
Automated Theorem Proving

Frank Pfenning
Carnegie Mellon University

Draft of Spring 2004

Material for the course Automated Theorem Proving at Carnegie Mellon Uni-
versity, Fall 1999, revised Spring 2004. This includes revised excerpts from the
course notes on Linear Logic (Spring 1998) and Computation and Deduction
(Spring 1997). Material for this course is available at

http://www.cs.cmu.edu/~fp/courses/atp/.

Please send comments to fp@cs.cmu.edu

This material is in rough draft form and is likely to contain errors. Furthermore,
citations are in no way adequate or complete. Please do not cite or distribute
this document.

This work was supported by NSF Grants CCR-9303383, CCR-9619684, CCR-
0306313, and CCR-0325808.

Copyright c© 1999, 2004 Frank Pfenning

ii

Draft of April 13, 2004

Contents

1 Introduction 1

2 Natural Deduction 3
2.1 Intuitionistic Natural Deduction 5
2.2 Classical Logic . 17
2.3 Localizing Hypotheses . 17
2.4 Proof Terms . 20
2.5 Exercises . 24

3 Sequent Calculus 29
3.1 Intercalation . 29
3.2 Compact Proof Terms . 35
3.3 Sequent Calculus . 36
3.4 Cut Elimination . 43
3.5 Applications of Cut Elimination 48
3.6 Proof Terms for Sequent Derivations 49
3.7 Classical Sequent Calculus . 52
3.8 Exercises . 59

4 Focused Derivations 63
4.1 Inversion . 63
4.2 Backchaining . 72
4.3 Focusing . 76
4.4 Unification . 80
4.5 Unification with Parameters . 88
4.6 Exercises . 91

5 The Inverse Method 93
5.1 Forward Sequent Calculus . 94
5.2 Negation and Empty Succedents 97
5.3 The Subformula Property . 100
5.4 Naming Subformulas . 101
5.5 Forward Subsumption . 103
5.6 Proof Terms for the Inverse Method 103

Draft of April 13, 2004

iv CONTENTS

5.7 Forward Sequent Calculus for First-Order Logic 104
5.8 Factoring . 109
5.9 Inverse Focusing . 110
5.10 Exercises . 115

6 Labeled Deduction 117
6.1 Multiple Conclusions . 117
6.2 Propositional Labeled Deduction 120
6.3 First-Order Labeled Deduction 123
6.4 Matrix Methods . 124

7 Equality 127
7.1 Natural Deduction . 127
7.2 Sequent Calculus . 130

Bibliography 137

Draft of April 13, 2004

Chapter 1

Introduction

Logic is a science studying the principles of reasoning and valid inference. Au-
tomated deduction is concerned with the mechanization of formal reasoning,
following the laws of logic. The roots of the field go back to the end of the
last century when Frege developed his Begriffsschrift1, the first comprehensive
effort to develop a formal language suitable as a foundation for mathematics.
Alas, Russell discovered a paradox which showed that Frege’s system was in-
consistent, that is, the truth of every proposition can be derived in it. Russell
then devised his own system based on a type theory and he and Whitehead
demonstrated in the monumental Principia Mathematica how it can serve as a
foundation of mathematics. Later, Hilbert developed a simpler alternative, the
predicate calculus. Gentzen’s formulation of the predicate calculus in a system
of natural deduction provides a major milestone for the field. In natural deduc-
tion, the meaning of each logical connective is explained via inference rules, an
approach later systematically refined by Martin-Löf. This is the presentation
we will follow in these notes.

Gentzen’s seminal work also contains an early consistency proof for a formal
logical system. As a technical device he introduced the sequent calculus and
showed that it derives the same theorems as natural deduction. The famous
Hauptsatz 2 establishes that all proofs in the sequent calculus can be found ac-
cording to a simple strategy. It is immediately evident that there are many
propositions which have no proof according to this strategy, thereby guarantee-
ing consistency of the system.

Most search strategies employed by automated deduction systems are either
directly based on or can be derived from the sequent calculus. We can broadly
classify procedures as either working backwards from the proposed theorem to-
ward the axioms, or forward from the axioms toward the theorem. Among the
backward searching procedures we find tableaux, connection methods, matrix
methods and some forms of resolution. Among the forward searching proce-
dures we find classical resolution and the inverse method. The prominence of

1literally translated as concept notation
2literally just “main theorem”, often called the cut elimination theorem

Draft of April 13, 2004

2 Introduction

resolution among these methods is no accident, since Robinson’s seminal pa-
per represented a major leap forward in the state of the art. It is natural to
expect that a combination of forward and backward search could improve the
efficiency of theorem proving system. Such a combination, however, has been
elusive up to now, due to the largely incompatible basic choices in design and
implementation of the two kinds of search procedures.

In this course we study both types of procedures. We investigate high-level
questions, such as how these procedures relate to the basic sequent calculus. We
also consider low-level issues, such as techniques for efficient implementation of
the basic inference engine.

There is one further dimension to consider: which logic do we reason in?
In philosophy, mathematics, and computer science many different logics are of
interest. For example, there are classical logic, intuitionistic logic, modal logic,
relevance logic, higher-order logic, dynamic logic, temporal logic, linear logic,
belief logic, and lax logic (to mention just a few). While each logic requires
its own considerations, many techniques are shared. This can be attributed in
part to the common root of different logics in natural deduction and the sequent
calculus. Another reason is that low-level efficiency improvements are relatively
independent of higher-level techniques.

For this course we chose intuitionistic logic for a variety of reasons. First, in-
tuitionistic propositions correspond to logical specifications and proofs to func-
tional programs, which means intuitionistic logic is of central interest in the
study of programming languages. Second, intuitionistic logic is more complex
than classical logic and exhibits phenomena obscured by special properties which
apply only to classical logic. Third, there are relatively straightforward inter-
pretations of classical in intuitionistic logic which permits us to study logical
interpretations in connection with theorem proving procedures.

The course is centered around a project, namely the joint design and imple-
mentation of a succession of theorem provers for intuitionistic logic. We start
with natural deduction, followed by a sequent calculus, and a simple tableau
prover. Then we turn toward the inverse method and introduce successive re-
finements consisting of both high-level and low-level optimizations.3 The im-
plementation component is important to gain a deeper understanding of the
techniques introduced in our abstract study.

The goal of the course is to give students a thorough understanding of the
central techniques in automated theorem proving. Furthermore, they should
understand the systematic development of these techniques and their correct-
ness proofs, thereby enabling them to transfer methods to different logics or
applications. We are less interested here in an appreciation of the pragmatics
of highly efficient implementations or performance tuning.

3The precise order and extent of the improvements possible in a one-semester graduate
course has yet to be determined.

Draft of April 13, 2004

Chapter 2

Natural Deduction

Ich wollte zunächst einmal einen Formalismus aufstellen, der dem
wirklichen Schließen möglichst nahe kommt. So ergab sich ein
,,Kalkül des natürlichen Schließens“.1

— Gerhard Gentzen
Untersuchungen über das logische Schließen [Gen35]

In this chapter we explore ways to define logics, or, which comes to the same
thing, ways to give meaning to logical connectives. Our fundamental notion is
that of a judgment based on evidence. For example, we might make the judg-
ment “It is raining” based on visual evidence. Or we might make the judgment
“‘A implies A’ is true for any proposition A” based on a derivation. The use
of the notion of a judgment as conceptual prior to the notion of proposition
has been advocated by Martin-Löf [ML85a, ML85b]. Certain forms of judg-
ments frequently recur and have therefore been investigated in their own right,
prior to logical considerations. Two that we will use are hypothetical judgments
and parametric jugments (the latter are sometimes called general judgments or
schematic judgments).

A hypothetical judgment has the form “J2 under hypothesis J1”. We con-
sider this judgment evident if we are prepared to make the judgment J2 once
provided with evidence for J1. Formal evidence for a hypothetical judgment
is a hypothetical derivation where we can freely use the hypothesis J1 in the
derivation of J2. Note that hypotheses need not be used, and could be used
more than once.

A parametric judgment has the form “J for any a” where a is a parameter
which may occur in J . We make this judgment if we are prepared to make the
judgment [O/a]J for arbitrary objects O of the right category. Here [O/a]J is
our notation for substituting the object O for parameter a in the judgment J .
Formal evidence for a parametric judgment J is a parametric derivation with
free occurrences of the parameter a.

1First I wanted to construct a formalism which comes as close as possible to actual rea-
soning. Thus arose a “calculus of natural deduction”.

Draft of April 13, 2004

4 Natural Deduction

Formal evidence for a judgment in form of a derivation is usually written in
two-dimensional notation:

D
J

if D is a derivation of J . For the sake of brevity we sometimes use the alternative
notation D :: J . A hypothetical judgment is written as

u
J1

...
J2

where u is a label which identifies the hypothesis J1. We use the labels to
guarantee that hypotheses which are introduced during the reasoning process
are not used outside their scope.

The separation of the notion of judgment and proposition and the corre-
sponding separation of the notion of evidence and proof sheds new light on
various styles that have been used to define logical systems.

An axiomatization in the style of Hilbert [Hil22], for example, arises when
one defines a judgment “A is true” without the use of hypothetical judgments.
Such a definition is highly economical in its use of judgments, which has to
be compensated by a liberal use of implication in the axioms. When we make
proof structure explicit in such an axiomatization, we arrive at combinatory
logic [Cur30].

A categorical logic [LS86] arises (at least in the propositional case) when
the basic judgment is not truth, but entailment “A entails B”. Once again,
presentations are highly economical and do not need to seek recourse in complex
judgment forms (at least for the propositional fragment). But derivations often
require many hypotheses, which means that we need to lean rather heavily on
conjunction here. Proofs are realized by morphisms which are an integral part
of the machinery of category theory.

While these are interesting and in many ways useful approaches to logic
specification, neither of them comes particularly close to capturing the practice
of mathematical reasoning. This was Gentzen’s point of departure for the design
of a system of natural deduction [Gen35]. From our point of view, this system is
based on the simple judgment “A is true”, but relies critically on hypothetical
and parametric judgments. In addition to being extremely elegant, it has the
great advantage that one can define all logical connectives without reference to
any other connective. This principle of modularity extends to the meta-theoretic
study of natural deduction and simplifies considering fragments and extension of
logics. Since we will consider many fragments and extension, this orthogonality
of the logical connectives is a critical consideration. There is another advantage
to natural deduction, namely that its proofs are isomorphic to the terms in a λ-
calculus via the so-called Curry-Howard isomorphism [How69], which establishes
many connections to functional programming.

Draft of April 13, 2004

2.1 Intuitionistic Natural Deduction 5

Finally, we arrive at the sequent calculus (also introduced by Gentzen in his
seminal paper [Gen35]) when we split the single judgment of truth into two:
“A is an assumption” and “A is true”. While we still employ the machinery of
parametric and hypothetical judgments, we now need an explicit rule to state
that “A is an assumption” is sufficient evidence for “A is a true”. The reverse,
namely that if “A is true” then “A may be used as an assumption” is the Cut
rule which he proved to be redundant in his Hauptsatz. For Gentzen the sequent
calculus was primarily a technical device to prove consistency of his system of
natural deduction, but it exposes many details of the fine structure of proofs in
such a clear manner that many logic presentations employ sequent calculi. The
laws governing the structure of proofs, however, are more complicated than the
Curry-Howard isomorphism for natural deduction might suggest and are still
the subject of study [Her95, Pfe95].

We choose natural deduction as our definitional formalism as the purest
and most widely applicable. Later we justify the sequent calculus as a calculus
of proof search for natural deduction and explicitly relate the two forms of
presentation.

We begin by introducing natural deduction for intuitionistic logic, exhibiting
its basic principles.

2.1 Intuitionistic Natural Deduction

The system of natural deduction we describe below is basically Gentzen’s system
NJ [Gen35] or the system which may be found in Prawitz [Pra65]. The calculus
of natural deduction was devised by Gentzen in the 1930’s out of a dissatis-
faction with axiomatic systems in the Hilbert tradition, which did not seem to
capture mathematical reasoning practices very directly. Instead of a number of
axioms and a small set of inference rules, valid deductions are described through
inference rules only, which at the same time explain the meaning of the logical
quantifiers and connectives in terms of their proof rules.

A language of (first-order) terms is built up from variables x, y, etc., function
symbols f , g, etc., each with a unique arity, and parameters a, b, etc. in the usual
way.

Terms t ::= x | a | f(t1, . . . , tn)

A constant c is simply a function symbol with arity 0 and we write c instead of
c(). Exactly which function symbols are available is left unspecified in the gen-
eral development of predicate logic and only made concrete for specific theories,
such as the theory of natural numbers. However, variables and parameters are
always available. We will use t and s to range over terms.

The language of propositions is built up from predicate symbols P , Q, etc.
and terms in the usual way.

Propositions A ::= P (t1, . . . , tn) | A1 ∧A2 | A1 ⊃A2 | A1 ∨A2 | ¬A
| ⊥ | > | ∀x. A | ∃x. A

Draft of April 13, 2004

6 Natural Deduction

A propositional constant P is simply a predicate symbol with no arguments and
we write P instead of P (). We will use A, B, and C to range over propositions.
Exactly which predicate symbols are available is left unspecified in the general
development of predicate logic and only made concrete for specific theories.

The notions of free and bound variables in terms and propositions are defined
in the usual way: the variable x is bound in propositions of the form ∀x. A and
∃x. A. We use parentheses to disambiguate and assume that ∧ and ∨ bind
more tightly than ⊃. It is convenient to assume that propositions have no free
individual variables; we use parameters instead where necessary. Our notation
for substitution is [t/x]A for the result of substituting the term t for the variable
x in A. Because of the restriction on occurrences of free variables, we can assume
that t is free of individual variables, and thus capturing cannot occur.

The main judgment of natural deduction is “C is true” written as C true,
from hypotheses A1 true, . . . , An true. We will model this as a hypothetical judg-
ment. This means that certain structural properties of derivations are tacitly
assumed, independently of any logical inferences. In essence, these assumptions
explain what hypothetical judgments are.

Hypothesis. If we have a hypothesis A true than we can conclude A true.

Weakening. Hypotheses need not be used.

Duplication. Hypotheses can be used more than once.

Exchange. The order in which hypotheses are introduced is irrelevant.

In natural deduction each logical connective and quantifier is characterized
by its introduction rule(s) which specifies how to infer that a conjunction, dis-
junction, etc. is true. The elimination rule for the logical constant tells what
other truths we can deduce from the truth of a conjunction, disjunction, etc.
Introduction and elimination rules must match in a certain way in order to
guarantee that the rules are meaningful and the overall system can be seen as
capturing mathematical reasoning.

The first is a local soundness property: if we introduce a connective and
then immediately eliminate it, we should be able to erase this detour and find
a more direct derivation of the conclusion without using the connective. If this
property fails, the elimination rules are too strong: they allow us to conclude
more than we should be able to know.

The second is a local completeness property: we can eliminate a connective in
a way which retains sufficient information to reconstitute it by an introduction
rule. If this property fails, the elimination rules are too weak: they do not allow
us to conclude everything we should be able to know.

We provide evidence for local soundness and completeness of the rules by
means of local reduction and expansion judgments, which relate proofs of the
same proposition.

One of the important principles of natural deduction is that each connective
should be defined only in terms of inference rules without reference to other

Draft of April 13, 2004

2.1 Intuitionistic Natural Deduction 7

logical connectives or quantifiers. We refer to this as orthogonality of the con-
nectives. It means that we can understand a logical system as a whole by
understanding each connective separately. It also allows us to consider frag-
ments and extensions directly and it means that the investigation of properties
of a logical system can be conducted in a modular way.

We now show the introduction and elimination rules, local reductions and
expansion for each of the logical connectives in turn. The rules are summarized
on page 2.1.

Conjunction. A∧B should be true if both A and B are true. Thus we have
the following introduction rule.

A true B true
∧I

A ∧B true

If we consider this as a complete definition, we should be able to recover both
A and B if we know A ∧B. We are thus led to two elimination rules.

A ∧B true ∧EL
A true

A ∧B true ∧ER
B true

To check our intuition we consider a deduction which ends in an introduction
followed by an elimination:

D
A true

E
B true

∧I
A ∧B true

∧EL
A true

Clearly, it is unnecessary to first introduce the conjunction and then eliminate it:
a more direct proof of the same conclusion from the same (or fewer) assumptions
would be simply

D
A true

Formulated as a transformation or reduction between derivations we have

D
A true

E
B true

∧I
A ∧B true

∧EL
A true

=⇒R
D

A true

and symmetrically

D
A true

E
B true

∧I
A ∧B true

∧ER
B true

=⇒R
E

B true

Draft of April 13, 2004

8 Natural Deduction

The new judgment
D

A true =⇒R
E

A true

relates derivations with the same conclusion. We say D locally reduces to E .
Since local reductions are possible for both elimination rules for conjunction,
our rules are locally sound. To show that the rules are locally complete we show
how to reintroduce a conjunction from its components in the form of a local
expansion.

D
A ∧B true =⇒E

D
A ∧B true

∧EL
A true

D
A ∧B true

∧ER
B true

∧I
A ∧B true

Implication. To derive A⊃B true we assume A true and then derive B true.
Written as a hypothetical judgment:

u
A true

...
B true

⊃Iu
A⊃B true

We must be careful that the hypothesis A true is available only in the deriva-
tion above the premiss. We therefore label the inference with the name of the
hypothesis u, which must not be used already as the name for a hypothesis in
the derivation of the premiss. We say that the hypothesis A true labelled u is
discharged at the inference labelled ⊃Iu. A derivation of A ⊃ B true describes
a construction by which we can transform a derivation of A true into a deriva-
tion of B true: we substitute the derivation of A true wherever we used the
assumption A true in the hypothetical derivation of B true. The elimination
rule expresses this: if we have a derivation of A⊃ B true and also a derivation
of A true, then we can obtain a derivation of B true.

A⊃B true A true
⊃E

B true

The local reduction rule carries out the substitution of derivations explained
above.

u
A true
D

B true
⊃Iu

A⊃B true
E

A true
⊃E

B true

=⇒R

E
u

A true
D

B true

Draft of April 13, 2004

2.1 Intuitionistic Natural Deduction 9

The final derivation depends on all the hypotheses of E and D except u, for
which we have substituted E . An alternative notation for this substitution of
derivations for hypotheses is [E/u]D :: B true. The local reduction described
above may significantly increase the overall size of the derivation, since the
deduction E is substituted for each occurrence of the assumption labeled u in
D and may thus be replicated many times. The local expansion simply rebuilds
the implication.

D
A⊃B true =⇒E

D
A⊃B true

u
A true

⊃E
B true

⊃Iu
A⊃B true

Disjunction. A∨B should be true if either A is true or B is true. Therefore
we have two introduction rules.

A true ∨IL
A ∨B true

B true ∨IR
A ∨B true

If we have a hypothesis A ∨ B true, we do not know how it might be inferred.
That is, a proposed elimination rule

A ∨B true
?

A true

would be incorrect, since a deduction of the form

E
B true

∨IR
A ∨B true

?
A true

cannot be reduced. As a consequence, the system would be inconsistent: if we
have at least one theorem (B, in the example) we can prove every formula (A,
in the example). How do we use the assumption A ∨ B in informal reasoning?
We often proceed with a proof by cases: we prove a conclusion C under the
assumption A and also show C under the assumption B. We then conclude
C, since either A or B by assumption. Thus the elimination rule employs two
hypothetical judgments.

