the narrowing algorithm. Hence, there is no need to add
meta variables to the term syntax, and functions like evaluation and comparison do
not need to be aware of them. Also, since the narrowing is first-order, the search
algorithm is pretty simple. In this work narrowing is used to construct higher-order
proofs. To make this possible the terms are represented in a first-order abstract
syntax.

The potential drawback of the approach which could overshadow all these ben-
efits is of course that the resulting search procedure, although working in theory, is
not efficient enough for practical use. We have investigated this by implementing
a narrowing search algorithm and a proof checker. Our aim has been to achieve a
proof construction tool which automates the construction of proofs which are rather

108

small. It is supposed to be useful in an interactive proof construction environment
as an aid for filling in not too complex sub-terms in a proof. It is not meant to
compete with advanced algorithms for constructing higher-order proof terms. In-
stead, the intended point of the approach is to add automation to a formal system
for higher-order logic at a low cost.

The formalism we have chosen is a logical framework with dependent types, and
recursive data-types and function definitions. Hence the proof checker is in fact a
type checker, and will we from now on use the terminology of the Curry-Howard
correspondence, i.e. refer to proofs as terms and propositions as types. We have
implemented a type checker for the formalism in Haskell. Applying the narrowing
search on this type checker indeed does not at first give a proof construction tool
which could be used in practise. However, our experiments indicate that, by adding
a couple of general features to the narrowing search, as well as introducing some
small modifications to the type checker, the performance is substantially improved.
We will present the most crucial (in our experience) of these general features and
modifications. A central idea of the work is that the same code should in principle
be able to serve as a description for both checking and searching. Hence, the
modifications introduced to the type checking algorithm should preserve its meaning
as a Haskell program.

2 Related Work

Our underlying search procedure is based on narrowing. A survey of various narrow-
ing strategies is found in [2]. A notion of parallel evaluation was presented by Antoy
et. al. in [3]. We have used a slightly different notion of parallel evaluation, which
is described in [10]. Higher-order term construction using first-order narrowing was
investigated by Antoy and Tolmach[5]. Our work is related to this in the sense
that we have also looked at using first-order narrowing to construct higher-order
terms. The difference is that Antoy and Tolmach focused on constructing terms in
the declarative language itself, whereas we encode a new language in a first-order
data-type and search for objects of that data-type.

Algorithms for term construction in type theory has been studied by
e.g. Dowek[8] and Strecker[14]. Strecker’s work is far-reaching, but does not cover
systems which have defined recursive constants.

Finding efficient strategies for automatically constructing proof terms is an ex-
tensively studied area. The concept of uniform proofs largely reduces redundancy
in proof search and is implemented in e.g. the formal system Twelf [11,12]. Focused
derivations is a development of this which further improves performance by detect-
ing chains of construction steps for which the search can proceed deterministically
[1]. Tabling is another technique for narrowing down search space [13]. It is based
on memoizing subproblems in order to avoid searching for the same proof more
than once. Our approach cannot compete with these advanced proof construction
strategies. Nonetheless we do add some restrictions to the type checker in section 5
which remove certain kinds of redundancy. More refined restrictions could proba-
bly be introduced, and a tabling mechanism could possibly be added to the general
search procedure. However, such advanced features are outside the scope of this

109

investigation.
In the area of getting term construction “for free” a couple of contributions

should be mentioned. Augustsson’s tool Djinn[6] converts a Haskell type to a first-
order proposition and sends it off to a theorem prover. The result is then interpreted
as a λ-term. Tammet and Smith have presented a set of optimized encodings for
a fragment of type theory into first-order logic[15]. Here, too, an external theorem
prover is used. The fragment includes inductive proofs, but much information is
lost in the translation, so even rather trivial problems are hard for the tool to find.
Related is also Cheney’s experiment on using logic programming to generate terms
for the purpose of testing a type checker[7].

3 Basic Approach

The approach of the work is to apply narrowing on a rewrite system which is pos-
sible to use as a type checker by executing it as a Haskell program. This means the
program should not contain any non-deterministic functions. Hence, the narrowing
search does to begin with not need to handle more general systems than inductively
sequential term rewrite systems (TRSs). However, since we will introduce the no-
tion of parallel conjunctions to improve performance, we will consider the slightly
larger class of weakly orthogonal TRSs[2]. These include programs where function
definitions may overlap, but only in such a way that overlapping definitions yield the
same result. Instead of using an already existing implementation of functional logic
programming, we decided to implement our own narrowing algorithm for weakly
orthogonal TRSs. The reason for this was to be able to experiment with a couple
of features which are not supported by existing implementations. These features
are presented in the section 4. Our implementation is based on a variation of lazy
needed narrowing strategy [4], which is the most common strategy and is the basis
of e.g. Curry [9]. The term syntax of a logical framework are essentially recursively
defined. When applying narrowing for an unknown term, its instantiation can in
general continue indefinitely. In order to deal with this, our narrowing search is
based on measuring the size of the generated term and exploring the potentially
infinite search space by iterated deepening. Our implementation reads the ghc-core
format, which does not contain pattern matching, only case expressions. Thus the
narrowing search need not include a stage which constructs the definitional trees of
a rewrite system. This is taken care of by the ghc compiler. The blocking position
of an expression is decided by traversing the trees of case expressions which define
the functions.

3.1 A simple type checker

Next we will present the core parts of a type checker for a logical framework with
dependent types. It will be referred to in this section and later on in conjunction
with a few simple examples in order to make clear the basic mechanisms of the ap-
proach. The type checker is presented in figure 1. Types and terms are represented
by Type and Term respectively. A term is either an application of a variable on a
list of arguments, a λ-abstraction or a dependent function arrow. Later on we will
also use a concrete syntax for the terms whenever the thereby obscured details are

110

data Type = El Term
| Set

data Term = App Var [Term]
| Lam Var Term
| Pi Var Type Type

tc :: Ctx -> Type -> Term -> Bool
tc ctx etp trm = case trm of
App v as -> case tiv ctx v of
Just ftp -> case tis ctx ftp as of
Just itp -> eqtp ctx etp itp
Nothing -> False

Nothing -> False
Lam v b -> case hntp ctx etp of
El (Pi v’ itp otp) ->
tc (extctx v itp ctx)
(subtp v’ (App v []) otp) b

_ -> False
Pi v itp otp -> case etp of
Set -> typ ctx itp &&

typ (extctx v itp ctx) otp
_ -> False

tiv :: Ctx -> Var -> Maybe Type

tis :: Ctx -> Type -> [Term] -> Maybe Type
tis ctx tp as = case as of
[] -> Just tp
(a:as’) -> case hntp ctx tp of
El (Pi v itp otp) -> if tc ctx itp a then

tis ctx (subtp v a otp) as’
else
Nothing

otherwise -> Nothing

typ :: Ctx -> Type -> Bool
typ ctx tp = case tp of
El trm -> tc ctx Set trm
Set -> True

hntp :: Ctx -> Type -> Type
hntp ctx tp = case tp of
El trm -> El (hn ctx trm)
Set -> Set

hn :: Ctx -> Term -> Term
subtp :: Var -> Term -> Type -> Type
eqtp :: Ctx -> Type -> Type -> Bool
empctx :: Ctx
extctx :: Var -> Type -> Ctx -> Ctx

Fig. 1. Fragment of a type checker for a logical framework with dependent types

not important. We will write (x t . . . t) and λx → t for applications and abstrac-
tions respectively. Functions arrows will in general be denoted by (x : t)→ t, while
non-dependent functions will be written t→ t. The El construction will be omitted
in the concrete syntax, and terms and types will not be explicitly distinguished.
The representation of variables, Var, and contexts, Ctx, are left abstract. A context
is assumed to contain type declarations of local variables and global constants, as
well as the reduction rules for defined global constants. The function tc decides
the correctness of a term with respect to a given context and type. When checking
applications tis is used to traverse the list of arguments. The correctness of a type
is decided by typ and hntp reduces a type to head normal form in case it is a term.
For the remaining functions only the type signature is given. The type of a variable
is looked up in the context by tiv. The function hn reduces a term to head normal
form, and subtp substitutes a variable for a term in a type. The definitional equal-
ity between two types is decided by eqtp. Finally, empctx represents the empty
context and extctx extends a context with a new local variable type declaration.

3.2 Example of a proof search

In order to illustrate the basic mechanism of applying narrowing search on the
presented type checker let us look at the proposition A ∧ (A→ B)→ B. This can
be encoded as the type (A : Set) → (B : Set) → A → (A → B) → B, or in our
abstract syntax:

goalt ≡ El (Pi A Set (El (Pi B Set (El (Pi x (El (App A []))

(El (Pi y (El (Pi z (El (App A [])) (El (App B []))))

(El (App B [])))))))))

In order to find a term of this type using the proposed approach we should apply
narrowing on the expression

tc empctx goalt ?1,

111

where ?1 is a meta variable serving as a placeholder for the yet unknown term.
With a lazy narrowing strategy the expression for which the search is performed

is evaluated in a lazy evaluation order, i.e. from the outside and in. Whenever an
uninstantiated meta variable is encountered it is said to be in the blocking position.
The meta variable in the blocking position is chosen for refinement. It is non-
deterministically refined to one of the constructors in its type. For each constructor,
fresh meta variables are inserted at the argument positions. Then the evaluation
of the expression proceeds until a new blocking meta variable is encountered or a
value is reached. If the value is True a solution has been found. If it is False a
dead-end has been reached and the search back-tracks.

Proceeding with the example, we start evaluating the given expression lazily.
Since tc does a case distinction on the third argument, we need to know the head
constructor of the term. But the term is ?1, which thus blocks further evaluation.
There are three possible refinements of ?1. The refinement ?1 := App ?2 ?3 yields
an expression with (tiv empctx ?2) surrounding the potentially blocking position.
Assuming that tiv returns Nothing for the empty context regardless of its second
argument, the evaluation proceeds without further refinement with the result being
False, which means no solution. The refinement ?1 := Pi ?2 ?3 ?4 immediately
yields False since the type is not Set. Finally, the refinement ?1 := Lam ?2 ?3

results in the expression

tc (extctx ?2 Set empctx) (subtp A (App ?2 []) (Pi B . . .)) ?3,

where ?3 is the blocking meta variable.
The search proceeds similarly until all four λ-abstractions have been constructed.

The difference is that the context is no longer empty, which means that App is
not immediately rejected. However, before all λ-abstractions are introduced, the
refinement to App will eventually fail and the search will back-track. At the resulting
state, the term under construction has been instantiated to

Lam ?2 (Lam ?4 (Lam ?6 (Lam ?8 ?9)))

and the expression is essentially

tc . . . (El (App B [])) ?9.

Consider the refinement ?9 := App ?10 ?11. Then ?10 is blocking the evaluation. If
?10 is set to be equal to ?8, tiv should return

Just (El (Pi z (El (App A [])) (El (App B [])))).

The values of ?8 and ?10 are not important, as long as they are equal. Let us choose
them to be y. Now ?11 becomes the blocking meta variable. The refinement ?11 := []
results in the comparison between the expected type, B, and the type inferred by
tiv, namely A → B. These are not equal and hence the expression evaluates to
False. The refinement ?11 :=?12 :?13 makes ?12 block. Refining ?12 to App ?14 ?15,
setting ?14 to be equal to ?6 and refining ?15 to [] results in comparing the expected
and inferred type for the inner application (which has no arguments). The types are
both A, so the search proceeds. The common value of ?6 and ?14 is also arbitrary,
as long as it is different from y. Let us choose it to be x. Looking at the definition
of tis the blocking meta variable is now ?13. After refining ?13 to [], the expected
and inferred type for the outer application is compared. They are both B, so the

112

expression finally evaluates to True, indicating that we have a solution. The term
is composed by all current refinements which expands to

Lam ?2 (Lam ?4 (Lam x (Lam y (App y ((App x []) : []))))).

This term represents a proof for the given problem.

3.3 Comments on the suitability of using narrowing

The basic idea of narrowing search is that, by interleaving instantiation and eval-
uation, and choosing the order of instantiation in a clever way, the data in many
cases do not need to be fully instantiated before the predicate is known to return
False. Every time this happens, all the data instances that are specializations of
the current partial instantiation can be skipped. Thereby the search space is re-
duced. Predicates which are suitable for narrowing are typically to large extent
defined by recursion on the structure of the unknown data. Looking at the example
above, type checking does seem to be of this kind.

However, the example could very well be formalized in a system without depen-
dent types. In a logical framework with dependent types, argument types and the
output type may depend on a previous argument value in applications. This leads
to some complications which were not exposed in the example. In the following
two sections these complications will be discussed along with suggestions for how
to deal with them.

One complication which did appear in the example was the treatment of vari-
ables. When constructing variable occurrences, the description of the search was
rather irregular, stating that two variables should be the same rather than instan-
tiating a single meta variable. Also, the variables which were never used were left
uninstantiated. These problems are however easy to avoid. When representing vari-
able occurrences by de Bruijn indices, no arbitrary choices need to be made, and no
uninstantiated variables at binding position will appear. Furthermore, if recursively
defined numbers are chosen to represent the indices, the narrowing algorithm will
itself limit the search to the set of possible indices for a given context.

4 Features of the General Search Procedure

This section describes the two main non standard features of the general search
algorithm we have investigated. As stated above, the search procedure targets
weakly orthogonal TRSs. In order to deal this class of rewrite systems efficiently,
a concept of parallel evaluation has been proposed[3]. In [10] a somewhat different
notion of parallel evaluation is presented, which is used in our implementation.
Using this feature for the purpose of parallel conjunction is discussed in section
4.1. Section 4.2 introduces the idea of subproblem separation which is an attempt
to overcome the performance loss which follows from using parallel conjunction in
some cases.

113

4.1 Parallel Conjunction

Let us now look at a simple example which does involve dependent types. Assume
that we have the situation

?1 : P M,

where P : X → Set is a variable and M is a term of the correct type. Also assume
that h : (x : X) → P x is in scope. Constructing a proof by involving h proceeds
by the refinement

?1 := h ?2.

The type checker presented in the previous section is devised to check the correctness
of the arguments in an application from left to right, and at the end check the
equality between the expected and the inferred type. In this example that amounts
to first checking ?2 : X and then checking P M = P ?2. This is a natural choice since
it means that terms are always type checked before they are used in computations.
However, for the purpose of proof search, type checking before equality checking
is not desirable, since the latter is in general more restrictive. Type checking the
argument, ?2, first means that all terms with the correct type are constructed before
their equality to M is decided.

To amend this inefficiency there are two rather straightforward ways to go.
One is to reverse the order in which the constraints are checked in an application,
as discussed in [8]. The other is to check the conditions in parallel. Both these
approaches build on the fact that the result of type checking an argument is not
needed for type checking the remaining arguments or for the final equality check.
However, both of them also introduce the hazard that a term which has not been
constructed in a type correct way exposes partiality in the term reduction functions.

In our implementation we chose the second of these approaches with the moti-
vation that checking restrictions in parallel during the narrowing search should in
general give a smaller search space than checking them sequentially, regardless of
the order. There are also situations where parallel checking is useful, and where
the best order is not as clear as in the case of type checking an application. The
following example illustrates this:

∃ X (λx→ P x ∧Q x)

Constructing a proof of this proposition will yield an intermediate state with the
constraints

?1 : X, ?2 : P ?1, ?3 : Q ?1.

The type judgments of ?2 and of ?3 both put restrictions on ?1. By instantiating
the meta variables and taking all the type constraints into account in parallel, a
more narrow search space can be achieved.

As mentioned, the hazard of giving conjunctions a parallel meaning is that an
intentional partiality in the right conjunct is exposed. The implications are different
for non-definedness and for non-termination partiality. Non-definedness can be
easily handled by treating a undefinedness error in the right conjunct of parallel
conjunction as False.

114

Non-termination is more delicate. A term can be non-terminating in two ways.
It is either essentially type correct but recursive in a non-terminating way, or it is
not type correct and non-terminating, like the Ω-term. In our experiments we have
not implemented a termination checker. Instead, we have allowed recursion only via
given elimination rules. We have not experienced any problems caused by nonter-
mination. A formal characterization of when and why this is provably safe would
be desirable, but we have had to leave this as future work. An informal motivation
of why we have not encountered any problems is that nonterminating terms are
either not constructible in the syntax or have to be constructed via intermediate
steps which are not type correct.

With the needed narrowing strategy, there is always a unique meta variable to
branch the search on. However, in the presence of parallel conjunction, or parallel
evaluation in general[10], there is no longer a single meta variable blocking the
evaluation. The order in which to instantiate meta variables must hence be further
specified. A natural choice is to store them in a collection and extract them in
either a queue or a stack manner. In our experience the queue is in general, but
not always, the better choice regarding performance[10]. The order of instantiating
blocking meta variables can also be controlled in more refined ways, which we will
come back to in section 5.2.

4.2 Subproblem Separation

Parallel conjunction was introduced in order to check several properties in parallel
during the incremental instantiation of a term. This seems to be beneficial in various
situations where the properties constrain the same part of the term. However, for
problems where there are sub-terms with no dependencies in between, it seems
undesirable to interleave the search for their solutions. Consider the situation

?1 : P ∧Q,

where P and Q have no meta variable occurrences. Interleaving the construction
of a proof of P and a proof of Q is unnecessary and should lead to a larger search
space than if the to subproofs were constructed separately. This is a drawback of
switching to parallel conjunction as discussed in sec 4.1. Moreover the situation is
very common. It can appear whenever attempting to prove a proposition by case
distinction, such as in proofs by induction.

A solution to this drawback could be to add a feature of subproblem separation
to the general narrowing search. One part of the mechanism would be to detect
the presence on independent subproblems, i.e. unconnected graphs where parallel
conjuncts and meta variables constitute the vertices and the edges represent meta
variable occurrences in the conjuncts. When such a partitioning has been detected,
a local search for each subproblem is spawned. When performing the search for
several independent subproblems backtracking one of them should not affect the
other ones, and when the search space is exhausted for one of them, itself and all
of its sibling subproblems are cancelled. We have implemented this feature, but it
should be considered a prototype.

115

A rather artificial example will illustrate the reduction in search space which
can be gained using subproblem separation. Let the initial problem be

?1 : P

and let the following hypotheses be in scope:

g1 : P1 → P2 → P

g2 : P3 → P4 → P

hij : Pij → Pi, for 1 ≤ i ≤ 4, 1 ≤ j ≤ ki

There are two alternative ways to prove P , namely by applying either g1 or g2 on two
arguments. In both cases, the construction of the two arguments are independent of
each other. The subproblems are in turn matched by unary applications invoking
the hypotheses hij . A complete proof is not possible to construct in the given
context, but that is not important. We will merely measure the size of the search
space by counting the number of leaves in the spanned tree. Assuming parallel
conjunction is used, the instantiation of the first sub-term will be interleaved with
the instantiation of the second. The number of leaves in the search tree thus amounts
to k1 · k2 + k3 · k4. Now consider the case where the subproblem separation feature
is present. When the term has been instantiated to either g1 ?2 ?3 or g2 ?2 ?3, the
independence between the construction of ?2 and ?3 is detected. Assuming that
the execution alternates between the two separate subproblems in a fair way, the
number of leaves is 2 · min(k1, k2) + 2 · min(k3, k4). Hence the size of the search
space is linear in ki instead of quadratic. Subproblem separation could enable the
proof search to scale considerably better.

5 Optimizations of the Type Checker

The features presented in the previous section, parallel conjunction and subproblem
separation, do not result in a proof search which is of practical use. In order to
improve the performance, we have also experimented with some modifications of
the type checker. In this section we will discuss a few such modifications which
have proved to be important in our experiments.

5.1 Type Checking Restrictions

Most logical frameworks allow writing essentially the same proof in many different
ways. By restricting the type checker to accept fewer terms for a given type, a
reduction of the search space can be accomplished. One restriction is to only allow
normal terms. It can be easily achieved by adding a side condition checking that
no sub-term is reducible. Imposing this restriction does not compromise the com-
pleteness of the search. Another possibility could be to add restrictions which allow
only uniform proofs.