A ∨B true

u
A true

...
C true

w
B true

...
C true

∨Eu,w

C true

Draft of April 13, 2004

10 Natural Deduction

Now one can see that the introduction and elimination rules match up in two
reductions. First, the case that the disjunction was inferred by ∨IL.

D
A true

∨IL
A ∨B true

u
A true
E1

C true

w
B true
E2

C true
∨Eu,w

C true

=⇒R

D
u

A true
E1

C true

The other reduction is symmetric.

D
B true

∨IR
A ∨B true

u
A true
E1

C true

w
B true
E2

C true
∨Eu,w

C true

=⇒R

D
w

B true
E2

C true

As in the reduction for implication, the resulting derivation may be longer than
the original one. The local expansion is more complicated than for the previous
connectives, since we first have to distinguish cases and then reintroduce the
disjunction in each branch.

D
A ∨B true =⇒E

D
A ∨B true

u
A true

∨IL
A ∨B true

w
B true

∨IR
A ∨B true

∨Eu,w

A ∨B true

Negation. In order to derive ¬A we assume A and try to derive a contra-
diction. Thus it seems that negation requires falsehood, and, indeed, in most
literature on constructive logic, ¬A is seen as an abbreviation of A ⊃ ⊥. In
order to give a self-contained explanation of negation by an introduction rule,
we employ a judgment that is parametric in a propositional parameter p: If we
can derive any p from the hypothesis A we conclude ¬A.

u
A true

...
p true

¬Ip,u

¬A true

¬A true A true
¬E

C true

Draft of April 13, 2004

2.1 Intuitionistic Natural Deduction 11

The elimination rule follows from this view: if we know ¬A true and A true
then we can conclude any formula C is true. In the form of a local reduction:

u
A true
D

p true
¬Ip,u

¬A true
E

A true
¬E

C true

=⇒R

E
u

A true
[C/p]D
C true

The substitution [C/p]D is valid, since D is parametric in p. The local expansion
is similar to the case for implication.

D
¬A true =⇒E

D
¬A true

u
A true

¬E
p true

¬Ip,u

¬ trueA

Truth. There is only an introduction rule for >:

>I
> true

Since we put no information into the proof of >, we know nothing new if we
have an assumption > and therefore we have no elimination rule and no local
reduction. It may also be helpful to think of > as a 0-ary conjunction: the
introduction rule has 0 premisses instead of 2 and we correspondingly have 0
elimination rules instead of 2. The local expansion allows the replacement of
any derivation of > by >I.

D
> true =⇒E >I

> true

Falsehood. Since we should not be able to derive falsehood, there is no in-
troduction rule for ⊥. Therefore, if we can derive falsehood, we can derive
everything.

⊥ true
⊥E

C true

Note that there is no local reduction rule for ⊥E. It may be helpful to think
of ⊥ as a 0-ary disjunction: we have 0 instead of 2 introduction rules and we
correspondingly have to consider 0 cases instead of 2 in the elimination rule.
Even though we postulated that falsehood should not be derivable, falsehood
could clearly be a consequence of contradictory assumption. For example, A ∧

Draft of April 13, 2004

12 Natural Deduction

¬A⊃⊥ true is derivable. While there is no local reduction rule, there still is a
local expansion in analogy to the case for disjunction.

D
⊥ true =⇒E

D
⊥ true

⊥E
⊥ true

Universal Quantification. Under which circumstances should ∀x. A be true?
This clearly depends on the domain of quantification. For example, if we know
that x ranges over the natural numbers, then we can conclude ∀x. A if we can
prove [0/x]A, [1/x]A, etc. Such a rule is not effective, since it has infinitely many
premisses. Thus one usually retreats to rules such as induction. However, in
a general treatment of predicate logic we would like to prove statements which
are true for all domains of quantification. Thus we can only say that ∀x. A
should be provable if [a/x]A is provable for a new parameter a about which we
can make no assumption. Conversely, if we know ∀x. A, we know that [t/x]A
for any term t.

[a/x]A true
∀Ia

∀x. A true

∀x. A true
∀E

[t/x]A true

The label a on the introduction rule is a reminder the parameter a must be
“new”, that is, it may not occur in any undischarged assumption in the proof
of [a/x]A or in ∀x. A itself. In other words, the derivation of the premiss must
be parametric in a. The local reduction carries out the substitution for the
parameter.

D
[a/x]A true

∀I
∀x. A true

∀E
[t/x]A true

=⇒R
[t/a]D

[t/x]A true

Here, [t/a]D is our notation for the result of substituting t for the parameter a
throughout the deduction D. For this substitution to preserve the conclusion,
we must know that a does not already occur in A. Similarly, we would change
the hypotheses if a occurred free in any of the undischarged hypotheses of D.
This might render a larger proof incorrect. As an example, consider the formula
∀x. ∀y. P (x)⊃ P (y) which should clearly not be true for all predicates P . The

Draft of April 13, 2004

2.1 Intuitionistic Natural Deduction 13

following is not a deduction of this formula.

u
P (a) true

∀Ia?
∀x. P (x) true

∀E
P (b) true

⊃Iu
P (a)⊃ P (b) true

∀Ib
∀y. P (a)⊃ P (y) true

∀Ia
∀x. ∀y. P (x)⊃ P (y) true

The flaw is at the inference marked with “?,” where a is free in the hypothesis
labelled u. Applying a local proof reduction to the (incorrect) ∀I inference
followed by ∀E leads to the the assumption [b/a]P (a) which is equal to P (b).
The resulting derivation

u
P (b) true

⊃Iu
P (a)⊃ P (b) true

∀Ib
∀y. P (a)⊃ P (y) true

∀Ia
∀x. ∀y. P (x)⊃ P (y) true

is once again incorrect since the hypothesis labelled u should read P (a), not
P (b).

The local expansion for universal quantification is much simpler.

D
∀x. A true =⇒E

D
∀x. A true

∀E
[a/x]A true

∀Ia
∀x. A true

Existential Quantification. We conclude that ∃x. A is true when there is a
term t such that [t/x]A is true.

[t/x]A true
∃I

∃x. A true

When we have an assumption ∃x. A we do not know for which t it is the case
that [t/x]A holds. We can only assume that [a/x]A holds for some parameter
a about which we know nothing else. Thus the elimination rule resembles the

Draft of April 13, 2004

14 Natural Deduction

one for disjunction.

∃x. A true

u
[a/x]A true

...
C true

∃Ea,u

C true

The restriction is similar to the one for ∀I: the parameter a must be new, that is,
it must not occur in ∃x. A, C, or any assumption employed in the derivation of
the second premiss. In the reduction rule we have to perform two substitutions:
we have to substitute t for the parameter a and we also have to substitute for
the hypothesis labelled u.

D
[t/x]A true

∃I
∃x. A

u
[a/x]A true

E
C true

∃Ea,u

C true

=⇒R

D
u

[t/x]A true
[t/a]E
C true

The proviso on occurrences of a guarantees that the conclusion and hypotheses
of [t/a]E have the correct form. The local expansion for existential quantification
is also similar to the case for disjunction.

D
∃x. A true =⇒E

D
∃x. A true

u
[a/x]A true

∃I
∃x. A true

∃Ea,u

∃x. A true

Here is a simple example of a natural deduction. We attempt to show the
process by which such a deduction may have been generated, as well as the
final deduction. The three vertical dots indicate a gap in the derivation we are
trying to construct, with hypotheses and their consequences shown above and
the desired conclusion below the gap.

...
A ∧ (A⊃B)⊃B true

;

u
A ∧ (A⊃B) true

...
B true

⊃Iu
A ∧ (A⊃B)⊃B true

Draft of April 13, 2004

2.1 Intuitionistic Natural Deduction 15

;

u
A ∧ (A⊃B) true

∧EL
A true

...
B true

⊃Iu
A ∧ (A⊃B)⊃B true

;

u
A ∧ (A⊃B) true

∧EL
A true

u
A ∧ (A⊃B) true

∧ER
A⊃B true

...
B true

⊃Iu
A ∧ (A⊃B)⊃B true

;

u
A ∧ (A⊃B) true

∧ER
A⊃B true

u
A ∧ (A⊃B) true

∧EL
A true

⊃E
B true

...
B true

⊃Iu
A ∧ (A⊃B)⊃B true

;

u
A ∧ (A⊃B) true

∧ER
A⊃B true

u
A ∧ (A⊃B) true

∧EL
A true

⊃E
B true

⊃Iu
A ∧ (A⊃B)⊃B true

The symbols A and B in this derivation stand for arbitrary propositions; we
can thus established a judgment parametric in A and B. In other words, every
instance of this derivation (substituting arbitrary propositions for A and B) is
a valid derivation.

Below is a summary of the rules of intuitionistic natural deduction.

Draft of April 13, 2004

16 Natural Deduction

Introduction Rules Elimination Rules

A true B true
∧I

A ∧B true

A ∧B true ∧EL
A true

A ∧B true ∧ER
B true

A true ∨IL
A ∨B true

B true ∨IR
A ∨B true

A ∨B true

u
A true

...
C true

w
B true

...
C true

∨Eu,w

C true

u
A true

...
B true

⊃Iu
A⊃B true

A⊃B true A true
⊃E

B true

u
A true

...
p true

¬Ip,u

¬A true

¬A true A true
¬E

C true

>I
> true no > elimination

no ⊥ introduction

⊥ true
⊥E

C true

[a/x]A true
∀Ia

∀x. A true

∀x. A true
∀E

[t/x]A true

[t/x]A true
∃I

∃x. A true

∃x. A true

u
[a/x]A true

...
C true

∃Ea,u

C true

Draft of April 13, 2004

2.2 Classical Logic 17

2.2 Classical Logic

The inference rules so far only model intuitionistic logic, and some classically
true propositions such as A ∨ ¬A (for an arbitrary A) are not derivable, as we
will see in Section 3.5. There are three commonly used ways one can construct a
system of classical natural deduction by adding one additional rule of inference.
⊥C is called Proof by Contradiction or Rule of Indirect Proof, ¬¬C is the Double
Negation Rule, and XM is referred to as Excluded Middle.

u
¬A
...
⊥

⊥u
C

A

¬¬A ¬¬C

A

XM
A ∨ ¬A

The rule for classical logic (whichever one chooses to adopt) breaks the pattern
of introduction and elimination rules. One can still formulate some reductions
for classical inferences, but natural deduction is at heart an intuitionistic cal-
culus. The symmetries of classical logic are much better exhibited in sequent
formulations of the logic. In Exercise 2.3 we explore the three ways of extending
the intuitionistic proof system and show that they are equivalent.

Another way to obtain a natural deduction system for classical logic is to
allow multiple conclusions (see, for example, Parigot [Par92]).

2.3 Localizing Hypotheses

In the formulation of natural deduction from Section 2.1 correct use of hypothe-
ses and parameters is a global property of a derivation. We can localize it by
annotating each judgment in a derivation by the available parameters and hy-
potheses. We give here a formulation of natural deduction for intuitionistic logic
with localized hypotheses, but not parameters. For this we need a notation for
hypotheses which we call a context.

Contexts Γ ::= · | Γ, u:A

Here, “·” represents the empty context, and Γ, u:A adds hypothesis A true la-
belled u to Γ. We assume that each label u occurs at most once in a context in
order to avoid ambiguities. The main judgment can then be written as Γ ` A,
where

·, u1:A1, . . . , un:An ` A

stands for
u1

A1 true . . .
un

An true
...

A true

Draft of April 13, 2004

18 Natural Deduction

in the notation of Section 2.1.
We use a few important abbreviations in order to make this notation less

cumbersome. First of all, we may omit the leading “·” and write, for example,
u1:A1, u2:A2 instead of ·, u1:A1, u2:A2. Secondly, we denote concatenation of
contexts by overloading the comma operator as follows.

Γ, · = Γ
Γ, (Γ′, u:A) = (Γ,Γ′), u:A

With these additional definitions, the localized version of our rules are as
follows.

Introduction Rules Elimination Rules

Γ ` A Γ ` B
∧I

Γ ` A ∧B

Γ ` A ∧B ∧EL
Γ ` A

Γ ` A ∧B ∧ER
Γ ` B

Γ ` A ∨IL
Γ ` A ∨B

Γ ` B ∨IR
Γ ` A ∨B

Γ ` A ∨B Γ, u:A ` C Γ, w:B ` C
∨Eu,w

Γ ` C

Γ, u:A ` B
⊃Iu

Γ ` A⊃B

Γ ` A⊃B Γ ` A
⊃E

Γ ` B

Γ, u:A ` p
¬Ip,u

Γ ` ¬A

Γ ` ¬A Γ ` A
¬E

Γ ` C

>I
Γ ` > no > elimination

no ⊥ introduction

Γ ` ⊥
⊥E

Γ ` C

Γ ` [a/x]A
∀Ia

Γ ` ∀x. A

Γ ` ∀x. A
∀E

Γ ` [t/x]A

Γ ` [t/x]A
∃I

Γ ` ∃x. A

Γ ` ∃x. A Γ, u:[a/x]A ` C
∃Ea,u

Γ ` C

We also have a new rule for hypotheses which was an implicit property of the
hypothetical judgments before.

u
Γ1, u:A,Γ2 ` A

Other general assumptions about hypotheses, namely that they may be used ar-
bitrarily often in a derivation and that their order does not matter, are indirectly

Draft of April 13, 2004

2.3 Localizing Hypotheses 19

reflected in these rules. Note that if we erase the context Γ from the judgments
throughout a derivation, we obtain a derivation in the original notation.

When we discussed local reductions in order to establish local soundness, we
used the notation

D
u

A true
E

C true

for the result of substituting the derivation D of A true for all uses of the
hypothesis A true labelled u in E . We would now like to reformulate the property
with localized hypotheses. In order to prove that the (now explicit) hypotheses
behave as expected, we use the principle of structural induction over derivations.
Simply put, we prove a property for all derivations by showing that, whenever
it holds for the premisses of an inference, it holds for the conclusion. Note that
we have to show the property outright when the rule under consideration has
no premisses. Such rules are the base cases for the induction.

Theorem 2.1 (Structural Properties of Hypotheses) The following prop-
erties hold for intuitionistic natural deduction.

1. (Exchange) If Γ1, u1:A,Γ2, u2:B,Γ3 ` C then Γ1, u2:B,Γ2, u1:A,Γ3 ` C.

2. (Weakening) If Γ1,Γ2 ` C then Γ1, u:A,Γ2 ` C.

3. (Contraction) If Γ1, u1:A,Γ2, u2:A,Γ3 ` C then Γ1, u:A,Γ2,Γ3 ` C.

4. (Substitution) If Γ1, u:A,Γ2 ` C and Γ1 ` A then Γ1,Γ2 ` C.

Proof: The proof is in each case by straightforward induction over the structure
of the first given derivation.

In the case of exchange, we appeal to the inductive assumption on the deriva-
tions of the premisses and construct a new derivation with the same inference
rule. Algorithmically, this means that we exchange the hypotheses labelled u1

and u2 in every judgment in the derivation.
In the case of weakening and contraction, we proceed similarly, either adding

the new hypothesis u:A to every judgment in the derivation (for weakening), or
replacing uses of u1 and u2 by u (for contraction).

For substitution, we apply the inductive assumption to the premisses of the
given derivation D until we reach hypotheses. If the hypothesis is different from
u we can simply erase u:A (which is unused) to obtain the desired derivation.
If the hypothesis is u:A the derivation looks like

D =
u

Γ1, u:A,Γ2 ` A

so C = A in this case. We are also given a derivation E of Γ1 ` A and have
to construct a derivation F of Γ1,Γ2 ` A. But we can just repeatedly apply
weakening to E to obtain F . Algorithmically, this means that, as expected, we

Draft of April 13, 2004

20 Natural Deduction

substitute the derivation E (possibly weakened) for uses of the hypotheses u:A
in D. Note that in our original notation, this weakening has no impact, since
unused hypotheses are not apparent in a derivation. 2

It is also possible to localize the derivations themselves, using proof terms.
As we will see in Section 2.4, these proof terms form a λ-calculus closely related
to functional programming. When parameters, hypotheses, and proof terms
are all localized our main judgment becomes decidable. In the terminology of
Martin-Löf [ML94], the main judgment is then analytic rather than synthetic.
We no longer need to go outside the judgment itself in order to collect evidence
for it: An analytic judgment encapsulates its own evidence.

2.4 Proof Terms

The basic judgment of the system of natural deduction is the derivability of a
formula A, written as ` A. It has been noted by Howard [How69] that there is
a strong correspondence between (intuitionistic) derivations and λ-terms. The
formulas A then act as types classifying λ-terms. In the propositional case,
this correspondence is an isomorphism: formulas are isomorphic to types and
derivations are isomorphic to simply-typed λ-terms. These isomorphisms are
often called the propositions-as-types and proofs-as-programs paradigms.

If we stopped at this observation, we would have obtained only a fresh inter-
pretation of familiar deductive systems, but we would not be any closer to the
goal of providing a language for reasoning about properties of programs. How-
ever, the correspondences can be extended to first-order and higher-order logics.
Interpreting first-order (or higher-order) formulas as types yields a significant
increase in expressive power of the type system. However, maintaining an iso-
morphism during the generalization to first-order logic is somewhat unnatural
and cumbersome. One might expect that a proof contains more information
than the corresponding program. Thus the literature often talks about extract-
ing programs from proofs or contracting proofs to programs. We do not discuss
program extraction further in these notes.

We now introduce a notation for derivations to be carried along in deduc-
tions. For example, if M represents a proof of A and N represents a proof of B,
then the pair 〈M,N〉 can be seen as a representation of the proof of A ∧ B by
∧-introduction. We write Γ ` M : A to express the judgment M is a proof term
for A under hypotheses Γ. We also repeat the local reductions and expansions
from the previous section in the new notation. For local expansion we state the
proposition whose truth must established by the proof term on the left-hand
side. This expresses restrictions on the application of the expansion rules.

Draft of April 13, 2004

2.4 Proof Terms 21

Conjunction. The proof term for a conjunction is simply the pair of proofs
of the premisses.

Γ ` M : A Γ ` N : B
∧I

Γ ` 〈M,N〉 : A ∧B

Γ ` M : A ∧B ∧EL
Γ ` fst M : A

Γ ` M : A ∧B ∧ER
Γ ` sndM : B

The local reductions now lead to two obvious local reductions of the proof terms.
The local expansion is similiarly translated.

fst 〈M,N〉 −→R M
snd 〈M,N〉 −→R N

M : A ∧B −→E 〈fstM, sndM〉

Implication. The proof of an implication A ⊃ B will be represented by a
function which maps proofs of A to proofs of B. The introduction rule explicitly
forms such a function by λ-abstraction and the elimination rule applies the
function to an argument.

Γ, u:A ` M : B
⊃Iu

Γ ` (λu:A. M) : A⊃B

Γ ` M : A⊃B Γ ` N : A
⊃E

Γ ` M N : B

The binding of the variable u in the conclusion of ⊃I correctly models the
intuition that the hypothesis is discharged and not available outside deduction
of the premiss. The abstraction is labelled with the proposition A so that we
can later show that the proof term uniquely determines a natural deduction. If
A were not given then, for example, λu. u would be ambigous and serve as a
proof term for A⊃A for any formula A. The local reduction rule is β-reduction;
the local expansion is η-expansion.

(λu:A. M) N −→R [N/u]M

M : A⊃B −→E λu:A. M u

In the reduction rule, bound variables in M that are free in N must be renamed
in order to avoid variable capture. In the expansion rule u must be new—it
may not already occur in M .