One can of course also come up with a large number of restrictions, which do
limit the completeness. These can be seen as representations of different heuristics.
One example is to restrict induction so that no generalizations may take place. This
clearly makes the search incomplete, but also contributes a lot to performance.

116

5.2 Meta Variable Prioritization

As mentioned in section 4.1, the search is based on keeping a queue of blocking meta
variables and instantiating them one at a time. By slightly annotating the code of
the type checker, one can introduce a notion of priority which refines the scheduling
of the meta variable instantiation. Controlling the order of instantiation this way
does not affect the completeness, apart from the possibility that an otherwise finite
search space could become infinite.

The following simple prioritization has made a great performance improvement
in our experiments:

• high – equality constraints
• medium – type checking constraints for proof terms
• low – type checking constraints for non-proof terms and when the type is unknown

By proof term we mean sub-terms which correspond to a proof step, i.e. whose in-
habitation is not trivial. Non-proof terms are the rest, i.e. terms which are typically
trivially inhabited and appear in some equality constraint.

The idea behind this prioritization is that equality constraints are in general
more restrictive than type checking constraints. The reason for postponing the
type-checking of non-proof terms is that it may be the case that the term does
not yet appear in an equality constraint, although it will after further instantiating
some proof terms. If the instantiation of the non-proof term is initiated before an
equality constraint add further restrictions, the search is quite arbitrary.

In order to be able to prioritize proof and non-proof terms differently, there
must be a way to tell them apart. One option is to distinguish between dependent
and non-dependent function types. Application arguments which stem from depen-
dent function types are treated as non-proof terms and those from non-dependent
function types as proof terms. We have chosen this approach in our implementation.

5.3 Special Treatment of Equality Constraints

Checking equality constraints in a dependently typed system is typically imple-
mented by first reducing the left and right hand sides to head normal form, and
then comparing the heads and recursively repeating the procedure for the sub-terms.
Assume we apply narrowing on a type checker implemented like this. If one of the
compared terms is a meta variable, it is necessary for the search algorithm to guess
among all global constants, reduce the term and see if it equals the opposite side.
If we have e.g. have the equality constraint

?1 = add T U,

the search must guess ?1 to be add ?2 ?3. This is of course a possible solution, but
we would like to make better use of the information that is given in the initial type
defining the problem. The meta variable on one side should be able to mimic the
term on the other side, just like in unification.

The basic approach to achieve this is to compare the terms without first reducing
them. Of course, never reducing the terms when comparing for equality is not a
real option. That would render the system too weak. A possible option is to mix

117

reduction with first-order unification, but it is not so clear how this should be done.
One way to do this is to check for each term whether it is a meta variable (is
currently unknown) and only reduce terms which are not. In order to implement
this, a primitive function to test whether a term is a meta variable must be added
to the general system.

However, the comparison will not be complete. Assume e.g. we have the global
definitions

p a ≡ q p b ≡ r

for the constant p, and the equality constraints

?1[a/x] = q ?1[b/x] = r,

where the brackets represent postponed variable substitutions. Then the solution,
?1 := p x, will not be found using the approach above. However, the definition of
p is rather artificial. This way of allowing information to migrate from one side to
the other in equality constraints seems to be sufficient in most practical cases.

6 Experiments

We have performed some experiments with the presented approach. The imple-
mentation consists of a general narrowing search system and a type checker for a
logical framework written in Haskell. The narrowing system is constituted by a
compiler of Haskell programs and a run-time system implementing the search algo-
rithm. The narrowing algorithm accepts weakly orthogonal TRSs by implementing
the parallel evaluation discussed in section 4.1 and presented in more detail in [10].
It also includes a prototype of the subproblem separation feature presented in sec-
tion 4.2. The type checker is based on the one presented in section 3, but modified
to enable parallel conjunction and the performance enhancing features presented
in section 5. The implemented logical framework has recursive global function and
data definitions.

The examples we have run the resulting proof construction tool on mainly focus
on the way instantiation is scheduled when constructing proof terms containing type
arguments. Performance-wise the approach cannot compete with more refined proof
search methods like focused derivations or higher-order tabling (see section 2). The
redundancy quickly becomes overwhelming for propositional problems and prob-
lems involving equality reasoning. In the following subsections a couple of examples
are presented, illustrating how the presented modifications of the type checker in-
fluence the search. In connection with these examples some further remarks on the
limitations of the approach are made.

6.1 The scheduling of instantiations

An inductive proof containing some kind of generalization serves well as an illustra-
tion of the order of instantiation which is imposed by the prioritization presented
in section 5.2. The example is to construct a proof of the proposition stating that
a given function, sort, always returns a sorted list.

?1 : (xs : List Nat)→ sorted (sort xs)

118

In order to save space we will omit the definitions of sorted and sort, but merely
state that sort implements insertion sort. The reader thus cannot confirm that the
proof is correct. Nevertheless, the mechanisms of the proof search should be clear.
The function sort is defined in terms of sort′ which, in turn, uses insert. The
names List and Nat refer to the standard recursive definitions of lists and natural
numbers. The proof search is provided an elimination constant for lists,

elimList : (X : Set)→ (xs : List X)→ (P : List X → Set)→

P nil→ ((z : X)→ (zs : List X)→ P zs → P (cons z zs))→ P xs,

and the lemma

lem : (x : Nat)→ (xs : List Nat)→ sorted xs → sorted (insert x xs).

The sub-term sort xs in the given problem normalizes to sort′ xs nil. A solution
to the problem is

?1 := λx→ elimList Nat︸︷︷︸
B

x︸︷︷︸
A

(λy → (z : List Nat︸ ︷︷ ︸
B

)→ sorted z︸ ︷︷ ︸
E

→ sorted (sort′ y z)︸ ︷︷ ︸
A

)

(λy → λz → z)︸ ︷︷ ︸
C

(λy → λz → λw → λt→ λu→ w (insert y t) (lem y t u))︸ ︷︷ ︸
D

nil︸︷︷︸
A

tt︸︷︷︸
F

where tt is the proof of the trivial problem, proving sorted nil.
Our implementation constructs the proof term above in the following way. First

the λ-abstraction and application of elimList with the correct number of argu-
ments are constructed. This also includes constructing the λ-abstraction and the
two function arrows in the third argument of the application. A that stage there
are a number of type checking constraints and one equality constraint involving
the sub-terms marked A. The prioritization presented in section 5.2 makes the
instantiation address the equality constraint first. This results in constructing the
sub-terms A, followed by the terms marked B. Next, the construction of C and D

are interleaved. When the elimination of z has been introduced in C, the result-
ing equality constraint triggers the construction of the extra hypothesis E. After
that the type of F is becomes known, so its construction commences. During the
final stage of the search the construction of F and the remaining of D proceeds as
two independent subproblems, since they have no uninstantiated meta variables in
common.

By employing parallel conjunction combined with the instantiation prioritiza-
tion, the implementation can find the proof above within a second on a normal
desktop computer. Without these features, the construction of this proof term by
narrowing search is quite intractable.

119

6.2 Subproblem separation

To exemplify the improvement gained by introducing subproblem separation, which
was discussed in section 4.2, we take the following example:

?1 : (a : Nat)→ (b : Nat)→ eq a b→ eq b a

It involves a recursively defined equality relation over natural numbers. The solution
of the problem includes nested induction, one at the top level and another induction
in each of the base and step cases. The problem does not seem very difficult. But
in spite of this it is a challenge to our implementation. The example makes it
quite clear that more restricted induction is desirable in situations in which no
strengthening of the induction hypothesis is required. However, when turning on
the subproblem separation feature the base and step cases of the inductions can
be solved independently. This makes the search space forty times smaller. The
search only becomes a few times faster since our implementation of the feature is
rather inefficient. However, we think that the implementation could be considerably
improved. We also believe that efficient subproblem separation is essential if one is
interested in making the whole approach tractable for more complex problems than
those which have been presented here.

7 Conclusions

We have presented the idea of applying first-order narrowing on a type checker for
a higher-order formalism in order to achieve proof construction. In order to make
the resulting search procedure viable for practical use, we have refined the approach
by adding a couple of non-standard features of the narrowing, as well as a number
of small and rather general modifications of the type checker. We have made an
implementation to get some empirical evidence of the usability of the approach.
The preliminary conclusion is that the approach could be useful in situations where
low cost is important rather the high performance. The experiments are however
too limited to be able to give a more solid conclusion/

For future work we are keen to further investigate the usefulness of the approach
by more thouroughly running examples and comparing to other systems. One of the
most crucial points in order to improve our system seems to be the subproblem sep-
aration feature. We would also like to investigate the addition of more restrictions
to the type checker in order to impose heuristics for e.g. equality reasoning. An
interesting direction is to look at using the approach for the purpose of generating
functions. We have looked into this to some extent, and been able to synthesize
e.g. insertion sort. But the main obstacle seems to be that, although we restrict the
search to terminating functions, a lot of very inefficient candidates are still gener-
ated. This could be amended by adding some notion of function complexity to the
type system.

References

[1] J. M. Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic and
Computation, 2(3):297–347, 1992.

120

[2] S. Antoy. Evaluation strategies for functional logic programming. Journal of Symbolic Computation,
40(1):875–903, 2005.

[3] S. Antoy, R. Echahed, and M. Hanus. Parallel evaluation strategies for functional logic languages. In
Proc. Fourteenth International Conference on Logic Programming, pages 138–152, Leuven, Belgium,
July 1997. MIT Press.

[4] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of the ACM, 47(4):776–
822, July 2000.

[5] S. Antoy and A. Tolmach. Typed higher-order narrowing without higher-order strategies. In 4th Fuji
International Symposium on Functional and Logic Programming (FLOPS’99), volume 1722, pages
335–350, Tsukuba, Japan, 11 1999. Springer LNCS.

[6] Lennart Augustsson. Djinn, a theorem prover in haskell, for haskell.
http://www.augustsson.net/Darcs/Djinn/

[7] James Cheney. http://homepages.inf.ed.ac.uk/jcheney/publications/wmm06-draft.pdf

[8] Gilles Dowek. A complete proof synthesis method for the cube of type systems. J. Logic and
Computation, 3(3):287–315, 1993.

[9] M. Hanus and P. Réty. Demand-driven search in functional logic programs. Research report rr-lifo-98-
08, Univ. Orléans, 1998.

[10] Fredrik Lindblad. Property directed generation of first-order test data. Presented at TFP 2007 and
submitted for publication.

[11] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a foundation
for logic programming. Annals of Pure and Applied Logic, 51:125–157, 1991.

[12] Frank Pfenning and Carsten Schürmann. System description: Twelf — A meta-logical framework
for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th International Conference on
Automated Deduction (CADE-16), pages 202–206, Trento, Italy, 1999. Springer-Verlag LNAI 1632.

[13] Brigitte Pientka. Tabling for higher-order logic programming. In CADE, pages 54–68, 2005.

[14] Martin Strecker. Construction and Deduction in Type Theories. PhD thesis, Fakultät für Informatik,
Universität Ulm, 1999.

[15] Tannel Tammet and Jan Smith. Optimized encodings of fragments of type theory in first-order logic.
Journal of Logic and Computation, 8, 1998.

121

LFMTP 2007

The λ-context calculus

Murdoch J. Gabbay
Computer Science Department, Heriot-Watt University, Scotland

Stéphane Lengrand
School of Computer Science, University of St Andrews, Scotland

Abstract

We present a simple but expressive lambda-calculus whose syntax is populated by variables which behave
like meta-variables. It can express both capture-avoiding and capturing substitution (instantiation). To do
this requires several innovations, including a key insight in the confluence proof and a set of reduction rules
which manages the complexity of a calculus of contexts over the ‘vanilla’ lambda-calculus in a very simple
and modular way. This calculus remains extremely close in look and feel to a standard lambda-calculus
with explicit substitutions, and good properties of the lambda-calculus are preserved.

Keywords: Lambda-calculus, contexts, meta-variables, capture-avoiding substitution, capturing
substitution, instantiation, confluence, nominal techniques, calculus of explicit substitutions.

1 Introduction

This is a paper about a λ-calculus for contexts. A context is a term with a ‘hole’.
The canonical example is probably C[-] = λx.- in the λ-calculus. This is not λ-
calculus syntax because it has a hole -, but if we fill that hole with a term t then
we obtain something, we usually write it C[t], which is a λ-calculus term.

For example if C[-] = λx.- then C[x] = λx.x and C[y] = λx.y. This cannot be
modelled by a combination of λ-abstraction and application, because β-reduction
avoids capture. Formally: there is no λ-term f such that ft = C[t]. The term
λz.λx.z is the obvious candidate, but (λz.λx.z)x =α λx

′.x. (Here =α is α-equality.)
Contexts arise often in proofs of meta-properties in functional programming.

They have been substantially investigated in papers by Pitts on contextual equiv-
alence between terms in λ-calculi (with global state) [18,20]. This work was about
proving programs equivalent in all contexts — contextual equivalence. The idea
is that two programs, represented by possibly-open λ-terms, are equivalent when
one can be exchanged for another in code (without changing whichever notion of
observation we prefer to use).

This suggests that we should call holes context variables X (say they have ‘level
2’) distinct from ‘normal’ variables x (say they have ‘level 1’) and allow λ-abstraction

122

over them to obtain a λ-calculus of contexts, so that we can study program contexts
with the full panoply of vocabulary, and hopefully with many of the theorems, of
the λ-calculus. For example λx.- may be represented by λX.λx.X. Substitution for
X does not avoid capture with respect to ‘ordinary’ λ-abstraction, so (λX.λx.X)x
reduces to λx.x.

The Lambda Context Calculus internalises context variables (as variables of
‘level 2’, which we write X,Y, Z). X, Y , and Z are now variables which can occur
any number of times anywhere in a term — and they can be λ-abstracted. The
Lambda Context Calculus therefore goes further and internalises another level of
contexts (variables of ‘level 3’, which we write W,W ′) — and so on. There are
several possibilities where such a calculus might be applied.

Consider formalising mathematics in a logical framework based on Higher-Order
Logic (HOL) [28]. Typically we have a goal and some assumptions and we want a
derivation of one from the other. This derivation may be represented by a λ-term
(the Curry-Howard correspondence). But the derivation is arrived at by stages in
which it is incomplete.

A⇒B⇒C [A]i

B⇒C

?

B

C
i

A⇒C

A⇒B⇒C [A]i

B⇒C

A⇒B [A]i

B

C
i

A⇒C

To the right are two derivations of A⇒B⇒C,A⇒B `
A⇒C. The bottom one is complete, the top one is in-
complete. 1 An issue arises because the right-most [A]i in
the bottom derivation is discharged, which means that we
have to be able to instantiate ? in a sub-derivation for an
assumption which will be discharged. Discharge corre-
sponds in the Curry-Howard correspondence precisely to
λ-abstraction, and this instantiation corresponds to cap-
turing substitution. Similar issues arise with existential
variables [10, Section 2, Example 3].

The central issue for any calculus of contexts is the interaction of context vari-
ables with α-equivalence. Let x, y, z be ‘ordinary’ variables and let X be a context
variable. If λx.X =α λy.X then (λX.λx.X)x =α (λX.λy.X)x λy.x, giving
non-confluent reductions. Dropping α-equivalence entirely is too drastic; we need
λy.λx.y to be α-convertible with λz.λx.z to reduce a term like (λy.λx.y)x.

Solutions include clever control of substitution and evaluation order [23], types
to prevent ‘bad’ α-conversions [21,11,22], explicit labels on meta-variables [10,13],
and more [4, Section 2]. More on this in the Conclusions.

We took our technical ideas for handling α-equivalence, not from the literature
on context calculi cited above, but from nominal unification [27]. This was designed
to manage α-equivalence in the presence of holes, in unification — ‘unification of
contexts of syntax’, in other words. Crudely put, we obtained the λ-context calculus
(LCC) by allowing λ-abstraction over the holes and adding β-reduction.

This work has similar goals to previous work by the first author [6] which pre-
sented a calculus called NEWcc. The LCC possesses a significatnly more elementary
set of reduction rules; notably, we dispense entirely with the freshness contexts and
freshness logic of the NEWcc. Indeed, the LCC has only one single non-obvious
side-condition, it is on (σp) in Figure 5.

1 This example ‘borrowed’ from [10].

123

The result is a system with a powerful hierarchy of context variables and which
still manages to be clean and, we hope, easy to use and to study.

In Section 2 we present the syntax and reductions of the LCC. The look-and-feel
is of a λ-calculus with explicit substitutions, except that each variable has a ‘level’
which determines how ‘strongly’ binders by that variable resist capture. We give
example reductions and discuss the technical issues which motivated our design. In
Section 3 we discuss the λ-free part of the language, prove strong normalisation,
and give an algorithm for calculating normal forms. In the usual λ-calculus this
normal form is calculated in big-step style and written s[a7→t]; as is standard for a
calculus of explicit substitutions, here this part of evaluation is dissected in detail.
In Section 4 we treat confluence, first of the λ-free part of the language, then of
the full reduction system. The proof may look elementary but it is not, and we
give enough technical detail to show how all the side-conditions interact to ensure
confluence. It is not sufficient to give a λ-calculus without binding, but the hierarchy
of levels means that λ itself is no longer necessarily a binder. We address that issue
with a new Nin Section 5. We conclude with brief discussions of programming in
Section 6, and then discuss related and future work.

2 Syntax and reductions

2.1 Syntax

We suppose a countably infinite set of disjoint infinite sets of variables A1, A2,
. . . . i, j, k range over levels; we usually maintain a convention that k ≤ i < j, where
we break it we clearly say so. We always use a permutative convention that
ai, bj , ck, . . . range permutatively over variables of level i; so ai, bj , and ck are always
distinct variables. There is no particular connection between a1 and a2; we have
just given them similar names.

Definition 2.1 LCC syntax is given by s, t ::= ai | tt | λai.t | t[ai 7→t].

Application associates to the left, e.g. tt′t′′ is (tt′)t′′. We say that ai has level i.
We call bj stronger than ai, and ai weaker than bj , when j > i. If i = j we say
that bj and ai have the same strength. We call s[ai 7→t] an explicit substitution
(of level i). We call λai.t an abstraction (of level i).

By convention x, y, z,X, Y, Z,W are distinct variables; x, y, z have level 1, X,Y, Z
have level 2, andW has level 3. Note that levels are 1, 2, 3, . . . but our proofs would
work as well for levels being integers, reals, or any totally ordered set.

The stronger a variable, the more ‘meta’ its behaviour. The intuition of λx.X is
of the context λx.- where - is a hole; this is because, as we shall see, substitution for
the relatively strong X does not avoid capture by the relatively weak λx. Strong
variables can be abstracted as usual; the intuition of λX.X is of the ‘normal’ identity
function; the intuition of λX.λx.X is of the mapping ‘t maps to λx.t’.

Our syntax has no constant symbols though we shall be lax and use them where
convenient, for example 1, 2, 3, This can be accommodated by extending syntax,
or by declaring them to be variables of a new level 0 < 1 which we do not abstract
over or substitute for.

124

level(ai) = i

level(ss′) = max(level(s), level(s′))
level(λai.s) = max(i, level(s))

level(s[ai 7→t]) = max(i, level(s), level(t))

fv(ai) = {ai}
fv(λai.s) = fv(s)\{ai}

fv(s[ai 7→t]) = (fv(s)\{ai}) ∪ fv(t)
fv(st) = fv(s) ∪ fv(t)

Fig. 1. Levels level(s) and free variables fv(s)

aiRai

sRs′ tRt′

st R s′t′

sRs′ tRt′

s[ai 7→s′] R t[ai 7→t′]
sRs′

λai.s R λai.s
′

sRs′

s′Rs

sRs′ s′Rs′′

sRs′′

Fig. 2. Rules for a congruence

(ai bi)ai = bi

(ai bi)bi = ai

(ai bi)c = c (c any atom other than ai or bi)
(ai bi)(ss′) = ((ai bi)s)((ai bi)s′)

(ai bi)(λc.s) = λ(ai bi)c.(ai bi)s (c any atom)
(ai bi)(s[c7→t]) = ((ai bi)s)[(ai bi)c7→(ai bi)t] (c any atom)

Fig. 3. Rules for swapping

λai.s =α λbi.(bi ai)s if bi#fv(s)
s[ai 7→t] =α ((bi ai)s)[bi 7→t] if bi#fv(s)

Fig. 4. Rules for α-equivalence

Definition 2.2 Define the level level(s) and the free variables fv(s) by the rules
in Figure 1.