Disjunction. The proof term for disjunction introduction is the proof of the
premiss together with an indication whether it was inferred by introduction on
the left or on the right. We also annotate the proof term with the formula
which did not occur in the premiss so that a proof term always proves exactly
one proposition.

Γ ` M : A ∨IL
Γ ` inlB M : A ∨B

Γ ` N : B ∨IR
Γ ` inrA N : A ∨B

Draft of April 13, 2004

22 Natural Deduction

The elimination rule corresponds to a case construction.

Γ ` M : A ∨B Γ, u:A ` N1 : C Γ, w:B ` N2 : C
∨Eu,w

Γ ` (case M of inl u ⇒ N1 | inr w ⇒ N2) : C

Since the variables u and w label assumptions, the corresponding proof term
variables are bound in N1 and N2, respectively. The two reduction rules now
also look like rules of computation in a λ-calculus.

case inlB M of inl u ⇒ N1 | inr w ⇒ N2 −→R [M/u]N1

case inrA M of inl u ⇒ N1 | inr w ⇒ N2 −→R [M/w]N2

M : A ∨B −→E case M of inl u ⇒ inlB u | inr w ⇒ inrA w

The substitution of a deduction for a hypothesis is represented by the substitu-
tion of a proof term for a variable.

Negation. This is similar to implication. Since the premise of the rule is
parametric in p the corresponding proof constructor must bind a propositional
variable p, indicated by µp. Similarly, the elimination construct must record
the formula to maintain the property that every valid term proves exactly one
proposition. This is indicated as a subscript C to the infix operator “·”.

Γ, u:A ` M : p
¬Ip,u

Γ ` µpu:A. M : ¬A

Γ ` M : ¬A Γ ` N : A
¬E

Γ ` M ·C N : C

The reduction performs formula and proof term substitutions.

(µpu:A. M) ·C N −→R [N/u][C/p]M

M : ¬A −→E µpu:A. M ·p u

Truth. The proof term for >I is written 〈 〉.

>I
Γ ` 〈 〉 : >

Of course, there is no reduction rule. The expansion rule reads

M : > −→E 〈 〉

Falsehood. Here we need to annotate the proof term abort with the formula
being proved to avoid ambiguity.

Γ ` M : ⊥
⊥E

Γ ` abortC M : C

Again, there is no reduction rule, only an expansion rule.

M : ⊥ −→E abort⊥ M

Draft of April 13, 2004

2.4 Proof Terms 23

In summary, we have

Terms M ::= u Hypotheses
| 〈M1,M2〉 | fst M | sndM Conjunction
| λu:A. M | M1 M2 Implication
| inlA M | inrA M Disjunction
| (case M of inl u1 ⇒ M1 | inr u2 ⇒ M2)
| µpu:A. M | M1 ·A M2 Negation
| 〈 〉 Truth
| abortA M Falsehood

and the reduction rules

fst 〈M,N〉 −→R M
snd 〈M,N〉 −→R N

(λu:A. M) N −→R [N/u]M
case inlB M of inl u ⇒ N1 | inr w ⇒ N2 −→R [M/u]N1

case inrA M of inl u ⇒ N1 | inr w ⇒ N2 −→R [M/w]N2

(µpu:A. M) ·C N −→R [N/u][C/p]M
no rule for truth

no rule for falsehood

The expansion rules are given below.

M : A ∧B −→E 〈fstM, sndM〉
M : A⊃B −→E λu:A. M u

M : A ∨B −→E case M of inl u ⇒ inlB u | inr w ⇒ inrA w
M : ¬A −→E µpu:A. M ·p u
M : > −→E 〈 〉
M : ⊥ −→E abort⊥ M

We can now see that the formulas act as types for proof terms. Shifting to
the usual presentation of the typed λ-calculus we use τ and σ as symbols for
types, and τ ×σ for the product type, τ → σ for the function type, τ +σ for the
disjoint sum type, 1 for the unit type and 0 for the empty or void type. Base
types b remain unspecified, just as the basic propositions of the propositional
calculus remain unspecified. Types and propositions then correspond to each
other as indicated below.

Types τ ::= b | τ1 × τ2 | τ1 → τ2 | τ1 + τ2 | 1 | 0
Propositions A ::= p | A1 ∧A2 | A1 ⊃A2 | A1 ∨A2 | > | ⊥

We omit here the negation type which is typically not used in functional
programming and thus does not have a well-known counterpart. We can think
of ¬A as corresponding to τ → 0, where τ corresponds to A. We now summarize
and restate the rules above, using the notation of types instead of propositions
(omitting only the case for negation). Note that contexts Γ now declare variables
with their types, rather than hypothesis labels with their proposition.

Draft of April 13, 2004

24 Natural Deduction

Γ . M : τ Term M has type τ in context Γ

Γ . M : τ Γ . N : σ
pair

Γ . 〈M,N〉 : τ × σ

Γ . M : τ × σ
fst

Γ . fstM : τ

Γ . M : τ × σ
snd

Γ . sndM : σ

Γ, u:τ . M : σ
lam

Γ . (λu:τ. M) : τ → σ

u : τ in Γ
var

Γ . u : τ

Γ . M : τ → σ Γ . N : τ
app

Γ . M N : σ

Γ . M : τ
inl

Γ . inlσ M : τ + σ

Γ . N : σ
inr

Γ . inrτ N : τ + σ

Γ . M : τ + σ Γ, u:τ . N1 : ν Γ, w:σ . N2 : ν
case

Γ . (case M of inl u ⇒ N1 | inr w ⇒ N2) : ν

unit
Γ . 〈 〉 : 1

Γ . M : 0
abort

Γ . abortν M : ν

2.5 Exercises

Exercise 2.1 Prove the following by natural deduction using only intuitionistic
rules when possible. We use the convention that ⊃, ∧, and ∨ associate to the
right, that is, A⊃B⊃C stands for A⊃(B⊃C). A ≡ B is a syntactic abbreviation
for (A ⊃ B) ∧ (B ⊃ A). Also, we assume that ∧ and ∨ bind more tightly than
⊃, that is, A∧B⊃C stands for (A∧B)⊃C. The scope of a quantifier extends
as far to the right as consistent with the present parentheses. For example,
(∀x. P (x)⊃ C) ∧ ¬C would be disambiguated to (∀x. (P (x)⊃ C)) ∧ (¬C).

1. ` A⊃B ⊃A.

2. ` A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C).

3. (Peirce’s Law). ` ((A⊃B)⊃A)⊃A.

4. ` A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C).

5. ` A⊃ (A ∧B) ∨ (A ∧ ¬B).

6. ` (A⊃ ∃x. P (x)) ≡ ∃x. (A⊃ P (x)).

7. ` ((∀x. P (x))⊃ C) ≡ ∃x. (P (x)⊃ C).

Draft of April 13, 2004

2.5 Exercises 25

8. ` ∃x. ∀y. (P (x)⊃ P (y)).

Exercise 2.2 We write A ` B if B follows from hypothesis A and A a` B
for A ` B and B ` A. Which of the following eight parametric judgments are
derivable intuitionistically?

1. (∃x. A)⊃B a` ∀x. (A⊃B)

2. A⊃ (∃x. B) a` ∃x. (A⊃B)

3. (∀x. A)⊃B a` ∃x. (A⊃B)

4. A⊃ (∀x. B) a` ∀x. (A⊃B)

Provide natural deductions for the valid judgments. You may assume that the
bound variable x does not occur in B (items 1 and 3) or A (items 2 and 4).

Exercise 2.3 Show that the three ways of extending the intuitionistic proof
system for classical logic are equivalent, that is, the same formulas are deducible
in all three systems.

Exercise 2.4 Assume we had omitted disjunction and existential quantification
and their introduction and elimination rules from the list of logical primitives.
In the classical system, give a definition of disjunction and existential quantifi-
cation (in terms of other logical constants) and show that the introduction and
elimination rules now become admissible rules of inference. A rule of inference is
admissible if any deduction using the rule can be transformed into one without
using the rule.

Exercise 2.5 Assume we would like to design a system of natural deduction
for a simple temporal logic. The main judgment is now “A is true at time t”
written as

A @ t.

1. Explain how to modify the given rules for natural deduction to this more
general judgment and show the rules for implication and universal quan-
tification.

2. Write out introduction and elimination rules for the temporal operator
©A which should be true if A is true at the next point in time. Denote
the “next time after t” by t + 1.

3. Show the local reductions and expansions which show the local soundness
and completness of your rules.

4. Write out introduction and elimination rules for the temporal operator
2A which should be true if A is true at all times.

5. Show the local reductions and expansions.

Exercise 2.6 Design introduction and elimination rules for the connectives

Draft of April 13, 2004

26 Natural Deduction

1. A ≡ B, usually defined as (A⊃B) ∧ (B ⊃A),

2. A | B (exclusive or), usually defined as (A ∧ ¬B) ∨ (¬A ∧B),

without recourse to other logical constants or operators. Also show the corre-
sponding local reductions and expansions. For each of the following proposed
connectives, write down appropriate introduction and eliminations rules and
show the local reductions and expansion or indicate that no such rule may ex-
ist.

3. A∧B for ¬(A ∧B),

4. A∨B for ¬(A ∨B),

5. A⊃B for ¬(A⊃B),

6. +A for ¬¬A,

7. ∃∗x. A for ¬∀x. ¬A,

8. ∀∗x. A for ¬∃x. ¬A,

9. A ⇒ B | C for (A⊃B) ∧ (¬A⊃ C).

Exercise 2.7 A given introduction rule does not necessarily uniquely determine
matching elimination rules and vice versa. Explore if the following alternative
rules are also sound and complete.

1. Replace the two elimination rules for conjunction by

A ∧B true

u
A true

w
B true

...
C true

∧Eu,w

C true

2. Add the following elimination rule for truth.

> true C true
>E

C true

3. Add the following introduction rule for falsehood.

p true
⊥Ip

⊥ true

Consider if any other of the standard connectives might permit alternative in-
troduction or elimination rules which preserve derivability.

Draft of April 13, 2004

2.5 Exercises 27

Exercise 2.8 For each of 14 following proposed entailments either write out a
proof term for the corresponding implication or indicate that it is not derivable.

1. A⊃ (B ⊃ C) a` (A ∧B)⊃ C

2. A⊃ (B ∧ C) a` (A⊃B) ∧ (A⊃ C)

3. A⊃ (B ∨ C) a` (A⊃B) ∨ (A⊃ C)

4. (A⊃B)⊃ C a` (A ∨ C) ∧ (B ⊃ C)

5. (A ∨B)⊃ C a` (A⊃ C) ∧ (B ⊃ C)

6. A ∧ (B ∨ C) a` (A ∧B) ∨ (A ∧ C)

7. A ∨ (B ∧ C) a` (A ∨B) ∧ (A ∨ C)

Exercise 2.9 The de Morgan laws of classical logic allow negation to be dis-
tributed over other logical connectives. Investigate which directions of the de
Morgan equivalences hold in intuitionistic logic and give proof terms for the
valid entailments.

1. ¬(A ∧B) a` ¬A ∨ ¬B

2. ¬(A ∨B) a` ¬A ∧ ¬B

3. ¬(A⊃B) a` A ∧ ¬B

4. ¬(¬A) a` A

5. ¬> a` ⊥

6. ¬⊥ a` >

7. ¬∀x. A a` ∃x. ¬A

8. ¬∃x. A a` ∀x. ¬A

Exercise 2.10 An alternative approach to negation is to introduce another
judgment, A is false, and develop a system of evidence for this judgment. For
example, we might say that A ∧ B is false if either A is false or B is false.
Similarly, A∨B is false if both A and B are false. Expressed as inference rules:

A false

A ∧B false

B false

A ∧B false

A false B false

A ∨B false

1. Write out a complete set of rules defining the judgment A false for the
conjunction, implication, disjunction, truth, and falsehood.

2. Verify local soundness and completeness of your rules, if these notions
make sense.

Draft of April 13, 2004

28 Natural Deduction

3. Now we define that ¬A true if A false. Complete the set of rules and
verify soundness and completeness if appropriate.

4. Does your system satisfy that every proposition A is either true or false?
If so, prove it. Otherwise, show a counterexample.

5. Compare this notion of negation with the standard notion in intuitionistic
logic.

6. Extend your system to include universal and existential quantification (if
possible) and discuss its properties.

Draft of April 13, 2004

Chapter 3

Sequent Calculus

In this chapter we develop the sequent calculus as a formal system for proof
search in natural deduction. The sequent calculus was originally introduced
by Gentzen [Gen35], primarily as a technical device for proving consistency of
predicate logic. Our goal of describing a proof search procedure for natural
deduction predisposes us to a formulation due to Kleene [Kle52] called G3.

We introduce the sequent calculus in two steps. The first step is based
on the simple strategy of building a natural deduction by using introduction
rules bottom-up and elimination rules top-down. The result is an intercalation
calculus which applies both to intuitionistic and classical logic [Byr99]. The
second step consists of reformulating the rules for intercalation so that both
forms of rules work bottom-up, resulting in the sequent calculus.

We also show how intercalation derivations lead to more compact proof
terms, and how to extract proof terms from sequent calculus derivations.

3.1 Intercalation

A simple strategy in the search for a natural deduction is to use introduction
rules reasoning bottom-up (from the proposed theorem towards the hypotheses)
and the elimination rules top-down (from the assumptions towards the proposed
theorem). When they meet in the middle we have found a normal deduction.
Towards the end of this chapter we show that this strategy is in fact complete: if
a proposition A has a natural deduction then it has a normal deduction. First,
however, we need to make this strategy precise.

A general technique for representing proof search strategies is to introduce
new judgments which permit only those derivations which can be found by
the intended strategy. We then prove the correctness of the new, restricted
judgments by appropriate soundness and completeness theorems.

In this case, we introduce two judgments:
A ⇑ Proposition A has a normal deduction, and
A ↓ Proposition A is extracted from a hypothesis.

Draft of April 13, 2004

30 Sequent Calculus

They are defined by restricting the rules of natural deduction according to
their status as introduction or elimination rules. Hypotheses can be trivially
extracted. Therefore the necessary hypothetical judgments (in localized form,
see Section 2.3) are

u1:A1 ↓, . . . , un:An ↓ ` A ⇑ and
u1:A1 ↓, . . . , un:An ↓ ` A ↓.

We write Γ↓ for a context of the form shown above.

Hypotheses. The general rule for hypotheses simply reflects the nature of
hypothetical judgments.

u
Γ↓1, u:A ↓,Γ↓2 ` A ↓

Coercion. The bottom-up and top-down derivations must be able to meet in
the middle.

Γ↓ ` A ↓
↓⇑

Γ↓ ` A ⇑
Looked at another way, this rule allows us to coerce any extraction derivation
to a normal deduction. Of course, the opposite coercion would contradict the
intended strategy.

Conjunction. The rules for conjunction exhibit no unexpected features: the
introduction rule is classified as a bottom-up rule, the elimination rule is classi-
fied as a top-down rule.

Γ↓ ` A ⇑ Γ↓ ` B ⇑
∧I

Γ↓ ` A ∧B ⇑

Γ↓ ` A ∧B ↓
∧EL

Γ↓ ` A ↓

Γ↓ ` A ∧B ↓
∧ER

Γ↓ ` B ↓

Truth. For truth, there is only an introduction rule which is classified as
normal.

>I
Γ↓ ` > ⇑

Implication. The introduction rule for implication is straightforward. In the
elimination rule we require that the the second premise is normal. It is only the
first premise (whose primary connective is eliminated in this rule) which must
be extracted from a hypothesis.

Γ↓, u:A ↓ ` B ⇑
⊃Iu

Γ↓ ` A⊃B ⇑

Γ↓ ` A⊃B ↓ Γ↓ ` A ⇑
⊃E

Γ↓ ` B ↓

Draft of April 13, 2004

3.1 Intercalation 31

Disjunction. The introduction rules for disjunction are straightforward. For
the elimination rule, again the premise with the connective which is eliminated
must have a top-down derivation. The new assumptions in each branch also are
top-down derivations. Overall, for the derivation to be normal we must require
the derivations of both premises to be normal.

Γ↓ ` A ⇑
∨IL

Γ↓ ` A ∨B ⇑

Γ↓ ` B ⇑
∨IR

Γ↓ ` A ∨B ⇑

Γ↓ ` A ∨B ↓ Γ↓, u:A ↓ ` C ⇑ Γ↓, w:B ↓ ` C ⇑
∨Eu,w

Γ↓ ` C ⇑

It would also be consistent to allow the derivations of C to be extractions, but
it is not necessary to obtain a complete search procedure and complicates the
relation to the sequent calculus (see Exercise 3.1).

Falsehood. Falsehood corresponds to a disjunction with no alternatives. There-
fore there is no introduction rule, and the elimination rule has no cases. This
consideration yields

Γ↓ ` ⊥ ↓
⊥E.

Γ↓ ` C ⇑
For this rule, it does not appear to make sense to allow the conclusion as hav-
ing been constructed top-down, since the proposition C would be completely
unrestricted.

Negation. Negation combines elements from implication and falsehood, since
we may think of ¬A as A⊃⊥.

Γ↓, u:A ↓ ` p ⇑
¬Ip,u

Γ↓ ` ¬A ⇑

Γ↓ ` ¬A ↓ Γ↓ ` A ⇑
¬E

Γ↓ ` C ⇑

Universal Quantification. Universal quantification does not introduce any
new considerations.

Γ↓ ` [a/x]A ⇑
∀Ia

Γ↓ ` ∀x. A ⇑

Γ↓ ` ∀x. A ↓
∀E

Γ↓ ` [t/x]A ↓

Existential Quantification. Existential quantification is similar to disjunc-
tion and a more lenient view of extraction is possible here, too (see Exercise 3.1).

Γ↓ ` [t/x]A ⇑
∃I

Γ↓ ` ∃x. A ⇑

Γ↓ ` ∃x. A ↓ Γ↓, u:[a/x]A ↓ ` C ⇑
∃Ea,u

Γ↓ ` C ⇑

Draft of April 13, 2004

32 Sequent Calculus

It is quite easy to see that normal and extraction derivations are sound with
respect to natural deduction. In order to state and prove this theorem, we
introduce some conventions. Given a context

Γ↓ = u1:A1 ↓, . . . , un:An ↓

we denote
u1:A1, . . . , un:An

by Γ and vice versa.

Theorem 3.1 (Soundness of Normal Deductions)

1. If Γ↓ ` A ⇑ then Γ ` A, and

2. if Γ↓ ` A ↓ then Γ ` A.

Proof: By induction on the structure of the given derivations. We show only
three cases, since the proof is absolutely straightforward.
Case:

E = u
Γ↓1, u:A ↓,Γ↓2 ` A ↓

The we construct directly Γ1, u:A,Γ2 ` A.

Case:

N =

E
Γ↓ ` A ↓

↓⇑
Γ↓ ` A ⇑

Then Γ ` A by induction hypothesis on E .

Case:

N =

N2

Γ↓, u:A1 ↓ ` A2 ⇑
⊃Iu

Γ↓ ` A1 ⊃A2 ⇑

Γ, u:A1 ` A2 By i.h. on N2

Γ ` A1 ⊃A2 By rule ⊃I

2

When trying to give a translation in the other direction we encounter a diffi-
culty: certain patterns of inference cannot be annotated directly. For example,
consider

D
Γ ` A

E
Γ ` B

∧I
Γ ` A ∧B

∧EL.
Γ ` A

Draft of April 13, 2004

3.1 Intercalation 33

If we try to classify each judgment, we obtain a conflict:

D′

Γ ` A ⇑
E ′

Γ ` B ⇑
∧I

Γ ` A ∧B ?
∧EL.