Here max(i, j) is the greater of i and j, and max(i, j, k) is the greatest of i, j, and
k. Later we shall write ‘level(s1, . . . , sn) ≤ i’ as shorthand for ‘level(s1) ≤ i and . . .
and level(sn) ≤ i’, similarly for ‘level(s1, . . . , sn) < i’.

Lemma 2.3 If level(s) = 1 then fv(s) coincides with the usual notion of ‘free vari-
ables of ’ for the λ-calculus, if we read s[a1 7→t] as (λa1.s)t.

We shall see that the operational behaviour of such terms is the same as well.
A congruence is a binary relation s R s′ satisfying the conditions of Figure 2.

Define an (atoms) swapping (ai bi)s by the rules in Figure 3. Swapping is char-
acteristic of the underlying ‘nominal’ method we use in this paper [9,27]. We let
swapping (ai bi) act pointwise on sets of variables S: (ai bi)S = {(ai bi)c | c ∈ S}.
Here c ranges over all elements of S, including ai and bi (if they are in S).

Lemma 2.4 fv((ai bi)s) = (ai bi)fv(s) and level((ai bi)s) = level(s).

125

If S is a set of variables write ai#S when ai 6∈ S and also there exists no variable
bj ∈ S such that j > i.

Definition 2.5 Call the two rules in Figure 4 α-conversion of ai. Let α-equivalence
=α be the least congruence relation containing α-conversion.

Note that: ai may be α-converted in λai.s if level(s) ≤ i, so λx.x =α λy.y.
ai may be α-converted in s[ai 7→t] if level(s) ≤ i, so x[x7→X] =α y[y 7→X]. We
cannot α-convert ai in s if bj ∈ fv(s) for j > i. For example λx.X 6=α λy.X. This
is consistent with a reading of strong variables as unknown terms with respect to
weaker variables. We cannot α-convert variables to variables of other levels.

Lemma 2.6 If s mentions only variables of level 1, then α-equivalence collapses to
the usual α-equivalence on untyped λ-terms (plus an explicit substitution).

Theorem 2.7 If s =α s
′ then fv(s) = fv(s′) and level(s) = level(s′).

Proofs of all results above are by easy inductions.
In the rest of this paper we find it convenient to work on terms up to α-

equivalence (=α-equivalence classes of terms). When later we write ‘s = t’, the
intended reading is that the α-equivalence classes of s and t are equal.

2.2 Reductions

Definition 2.8 Define the reduction relation by the rules in Figure 5.

Recall our permutative convention; for example in (σλ′) ai and ci are distinct.
Subsection 2.3 shows examples of these rules at work, and Subsection 2.4 discusses
their design. We shall use the following notation:

• We write ∗ for the transitive reflexive closure of .
• We write s 6 when there exists no t such that s t. If s 6 we call s a normal

form, as is standard.

• We write s
(ruleset)
 t when we can deduce s t using only rules in (ruleset) and the

rules (Rapp) to (Rσ′), where (ruleset)⊆{(β), (σa), (σfv), (σp), (σσ), (σλ), (σλ′)}.
(Later in Section 5 we extend reduction with rules for a binder N.)

• Call terminating when there is no infinite sequence t1 · · · ti · · ·
Similarly for

(ruleset)
 . Call confluent when if s ∗ t and s ∗ t′ then there

exists some u such that t ∗ u and t′ ∗ u. Similarly for
(ruleset)
 .

This is all standard [25,1].
We note two easy but important technical properties: reductions does not in-

crease the level of a term or its set of free variables.

Lemma 2.9 If s s′ then level(s′) ≤ level(s).

Lemma 2.10 If s s′ then fv(s′) ⊆ fv(s), and if s ∗ s′ then fv(s′) ⊆ fv(s).

2.3 Example reductions

The LCC is a λ-calculus with explicit substitutions [15]. The general form of the σ-
rules is familiar from the literature though the conditions, especially those involving

126

(β) (λai.s)t s[ai 7→t]

(σa) ai[ai 7→t] t

(σfv) s[ai 7→t] s ai#fv(s)

(σp) (ss′)[ai 7→t] (s[ai 7→t])(s′[ai 7→t]) level(s, s′, t) ≤ i

(σσ) s[ai 7→t][bj 7→u] s[bj 7→u][ai 7→t[bj 7→u]] i < j

(σλ) (λai.s)[bj 7→u] λai.(s[bj 7→u]) i < j

(σλ′) (λai.s)[ci 7→u] λai.(s[ci 7→u]) ai#fv(u)

s s′

(Rapp)
st s′t

t t′

(Rapp′)
st st′

s s′

(Rλ)
λai.s λai.s

′

s s′

(Rσ)
s[ai 7→t] s′[ai 7→t]

t t′

(Rσ′)
s[ai 7→t] s[ai 7→t′]

Fig. 5. Reduction rules of the LCC

levels, are not; we discuss them in Subsection 2.4 below. First, we consider some
example reductions. Recall our convention that we write x, y, z for variables of level
1, and X,Y, Z for variables of level 2.

• (β) is standard for a calculus with explicit substitutions.

• The behaviour of a substitution on a variable depends on strengths:

x[X 7→t] (σfv)
 x x[x′ 7→t] (σfv)

 x x[x7→t] (σa)
 t X[x7→t] 6

The term X[x7→t] will not reduce until a suitable strong substitution [X 7→t] arrives
from the surrounding context, if any.

• Substitutions for relatively strong variables may distribute using (σσ) or (σλ) under
substitutions or λ-abstractions for relatively weaker variables:

X[x7→t][X 7→x]
(σσ)
 X[X 7→x][x7→t[X 7→x]]

(σa)
 x[x7→t[X 7→x]]

(σa)
 t[X 7→x]

(λx.X)[X 7→x] λx.(X[X 7→x]) λx.x

This makes strong variables behave like ‘holes’. Instantiation of holes is compatible
with β-reduction; here is a typical example:

((λx.X)t)[X 7→x]
(σp)
 (λx.X)[X 7→x](t[X 7→x])
(σλ)
 (λx.(X[X 7→x]))(t[X 7→x])
(σa)
 (λx.x)(t[X 7→x])
(β)
 x[x 7→t[X 7→x]]

(σa)
 t[X 7→x]

((λx.X)t)[X 7→x]
(β)
 X[x7→t][X 7→x]
(σσ)
 X[X 7→x][x 7→t[X 7→x]]
(σa)
 x[x7→t[X 7→x]]

(σa)
 t[X 7→x]

• There is no restriction in s[ai 7→t] that level(t) < i; for example the terms X[x7→Y]
and X[x7→W] are legal.

• [ai 7→t] is not a term, but the term λbj .bj [ai 7→t] where j > i and j > level(t) will
achieve the effect of ‘the substitution [ai 7→t] as a term’:

(λbj .bj [ai 7→t])s
(β)
 bj [ai 7→t][bj 7→s]

(σσ)
 bj [bj 7→s][ai 7→t[bj 7→s]]

(σfv)
 bj [bj 7→s][ai 7→t]

(σa)
 s[ai 7→t].

127

2.4 Comments on the side-conditions

• (σfv) is a form of garbage-collection. We do not want to garbage-collect [x7→2] in
X[x7→2] because (σσ) could turn X into something with x free — for example x
itself; this is why the side-condition is not ai 6∈ fv(s) but ai#fv(s).

It is unusual for a garbage collection rule to appear in a calculus of explicit
substitutions; we might hope to ‘push substitutions into a term until they reach
variables’ and so make do with a rule of the form ck[ai 7→t] ck (for k ≤ i). In
the LCC this will not do because side-conditions (such as that of (σp)) can stop
a substitution going deep into a term. Without (σfv) we lose confluence (see the
second case of Theorem 4.10). A version of (σfv) appears in the literature as ‘garbage
collection’ [3].

• Recall that the level of a term is the level of the strongest variable it contains, free
or bound. The side-condition level(s, s′, t) ≤ i in (σp) seems to be fundamental for
confluence to work; we have not been able to sensibly weaken it, even if we also
change other rules to fix what goes wrong when we do. Here is what happens if we
drop the side-condition entirely:

X[x7→y][y 7→x]
(β)
 ((λx.X)y)[y 7→x]

(σpFALSE)
 ((λx.X)[y 7→x])(y[y 7→x])
(σa)
 ((λx.X)[y 7→x])x

• The side-conditions on (σσ), (σλ), and (σλ′) implement that a strong substitution
can capture. There is no (σσ′) since that would destroy termination of the part of
the LCC without λ — and we have managed to get confluence without it.

• There is no rule permitting a weak substitution to propagate under a stronger
abstraction, even if we avoid capture:

(σλ′FALSE) (λai.s)[ck 7→u] λai.(s[ck 7→u]) ai#fv(u), k ≤ i

Such a rule causes the following problem for confluence:

(λY.(xZ))[x7→3][Z 7→W]
(σλ′FALSE)
 (λY.(xZ)[x7→3])[Z 7→W]

(λY.(xZ))[x7→3][Z 7→W]
(σσ)
 (λY.(xZ))[Z 7→W][x7→3[Z 7→W]]
(σfv)
 (λY.(xZ))[Z 7→W][x7→3]

As is the case for the side-condition of (σp), any stronger form of (σλ′) than what
we admit in the LCC seems to provoke a cascade of changes which make the calculus
more complex.

Investigation of these side-conditions is linked to strengthening the theory of
freshness and α-equivalence, and possibly to developing a good semantic theory to
guide us. This is future work and some details are mentioned in the Conclusions.

128

3 The substitution action

Define (sigma) = {(σa), (σfv), (σp), (σσ), (σλ), (σλ′)} (so (sigma) is ‘everything
except for (β)’). It would be good if this is is terminating [3,15]. Do we sacrifice
this property because of the hierarchy of variables? No. To prove it we translate
LCC syntax to first-order terms (terms without binding [1,25]) in the signature

Σ = {?,Abs,App} ∪ {Subi | i}

as follows:

x = ? λai.s = Abs(s) s t = App(s, t) s[ai 7→t] = Subi(s, t)

Here ? has arity 0, Abs has arity 1, App has arity 2, and Subi has arity 2 for all i (i
ranges over levels). Give symbols precedence (lowest precedence on the right)

. . . ,Subj , . . . ,Subi, . . . ,App,Abs, ? (j > i).

Define the lexicographic path ordering [14,1] by:

ti � f(t1, . . . , tn)
s� ti

s� f(t1, . . . , tn)
(t′1, . . . , t

′
n)� (t1, . . . , tn)

f(t′1, . . . , t
′
n)� f(t1, . . . , tn)

ui � f(t1, . . . , tn) for 1 ≤ i ≤ m

g(u1, . . . , um)� f(t1, . . . , tn)

Here g and f are first-order symbols, g has strictly lower precedence than f , and
t1, . . . , tn, t

′
1, . . . , t

′
n, u1, . . . , um, s are first-order terms. It is a fact [14,1] that � is

a well-founded order on first-order terms satisfying the subterm property, i.e. if s is
a subterm of t then s� t.

Theorem 3.1 If t
(sigma)
 u then t� u. Thus (sigma)-reduction terminates.

The proof is by checking that a (sigma)-reduction strictly reduces the lexicographic
path order of the associated first-order term; this is not hard.

Let x have level 1. (λx.xx)(λx.xx) has an infinite series of reductions in the LCC.
It follows that — even with a hierarchy of variables — (β) strictly adds power to
the LCC.

Call s (sigma)-normal when s
(sigma)

6 . What does a (sigma)-normal form look
like? Define a substitution action s[ai:=t] and using it define s∗, by the rules in
Figure 6. Rules are listed in order of precedence so that a later rule is only used
if no earlier rule is applicable. We apply the rule (λci.s)[ai:=t] renaming where
possible to ensure ci#fv(t).

Lemma 3.2 s[ai 7→t]
(sigma)

 ∗ s[ai:=t].

Proof. Each clause in the definition of s[ai:=t] is simulated by a (sigma)-rule. 2

Theorem 3.3 s
(sigma)

 ∗ s∗ and s∗ is a (sigma)-normal form.

Proof. The first part is by an easy induction on the definition of s∗; the case of
(s[ai 7→t])∗ uses Lemma 3.2. The second part is by a routine induction on s. 2

129

s[ai:=t] = s ai#fv(s), and otherwise
ai[ai:=t] = t

(ss′)[ai:=t] = (s[ai:=t])(s′[ai:=t]) level(s, s′, t) ≤ i
s[ck 7→u][ai:=t] = s[ai:=t][ck:=u[ai:=t]] k < i

(λck.s)[ai:=t] = λck.(s[ai:=t]) k < i

(λci.s)[ai:=t] = λci.(s[ai:=t]) ci#fv(t)
s[ai:=t] = s[ai 7→t]

a∗i = ai

(λai.s)∗ = λai.(s∗)
(s[ai 7→t])∗ = s∗[ai:=t∗]

(st)∗ = (s∗)(t∗)

Fig. 6. Substitution s[ai:=t] and (sigma)-normal form s∗

4 Confluence

Let (beta) be the set {(β), (σλ), (σλ′), (σfv)}. (sigma) ∩ (beta) is non-empty; we
discuss why at the end of Subsection 4.3.

Theorem 4.1 is confluent.

The proof of Theorem 4.1 occupies this section. Two standard proof-methods are:
(1) Use a parallel reduction relation ⇒, and (2) for all s define a s↓ such that s ∗ s↓

and if s s′ then s′ ∗ s↓. Both methods are standard [25]. Which to use for the
LCC? It seems that λ ‘wants’ method 1 — but σ ‘wants’ method 2. Confluence is
(relatively) easy to prove if we split the reduction relation into (sigma) and (beta)
and apply different methods to each — and then join them together.

4.1 Confluence of (sigma)

Note there is no capture-avoidance condition in Lemma 4.2, because i < j. The full
proofs also contain another version where i = j and ai#fv(u).

Lemma 4.2 If i < j then s[ai:=t][bj :=u] = s[bj :=u][ai:=t[bj :=u]].

Proof. By induction on i, then on s. We illustrate the induction with two cases.

• Suppose i < j < k. Note that usually we take k ≤ i; this is an exception. Then:

ck[ai:=t][bj :=u] = ck[ai 7→t][bj :=u]
= ck[bj :=u][ai 7→t[bj :=u]]
= ck[bj 7→u][ai 7→t[bj :=u]]

ck[bj :=u][ai:=t[bj :=u]] = ck[bj 7→u][ai:=t[bj :=u]]
= ck[bj 7→u][ai 7→t[bj :=u]]

• Suppose that level(s, s′, t) < j. By Lemma 3.2 we have (ss′)[ai 7→t] ∗ (ss′)[ai:=t].
By Lemma 2.9 we have level((ss′)[ai:=t]) ≤ level((ss′)[ai 7→t]) = level(s, s′, t) < j.
Then by our assumptions on levels,

(ss′)[ai:=t][bj :=u] = (ss′)[ai:=t] = (ss′)[bj :=u][ai:=t[bj :=u]].
2

Lemma 4.3 (i) (ai[ai 7→t])∗ = t∗.

(ii) (ck[ai 7→t])∗ = ck where k ≤ i.
(iii) ((ss′)[ai 7→t])∗ = ((s[ai 7→t])(s′[ai 7→t]))∗ where level(s, s′, t) ≤ i.
(iv) (s[ai 7→t][bj 7→u])∗ = (s[bj 7→u][ai 7→t[bj 7→u]])∗ if i < j.

(v) ((λai.s)[bj 7→u])∗ = (λai.(s[bj 7→u]))∗ if i < j.

130

(Pa)
ai =⇒ ai

s =⇒ s′ t =⇒ t′

(Pσ)
s[ai 7→t] =⇒ s′[ai 7→t′]

s =⇒ s′ t =⇒ t′

(Papp)
st =⇒ s′t′

s =⇒ s′

(Pλ)
λai.s =⇒ λai.s

′

s =⇒ s′ t =⇒ t′ s′[ai 7→t′]
Rε
 u

(Pσε)
s[ai 7→t] =⇒ u

s =⇒ s′ t =⇒ t′ s′t′
Rε
 u

(Pappε)
st =⇒ u

(R ∈ (beta))

Fig. 7. Parallel reduction relation for the LCC

(vi) ((λai.s)[ci 7→u])∗ = (λai.(s[ci 7→u]))∗ if (renaming where possible) ai#fv(u).

Proof. Most cases are easy; we consider only the fourth one. Recall that we assume
i < j. Using Lemma 4.2

(s[ai 7→t][bj 7→u])∗ = s∗[ai:=t∗][bj :=u∗] = s∗[bj :=u∗][ai:=t∗[bj :=u∗]]
= (s[bj 7→u][ai 7→t[bj 7→u]])∗.

2

Lemma 4.4 If s
(sigma)
 s′ then s′

(sigma)

 ∗ s∗.

Proof. By induction on the derivation of s
(sigma)
 s′, using Lemma 4.3. 2

Theorem 4.5
(sigma)
 is confluent.

Proof. By an easy inductive argument using Lemma 4.4. 2

4.2 (beta)-reduction

Define the parallel reduction relation =⇒ by the rules in Figure 7.

In rules (Pσε) and (Pappε), s′t′
Rε
 u and s′[ai 7→t′]

Rε
 u indicate a rewrite with

R ∈ (beta) derivable without using (Rapp), (Rapp′), (Rλ), (Rσ), or (Rσ′).

Lemma 4.6 s =⇒∗ s′ if and only if s
(beta)

 ∗ s′.

Corollary 4.7 If s =⇒ s′ then fv(s′) ⊆ fv(s) and level(s′) ≤ level(s).

Proof. From Lemma 4.6 and Lemma 2.10. 2

Lemma 4.8 =⇒ satisfies the diamond property. That is, if s′ ⇐= s =⇒ s′′ then
there is some s′′′ such that s′ =⇒ s′′′ ⇐= s′′.

Proof. We work by induction on the depth of the derivation of s =⇒ s′ proving
∀s′′. s =⇒ s′′ ⇒ ∃s′′′. (s′ =⇒ s′′′ ∧ s′′ =⇒ s′′′). We consider possible pairs of rules
which could derive s =⇒ s1 and s =⇒ s2. All cases are very easy, we only sketch
that of (Pσ) and (Pσε) for (σλ′), which is the least trivial.

Suppose s =⇒ s′ and u =⇒ u′ and also s =⇒ s′′ and u =⇒ u′′. Suppose also
that (renaming where necessary) ai#u′′ so that by (Pσ) and (Pσε) for (σλ′)

(λai.s′)[ci 7→u′]⇐= (λai.s)[ci 7→u] =⇒ λai.(s′′[ci 7→u′′]).

By inductive hypothesis there are s′′′ and u′′′ such that s′ =⇒ s′′′ ⇐= s′′ and

131

u′ =⇒ u′′′ ⇐= u′′. By Corollary 4.7 ai#u′′′. Using (Pσε) for (σλ′) and (Pσ)

(λai.s′)[ci 7→u′] =⇒ λai.(s′′′[ci 7→u′′′])⇐= λai.(s′′[ci 7→u′′]).

2

Theorem 4.9
(beta)
 is confluent.

Proof. By Lemmas 4.6 and 4.8 and a standard argument [2]. 2

4.3 Combining (sigma) and (beta)

Theorem 4.10 If s =⇒ s′ and s
(sigma)
 s′′ then there is some s′′′ such that s′

(sigma)

 ∗ s′′′

and s′′ =⇒ s′′′.

Proof. We work by induction on the derivation of s =⇒ s′. For brevity we merely
indicate the non-trivial parts. We always assume that s =⇒ s′, t =⇒ t′, and
u =⇒ u′, where appropriate.