Γ ` A ↓

In this particular case, we can avoid the conflict: in order to obtain the deriva-
tion of A ⇑ we can just translate the derivation D and avoid the final two
inferences! In general, we can try to apply local reductions to the given original
derivation until no situations of the form above remain. This approach is called
normalization. It is not easy to prove that normalization terminates, and the
situation is complicated by the fact that the local reductions alone do not suffice
to transform an arbitrary natural deduction into normal form (see Exercise 3.2).

Here, we follow an alternative approach to prove completeness of normal
deductions. First, we temporarily augment the system with another rule which
makes the translation from natural deductions immediate. Then we relate the
resulting system to a sequent calculus and show that the additional rule was
redundant.

A candidate for the additional rule is easy to spot: we just add the missing
coercion from normal to extraction deductions. Since all rules are present, we
can just coerce back and forth as necessary in order to obtain a counterpart
for any natural deduction in this extended system. Of course, the resulting
derivations are no longer normal, which we indicate by decorating the turnstile
with a “+”. The judgments Γ↓ `+ A ⇑ and Γ↓ `+ A ↓ are defined by all
counterparts of all rules which define normal and extracting derivations, plus
the rule

Γ↓ `+ A ⇑
⇑↓

Γ↓ `+ A ↓

Now the annotation in the example above can be completed.

D′

Γ `+ A ⇑
E ′

Γ `+ B ⇑
∧I

Γ `+ A ∧B ⇑
⇑↓

Γ `+ A ∧B ↓
∧EL

Γ `+ A ↓

Both soundness and completeness of the extended calculus with respect to nat-
ural deduction is easy to see.

Theorem 3.2 (Soundness of Annotated Deductions)

1. If Γ↓ `+ A ⇑ then Γ ` A, and

Draft of April 13, 2004

34 Sequent Calculus

2. if Γ↓ `+ A ↓ then Γ ` A.

Proof: By simultaneous induction over the structure of the given derivations.
2

The constructive proof of the completeness theorem below will contain an
algorithm for annotating a given natural deduction.

Theorem 3.3 (Completeness of Annotated Deductions)

1. If Γ ` A then Γ↓ `+ A ⇑, and

2. if Γ ` A then Γ↓ `+ A ↓.

Proof: By induction over the structure of the given derivation. We show only
two cases.

Case:

D =

D
Γ ` B ⊃A

E
Γ ` B

⊃E
Γ ` A

Γ↓ `+ B ⊃A ↓ By i.h. (2) on D
Γ↓ `+ B ⇑ By i.h. (1) on E
Γ↓ `+ A ↓ By rule ⊃E, proving (2)
Γ↓ `+ A ⇑ By rule ↓⇑, proving (1)

Case:

D =

D2

Γ, u:A1 ` A2

⊃Iu
Γ ` A1 ⊃A2

Γ↓, u:A1 ↓ `+ A2 ⇑ By i.h. (1) on D2

Γ↓ `+ A1 ⊃A2 ⇑ By rule ⊃Iu, proving (1)
Γ↓ `+ A1 ⊃A2 ↓ By rule ⇑↓, proving (2)

2

Even though natural deductions and annotated deductions are very similar,
they are not in bijective correspondence. For example, in an annotated deduc-
tion we can simply alternate the two coercions an arbitrary number of times.
Under the translation to natural deduction, all of these are identified.

Before we introduce the sequent calculus, we make a brief excursion to study
the impact of annotations on proof terms.

Draft of April 13, 2004

3.2 Compact Proof Terms 35

3.2 Compact Proof Terms

The proof terms introduced in Section 2.4 sometimes contain significant amounts
of redundant information. The reason are the propositions which label λ-
abstractions and also occur in the inlA, inrA, µpu:A, ·A, and abortA constructs.
For example, assume we are given a proof term λu:A. M and we are supposed to
check if it represents a proof of A′⊃B. We then have to check that A = A′ and,
moreover, the information is duplicated. The reason for this duplication was
the intended invariant that every term proves a unique proposition. Under the
interpretations of propositions as types, this means we can always synthesize a
unique type for every valid term. However, we can improve this if we alternate
between synthesizing a type and checking a term against a given type.

Therefore we introduce two classes of terms: those whose type can be syn-
thesized, and those which can be checked against a type. Interestingly, this
corresponds precisely with the annotations as introduction or elimination rules
given above. We ignore negation again, thinking of ¬A as A ⊃ ⊥. We already
discussed why the eliminations for disjunction and falsehood appear among the
intro terms.

Intro Terms I ::= 〈I1, I2〉 Conjunction
| λu. I Implication
| inl I | inr I Disjunction
| (case E of inl u1 ⇒ I1 | inr u2 ⇒ I2)
| 〈 〉 Truth
| abortE Falsehood
| E Coercion

Elim Terms E ::= u Hypotheses
| E I Implication
| fst E | sndE Conjunction
| (I : A) Coercion

The presence of E as an intro term corresponds to the coercion ↓⇑ which
is present in normal deductions. The presence of (I : A) as an elim term
corresponds to the coercion ⇑↓ which is present only in the extended system.
Therefore, a normal deduction can be represented without any internal type in-
formation, while a general deduction requires information at the point where an
introduction rule is directly followed by an elimination rule. It is easy to endow
the annotated natural deduction judgments with the modified proof terms from
above. We leave the details to Exercise 3.3. The two judgments are Γ↓ `+ I : A ⇑
and Γ↓ `+ E : A ↓.

Now we can prove the correctness of bi-directional type-checking.

Theorem 3.4 (Bi-Directional Type-Checking)

1. Given Γ↓, I, and A. Then either Γ↓ `+ I : A ⇑ or not.

2. Given Γ↓ and E. Then either there is a unique A such that Γ↓ `+ E : A ↓
or there is no such A.

Draft of April 13, 2004

36 Sequent Calculus

Proof: See Exercise 3.3. 2

3.3 Sequent Calculus

In Section 3.1 we introduced normal deductions which embody the strategy
that proof search should proceed only bottom-up via introduction rules and
top-down via elimination rules. The bi-directional nature of this calculus makes
it somewhat unwieldy when it comes to the study of meta-theoretic properties
and, in particular, complicates its completeness proof. In this section we develop
a closely related calculus in which all proof search steps proceed bottom-up.
Pictorially, we would like to flip the elimination rules upside-down.

Hypotheses

?

Eliminations

↓⇑
66

Introductions

; Initial Sequents
66

Right Rules

6

Left Rules

This transformation turns introduction rules into so-called right rules, and
upside-down elimination rules into so-called left rules. We have two judgments,
A left (A is a proposition on the left) and A right (A is a proposition on the
right). They are assembled into the form of a hypothetical judgment

u1:A1 left , . . . , un:An left ` A right .

We call such a hypothetical judgment a sequent.
Note that the proposition A on the right directly corresponds to the propo-

sition whose truth is established by a natural deduction. On the other hand,
propositions on the left do not directly correspond to hypotheses in natural de-
duction, since in general they include hypotheses and propositions derived from
them by elimination rules.

Keeping this intuition in mind, the inference rules for sequents can now be
constructed mechanically from the rules for normal and extracting derivations.
To simplify the notation, we denote the sequent above by

A1, . . . , An =⇒ A

where the judgments left and right are implied by the position of the propo-
sitions. Moreover, labels ui are suppressed until we introduce proof terms.
Finally, left rules may be applied to any left proposition. Since the order of
the left propositions is irrelevant, we write Γ, A instead of the more pedantic
Γ, A, Γ′.

Draft of April 13, 2004

3.3 Sequent Calculus 37

Initial Sequents. These correspond to the coercion from extraction to normal
derivations, and not to the use of hypotheses in natural deductions.

init
Γ, A =⇒ A

Conjunction. The right and left rules are straightforward and provide a sim-
ple illustration of the translation, in particular in the way the elimination rules
are turned upside-down.

Γ =⇒ A Γ =⇒ B
∧R

Γ =⇒ A ∧B

Γ, A ∧B,A =⇒ C
∧L1

Γ, A ∧B =⇒ C

Γ, A ∧B,B =⇒ C
∧L2

Γ, A ∧B =⇒ C

In the introduction rule (read bottom-up), we propagate Γ to both premises.
This reflects that in natural deduction we can use any available assumption
freely in both subdeductions. Furthermore, in the elimination rule the hypoth-
esis A ∧ B left persists. This reflects that assumptions in natural deduction
may be used more than once. Later we analyze which of these hypotheses are
actually needed and eliminate some redundant ones. For now, however, they
are useful because they allow us to give a very direct translation to and from
normal natural deductions.

Implication. The right rule for implication is straightforward. The left rule
requires some thought. Using an extracted implication A⊃B gives rise to two
subgoals: we have to find a normal proof of A, but we also still have to prove
our overall goal, now with the additional extracted proposition B.

Γ, A =⇒ B
⊃R

Γ =⇒ A⊃B

Γ, A⊃B =⇒ A Γ, A⊃B,B =⇒ C
⊃L

Γ, A⊃B =⇒ C

Disjunction. This introduces no new considerations.

Γ =⇒ A ∨R1
Γ =⇒ A ∨B

Γ =⇒ B ∨R2
Γ =⇒ A ∨B

Γ, A ∨B,A =⇒ C Γ, A ∨B,B =⇒ C
∨L

Γ, A ∨B =⇒ C

Negation. Negation requires a judgment parametric in a proposition. Some-
times, this is encoded as an empty right-hand side (see Exercise 3.6).

Γ, A =⇒ p
¬Rp

Γ =⇒ ¬A

Γ,¬A =⇒ A
¬L

Γ,¬A =⇒ C

Draft of April 13, 2004

38 Sequent Calculus

Truth. By our general method, there is no left rule, only a right rule which
models the introduction rule.

>R
Γ =⇒ >

Falsehood. Again by our general method, there is no right rule, only a left
rule which models the (upside-down) elimination rule.

⊥L
Γ,⊥ =⇒ C

Universal Quantification. These require only a straightforward transcrip-
tion, with the appropriate translation of the side condition.

Γ =⇒ [a/x]A
∀Ra

Γ =⇒ ∀x. A

Γ,∀x. A, [t/x]A =⇒ C
∀L

Γ,∀x. A =⇒ C

Existential Quantification. Again, the rules can be directly constructed
from the introduction and elimination rule of natural deduction.

Γ =⇒ [t/x]A
∃R

Γ =⇒ ∃x. A

Γ,∃x. A, [a/x]A =⇒ C
∃La

Γ,∃x. A =⇒ C

The intended theorem describing the relationship between sequent calculus
and natural deduction states that Γ↓ ` A ⇑ if and only if Γ =⇒ A. Prima
facie is unlikely that we can prove either of these directions without further
generalization, since the judgments Γ↓ ` A ⇑ and Γ↓ ` A ↓ are mutually
recursive, and the statement above does not even mention the latter.

In preparation for the upcoming proof, we recall the general property of
hypothetical judgments, namely that we can substitute a derivation of the ap-
propriate judgment for a hypothesis. When applied to normal and extracting
derivations, this yields the following property.

Lemma 3.5 (Substitution Property for Extractions)

1. If Γ↓1, u:A ↓,Γ↓2 ` C ⇑ and Γ↓1 ` A ↓ then Γ↓1,Γ
↓
2 ` C ⇑.

2. If Γ↓1, u:A ↓,Γ↓2 ` C ↓ and Γ↓1 ` A ↓ then Γ↓1,Γ
↓
2 ` C ↓.

Proof: By induction on the structure of the given derivations of C ⇑ and C ↓.
In the case where the hypothesis is used we employ weakening, that is, we adjoin
the additional hypotheses Γ↓2 to every judgment in the derivation of Γ↓1 ` A ↓.
2

Using this lemma, a direct proof goes through (somewhat surprisingly).

Theorem 3.6 (Soundness of Sequent Calculus)
If Γ =⇒ C then Γ↓ ` C ⇑.

Draft of April 13, 2004

3.3 Sequent Calculus 39

Proof: By induction on the structure of the given derivation S. We show a few
representative cases.

Case: Initial sequents.
init

Γ, C =⇒ C

Γ↓, u:C ↓ ` C ↓ By hypothesis u
Γ↓, u:C ↓ ` C ⇑ By rule ↓⇑

This case confirms that initial sequents correspond to the coercion from
extractions to normal deductions.

Case: Implication right rule.

S2

Γ, C1 =⇒ C2

⊃R
Γ =⇒ C1 ⊃ C2

Γ↓, u:C1 ↓ ` C2 ⇑ By i.h. on S2

Γ↓ ` C1 ⊃ C2 ⇑ By rule ⊃Iu

This case exemplifies how right rules correspond directly to introduction
rules.

Case: Implication left rule.

S1

Γ, A1 ⊃A2 =⇒ A1

S2

Γ, A1 ⊃A2, A2 =⇒ C
⊃L

Γ, A1 ⊃A2 =⇒ C

Γ↓, u:A1 ⊃A2 ↓ ` A1 ⇑ By i.h. on S1

Γ↓, u:A1 ⊃A2 ↓ ` A1 ⊃A2 ↓ By hypothesis u
Γ↓, u:A1 ⊃A2 ↓ ` A2 ↓ By rule ⊃E
Γ↓, u:A1 ⊃A2 ↓, w:A2 ↓ ` C ⇑ By i.h. on S2

Γ↓, u:A1 ⊃A2 ↓ ` C ⇑ By substitution property (Lemma 3.5)

This case illustrates how left rules correspond to elimination rules. The
general pattern is that the result of applying the appropriate elimination
rule is substituted for a hypothesis.

2

The proof of completeness is somewhat trickier—we first need to generalize
the induction hypothesis. Generalizing a desired theorem so that a direct in-
ductive proof is possible often requires considerable ingenuity and insight into
the problem. In this particular case, the generalization is of medium difficulty.

Draft of April 13, 2004

40 Sequent Calculus

The reader who has not seen the proof is invited to test his understanding by
carrying out the generalization and proof himself before reading on.

The nature of a sequent as a hypothetical judgment gives rise to several
general properties we will take advantage of. We make two of them, weakening
and contraction, explicit in the following lemma.

Lemma 3.7 (Structural Properties of Sequents)

1. (Weakening) If Γ =⇒ C then Γ, A =⇒ C.

2. (Contraction) If Γ, A, A =⇒ C then Γ, A =⇒ C.

Proof: First, recall our general convention that we consider the hypotheses of
a sequent modulo permutation. We prove each property by a straightforward
induction over the structure of the derivation. In the case of weakening we
adjoin an unused hypothesis A left to each sequent in the derivation. In the
case of contraction we replace any use of either of the two hypotheses by a
common hypothesis. 2

The theorem below only establishes the completeness of sequent derivations
with respect to normal deductions. That is, at this point we have not established
the completeness of sequents with respect to arbitrary natural deductions which
is more difficult.

Theorem 3.8 (Completeness of Sequent Derivations)

1. If Γ↓ ` C ⇑ then Γ =⇒ C.

2. If Γ↓ ` A ↓ and Γ, A =⇒ C then Γ =⇒ C.

Proof: By induction on the structure of the given derivations I and E . We
show some representative cases.

Case: Use of hypotheses.

E = u
Γ↓1, u:A ↓,Γ↓2 ` A ↓

Γ1, A, Γ2, A =⇒ C Assumption
Γ1, A, Γ2 =⇒ C By contraction (Lemma 3.7)

Case: Coercion.

I =

E
Γ↓ ` C ↓

↓⇑
Γ↓ ` C ⇑

Γ, C =⇒ C By rule init
Γ =⇒ C By i.h. on E

Draft of April 13, 2004

3.3 Sequent Calculus 41

Case: Implication introduction.

I =

I2

Γ↓, u:C1 ↓ ` C2 ⇑
⊃Iu

Γ↓ ` C1 ⊃ C2 ⇑

Γ, C1 =⇒ C2 By i.h. on I2

Γ =⇒ C1 ⊃ C2 By rule ⊃R

Case: Implication elimination.

E =

E2

Γ↓ ` A1 ⊃A2 ↓
I1

Γ↓ ` A1 ⇑
⊃E

Γ↓ ` A2 ↓

Γ, A2 =⇒ C Assumption
Γ, A1 ⊃A2, A2 =⇒ C By weakening (Lemma 3.7)
Γ =⇒ A1 By i.h. on I1

Γ, A1 ⊃A2 =⇒ A1 By weakening (Lemma 3.7)
Γ, A1 ⊃A2 =⇒ C By rule ⊃L
Γ =⇒ C By i.h. on E2

2

In order to establish soundness and completeness with respect to arbitrary
natural deductions we establish a connection to annotated natural deductions.
Recall that this is an extension of normal deductions which we showed sound
and complete with respect to arbitrary natural deduction in Theorems 3.2 and
3.3. We related annotated natural deductions to the sequent calculus by adding
a rule called cut.

We write the extended judgment of sequent derivations with cut as Γ +=⇒ C.
It is defined by copies of all the rules for Γ =⇒ C, plus the rule of cut:

Γ +=⇒ A Γ, A
+=⇒ C

cut
Γ +=⇒ C

Thought of from the perspective of bottom-up proof construction, this rule
corresponds to proving and then assuming a lemma A during a derivation.

Theorem 3.9 (Soundness of Sequent Calculus with Cut)
If Γ +=⇒ C then Γ↓ `+ C ⇑.

Proof: As in Theorem 3.6 by induction on the structure of the given derivation
S, with one additional case.

Draft of April 13, 2004

42 Sequent Calculus

Case: Cut.

S =

S1

Γ =⇒ A
S2

Γ, A =⇒ C
cut

Γ =⇒ C

Γ↓ `+ A ⇑ By i.h. on S1

Γ↓ `+ A ↓ By rule ⇑↓
Γ↓, u:A ↓ `+ C ⇑ By i.h. on S2

Γ↓ `+ C ⇑ By substitution (Lemma 3.5, generalized)

We see that, indeed, cut corresponds to the coercion from normal to ex-
traction derivations.

2

Theorem 3.10 (Completeness of Sequent Calculus with Cut)

1. If Γ↓ `+ C ⇑ then Γ +=⇒ C.

2. If Γ↓ `+ A ↓ and Γ, A
+=⇒ C then Γ +=⇒ C.

Proof: As in the proof of Theorem 3.10 with one additional case.

Case: Coercion from normal to extraction derivations.

E =

I
Γ↓ `+ A ⇑

⇑↓
Γ↓ `+ A ↓

Γ =⇒ A By i.h. on I
Γ, A =⇒ C By assumption
Γ =⇒ C By rule cut

2

The central property of the sequent calculus is that the cut rule is redundant.
That is, if Γ +=⇒ C then Γ =⇒ C. This so-called cut elimination theorem
(Gentzen’s Hauptsatz [Gen35]) is one of the central theorems of logic. As an
immediately consequence we can see that not every proposition has a proof, since
no rule is applicable to derive · =⇒ ⊥. In the system with cut, a derivation of
this sequent might end in the cut rule and consistency is not at all obvious. The
proof of cut elimination and some of its many consequences are the subject of
the next section.

Draft of April 13, 2004

3.4 Cut Elimination 43

3.4 Cut Elimination

This section is devoted to proving that the rule of cut is redundant in the sequent
calculus. First we prove that cut is admissible: whenever the premises of the
cut rule are derivable in the sequent calculus without cut, then the conclusion
is. It is a simple observation that adding an admissible rule to a deductive
system does not change the derivable judgments. Formally, this second step is
an induction over the structure of a derivation that may contain cuts, proving
that if Γ +=⇒ C then Γ =⇒ C.

There is a stronger property we might hope to prove for cut: it could be a
derived rule of inference. Derived rules have a direct deduction of the conclusion
from the premises within the given system. For example,

Γ ` A Γ ` B Γ ` C

Γ ` A ∧ (B ∧ C)

is a derived rule, as evidenced by the following deduction:

Γ ` A

Γ ` B Γ ` C
∧I

Γ ` B ∧ C
∧I.

Γ ` A ∧ (B ∧ C)

Derived rules have the property that they remain valid under all extensions of
a given system. Admissible rules, on the other hand, have to be reconsidered
when new connectives or inference rules are added to a system, since these rules
may invalidate the proof of admissibility.

It turns out that cut is only admissible, but not derivable in the sequent
calculus. Therefore, we will prove the following theorem:

If Γ =⇒ A and Γ, A =⇒ C then Γ =⇒ C.

We call A the cut formula. Also, each left or right rule in the sequent calculus
focuses on an occurrence of a proposition in the conclusion, called the principal
formula of the inference.

The proof combines two ideas: induction over the structure of the cut for-
mula with induction over the structures of the two given derivations. They are
combined into one nested induction: an outer induction over the structure of
the cut formula and an inner induction over the structure of the derivations
of the premises. The outer induction over the structure of the cut formula is
related to local reductions in natural deduction (see Exercise 3.7).

Theorem 3.11 (Admissibility of Cut)
If Γ =⇒ A and Γ, A =⇒ C then Γ =⇒ C.

Proof: By nested inductions on the structure of A, the derivation D of Γ =⇒ A
and E of Γ, A =⇒ C. More precisely, we appeal to the induction hypothesis
either with a strictly smaller cut formula, or with an identical cut formula and

Draft of April 13, 2004

44 Sequent Calculus

two derivations, one of which is strictly smaller while the other stays the same.
The proof is constructive, which means we show how to transform

D
Γ =⇒ A

and
E

Γ, A =⇒ C
to

F
Γ =⇒ C.

The proof is divided into several classes of cases. More than one case may
be applicable, which means that the algorithm for constructing the derivation
of Γ =⇒ C from the two given derivations is naturally non-deterministic.

Case: D is an initial sequent.

D = init
Γ′, A =⇒ A

Γ = Γ′, A This case
Γ′, A, A =⇒ C Derivation E
Γ′, A =⇒ C By contraction (Lemma 3.7)
Γ =⇒ C By equality

Case: E is an initial sequent using the cut formula.

E = init
Γ, A =⇒ A

C = A This case
Γ =⇒ A Derivation D

Case: E is an initial sequent not using the cut formula.

E = init
Γ′, C, A =⇒ C

Γ = Γ′, C This case
Γ′, C =⇒ C By rule init
Γ =⇒ C By equality

Case: A is the principal formula of the final inference in both D and E . There
are a number of subcases to consider, based on the last inference in D and
E . We show some of them.
Subcase:

D =

D1

Γ =⇒ A1

D2

Γ =⇒ A2

∧R
Γ =⇒ A1 ∧A2

andE =

E1

Γ, A1 ∧A2, A1 =⇒ C
∧L1

Γ, A1 ∧A2 =⇒ C

Draft of April 13, 2004

3.4 Cut Elimination 45

Γ, A1 =⇒ C By i.h. on A1 ∧A2, D and E1

Γ =⇒ C By i.h. on A1 from above and D1

Actually we have ignored a detail: in the first appeal to the induction
hypothesis, E1 has an additionaly hypothesis (A1 left) and therefore
does not match the statement of the theorem precisely. However, we
can always weaken D to include this additional hypothesis without
changing the structure of D (see the proof of Lemma 3.7) and then
appeal to the induction hypothesis. We will not be explicit about
these trivial weakening steps in the remaining cases.

Subcase:

D =

D2

Γ, A1 =⇒ A2

⊃R
Γ =⇒ A1 ⊃A2

and E =

E1

Γ, A1 ⊃A2 =⇒ A1

E2

Γ, A1 ⊃A2, A2 =⇒ C
⊃L

Γ, A1 ⊃A2 =⇒ C

Γ =⇒ A1 By i.h. on A1 ⊃A2, D and E1

Γ =⇒ A2 By i.h. on A1 from above and D2

Γ, A2 =⇒ C By i.h. on A1 ⊃A2, D and E2

Γ =⇒ C By i.h. on A2 from above

Subcase:

D =

D1

Γ, A1 =⇒ p
¬Rp

Γ =⇒ ¬A1

and E =

E1

Γ,¬A1 =⇒ A1

¬L
Γ,¬A1 =⇒ C

Γ =⇒ A1 By i.h. on D and E1

Γ, A1 =⇒ C By substitution for parameter C in D1

Γ =⇒ C By i.h. on A1 from above

Note that the condition that p be a new parameter in D1 is necessary
to guarantee that in the substitution step above we have [C/p]A1 =
A1 and [C/p]Γ = Γ.

Draft of April 13, 2004

46 Sequent Calculus

Subcase:

D =

D1

Γ =⇒ [t/x]A1

∃R
Γ =⇒ ∃x. A1

and E =

E1

Γ,∃x. A1, [a/x]A1 =⇒ C
∃La

Γ,∃x. A1 =⇒ C

Γ, [t/x]A1 =⇒ C By substitution for parameter a in E1

Γ, [t/x]A1 =⇒ C By i.h. on ∃x. A1, D and [t/a]E1

Γ =⇒ C By i.h. on [t/x]A1 from D1 and above

Note that this case requires that [t/x]A1 is considered smaller than
∃x. A1. Formally, this can be justified by counting the number of
quantifiers and connectives in a proposition and noting that the term
t does not contain any. A similar remark applies to check that [t/a]E1

is smaller than E . Also note how the side condition that a must be a
new parameter in the ∃L rule is required in the substitution step to
conclude that [t/a]Γ = Γ, [t/a][a/x]A1 = [t/x]A1, and [t/a]C.

Case: A is not the principal formula of the last inference in D. In that case D
must end in a left rule and we can appeal to the induction hypothesis on
one of its premises. We show some of the subcases.

Subcase:

D =

D1

Γ′, B1 ∧B2, B1 =⇒ A
∧L1

Γ′, B1 ∧B2 =⇒ A

Γ = Γ′, B1 ∧B2 This case
Γ′, B1 ∧B2, B1 =⇒ C By i.h. on A, D1 and E
Γ′, B1 ∧B2 =⇒ C By rule ∧L1

Γ =⇒ C By equality

Subcase:

D =

D1

Γ′, B1 ⊃B2 =⇒ B1

D2

Γ′, B1 ⊃B2, B2 =⇒ A
⊃L

Γ′, B1 ⊃B2 =⇒ A

Γ = Γ′, B1 ⊃B2 This case
Γ′, B1 ⊃B2, B2 =⇒ C By i.h. on A, D2 and E
Γ′, B2 ⊃B2 =⇒ C By rule ⊃L on D1 and above
Γ =⇒ C By equality

Draft of April 13, 2004

3.4 Cut Elimination 47

Case: A is not the principal formula of the last inference in E . This overlaps
with the previous case, since A may not be principal on either side. In
this case, we appeal to the induction hypothesis on the subderivations of
E and directly infer the conclusion from the results. We show some of the
subcases.
Subcase:

E =

E1

Γ, A =⇒ C1

E2

Γ, A =⇒ C2

∧R
Γ, A =⇒ C1 ∧ C2

C = C1 ∧ C2 This case
Γ =⇒ C1 By i.h. on A, D and E1

Γ =⇒ C2 By i.h. on A, D and E2

Γ =⇒ C1 ∧ C2 By rule ∧R on above

Subcase:

E =

E1

Γ′, B1 ∧B2, B1, A =⇒ C
∧L1

Γ′, B1 ∧B1, A =⇒ C

Γ = Γ′, B1 ∧B2 This case
Γ′, B1 ∧B2, B1 =⇒ C By i.h. on A, D and E1

Γ′, B1 ∧B2 =⇒ C By rule ∧L1 from above

2

As mentioned above, it is a general property of deductive system that adding
an admissible rule does not change the derivable judgments. We show the
argument in this special case.

Theorem 3.12 (Cut Elimination)
If Γ +=⇒ C then Γ =⇒ C.

Proof: In each case except cut we simply appeal to the induction hypotheses
and reapply the same rule on the resulting cut-free derivations. So we write out
only the case of cut.
Case:

D+ =

D+
1

Γ +=⇒ A

D+
2

Γ, A
+=⇒ C

cut
Γ +=⇒ C

Γ =⇒ A By i.h. on D+
1

Γ, A =⇒ C By i.h. on D+
2

Γ =⇒ C By admissibility of cut (Theorem 3.11)

2

Draft of April 13, 2004

48 Sequent Calculus

3.5 Applications of Cut Elimination

The cut elimination theorem is the final piece needed to complete our study
of natural deduction and normal natural deduction and at the same time the
springboard to the development of efficient theorem proving procedures. Our
proof in the previous section is constructive and therefore contains an algorithm
for cut elimination. Because the cases are not mutually exclusive, the algorithm
is non-deterministic. However, the resulting derivation should always be the
same. While this property does not quite hold, the different derivations can be
shown to be equivalent in a natural sense. This is called the confluence property
for intuitionistic cut elimination modulo commutative conversions. It it is not
implicit in our proof, but has to be established separately. On the other hand,
our proof shows that any possible execution of the cut-elimination algorithm
terminates. This is called the strong normalization property for the sequent
calculus.

By putting the major results of this chapter together we can now prove the
normalization theorem for natural deduction.

Theorem 3.13 (Normalization for Natural Deduction)
If Γ ` A then Γ↓ ` A ⇑.

Proof: Direct from previous theorems.

Γ ` A Assumption
Γ↓ `+ A ⇑ By completeness of annotated deductions (Theorem 3.3)
Γ +=⇒ A By completeness of sequent calculus with cut (Theorem 3.10)
Γ =⇒ A By cut elimination (Theorem 3.12)
Γ↓ ` A ⇑ By soundness of sequent calculus (Theorem 3.6)

2

Among the other consequences of cut elimination are consistency and various
independence results.

Corollary 3.14 (Consistency) There is no deduction of ` ⊥.

Proof: Assume there is a deduction ` ⊥. By the results of this chapter then
· =⇒ ⊥. However, this sequent cannot be the conclusion of any inference rule
in the (cut-free) sequent calculus. Therefore ` ⊥ cannot be derivable. 2

In the same category are the following two properties. As in the proof above,
we analyze the inference rules which may have led to a given conclusion. This
proof technique is called inversion.

Corollary 3.15 (Disjunction and Existential Property)

1. If ` A ∨B then either ` A or ` B.

2. If ` ∃x. A then ` [t/x]A for some t.

Draft of April 13, 2004

3.6 Proof Terms for Sequent Derivations 49

Proof: Direct by inversion on possible sequent derivations in both cases.

1. Assume ` A ∨ B. Then · =⇒ A ∨ B. By inversion, either · =⇒ A or
· =⇒ B. Therefore ` A or ` B.

2. Assume ∃x. A. then · =⇒ ∃x. A. By inversion, · =⇒ [t/x]A for some t.
Hence ` [t/x]A.

2

Note that the disjunction and existential properties rely on a judgment with-
out hypotheses. For example, we have B∨A =⇒ A∨B, but neither B∨A =⇒ A
for B ∨A =⇒ B hold.

The second class of properties are independence results which demonstrate
that certain judgments are not derivable. As a rule, these are parametric judg-
ments some instances of which may be derivable. For example, we will show
that the law of excluded middle is independent. Nonetheless, there are some
propositions A for which we can show ` A ∨ ¬A (for example, take A = ⊥).

Corollary 3.16 (Independence of Excluded Middle)
There is no deduction of ` A ∨ ¬A for arbitrary A.

Proof: Assume there is a deduction of ` A∨¬A. By the result of this section
then · =⇒ A ∨ ¬A. By inversion now either · =⇒ A or · =⇒ ¬A. The former
judgment (which is parametric in A) has no derivation. By inversion, the latter
can only be infered from A =⇒ p for a new parameter p. But there is no
inference rule with this conclusion, and hence there cannot be a deduction of
` A ∨ ¬A. 2

3.6 Proof Terms for Sequent Derivations

In this section we address the question of how to assign proof terms to sequent
calculus derivations. There are essentially two possibilities: we can either de-
velop a new proof term calculus specifically for sequent derivations, or we can
directly assign natural deduction proof terms. The former approach can be
found, for example, in [Pfe95]. The latter is more appropriate for our purposes
here, since we view natural deductions as defining truth and since we already
devised methods for compact representations in Section 3.2.

We define a new judgment, Γ =⇒ I : A, maintaining that Γ ` I : A. For this
purpose we abandon the previous convention of omitting labels for hypotheses,
since proof terms need to refer to them. On the other hand, we still consider
assumptions modulo permutations in order to simplify notation. We use the
compact proof terms here only for simplicity.

The proof terms to be assigned to each inference rule can be determined by a
close examination of the soundness proof for the sequent calculus (Theorem 3.6).
Since that proof is constructive, it contains an algorithm for translating a se-
quent derivation to a normal natural deduction. We just have to write down
the corresponding proof terms.

Draft of April 13, 2004

50 Sequent Calculus

Initial Sequents. These are straightforward.

init
Γ, u:A =⇒ u : A

Note that there may be several hypotheses A with different labels. In the
shorthand notation without labels before, it is ambiguous which one was used.

Conjunction. The right rule is straightforward, since it is isomorphic to the
introduction rule for natural deduction. The left rules require a substitution to
be carried out, just as in the proof of Theorem 3.6.

Γ =⇒ I : A Γ =⇒ J : B
∧R

Γ =⇒ 〈I, J〉 : A ∧B

Γ, u:A ∧B,w:A =⇒ I : C
∧L1

Γ, u:A ∧B =⇒ [fstu/w]I : C

Γ, u:A ∧B,w:B =⇒ I : C
∧L2

Γ, u:A ∧B =⇒ [sndu/w]I : C

There are two potential efficiency problems in the proof term assignment for the
left rule. The first is that if w is used many times in I, then fstu or sndu may
be replicated many times, leading to a large proof. The second is that when a
number of successive left rules are encountered, the term I we substitute into
will be traversed many times. These problems can be avoided in several ways
(see Exercise ??).

Implication. The pattern of the previous right and left rules continues here.

Γ, u:A =⇒ I : B
⊃R

Γ =⇒ λu. I : A⊃B

Γ, u:A⊃B =⇒ J : A Γ, u:A⊃B,w:B =⇒ I : C
⊃L

Γ, u:A⊃B =⇒ [u J/w]I : C

Disjunction. This introduces no new considerations.

Γ =⇒ I : A ∨R1
Γ =⇒ inl I : A ∨B

Γ =⇒ J : B ∨R2
Γ =⇒ inr J : A ∨B

Γ, u:A ∨B, v:A =⇒ I : C Γ, u:A ∨B,w:B =⇒ J : C
∨L

Γ, u:A ∨B =⇒ (case u of inl v ⇒ I | inr w ⇒ J) : C

Negation. This is similar to implication.1

Γ, u:A =⇒ I : p
¬Rp

Γ =⇒ µpu. I : ¬A

Γ, u:¬A =⇒ I : A
¬L

Γ, u:¬A =⇒ u · I : C

1[add to compact proof term section?]

Draft of April 13, 2004

3.6 Proof Terms for Sequent Derivations 51

Truth. This is trivial, since there is no left rule.

>R
Γ =⇒ 〈 〉 : >

Falsehood. Again, this is immediate.

⊥L
Γ, u:⊥ =⇒ abortu : C

To treat the quantifiers we extend our proof term calculus to handle the
quantifier rules. We overload the notation by reusing λ-abstraction and pairing.
There is no ambiguity, because the proof term for universal quantification binds
a term variable x (rather than a proof variable u), and the first component of
the pair for existential quantification is a first-order term, rather than a proof
term as for conjunction.

First, we show the assignment of these terms to natural deductions, then to
the sequent calculus.

Universal Quantification. The proof term for a universal quantifier ∀x. A
is a function from a term t to a proof of [t/x]A. The elimination term applies
this function.

Γ ` [a/x]M : [a/x]A
∀Ia

Γ ` λx. M : ∀x. A

Γ ` M : ∀x. A
∀E

Γ ` M t : [t/x]A

The local reductions and expansions just mirror the corresponding operations
on natural deductions.

(λx. M) t −→R [t/x]M
M : ∀x. A −→E λx. M x (x not free in M)

Existential Quantification. The proof term for an existential ∃x. A is a pair
consisting of a witness term t and the proof of [t/x]A.

Γ ` M : [t/x]A
∃I

Γ ` 〈t, M〉 : ∃x. A

Γ ` M : ∃x. A Γ, u:[a/x]A ` [a/x]N : C
∃Ea,u

Γ ` let 〈x, u〉 = M in N : C

The local reduction for the existential quantifier has to perform two substitu-
tions, just as on natural deductions.

let 〈x, u〉 = 〈t, M〉 in N −→R [M/u][t/x]N
M : ∃x. A −→E let 〈x, u〉 = M in 〈x, u〉

Draft of April 13, 2004

52 Sequent Calculus

It is once again easy to see how to divide the proof terms into introduction
and elimination forms. We only show the resulting definition of compact proof
terms.

Intro Terms I ::= . . .
| λx. I Universal Quantification
| 〈t, I〉 Existential Quantification
| let 〈x, u〉 = E in I

Elim Terms E ::= . . . | E t Universal Quantification

On sequent calculus derivations, we follow the same strategy as in the pre-
ceding propositional rules.

Universal Quantification.

Γ =⇒ [a/x]I : [a/x]A
∀Ra

Γ =⇒ λx. I : ∀x. A

Γ, u:∀x. A,w:[t/x]A =⇒ I : C
∀L

Γ, u:∀x. A =⇒ [u t/w]I : C

Existential Quantification.

Γ =⇒ I : [t/x]A
∃R

Γ =⇒ 〈t, I〉 : ∃x. A

Γ, u:∃x. A,w:[a/x]A =⇒ [a/x]I : C
∃La

Γ, u:∃x. A =⇒ (let 〈x, w〉 = u in I) : C

3.7 Classical Sequent Calculus

We briefly mentioned in Section 2.2 that there are several ways to add a rule
or axiom schema to natural deduction to obtain a classical interpretation of the
connectives. As the example of A∨¬A illustrates, this changes the interpretation
of the propositions and our method of explaining the meaning of a proposition
via its introduction and elimination rules fails. In this section we explore an
alternative, judgmental approach to classical logic. Rather than starting from
natural deduction we start from the sequent calculus, because Gentzen [Gen35]
has already proposed a sequent calculus for classical logic that has a strong
subformula property and thereby satisfies at least the requirement that the
meaning of a proposition (if we can define what that means) depends only on
the meaning of its constituents.