• (β) has a divergence with (σp) in the case that i < j and level(s, t, u) ≤ j. This
can be closed using a =⇒-rewrite which uses (σλ):

(λai.s)[bj 7→u](t[bj 7→u])
(σp)
 ((λai.s)t)[bj 7→u] =⇒ s′[ai 7→t′][bj 7→u′]

(λai.s)[bj 7→u](t[bj 7→u]) =⇒ s′[bj 7→u′][ai 7→t′[bj 7→u′]]
(σσ)
 s′[ai 7→t′][bj 7→u′]

• (σσ) has a divergence with (σλ′). Suppose i<j and (renaming if necessary)
ci#fv(t):

(λci.s)[bj 7→u][ai 7→t[bj 7→u]]
(σσ)
 (λci.s)[ai 7→t][bj 7→u] =⇒ (λci.(s′[ai 7→t′]))[bj 7→u′]

We know bj#fv(t) because ci#fv(t) and i < j. We deduce bj#fv(t′) using Corol-
lary 4.7. This justifies the =⇒-rewrite below, which uses (σfv):

λci.(s′[ai 7→t′])[bj 7→u′]
(σλ′)
 λci.(s′[ai 7→t′][bj 7→u′])

(σσ)
 λci.(s′[bj 7→u′][ai 7→t′[bj 7→u′]])
(σfv)
 λci.(s′[bj 7→u′][ai 7→t′])⇐= (λci.s)[bj 7→u][ai 7→t[bj 7→u]]

2

(σλ) is in (sigma)∩ (beta) to make the case of (σp) with (β) work. (σλ′) is in
(sigma) ∩ (beta) to make a similar divergence of (σp) with (β) work. (σfv) is in
(sigma) ∩ (beta) to make the case of (σσ) with (σλ′) work.

Theorem 4.1 now follows by an easy diagrammatic argument using Theorem 4.10,
Theorem 4.5, and Lemma 4.8.

5 A NEW part for the LCC

x is not α-convertible in λx.X. Suppose we really do want to bind x; we can do
so with N. We extend syntax: s, t ::= . . . | Nai.t. We extend the notions of level,

132

fv, congruence, and swapping with cases for Nwhich are identical to those for λ
(except that we write Ninstead). For example fv(Nai.s) = fv(s) \ {ai}.

The difference is in the α-equivalence: Nai.s =α Nbi.(bi ai)s if bi 6∈ fv(s).
Note the bi 6∈ fv(s) instead of bi#fv(s) as in the clause for λ. This lets variables

bound by Nα-convert regardless of whether stronger variables are present. For
example λx.X 6=α λy.X but Nx.λx.X =α Ny.λy.X. We add reduction rules:

(Np) (Nai.s)t Nai.(st) ai 6∈ fv(t)

(Nσ) (Nck.s)[ai 7→t] Nck.(s[ai 7→t]) k ≤ i, ck 6∈ fv(t)

(N6∈) Nai.s s ai 6∈ fv(s)

s s′

(R N)
Nai.s Nai.s

′

x is not bound in λy.s if s mentions a strong variable, for example in λy.(Xy)
substitution for X can capture y. We may want y to be really local and avoid
capture by substitutions for X. We can increase the level of y; λY.(XY) will do
in this case. This has a hidden cost because side-conditions (especially on (σp))
look at strengths of variables, so having strong variables can block reductions in the
context. Navoids this, for example Ny.λy.(Xy) has the behaviour we need:

(Ny.λy.(Xy))[X 7→y]
(Nσ)
 Ny′.((λy′.(Xy′))[X 7→y])

(Nλ)
 Ny′.λy′.(Xy′)[X 7→y]) ∗ Ny′.λy′.yy′

Nis reminiscent of π-calculus restriction [16]. (Np) and (Nσ) are reminiscent of
scope-extrusion. (N6∈) is reminiscent of ‘garbage-collection’.

We do not admit a rule ‘s(Na.t) Na.(st) if a 6∈ fv(s)’:

Ny. Ny′.(yy′) ∗ (Ny.y) Ny′.y′ ∗ (λx.xx) Ny.y Ny.(λx.xx)y ∗ Ny.yy

For similar reasons we do not admit a rule ‘s[b7→ Na.t] Na.(s[b7→t]) if a 6∈ fv(s)’.
Why the side-conditions on (Nσ)? ck 6∈ fv(t) comes from the intuition of Nas

defining a scope. We need k ≤ i for confluence:

NX.(X[x7→2]) (NX.X)[x7→2]
(σfv)
 NX.X

The proof of termination of (sigma) extends smoothly if we add the rules for N
to (sigma) (to make a set (sigmanew)). The proof of confluence for the system as
a whole also extends smoothly. We see some examples of the use of Nin a moment.

6 Programming in the calculus

Call t single-leveled of level i when all variables in it (free or bound) have level i.
Then it is easy to prove that notions of free variable and substitution coincide with
the ‘traditional’ definitions and we have:

Theorem 6.1 For any i the single-leveled terms of level i, with their reductions,
form an isomorphic calculus to λx with garbage collection [3].

As a corollary, the trivial mapping from the untyped λ-calculus to single-leveled
terms of level 1 (say), preserves normal forms and strong normalisation.

133

We can exploit the hierarchy to do some nice things. Here is one example:
R = X[x7→2][y 7→3] can be viewed as a record with ‘handle’ X and with 2 stored
at x and 3 at y. Then λW.(W[X 7→x]) applied to R looks up the data stored at
x, and λW.(W[X 7→X[x7→3]]) updates it. In fact these terms do a little more than
this, because their effect is the same when applied to a term in which a record with
‘handle’ X is buried deep in the term, perhaps as part of a β-redex or substitution.
λW.(W[X 7→ (W[X 7→x])+1]) increments the value stored at x.

Here is an example reduction:

(λW.W[X 7→X[x7→3]]) R
(β)
 W[X 7→X[x7→3]][W7→R]

(σσ), (σa), (σfv)

 ∗ R[X 7→X[x7→3]] = X[x7→2][y 7→3][X 7→X[x7→3]]
(σσ)

 ∗ X[X 7→X[x7→3]][x7→2[X 7→X[x7→3]]][y 7→3[X 7→X[x7→3]]]
(σa), (σb)

 ∗ X[x7→3][x7→2][y 7→3].

There is some garbage here, but a later look-up on x returns 3, not 2:

(λW.W[X 7→x])(X[x7→3][x7→2][y 7→3]) ∗ x[x7→3][x7→2][y 7→3] ∗ 3

We can use Nto assign fresh storage. The following program, if applied to a value
and R, extends R with a fresh location and returns the new record together with a
lookup function for the new location:

λZ. Nx.λY.(Y [x7→Z], λW.W[X 7→x]).

Here we use a pairing constructor (-, -) just for convenience.
Note that we access data in R by applying a substitution for X; in this sense the

‘handle’ X in R is externally visible. We can hide it by λ-abstracting X to obtain
λX.(X[x7→2][y 7→3]). Then lookup at x becomes λW.(Wx) and update becomes
λW.λX.(W[X 7→X[x7→1]]).

We can parameterise over the data stored in the record: λX ′.(X ′[x7→X][y 7→Y]).
Furthermore a term of the form λX.(X[x7→X][y 7→X]) can capture a form of self-
reference within the record. Finally, λX.(X[x7→W][y 7→W ′]) makes no committment
about the data stored.

7 Related work, conclusions, and future work

The LCC of this paper is simpler than the NEWcc [6]. Compare the side-condition
of (σa) (there is none) with that of (σa) from [6]. The notion of freshness is simpler
and intuitive; we no longer require a logic of freshness, or the ‘freshness context with
sufficient freshnesses’, see most of page 4 in [6]. A key innovation in attaining this
simplicity is our use of conditions involving level(s) the level of s, which includes
information about the levels of free and bound variables.

But there is a price: this calculus has fewer reductions. Notably (σλ′) will not
reduce (λai.s)[ck 7→u] where k < i; a rule (σλ′) in [6] does. That stronger version
seems to be a major source of complexity.

134

Still, the LCC is part of something larger yet to be constructed. Other papers
on nominal techniques contain elements of the developments we have in mind when
we imagine such a system. So for example:

In this paper we cannot α-convert x in λx.X. Nominal terms can: swappings
are in the syntax (here swappings are in the meta-level) and also freshness contexts
[27]. A problem is that we do not yet understand the theory of swappings for
strong variables; the underlying Fraenkel-Mostowski sets model [9] only has (in the
terminology of this paper) one level of variable. A semantic model of the hierarchy
of variables would be useful and this is current work.

In this paper we cannot deduce x#fv(λx.X) even though for every instance this
does hold (for example x#λx.x and x#λx.y). Hierarchical nominal rewriting [7] has
a more powerful notion of freshness which can prove the equivalent of x#fv(λx.X).
Note that hierarchical nominal rewriting does not have the conditions on levels
which we use to good effect in this paper.

We cannot reduce (λx.y)[y 7→Y] because there is no z such that z#Y . We can
allow programs to dynamically generate fresh variables in the style of FreshML [19]
or the style of a sequent calculus for Nominal Logic by Cheney [5].

We cannot reduce X[x7→2][y 7→3] to X[y 7→3][x7→2]. Other work [8] gives an
equational system which can do this, and more.

There is no denotational semantics for the LCC. This is current work.
More related work (not using nominal techniques). The calculi of con-

texts λm and λM [23] also have a hierarchy of variables. They use carefully-crafted
scoping conventions to manage problems with α-conversion. Other work [21,11,22]
uses a type system; connections with this work are unclear. λc of Bognar’s thesis
contains [4, Section 2] an extensive literature survey on the topic of context calculi.

A separation of abstraction λ and binding Nappears in one other work we know
of [24], where they are called q and ν. In this vein there is [12], which manages scope
explicitly in a completely different way, just for the fun. Finally, the reduction rules
of Nlook remarkably similar to π-calculus restriction [16], and it is probably quite
accurate to think of Nas a ‘restriction in the λ-calculus’.

Ours is a calculus with explicit substitutions. See [15] for a survey. Our treat-
ment of substitution is simple-minded but still quite subtle because of interactions
with the rest of the language. We note that the translation of possibly open terms of
the untyped λ-calculus into the LCC preserves strong normalisation. One reduction
rule, (σfv), is a little unusual amongst such calculi, though it appears as ‘garbage
collection’ of λx [3].