Recall the basic judgment form for the (intuitionistic) sequent calculus,

u1:A1 left , . . . , un:An left ` A right ,

which arises by splitting the basic judgment A true into A left (truth as an
assumption, only in the antecedent) and A right (truth as a conclusion, only in
the succedent), which we abbreviated as

A1, . . . , An =⇒ A

Draft of April 13, 2004

3.7 Classical Sequent Calculus 53

In order to formulate classical logic, we add a new basic judgment, A false,
which we use only as an assumption. Furthermore, we have the judgment of
contradiction, contr, expressing that a collection of assumptions is contradictory.
The hypothetical judgment form we consider is

u1:A1 true, . . . , un:An true, z1:B1 false, . . . , zm:Bm false ` contr

stating that the assumptions about truth and falsehood are contradictory. The
basic rule of contradiction relating truth and falsehood is

contra
Ψ, u:A true, z:A false ` contr

which states that a proposition cannot be simultaneously true and false. There
are further unused assumptions about truth and falsehood are allowed in Ψ.
Interestingly, many theorem proving procedures for classical logic are presented
in this style: instead of proving a proposition we derive a contradiction from
the negated assumptions. Perhaps our analysis provides some hints why this is
indeed the right view of classical logic.

Conversely, we have a principle that states any proposition A must be either
true or false.

Principle of excluded middle.
If Ψ, u:A true ` contr and Ψ, z:A false ` contr then Ψ ` contr.

The argument for this principle, from the rule of contradiction, goes as follows:
if the assumption A true is contradictory, then either A must be false (assuming
Ψ) or Ψ itself is contradictory. In the latter case we are done. But if A false
follows from Ψ then we can discharge the assumption that A is false from the
second given derivation.

It is important that this principle must hold for the logic, rather than being
assumed as an inference rule. This means that the law of excluded middle is not
an arbitrary assumption, but arises from the nature of falsehood as the opposite
of truth in a systematic way, at the level of judgments.

We abbreviate the the judgment

u1:A1 true, . . . , un:An true, z1:B1 false, . . . , zm:Bm false ` contr

as
A1, . . . , An # B1, . . . , Bm.

We have to keep in mind that Ai are assumptions about truth, and Bj are
assumptions about falsehood, with the overall goal to derive a contradiction.

In the literature one finds two other common notations for this judgment,
first and foremost Gentzen’s multiple-conclusion sequent calculus.

A1, . . . , An =⇒ B1, . . . , Bm

Gentzen observed that we can capture the difference between classical and intu-
itionistic reasoning by either allowing or disallowing multiple conclusions. How-
ever, the only way we have been able to explain this from the judgmental point

Draft of April 13, 2004

54 Sequent Calculus

of view is in the manner indicated above. The other notation sometimes used, in
the presentation of tableaux, resolution and other theorem proving techniques
is

A>
1 , . . . A>

n , B⊥
1 , . . . , B⊥

m

where we mark assumption A true as A> and assumptions B false as B⊥ instead
of segregating them in the manner of a sequent calculus. There is no essential
difference between these notations as long as we keep in mind their correct
interpretation.

We first restate our judgmental rules and principles in the new notation,
using Γ for truth assumptions and ∆ for falsehood assumptions.

Rule of Contradiction.

contra
Γ, A # A,∆

Principle of Excluded Middle.

If Γ # A,∆ and Γ, A # ∆ then Γ # ∆.

We also have the expected weakening and contraction properties, both for truth
and falsehood, which follow from the general nature of hypothetical reasoning.
For a multiple-conclusion view of sequents, these are much more difficult to
explain.

Since we do not change the meaning of truth (or the meaning of the con-
nectives), all the left rules from the intuitionistic sequent calculus carry over
to analogous rules here. We have to derive the rules for assumptions A false
from the principle of excluded middle (which was in turn justified by the rule
of contradiction that defined falsehood).

Conjunction. The (left) rules for truth are as usual. We write the names of
the rules as T in this context.

Γ, A ∧B,A # ∆
∧T1

Γ, A ∧B # ∆

Γ, A ∧B,B # ∆
∧T2

Γ, A ∧B # ∆

To determine the rules for falsehood we have to think about what we can con-
clude from the assumption that A ∧ B false. If A ∧ B is false, then either A or
B must be false, so we must be able to obtain a contradiction in both cases.

Γ # A,A ∧B,∆ Γ # B,A ∧B,∆
∧F

Γ # A ∧B,∆

We use F to mark rules operating on falsehood assumptions.
The fact that the truth and falsehood rules mesh in a way predicted by the

principle of excluded middle is the subject of Theorem 3.17. Intuitively, we
should verify that if we use excluded middle for a conjunction we can reduce it
to uses on excluded middle for the conjuncts.

Draft of April 13, 2004

3.7 Classical Sequent Calculus 55

Truth. Truth is straightforward: there is no left rule and the rule for > false
simply succeeds.

>F
Γ # >,∆

Disjunction. The left rule becomes the rule for truth assumptions.

Γ, A ∨B,A # ∆ Γ, A ∨B,B # ∆
∨T

Γ, A ∨B # ∆

How can we proceed if we know that A ∨ B false? Intuitively, it means that
both A and B must be false.

Γ # A,A ∨B,∆
∨F1

Γ # A ∨B,∆

Γ # B,A ∨B,∆
∨F2

Γ # A ∨B,∆

Falsehood. This is dual to truth: there is a left rule but no rule for ⊥ false,
which provides no information.

⊥T
Γ,⊥ # ∆

Implication. We can use an assumption A ⊃ B true only by proving A true
(which licenses us to assume B true). Unfortunately, our classical sequent calcu-
lus does not allow us to derive the truth of any proposition, only contradictions.
This means we cannot give a judgmental explanation of the constructive implica-
tion in the classical sequent calculus without destroying its meaning. However,
there is a classical form of implication A ⇒ B meaning that either A is false or
B is true. This leads to the following rules for this new classical connective

Γ, A ⇒ B # A,∆ Γ, A ⇒ B,B # ∆
⇒T

Γ, A ⇒ B # ∆

Γ, A # B,A ⇒ B,∆
⇒F

Γ # A ⇒ B,∆

Negation. As for implication, we cannot formulate a rule for constructive
negation in the classical sequent calculus. Instead, we have a new form of
negation that flips between truth and falsehood. That is, ∼A is true if A is false
and ∼A is false if A is true. We obtain the following rules

Γ,∼A # A,∆
∼T

Γ,∼A # ∆

Γ, A # ∼A,∆
∼F

Γ # ∼A,∆

We conclude that the difference between intuitionistic and classical logic does
not lie in the nature of conjunction or disjunction, but in the nature of impli-
cation and negation. Moreover, if we accept that a notion of falsehood of a
proposition as being contradictory with its truth, then the principle of excluded
middle seems fully justified for proofs of contradiction. This does not answer

Draft of April 13, 2004

56 Sequent Calculus

any question about a possible computational interpretation of classical logic or
about a faithful system of natural deduction or about a possible integration of
intuitionistic and classical logic in a single system.

Theorem 3.17 (Principle of Excluded Middle)
If Γ # A,∆ and Γ, A # ∆ then Γ # ∆

Proof: By induction on the structure of A and, for each A simultaneously on
the structure of the two given derivations. This means, as for the proof of the
admissibility of cut (Theorem 3.11), we can appeal to the induction hypothesis
on a smaller formulas and arbitrary derivations, or on the same formula such
that one of the derivations gets smaller and the other one remains the same.

The division into cases, and the idea of the proof in each case is quite similar
to the admissibility of cut, so we elide any details here. 2

At this point it might seem like intuitionistic logic and classical logic are
simply different, with classical logic somewhat impoverished. It only appears to
have conjunction, disjunction, and a form of negation, while intuitionistic logic
also has a constructive implication that does not appear expressible in classical
logic.

However, the situation is more complicated. It turns out that there is a
uniform way to translate classical logic to intuitionistic logic that preserves
truth. This means intuitionistic logic can simulate A false, contradiction, and
negation. The idea is due to Kolmogorov [?] who, however, did not prove its
correctness in the modern sense.

The translation Ao maps atomic formulas to themselves, classical negation to
intuitionistic negation, and prefixes any other subformula by a double negation.
Some optimization are possible, but not necessary.

P o = P
(A ∧B)o = ¬¬Ao ∧ ¬¬Bo

(>)o = >
(A ∨B)o = ¬¬Ao ∨ ¬¬Bo

(⊥)o = ⊥
(∼A)o = ¬Ao

(A ⇒ B)o = ¬¬Ao ⊃ ¬¬Bo

Then we interpret A false and ¬Ao true. We also write Γo for translating
each formula A in Γ to Ao, and ¬Γ for applying ¬ to each formula in Γ.

Lemma 3.18
If Γ # ∆ then Γo,¬∆o =⇒ p for a parameter p not in Γ or ∆.

Proof: Part (1) follows by induction on the derivation D of Γ # ∆. Each case
is straightforward; we show some representative ones. After the first case, we
silently apply weakening when necessary. The proofs in each case may be easier
to think about if we read them from the last line upwards.

Draft of April 13, 2004

3.7 Classical Sequent Calculus 57

Case:

D = contra
Γ1, A # A,∆1

Γo
1, A

o,∆o
1 =⇒ Ao By rule init

Γo
1, A

o,¬Ao,∆o
1 =⇒ Ao By weakening

Γo
1, A

o,¬Ao,∆o
1 =⇒ p By rule ¬L

Case:

D =

D1

Γ1, A ∧B,A # ∆
∧T1

Γ1, A ∧B # ∆

Γo
1,¬¬Ao ∧ ¬¬Bo, Ao,¬∆o =⇒ p By i.h. on D1

Γo
1,¬¬Ao ∧ ¬¬Bo,¬∆o =⇒ ¬Ao By rule ¬R

Γo
1,¬¬Ao ∧ ¬¬Bo,¬¬Ao,¬∆o =⇒ p By rule ¬L

Γo
1,¬¬Ao ∧ ¬¬Bo,¬∆o =⇒ p By rule ∧L1

Γo
1, (A ∧B)o,¬∆o =⇒ p By defn of ()o

Case:

D =

D1

Γ # A,A ∧B,∆1

D2

Γ # B,A ∧B,∆1

∧F
Γ # A ∧B,∆1

Γo,¬Ao,¬(A ∧B)o,¬∆o
1 =⇒ p By i.h. on D1

Γo,¬(A ∧B)o,¬∆o
1 =⇒ ¬¬Ao By rule ¬R

Γo,¬Bo,¬(A ∧B)o,¬∆o
1 =⇒ p By i.h. on D2

Γo,¬(A ∧B)o,¬∆o
1 =⇒ ¬¬Bo By rule ¬R

Γo,¬(A ∧B)o,¬∆o
1 =⇒ ¬¬Ao ∧ ¬¬Bo By rule ∧R

Γo,¬(A ∧B)o,¬∆o
1 =⇒ (A ∧B)o By defn. of ()o

Γo,¬(A ∧B)o,¬∆o
1 =⇒ p By rule ¬L

2

For part (2), an induction over the structure of the given deduction will not
work, because subdeductions will not necessarily have a conclusion of the same
form. Instead we employ a simpler backward translation, ()e and show that if
Γ =⇒ C then Γe # Ce

P e = P
(A ∧B)e = Ae ∧Be

(>)e = >
(A ∨B)e = Ae ∨Be

(⊥)e = ⊥
(¬A)e = ∼Ae

(A⊃B)e = Ae ⇒ Be

Draft of April 13, 2004

58 Sequent Calculus

Because the double-negation translation ()o inserts double negations and the
backward translation ()e keeps the structure of the formula intact, if we translate
back and forth we obtain an equivalent proposition.

Lemma 3.19
A # (Ao)e and (Ao)e # A for any (classical) proposition A.

Proof: By induction on the structure of A. We show two cases, eliding appeals
to weakening.

Case: A = P . Then (Ao)e = (P o)e = P and P # P by rule contra.

Case: A = A1 ∧A2.

A1 # (Ao
1)

e By i.h. on A1

A1 ∧A2 # (Ao
1)

e By ∧T1

A1 ∧A2,∼(Ao
1)

e # · By ∼T
A1 ∧A2 # ∼∼(Ao

1)
e By ∼F

A2 # (Ao
2)

e By i.h. on A2

A1 ∧A2 # (Ao
2)

e By ∧T2

A1 ∧A2,∼(Ao
2)

e # · By ∼T
A1 ∧A2 # ∼∼(Ao

2)
e By ∼F

A1 ∧A2 # ∼∼(Ao
1)

e ∧ ∼∼(Ao
2)

e By ∧F
A1 ∧A2 # (¬¬Ao

1 ∧ ¬¬Ao
2)

e By defn. of ()e

A1 ∧A2 # ((A1 ∧A2)o)e By defn. of ()o

2

The truth and falsehood rules of the classical sequent calculus can simulate
the left and right rules of the intuitionistic sequent calculus on corresponding
propositions.

Lemma 3.20 If Γ =⇒ C then Γe # Ce.

Proof: By induction on the structure of the given derivation D. We show some
representative cases.

Case:

D = init
Γ1, C =⇒ C

Γe
1, C

e # Ce By rule contra

Case:

D =

D1

Γ, A =⇒ B
⊃R

Γ =⇒ A⊃B

Draft of April 13, 2004

3.8 Exercises 59

Γe, Ae # Be By i.h. on D1

Γe, Ae # Be, Ae ⇒ Be By weakening
Γe # Ae ⇒ Be By rule ⇒F
Γe # (A⊃B)e By defn. of ()e

Case:

D =

D1

Γ1, A⊃B =⇒ A
D2

Γ1, A⊃B,B =⇒ C
⊃L

Γ1, A⊃B =⇒ C

Γe
1, A

e ⇒ Be # Ae By i.h. on D1

Γe
1, A

e ⇒ Be # Ae, Ce By weakening
Γe

1, A
e ⇒ Be, Be # Ce By i.h. on D2

Γe
1, A

e ⇒ Be # Ce By rule ⇒F
Γe

1, (A⊃B)e # Ce By defn. of ()e

2

Theorem 3.21 (Interpretation of Classical in Intuitionistic Logic)
Γ # ∆ iff Γo,¬∆o =⇒ p for a parameter p not in Γ or ∆.

Proof: The forward direction is precisely the subject of Lemma 3.18.
In the backward direction, we know from Lemma 3.20, that (Γo)e,∼(∆o)e #

p. The we repeatedly use ∼T to conclude (Γo)e # ∼∼(∆o)e, p. This derivation
is parametric in p, so we instantiate p with ⊥ and then use the law of excluded
middle with the one-step derivation of (Γo)e,⊥ # ∼∼(∆o)e to conclude (Γo)e #
(∆o)e. Now we can repeatedly apply excluded middle, first with ∼∼A # A, then
using Lemma 3.19, to arrive at Γ # ∆. 2

3.8 Exercises

Exercise 3.1 Consider a system of normal deduction where the elimination
rules for disjunction and existential are allowed to end in an extraction judg-
ment.

Γ↓ ` A ∨B ↓ Γ↓, u:A ↓ ` C ↓ Γ↓, w:B ↓ ` C ↓
∨Eu,w

Γ↓ ` C ↓

Γ↓ ` ∃x. A ↓ Γ↓, u:[a/x]A ↓ ` C ↓
∃Ea,u

Γ↓ ` C ↓

Discuss the relative merits of allowing or disallowing these rules and show how
they impact the subsequent development in this Chapter (in particular, bi-
directional type-checking and the relationship to the sequent calculus).

Draft of April 13, 2004

60 Sequent Calculus

Exercise 3.2

1. Give an example of a natural deduction which is not normal (in the sense
defined in Section 3.1), yet contains no subderivation which can be locally
reduced.

2. Generalizing from the example, devise additional rules of reduction so that
any natural deduction which is not normal can be reduced. You should
introduce no more and no fewer rules than you need for this purpose.

3. Prove that your rules satisfy the specification in part (2).

Exercise 3.3 Write out the rules defining the judgments Γ↓ `+ I : A ⇑ and
Γ↓ `+ E : A ↓ and prove Theorem 3.4. Make sure to carefully state the induction
hypothesis (if it is different from the statement of the theorem) and consider all
the cases.

Exercise 3.4 Fill in the missing subcases in the proof of the admissibility of
cut (Theorem 3.11) where A is the principal formula in both D and E .

Exercise 3.5 Consider an extension of intuitionistic logic by a universal quan-
tifier over propositions, written as ∀2p. A, where p is variable ranging over
propositions.

1. Show introduction and elimination rules for ∀2.

2. Extend the calculus of normal and extraction derivations.

3. Show left and right rules of the sequent calulus for ∀2.

4. Extend the proofs of soundness and completeness for the sequent calculus
and sequent calculus with cut to accomodate the new rules.

5. Point out why the proof for admissibility of cut does not extend to this
logic.

Exercise 3.6 Gentzen’s original formulation of the sequent calculus for intu-
itionistic logic permitted the right-hand side to be empty. The introduction rule
for negation then has the form

Γ, A =⇒
¬R.

Γ =⇒ ¬A

Write down the corresponding left rule and detail the changes in the proof for
admissibility of cut. Can you explain sequents with empty right-hand sides as
judgments?

Exercise 3.7 The algorithm for cut elimination implicit in the proof for admis-
sibility of cut can be described as a set of reduction rules on sequent derivations
containing cut.

Draft of April 13, 2004

3.8 Exercises 61

1. Write out all reduction rules on the fragment containing only implication.

2. Show the extracted proof term before and after each reduction.

3. If possible, formulate a strategy of reduction on proof terms for natural
deduction which directly models cut elimination under our translation.

4. Either formulate and prove a theorem about the connection of the strate-
gies for cut elimination and reduction, or show by example why such a
connection is difficult or impossible.

Exercise 3.8

1. Prove that we can restrict initial sequents in the sequent calculus to have
the form Γ, P =⇒ P where P is an atomic proposition without losing
completeness.

2. Determine the corresponding restriction in normal and extraction deriva-
tions and prove that they preserve completeness.

3. If you see a relationship between these properties and local reductions or
expansions, explain. If you can cast it in the form of a theorem, do so and
prove it.

Exercise 3.9 For each of the following propositions, prove that they are deriv-
able in classical logic using the law of excluded middle. Furthermore, prove that
they are not true in intuitionistic logic for arbitrary A, B, and C.

1. ((A⊃B)⊃A)⊃A.

2. Any entailment in Exercise 2.8 which is only classically, but not intuition-
istically true.

Draft of April 13, 2004

62 Sequent Calculus

Draft of April 13, 2004

Chapter 4

Focused Derivations

The sequent calculus as presented in the previous chapter is an excellent founda-
tion for proof search strategies, but it is not yet practical. For a typical sequent
there are many choices, such as which left or right rule to use to reduce the goal
in the bottom-up construction of a proof. After one step, similar choices arise
again, and so on. Without techniques to eliminate some of this non-determinism
one would be quickly overwhelmed with multiple choices.

In this chapter we present two techniques to reduce the amount of non-
determinism in search. The first are inversion properties which hold when the
premises of an inference rule are derivable if and only if the conclusion is. This
means that we do not lose completeness when applying an invertible rule as soon
as it is applicable. The second are focusing properties which allow us to chain
together non-invertible inference rules with consecutive principal formulas, once
again without losing completeness.

While inversion and focusing are motivated by bottom-up proof search, they
generally reduce the number of derivations in the search space. For this rea-
son they also apply in top-down search procedures such as the inverse method
introduced in Chapter 5.

4.1 Inversion

The simplest way to avoid non-determinism is to consider those propositions on
the left or right for which there is a unique way to apply a corresponding left
or right rule. For example, to prove A ∧B we can immediately apply the right
rule without losing completeness. On the other hand, to prove A∨B we can not
immediately apply a left rule. As a counterexample consider B ∨A =⇒ A ∨B,
where we first need to apply a left rule.