The look and feel of the LCC is squarely that of a λ-calculus with explicit
substitutions. All the real cleverness has been isolated in the side-condition of
(σp); other side-conditions are obvious given an intuition that strong variables can
cause capturing substitution (in the NEWcc [6] complexity spilled over into other
rules and into a logic for freshness). Nis only necessary when variables of different
strengths occur, and the hierarchy of variables only plays a rôle to trigger side-
conditions.

Further work. Desirable and nontrivial meta-properties of the λ-calculus sur-
vive in the LCC including confluence, and preservation of strong normalisation for a
natural encoding of the untyped λ-calculus into the LCC. It is possible, in principle

135

at least, to envisage an extension of ML or Haskell [17,26] with meta-variables based
on the LCC’s notion of strong and weak variables.

We can go in the direction of logic, treating equality instead of reduction and
imitating higher-order logic, which is based on the simply-typed λ-terms enriched
with constants such as ∀ : (o → o) → o and ⇒: o → o → o where o is a type
of truth-values [29], along with suitable equalities and/or derivation rules. There
should be no problem with imposing a simple type system on LCC and writing
down a ‘context higher-order logic’. This takes the LCC in the direction of calculi of
contexts for incomplete proofs [13,10]. The non-trivial work (in no particular order)
is to investigate cut-elimination, develop a suitable theory of models/denotations,
and possibly to apply it to model incomplete proofs.

An implementation is current work.
The LCC is simple, clear, and it has good properties. It seems to hit a technical

sweet spot: every extension of it which we have considered, provokes significant
non-local changes. Often in computer science the trick is to find a useful balance
between simplicity and expressivity. Perhaps the LCC does that.

References

[1] Franz Baader and Tobias Nipkow, Term rewriting and all that, Cambridge University Press, 1998.

[2] H. P. Barendregt, The lambda calculus: its syntax and semantics (revised ed.), North-Holland, 1984.

[3] Roel Bloo and Kristoffer Høgsbro Rose, Preservation of strong normalisation in named lambda calculi
with explicit substitution and garbage collection, CSN-95: Computer Science in the Netherlands, 1995.

[4] Mirna Bognar, Contexts in lambda calculus, Ph.D. thesis, Vrije Universiteit Amsterdam, 2002.

[5] James Cheney, A simpler proof theory for nominal logic, FOSSACS, Springer, 2005, pp. 379–394.

[6] Murdoch J. Gabbay, A new calculus of contexts, PPDP ’05: Proc. of the 7th ACM SIGPLAN int’l conf.
on Principles and Practice of Declarative Programming, ACM Press, 2005, pp. 94–105.

[7] , Hierarchical nominal rewriting, LFMTP’06: Logical Frameworks and Meta-Languages: Theory
and Practice, 2006, pp. 32–47.

[8] Murdoch J. Gabbay and Aad Mathijssen, Capture-avoiding substitution as a nominal algebra,
ICTAC’2006: 3rd Int’l Colloquium on Theoretical Aspects of Computing, 2006, pp. 198–212.

[9] Murdoch J. Gabbay and A. M. Pitts, A new approach to abstract syntax with variable binding, Formal
Aspects of Computing 13 (2001), no. 3–5, 341–363.

[10] Herman Geuvers and Gueorgui I. Jojgov, Open proofs and open terms: A basis for interactive logic,
CSL, Springer, 2002, pp. 537–552.

[11] Masatomo Hashimoto and Atsushi Ohori, A typed context calculus, Theor. Comput. Sci. 266 (2001),
no. 1-2, 249–272.

[12] Dimitri Hendriks and Vincent van Oostrom, Adbmal, CADE, 2003, pp. 136–150.

[13] Gueorgui I. Jojgov, Holes with binding power., TYPES, LNCS, vol. 2646, Springer, 2002, pp. 162–181.

[14] Samuel Kamin and Jean-Jacques Lévy, Attempts for generalizing the recursive path orderings,
Handwritten paper, University of Illinois, 1980.

[15] Pierre Lescanne, From lambda-sigma to lambda-upsilon a journey through calculi of explicit
substitutions, POPL ’94: Proc. 21st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ACM Press, 1994, pp. 60–69.

[16] Robin Milner, Joachim Parrow, and David Walker, A calculus of mobile processes, II, Information and
Computation 100 (1992), no. 1, 41–77.

[17] Lawrence C. Paulson, ML for the working programmer (2nd ed.), Cambridge University Press, 1996.

136

[18] A. M. Pitts, Operationally-based theories of program equivalence, Semantics and Logics of Computation
(P. Dybjer and A. M. Pitts, eds.), Publications of the Newton Institute, Cambridge University Press,
1997, pp. 241–298.

[19] A. M. Pitts and Murdoch J. Gabbay, A metalanguage for programming with bound names modulo
renaming, Mathematics of Program Construction. 5th Int’l Conf. , MPC2000, Ponte de Lima, Portugal,
July 2000. Proceedings (R. Backhouse and J. N. Oliveira, eds.), LNCS, vol. 1837, Springer-Verlag, 2000,
pp. 230–255.

[20] A. M. Pitts and I. D. B. Stark, Operational reasoning for functions with local state, Higher Order
Operational Techniques in Semantics (A. D. Gordon and A. M. Pitts, eds.), Publications of the Newton
Institute, Cambridge University Press, 1998, pp. 227–273.

[21] Masahiko Sato, Takafumi Sakurai, and Rod Burstall, Explicit environments, Fundamenta Informaticae
45:1-2 (2001), 79–115.

[22] Masahiko Sato, Takafumi Sakurai, and Yukiyoshi Kameyama, A simply typed context calculus with
first-class environments, Journal of Functional and Logic Programming 2002 (2002), no. 4, 359 – 374.

[23] Masahiko Sato, Takafumi Sakurai, Yukiyoshi Kameyama, and Atsushi Igarashi, Calculi of meta-
variables, Computer Science Logic and 8th Kurt Gödel Colloquium (CSL’03 & KGC), Vienna, Austria.
Proccedings (M. Baaz, ed.), LNCS, vol. 2803, 2003, pp. 484–497.

[24] Francois Maurel Sylvain Baro, The qnu and qnuk calculi : name capture and control, Tech. report,
Université Paris VII, 2003, Extended Abstract, Prépublication PPS//03/11//n16.

[25] Terese, Term rewriting systems, Cambridge Tracts in Theoretical Computer Science, no. 55, Cambridge
University Press, 2003.

[26] Simon Thompson, Haskell: The Craft of Functional Programming, Addison Wesley, 1996.

[27] C. Urban, A. M. Pitts, and Murdoch J. Gabbay, Nominal unification, Theoretical Computer Science
323 (2004), no. 1–3, 473–497.

[28] Johan van Benthem, Modal foundations for predicate logic, Logic Journal of the IGPL 5 (1997), no. 2,
259–286.

[29] , Higher-order logic, Handbook of Philosophical Logic, 2nd Edition (D.M. Gabbay and
F. Guenthner, eds.), vol. 1, Kluwer, 2001, pp. 189–244.

137

	title-page
	LFMTP07-preproceedings
	preface
	table_of_contents
	ai_draft
	body
	invited_1
	paper_10
	Introduction
	Using Hybrid
	Example
	Tactical support

	Definition of Hybrid in Isabelle/HOL
	Conclusion
	Acknowledgement
	References

	paper_15
	Introduction
	System and Examples
	Example: Natural Numbers
	A Second Example: The -Calculus
	A Final Example: The Calculus of Constructions

	Metatheory
	Hereditary Substitution
	Decidability
	Identity and Substitution Principles

	Subsorting at Higher Sorts
	Related Work
	Summary
	References

	paper_7
	Introduction
	Preliminaries
	Inductive families and their elimination
	Coercive subtyping
	Discussion

	A different approach
	A motivating example
	Characterisation of applicable coercions
	Modifying the -reduction mechanism
	Canonicity and interaction with conversion
	Compositions of EXY terms and transitivity
	Preliminary remarks on metatheory
	Implementation details, and efficiency
	Further examples
	Discussion and future work

	References

	paper_11
	Introduction
	Background: The logical framework LF
	Example: Bounded polymorphic subtyping
	Uniform Proofs
	Inverse method and focusing
	Implementation of an inverse method prover for LF
	Top-level of the inverse method
	Experimental results

	Future Work and Conclusion
	References

	paper_1
	Introduction
	Terms, Types and Substitution
	Typing and Definitional Equivalence
	The Equivalence Checking Algorithm
	Proofs
	About the Formalisation
	Conclusion
	References

	paper_17
	Introduction
	Categories with families
	The proof assistant Agda 2
	Categories with families in type theory
	Categories
	The category Fam
	Cwfs
	Cwfs with extra structure

	Categories with finite limits are cwfs
	Categories with finite limits in type theory
	Slice categories
	Cwfs from categories with finite limits

	Initial cwfs (with extra structure)
	Strongly typed version
	The category of cwfs in type theory.
	Raw term version

	Conclusion and future work
	References

	paper_16
	Introduction
	The Signature Compiler
	Benchmarks
	Conclusion
	References

	paper_5
	Introduction
	CLF
	Syntax
	Computational interpretation of CLF
	CLF meta-theory

	MiniML
	Syntax
	Big-step semantics
	Destination-passing semantics

	Equivalence of semantics
	Translation from big-step to destination-passing style
	Translation from destination-passing style to big-step

	Handling interleavings of let-bindings
	CLF signatures
	Conclusion and future work
	Acknowledgement
	References

	paper_9
	Introduction
	Related Work
	Basic Approach
	A simple type checker
	Example of a proof search
	Comments on the suitability of using narrowing

	Features of the General Search Procedure
	Parallel Conjunction
	Subproblem Separation

	Optimizations of the Type Checker
	Type Checking Restrictions
	Meta Variable Prioritization
	Special Treatment of Equality Constraints

	Experiments
	The scheduling of instantiations
	Subproblem separation

	Conclusions
	References

	paper_2
	Introduction
	Syntax and reductions
	Syntax
	Reductions
	Example reductions
	Comments on the side-conditions

	The substitution action
	Confluence
	Confluence of (sigma)
	(beta)-reduction
	Combining (sigma) and (beta)

	A NEW part for the LCC
	Programming in the calculus
	Related work, conclusions, and future work
	References