On a given sequent, a number of invertible rules may be applicable. However,
the order of this choice does not matter. In other words, we have replaced don’t-
know non-determinism by don’t-care non-determinism.

Determining the invertibility of left rules in order to support this strategy

Draft of April 13, 2004

64 Focused Derivations

requires some additional considerations. The pure inversion property states that
the premises should be derivable if and only if the conclusion is. However, in
left rule the principal formula is still present in the premises, which means we
can continue to apply the same left rule over and over again leading to non-
termination. So we require in addition that the principal formula of a left rule
is no longer needed, thereby guaranteeing the termination of the inversion phase
of the search.

Theorem 4.1 (Inversion)

1. If Γ =⇒ A ∧B then Γ =⇒ A and Γ =⇒ B.

2. If Γ =⇒ A⊃B then Γ, A =⇒ B.

3. If Γ =⇒ ∀x. A then Γ =⇒ [a/x]A for a new individual parameter a.

4. If Γ =⇒ ¬A then Γ, A =⇒ p for a new propositional parameter p.

5. If Γ, A ∧B =⇒ C then Γ, A, B =⇒ C.

6. If Γ,> =⇒ C then Γ =⇒ C.

7. If Γ, A ∨B =⇒ C then Γ, A =⇒ C and Γ, B =⇒ C.

8. If Γ,∃x. A =⇒ C then Γ, [a/x]A =⇒ C for a new individual parameter a.

Proof: By induction over the structure of the given derivations. Parts (5) and
(6) are somewhat different in that they extract an inversion property from two
and zero left rules, respectively. The proof is nonetheless routine.

Alternatively, we can take advantage of the admissibility of cut to avoid
another inductive proof. For example, to show the first property, we can reason
as follows:

Γ =⇒ A ∧B Assumption
Γ, A ∧B,A =⇒ A By rule init
Γ, A ∧B =⇒ A By rule ∧L1

Γ =⇒ A By admissibility of cut (Theorem 3.11)

See also Exercise 4.1. 2

The rules >R and ⊥L are a special case: they can be applied eagerly without
losing completeness, but these rules have no premises and therefore do not
admit a theorem of the form above. None of the other rules permit an inversion
property, as the following counterexamples show. These counterexamples can
easily be modifed so that they are not initial sequents.

1. A ∨B =⇒ A ∨B (both ∨R1 or ∨R2 lead to an unprovable sequent).

2. ⊥ =⇒ ⊥ (no right rule applicable).

3. ∃x. A =⇒ ∃x. A (∃R leads to an unprovable sequent).

Draft of April 13, 2004

4.1 Inversion 65

4. A⊃B =⇒ A⊃B (⊃L leads to an unprovable sequent).

5. ¬A =⇒ ¬A (¬L leads to an unprovable sequent).

6. ∀x. A =⇒ ∀x. A (∀L leads to an unprovable sequent if we erase the original
copy of ∀x. A).

Now we can write out a pure inversion strategy in the form of an inference
system. One difficulty with such a system is that the don’t-care non-determinism
is not directly visible and has to be remarked on separately. We also refer to
don’t-care non-determinism as conjunctive non-determinism: eventually, all ap-
plicable rules have to be applied, but their order is irrelevant as far as provability
is concerned.

First, we distinguish those kinds of propositions for which either the left or
the right rule is not invertible. We call them synchronous propositions (either on
the left or on the right).1 The remaining propositions are called asynchronous.
This terminology comes from the study of concurrency where an asynchronously
computing processes proceed independently of all other processes, while a syn-
chronously computing process may have to wait for other processes.

Left synchronous propositions L ::= P | A1 ⊃A2 | ∀x. A
Right synchronous propositions R ::= P | A1 ∨A2 | ⊥ | ∃x. A

Passive antecedents ∆ ::= · | ∆, L

Note that we will revise this classification in Section 4.3. Sequents are com-
posed of four judgments: left and right propositions, each of which may be
active or passive. In order to simplify the notation, we collect like judgments
into zones, keeping in mind that there can only be one proposition on the right.
The active propositions that are decomposed asynchronously will be written in
the center, the synchronous ones move to the outside for later consideration.

Sequents are written as

∆; Ω =⇒ A; · and ∆; Ω =⇒ ·;R

where the outer zones containing ∆ or R are passive and the inner zones con-
taining Ω or A are active. We still think of ∆ as unordered, but it is important
that Ω is ordered in order to avoid spurious non-deterministic choices. We must
always work on its right end. We break down the principal connectives of asyn-
chronous propositions eagerly, moving synchronous propositions into the passive
zones, until all asynchronous connectives have been decomposed. At that point
we have to choose one of the passive (synchronous) propositions. If this attempt
fails we have to backtrack and try other choices.

In order to prove a sequent Γ =⇒ A, we initialize our inversion-based proce-
dure with the sequent ·; Γ =⇒ A; ·, where the order we choose for the elements
of Γ is irrelevant.

1For the moment, we do not consider negation explicitly—think of it as defined.

Draft of April 13, 2004

66 Focused Derivations

Right Asynchronous Propositions. First, we decompose the right asyn-
chronous connectives.

∆; Ω =⇒ A; · ∆; Ω =⇒ B; ·
∧R

∆; Ω =⇒ A ∧B; ·
>R

∆; Ω =⇒ >

∆; Ω, A =⇒ B; ·
⊃R

∆; Ω =⇒ A⊃B; ·

∆; Ω =⇒ [a/x]A; ·
∀Ra

∆; Ω =⇒ ∀x. A; ·

∆; Ω =⇒ ·;R
RR

∆; Ω =⇒ R; ·
The last rule moves the right synchronous proposition into the passive zone.

Left Asynchronous Propositions. When the proposition on the right is
passive, we break down the left asynchronous connectives in the active zone on
the left. Recall that Ω is considered in order, so there is no non-determinism.

∆; Ω, A, B =⇒ ·;R
∧L

∆; Ω, A ∧B =⇒ ·;R

∆; Ω =⇒ ·;R
>L

∆; Ω,> =⇒ ·;R

∆; Ω, A =⇒ ·;R ∆; Ω, B =⇒ ·;R
∨L

∆; Ω, A ∨B =⇒ ·;R
⊥L

∆; Ω,⊥ =⇒ ·;R

∆; Ω, [a/x]A =⇒ ·;R
∃La

∆; Ω,∃x. A =⇒ ·;R

∆, L; Ω =⇒ ·;R
LL

∆; Ω, L =⇒ ·;R
The last rule allows us to move synchronous propositions into the passive zone.

Right Synchronous Propositions. The active rules always terminate when
applied in a bottom-up fashion during proof search (see Lemma 4.7). Now a
don’t-know non-deterministic choice arises: either we apply a right rule to infer
R or a left rule to one of the passive assumptions in ∆. We also refer to don’t-
know non-determinism as disjunctive non-determinism since we have to pick
one of several possibilities.

∆; · =⇒ A; ·
∨R1

∆; · =⇒ ·;A ∨B

∆; · =⇒ B; ·
∨R2

∆; · =⇒ ·;A ∨B

no right rule for ⊥

∆; · =⇒ [t/x]A; ·
∃R

∆; · =⇒ ·;∃x. A

In the last case we would have to guess the t, but in practice the t is deter-
mined by unification as indicated in Section 4.4.

Draft of April 13, 2004

4.1 Inversion 67

Left Synchronous Propositions. Left synchronous propositions may be
needed more than once, so they are duplicated in the application of the left
rules.

∆, A⊃B; · =⇒ A; · ∆, A⊃B;B =⇒ ·;R
⊃L

∆, A⊃B; · =⇒ ·;R

∆,∀x. A; [t/x]A =⇒ ·;R
∀L

∆,∀x. A; · =⇒ ·;R

Initial Sequents. This leaves the question of initial sequents, which is easily
handled by allowing an passive atomic proposition on the left to match a passive
atomic proposition on the right.

init
∆, P ; · =⇒ ·;P

The judgments ∆; Ω =⇒ A; · and ∆; Ω =⇒ ·;R are hypothetical in ∆, but
not hypothetical in Ω in the usual sense. This is because proposition in Ω do
not persist, because they have to be empty in the initial sequents, and because
they must be considered in order. In other words, contraction, weakening, and
exchange are not available for Ω. These turn out to be admissible, but the
structure of the proof is changed globally. Therefore we consider it an ordered
hypothetical judgment where each hypothesis must be used exactly once in a
derivation, in the given order. We do not formalize this notion any further,
but just remark that appropriate versions of the substitution property can be
devised to explain its meaning.

First, the soundness theorem is straightforward, since inversion proofs merely
eliminate some disjunctive non-determinism.

Theorem 4.2 (Soundness of Inversion Proofs)
If ∆; Ω =⇒ A; · or ∆; Ω =⇒ ·;A then ∆,Ω =⇒ A.

Proof: By a straightforward induction over the given derivation, applying weak-
ening in some cases. 2

The completeness theorem requires a number of inversion lemmas. For a
possible alternative path, see Exercise 4.2. The first set of results expresses the
invertibility of the rules concerning the active propositions. That is, we can
immediately apply any invertible rule witout losing completeness. The second
set of results expresses the opposite: we can always postpone the non-invertible
rules until all invertible rules have been applied.

We use the notation ∆; Ω =⇒ ρ to stand for ∆;Ω =⇒ A; · or ∆; Ω =⇒ ·;R.

Lemma 4.3 (Inversion on Asynchronous Connectives)

1. ∆; Ω =⇒ A ∧B; · iff ∆; Ω =⇒ A; · and ∆; Ω =⇒ B; ·.

Draft of April 13, 2004

68 Focused Derivations

2. ∆; Ω =⇒ A⊃B; · iff ∆; Ω, A =⇒ B; ·.

3. ∆; Ω =⇒ ∀x. A; · iff ∆; Ω =⇒ [a/x]A; · for any new parameter a.

4. ∆; Ω =⇒ R; · iff ∆; Ω =⇒ ·;R for R right synchronous.

5. ∆; Ω1, A ∧B,Ω2 =⇒ ρ iff ∆; Ω1, A, B, Ω2 =⇒ ρ.

6. ∆; Ω1,>,Ω2 =⇒ ρ iff ∆; Ω1,Ω2 =⇒ ρ.

7. ∆; Ω1, A ∨B,Ω2 =⇒ ρ iff ∆; Ω1, A, Ω2 =⇒ ρ and ∆; Ω1, B, Ω2 =⇒ ρ.

8. ∆; Ω1,∃x.A, Ω2 =⇒ ρ iff ∆; Ω1, [a/x]A,Ω2 =⇒ ρ for any new param. a.

9. ∆; Ω1, L,Ω2 =⇒ ρ iff ∆, L; Ω1,Ω2 =⇒ ρ for L left synchronous.

Proof: In each direction the result is either immediate by a rule, by inversion, or
follows by a straightforward induction on the structure of the given derivation.
2

The dual lemma shows that rules acting on synchronous propositions can
be postponed until after the asynchronous rules. We define the active size of
a sequent ∆;Ω =⇒ A; · or ∆;Ω =⇒ ·;R as the number of logical quantifiers,
connectives, constants, and atomic propositions in Ω and A. Note that the
active size of a sequent is 0 if and only if it has the form ∆; · =⇒ ·;R.

Lemma 4.4 (Postponement of Synchronous Connectives)

1. If ∆; Ω =⇒ A; · or ∆; Ω =⇒ ·;A then ∆; Ω =⇒ ·;A ∨B.

2. If ∆; Ω =⇒ B; · or ∆; Ω =⇒ ·;B then ∆; Ω =⇒ ·;A ∨B.

3. If ∆; Ω =⇒ [t/x]A; · or ∆; Ω =⇒ ·; [t/x]A then ∆; Ω =⇒ ·;∃x. A.

4. If (∆, A⊃B); (Ω1,Ω2) =⇒ A; · and (∆, A⊃B); (Ω1, B,Ω2) =⇒ ρ
then (∆, A⊃B); (Ω1,Ω2) =⇒ ρ.

5. If (∆,∀x. A); (Ω1, [t/x]A,Ω2) =⇒ ρ then (∆,∀x. A); (Ω1,Ω2) =⇒ ρ.

Proof: By induction on the active size of the given sequent. For the right rules
(parts (1), (2), and (3)), the base cases are Ω = ·, in which case the conclusion
follows directly by a rule. For the left rules, the base case is Ω = · and ρ = ·;R,
in which case the conclusion follows directly by a rule. In all other case we
apply inversion to an element of Ω (Lemma 4.3) or C (if ρ = C; ·) and appeal to
the induction hypothesis. Since the right-hand sides of the inversion principles
have smaller active size than the left-hand sides, we are correct in applying the
induction hypothesis. We show two cases in the proof of part (4).

Case: Ω = · and ρ = ·;R.

Draft of April 13, 2004

4.1 Inversion 69

(∆, A⊃B);B =⇒ ·;R Assumption
(∆, A⊃B); · =⇒ A; · Assumption
(∆, A⊃B); · =⇒ ·;R By rule ⊃L

Case: Ω = Ω′, C ∨D.

(∆, A⊃B); Ω′, C ∨D,B =⇒ ρ Assumption
(∆, A⊃B); Ω′, C,B =⇒ ρ and
(∆, A⊃B); Ω′, D,B =⇒ ρ By inversion
(∆, A⊃B); Ω′, C ∨D =⇒ A; · Assumption
(∆, A⊃B); Ω′, C =⇒ A; · and
(∆, A⊃B); Ω′, D =⇒ A; · By inversion
(∆, A⊃B); Ω′, C =⇒ ρ By i.h. on Ω′, C
(∆, A⊃B); Ω′, D =⇒ ρ By i.h. on Ω′, D
(∆, A⊃B); Ω′, C ∨D =⇒ ρ By rule ∨L

2

For the proof of completeness, and also to permit some optimizations in the
search procedure, we need to show that weakening and contraction for propo-
sitions in Ω are admissible, at the price of possibly lengthening the derivation.
Note that weakening and contraction for ∆ is trivial, since inversion sequents
are hypothetical in ∆.

Lemma 4.5 (Structural Properties of Inversion Sequents)

1. If ∆; Ω =⇒ ρ then (∆, A); Ω =⇒ ρ.

2. If (∆, A, A); Ω =⇒ ρ then (∆, A); Ω =⇒ ρ.

3. If ∆; (Ω1,Ω2) =⇒ ρ then ∆; (Ω1, A, Ω2) =⇒ ρ.

4. If ∆; (Ω1, A, A,Ω2) =⇒ ρ then ∆; (Ω1, A, Ω2) =⇒ ρ.

Proof: Parts (1) and (2) follow as usual by straightforward structural induc-
tions over the given derivations. Parts (3) and (4) follow by induction on the
structure of A, taking advantage of the inversion properties for asynchronous
propositions (Lemma 4.3) and parts (1) and (2) for synchronous propositions.
2

Theorem 4.6 (Completeness of Inversion Proofs)
If Ω =⇒ A then ·; Ω =⇒ A; ·.

Proof: By induction on the structure of the given sequent derivation S, taking
advantage of the inversion, postponement, and structural properties proven in
this section. We think of the ordinary left rules of the sequent calculus as
operating on some proposition in the middle of Ω, rather than explicitly dealing
with exchange. We consider in turn: invertible right rules, invertible left rules,
initial sequents, non-invertible right rules and non-invertible left rules.

Draft of April 13, 2004

70 Focused Derivations

Case:

S =

S1

Ω =⇒ A1

S2

Ω =⇒ A2

∧R
Ω =⇒ A1 ∧A2

·; Ω =⇒ A1; · By i.h. on S1

·; Ω =⇒ A2; · By i.h. on S2

·; Ω =⇒ A1 ∧A2; · By Lemma 4.3(1)

Cases: The right invertible rules ⊃R and ∀R and also the case for >R are
similar to the case for ∧R.

Case:

S =

S1

Ω1, B1 ∨B2, B1,Ω2 =⇒ A
S2

Ω1, B1 ∨B2, B2,Ω2 =⇒ A
∨L

Ω1, B1 ∨B2,Ω2 =⇒ A

·; Ω1, B1 ∨B2, B1,Ω2 =⇒ A; · By i.h. on S1

·; Ω1, B1 ∨B2, B2,Ω2 =⇒ A; · By i.h. on S2

·; Ω1, B1 ∨B2, B1 ∨B2,Ω2 =⇒ A; · By Lemma 4.3(7)
·; Ω1, B1 ∨B2,Ω2 =⇒ A; · By contraction (Lemma 4.5)

Cases: The left invertible rule ∃L and also the case for ⊥L are similar to the
case for ∨L.

Case:

S =

S1

Ω1, B1 ∧B2, B1,Ω2 =⇒ A
∧L1

Ω1, B1 ∧B2,Ω2 =⇒ A

·; Ω1, B1 ∧B2, B1,Ω2 =⇒ A; · By i.h. on S1

·; Ω1, B1 ∧B2, B1, B2,Ω2 =⇒ A; · By weakening (Lemma 4.5)
·; Ω1, B1 ∧B2, B1 ∧B2,Ω2 =⇒ A By Lemma 4.3(5)
·; Ω1, B1 ∧B2,Ω2 =⇒ A By contraction (Lemma 4.5)

Case: The case for ∧L2 is symmetric to ∧L1. Note that there is no left rule
for > in the sequent calculus, so the >L rule on inversion sequents arises
only from weakening (see the following case).

Case:

S = init
Ω1, P, Ω2 =⇒ P

Draft of April 13, 2004

4.1 Inversion 71

P ; · =⇒ ·;P By rule init
·;P =⇒ ·;P By rule LL
·;P =⇒ P ; · By rule RR
·; Ω1, P, Ω2 =⇒ P ; · By weakening (Lemma 4.5)

Case:

S =

S1

Ω =⇒ A1

∨R1
Ω =⇒ A1 ∨A2

·; Ω =⇒ A1; · By i.h. on S1

·; Ω =⇒ ·;A1 ∨A2 By postponement (Lemma 4.4)
·; Ω =⇒ A1 ∨A2; · By rule RR

Cases: The cases for the non-invertible right rules ∨R2 and ∃R are similar to
∨R1.

Case:

S =

S1

Ω1, B1 ⊃B2,Ω2 =⇒ B1

S2

Ω1, B1 ⊃B2, B2,Ω2 =⇒ A
⊃L

Ω1, B1 ⊃B2,Ω2 =⇒ A

·; Ω1, B1 ⊃B2,Ω2 =⇒ B1; · By i.h. on S1

B1 ⊃B2; Ω1,Ω2 =⇒ B1; · By inversion (Lemma 4.3(9))
·; Ω1, B1 ⊃B2, B2,Ω2 =⇒ A; · By i.h. on S2

B1 ⊃B2; Ω1, B2,Ω2 =⇒ A; · By inversion (Lemma 4.3(9))
B1 ⊃B2; Ω1,Ω2 =⇒ A; · By postponement (Lemma 4.4)
·; Ω1, B1 ⊃B2,Ω2 =⇒ A; · By Lemma 4.3(9)

Case: The cases for the non-invertible left rule ∀L is similar to ⊃L.

2

We can also show that the active rules always terminate, which is important
for the algorithm.

Lemma 4.7 (Termination of Active Rules)
Given a goal ∆; Ω =⇒ ρ. Any sequence of applications of active rules termi-
nates.

Proof: By induction on the active size of the given sequent. 2

Next we describe a non-deterministic algorithm for proof search. There are a
number of ways to eliminate the remaining disjunctive non-determinism. Typ-
ical is depth-first search, made complete by iterative deepening. The choice
of the term t in the rules ∃R and ∀L is later solved by introducing free vari-
ables and equational constraints into the search procedures which are solved by
unification (see Section 4.4). Many futher refinements and improvements are
possible on this procedures, but not discussed here.

Draft of April 13, 2004

72 Focused Derivations

Given a goal ∆; Ω =⇒ ρ.

1. If Ω = · and ρ = ·;P succeed if P is in ∆.

2. If Ω = · and ρ = ·;R, but the previous case does not apply, guess an
inference rule to reduce the goal. In the cases of ∃R and ∀L we also have to
guess a term t. Solve each subgoal by recursively applying the procedure.
This case represents a disjunctive choice (don’t know non-determinism).
If no rule applies, we fail.

3. If Ω is non-empty or ρ = A; ·, use the unique applicable active rule and
solve each of the subgoals by recursively applying the procedure.

This search procedure is clearly sound, because the inversion proof system
is sound (Theorem 4.2). Furthermore, if there is a derivation the procedure will
(in principle) always terminate and find some derivation if it guesses correctly
in step (2).

4.2 Backchaining

While the inversion properties from the previous section are critical for con-
structing efficient theorem provers, they far from sufficient. The difficulty is
that many non-deterministic choices remain. In this section we discuss a par-
ticular strategy called backchaining which has applications outside of theorem
proving, for example, in logic programming. We restrict ourselves to Horn
logic, a particularly simple logic that is useful in many circumstances. In the
next section we describe focusing, which is the generalization of backchaining to
full intuitionistic logic.

In many theorem proving problems we are in a situation where we have a
number of propositions describing a theory and then a proposition we would
like to prove with respect to that theory. Theories are often given in the form of
propositions ∀x1 . . .∀xn. P1 ∧ . . . ∧ Pk ⊃ P . These hypotheses are synchronous
(in the sense of the previous section), that is, we have to choose between them
when trying to prove some atomic proposition Q. Backchaining rests on two
observations. The first is that search remains complete if we only try to use those
assumptions where P and Q can be made equal by instantiating x1, . . . , xn with
appropriate terms. The second is that once we decide which assumption to
use, we can apply a whole sequence of left rules (here ∀L and ⊃L) without
considering any other synchronous assumption.

Both of these observation are of crucial importance. The first cuts down
on the number of assumptions we may use. The second drastically reduces the
non-determinism. To see the latter, consider a theory with m clauses defining a
predicate p and that ach clause has n universal quantifiers. With backchaining
(and unification, see Section 4.4) we create one choice with m alternatives.
With just the inversion strategy, we have m choices in the first step, then m+1
choices in the second step after instantiating one quantifier, and so on, yielding

Draft of April 13, 2004

4.2 Backchaining 73

m(m + 1) · · · (m + p) choices. As the main theorem of this section and the next
shows, these choices are redundant.

We first define Horn clauses in a form that is slightly more general than what
is usually given in the literature.

Horn clauses D ::= P | G⊃D | ∀x. D
Horn goals G ::= P | G1 ∧G1 | >

Horn theories ∆ ::= · | ∆, D

Some further generalizations are possible; important for us is the absence of im-
plications and universal quantification in goals as well as existential, disjunction,
and falsehood in clauses.

A theorem proving problem in Horn logic is stated as

∆ =⇒ G

where ∆ is a Horn theory and G is a Horn goal, that is, a conjunction of atomic
propositions.

As two simple examples of Horn theories we consider even and odd numbers,
and graph reachability.

For even/odd number we have constants 0 and s to represent the natural
numbers in unary form. As usual, we abbreviate 0() with just 0.

even(0),
∀x. even(x)⊃ odd(s(x)),
∀x. odd(x)⊃ even(s(x))

For reachability in a directed graph we assume we have a constant for each
node in the graph and an assumption edge(a, b) for each edge from node a to
node b. In addition we assume

∀x. ∀y. edge(x, y)⊃ reach(x, y),
∀x. ∀y. ∀z. reach(x, y) ∧ reach(y, z)⊃ reach(x, z)

In the even/odd example, we would like for backchaining to reduce the goal
even(s(s(0))) to the subgoal odd(s(0)). In this case this reduction should be
essentially deterministic, because only the last clause could match the goal. We
formalize backchaining with the following two judgments.

∆ u=⇒ G Horn theory ∆ proves G uniformly
∆; D u=⇒ P Backchaining on Horn clause D proves P

First the rules of uniform proof, which are rather simple. The critical one is
the last, which selects a Horn clause from ∆ for backchaining.

∆ u=⇒ G1 ∆ u=⇒ G2
∧R

∆ u=⇒ G1 ∧G2

>R
∆ u=⇒ >

∆; D u=⇒ P (D in ∆)
select

∆ u=⇒ P

Draft of April 13, 2004

74 Focused Derivations

The rules for backchaining consider the possible forms of the Horn clause,
decomposing it by a left rule. When using this as a proof search procedure
by interpreting it bottom-up, we imagine using unification variables instead of
guessing terms, and solving left-most premises first.

init
∆; P u=⇒ P (∆; P u=⇒ Q fails for P 6= Q)

∆; D u=⇒ P ∆ u=⇒ G
⊃L

∆; G⊃D
u=⇒ P

∆; [t/x]D u=⇒ P
∀L

∆;∀x. D
u=⇒ P

It is not difficult to see that this indeed captures the intended proof search
strategy for backchaining. It is also rather straightforward to prove it sound
and complete.

Theorem 4.8 (Soundness of Uniform Proofs in Horn Theories)

1. If ∆ u=⇒ G then ∆ =⇒ G.

2. If ∆; D u=⇒ G then ∆, D =⇒ G.

Proof: By straightforward induction over the given derivations. In the case
of the select rule, we require the admissibility of contraction in the sequent
calculus. 2

For the completeness direction we need a postponement lemma, similar to
the case of inversion proofs. This lemma demonstrates that the left rules of the
sequent calculus are admissible for the passive propositions of uniform sequents.

Lemma 4.9 (Postponement for Uniform Proofs)

1. If ∆, G⊃D,D;D′ u=⇒ P and ∆, G⊃D
u=⇒ G then ∆, G⊃D;D′ u=⇒ P

2. If ∆, G⊃D,D
u=⇒ G′ and ∆, G⊃D

u=⇒ G then ∆, G⊃D
u=⇒ G′

3. If ∆,∀x. D, [t/x]D;D′ u=⇒ P then ∆,∀x. D;D′ u=⇒ P

4. If ∆,∀x. D, [t/x]D u=⇒ G′ then ∆,∀x. D
u=⇒ G′

Proof: By straightforward inductions over the first given derivation. 2

Theorem 4.10 (Completness of Uniform Proofs in Horn Theories)

1. If ∆ =⇒ G then ∆ u=⇒ G.

2. If ∆ =⇒ P then there is a D in ∆ such that ∆; D u=⇒ P .

Proof: Part (1) follows by inversion properties of the sequent calculus. We
show one case of Part (2).

Draft of April 13, 2004

4.2 Backchaining 75

Case:

S =

S1

∆′, G⊃D =⇒ G
S2

∆′, G⊃D,D =⇒ P
⊃L

∆′, G⊃D =⇒ P

∆′, G⊃D,D;D′ u=⇒ P for some D′ in ∆′, G⊃D,D By i.h. on S2

∆′, G⊃D
u=⇒ G By i.h. on S1

∆′, G⊃D;D′ u=⇒ P By Lemma 4.9
If D′ in ∆′, G⊃D we are done
If D′ = D:
∆′, G⊃D;G⊃D

u=⇒ P By rule ⊃L

2

Horn theories have a number of important properties. Some of these stem
from the fact that during proof search, the collection of assumptions ∆ never
changes, nor will there ever be any new parameters introduced. This allows us
to give an inductive interpretation to the set of clauses. For example, we could
reason inductively about properties of even numbers, rather than just reason in
first-order logic.

A related property is that Horn clauses can be seen to define inference rules.
For example, we can translate the theory defining the even and odd numbers
into the rules

even(0)

even(t)

odd(s(t))

odd(t)

even(s(t))

In fact, one can see the uniform proof system and backchaining as implementing
precisely these rules. In other words, we can also compile a Horn theory into a
set of inference rules and then prove Horn goals from no assumptions, but using
the additional rules.

This view is also interesting in that it provides the basis for a forward-
reasoning procedure for Horn logic that resembles the inverse method. However,
all sequents we ever consider have an empty left-hand side! That is, from some
atomic facts, using unary inference rules (possibly with multiple premises), we
derive further facts. We illustrate this way of proceeding using our second Horn
theory which implements a particular graph. First, we turning the theory

∀x. ∀y. edge(x, y)⊃ reach(x, y),
∀x. ∀y. ∀z. reach(x, y) ∧ reach(y, z)⊃ reach(x, z)

into the inference rules

edge(s, t)

reach(s, t)

reach(s, t) reach(t, u)

reach(s, u)

Draft of April 13, 2004

76 Focused Derivations

Second, assume we start with facts

edge(a, b), edge(b, c)

Applying all possible rules we obtain

edge(a, b), edge(b, c),
reach(a, b), reach(b, c)

After one more step we have

edge(a, b), edge(b, c),
reach(a, b), reach(b, c),
reach(a, c)

Now applying any more rules does not add any more facts: the set of facts is
saturated. We can now see if the goal (e.g., reach(c, a)) is in the saturated set
or not. If yes it is true, if not it cannot be derived from the given facts.

The above strategy can be generalized to the case of facts with free vari-
ables (which are universally interpreted) and is known under the name of unit
resolution.

It is interesting that the forward chaining strategy works particularly well
for Horn theories such as for reach which can easily be seen to be terminating.
This is because no new terms are constructed during the inferences. On the
other hand, the backward chaining strategy we exemplified using even and odd
can easily be seen to be terminating in the backward directions because the
term involved get smaller.

As far as I know, it is still an open research problem how backward chaining
and forward chaining (here illustrated with unit resolution) can be profitably
combined. Also, the relationship between the inverse method and unit (or gen-
eral) resolution is unclear in the sense that we do not know of a proposal that
effectively combines these strategies.

4.3 Focusing

The search procedure based on inversion developed in Section 4.1 still has an un-
acceptable amount of don’t know non-determinism. For the Horn fragment, we
addressed this issue in Section 4.2; here we combine backchaining with inversion
in order to obtain a method that works for full intuitionistic logic.

We first recall the problem with the inversion strategy. The problem lies
in the undisciplined use and proliferation of assumptions whose left rule is not
invertible.

In a typical situation we have some universally quantified implications as
assumptions. For example, ∆ could be

∀x1. ∀y1. ∀z1. P1(x1, y1, z1)⊃Q1(x1, y1, z1)⊃R1(x1, y1, z1),
∀x2. ∀y2. ∀z2. P2(x2, y2, z2)⊃Q2(x2, y2, z2)⊃R2(x2, y2, z2)

Draft of April 13, 2004

4.3 Focusing 77

If the right-hand side is passive, we now have to apply ∀L to one of the
two assumptions. We assume we guess the first one and that we can guess an
appropriate term t1. After the ∀L rule and a left transition, we are left with

∀x1. ∀y1. ∀z1. P1(x1, y1, z1)⊃Q1(x1, y1, z1)⊃R1(x1, y1, z1),
∀x2. ∀y2. ∀z2. P2(x2, y2, z2)⊃Q2(x2, y2, z2)⊃R2(x2, y2, z2),
∀y1. ∀z1. P1(t1, y1, z1)⊃Q1(t1, y1, z1)⊃R1(t1, y1, z1).

Again, we are confronted with a don’t know non-deterministic choice, now
between 3 possibilities. One can see that the number of possible choices quickly
explodes. We can observe that the pattern above does not coincide with mathe-
matical practice. Usually one applies an assumption or lemma of the form above
by instantiating all the quantifiers and all preconditions at once. This strategy
called focusing is a refinement of the inversion strategy.

Roughly, when all propositions in a sequent are synchronous, we focus either
on an assumption or the proposition we are trying to prove and then apply a
sequence of non-invertible rules to the chosen proposition. This phase stops
when either an invertible connective or an atomic proposition is reached.

The focusing strategy is defined by four judgments

∆; Ω a=⇒ A; · Decompose right asynchronous proposition
∆; Ω a=⇒ ·;R Decompose left asynchronous propositions
∆; A s=⇒ ·;R Focus on left synchronous proposition
∆; · s=⇒ A; · Focus on right synchronous proposition

The first two judgment are very similar to the inversion strategy. When we have
the situation ∆; · a=⇒ ·;R where ∆ consists of left synchronous propositions and
R is right synchronous, we focus either on R or on some proposition L in ∆ and
chain together inferences on the those propositions.

As in the inversion judgment, the proposition on the outside of the four
zones are passive, while the ones on the inside are actively decomposed.

For the strategy to be maximally effective, we slightly generalize our classi-
fication of connectives, permitting conjunction and truth to be viewed as either
synchronous or asynchronous, depending on what is convenient. This allows us
to extend the phases maximally, removing as much non-determinism as possible.

Asynchronous Synchronous
Right ∧,>,⊃,∀ ∧,>,∨,⊥,∃

Left ∧,>,∨,⊥,∃ ∧,>,⊃,∀

We now use R for propositions that are not right asynchronous (∨,⊥,∃, P)
and L for propositions that are not left asynchronous (⊃,∀, P).

Except for the special status of conjunction and truth, each connective has
unique and complementary status on the left and on the right. Andreoli’s orig-
inal analysis [And92] was carried out in linear logic, which did not show these
anomalies. This is because there are two forms of conjunction (additive and
multiplicative), each with a unique status.

We first repeat the inversion rules which constitute an asynchronous phase
during search.

Draft of April 13, 2004

78 Focused Derivations

Right Asynchronous Propositions. First, we decompose the right asyn-
chronous connectives.

∆; Ω a=⇒ A; · ∆; Ω a=⇒ B; ·
∧R

∆; Ω a=⇒ A ∧B; ·
>R

∆; Ω a=⇒ >; ·

∆; Ω, A
a=⇒ B; ·

⊃R
∆; Ω a=⇒ A⊃B; ·

∆; Ω a=⇒ [a/x]A; ·
∀Ra

∆; Ω a=⇒ ∀x. A; ·

∆; Ω a=⇒ ·;R (R = A ∨B,⊥,∃x. A, P)
RR

∆; Ω a=⇒ R; ·

Left Asynchronous Propositions. Next we break down the left asynchronous
propositions. Recall that Ω is considered in order, so the rules are deterministic.

∆; Ω, A, B
a=⇒ ·;R

∧L
∆; Ω, A ∧B

a=⇒ ·;R

∆; Ω a=⇒ ·;R
>L

∆; Ω,> a=⇒ ·;R

∆; Ω, A
a=⇒ ·;R ∆; Ω, B

a=⇒ ·;R
∨L

∆; Ω, A ∨B
a=⇒ ·;R

⊥L
∆; Ω,⊥ a=⇒ ·;R

∆; Ω, [a/x]A a=⇒ ·;R
∃La

∆; Ω,∃x. A
a=⇒ ·;R

∆, L; Ω a=⇒ ·;R (L = A⊃B,∀x. A, P)
LL

∆; Ω, L
a=⇒ ·;R

Focus. Next we need to decide which proposition among ∆ and R to focus on.
While we allow focusing on an atomic assumption, focusing on the succedent
requires it to be non-atomic. The reason is our handling of initial sequents. For
uniformity we also include ⊥, even though focusing on it will fail in the next
step.

(∆, L);L s=⇒ ·;R
focusL

(∆, L); · a=⇒ ·;R

∆; · s=⇒ R; · (R = A ∨B,⊥,∃x. A)
focusR

∆; · a=⇒ ·;R

Right Synchronous Propositions. The non-invertible rules on the right
maintain the focus on principal formula of the inference. When we have re-
duced the right-hand side to an asynchronous (but not synchronous) or atomic

Draft of April 13, 2004

4.3 Focusing 79

proposition, we blur our focus and initiate an asynchronous phase.

∆; · s=⇒ A; ·
∨R1

∆; · s=⇒ A ∨B; ·

∆; · s=⇒ B; ·
∨R2

∆; · s=⇒ A ∨B; ·

no right focus rule for ⊥

∆; · s=⇒ [t/x]A; ·
∃R

∆; · s=⇒ ∃x. A; ·

∆; · a=⇒ A; · (A = B ⊃ C,∀x. B, P)
blurR

∆; · s=⇒ A; ·

Left Synchronous Propositions. The non-invertible rules on the left also
maintain their focus on the principal formula of the inference. When we have
reached an asynchronous (but not synchronous) proposition, we blur our focus
and initiate an asynchrounous phase.

∆; B s=⇒ ·;R ∆; · s=⇒ A; ·
⊃L

∆; A⊃B
s=⇒ ·;R

∆; [t/x]A s=⇒ ·;R
∀L

∆;∀x. A
s=⇒ ·;R

∆; A s=⇒ ·;R
∧L1

∆; A ∧B
s=⇒ ·;R

∆; B s=⇒ ·;R
∧L2

∆; A ∧B
s=⇒ ·;R

no rule for >L

∆; A a=⇒ ·;R (A = B ∨ C,⊥,∃x. B)
blurL

∆; A s=⇒ ·;R

init
∆; P s=⇒ ·;P no rule for ∆; P s=⇒ ·;Q for P 6= Q

Note that the second premise of the ⊃L rule is still a focused sequent. From
a practical point of view it is important to continue with the focusing steps in
the first premise before attempting to prove the second premise, because the
decomposition of B may ultimately fail when an atomic proposition is reached.
Such a failure would render the possibly difficult proof of A useless.

There is a slight, but important asymmetry in the initial sequents: we require
that we have focused on the left proposition.

If one shows only applications of the decision rules in a derivation, the format
is very close to assertion-level proofs as proposed by Huang [Hua94]. His mo-
tivation was the development of a formalism appropriate for the presentation
of mathematical proofs in a human-readable form. This provides independent
evidence for the value of focusing proofs. Focusing derivations themselves were
developed by Andreoli [And92] in the context of classical linear logic. An adap-
tation to intuitionistic linear logic was given by Howe [How98] which is related

Draft of April 13, 2004

80 Focused Derivations

the calculus LJT devised by Herbelin [Her95]. Herbelin’s goal was to devise
a sequent calculus whose derivations are in bijective correspondence to normal
natural deductions. Due to the ∨, ⊥ and ∃ elimination rules, this is not the
case here.

The search procedure which works with focusing sequents is similar to the
one for inversion. After the detailed development of inversion proofs, we will
not repeat or extend the development here, but refer the interested reader to
the literature. The techniques are very similar to the ones shown in Section 4.1.

4.4 Unification

When proving a proposition of the form ∃x. A by its right rule in the sequent
or focusing calculus, we must supply a term t and then prove [t/x]A. The
domain of quantification may include infinitely many terms (such as the natural
numbers), so this choice cannot be resolved simply by trying all possible terms
t. Similarly, when we use a hypothesis of the form ∀x. A we must supply a term
t to substitute for x. We refer to this a existential non-determinism.

Fortunately, there is a technique called unification which is sound and com-
plete for syntactic equality between terms. The basic idea is quite simple: we
postpone the choice of t and instead substitute a new existential variable (often
called meta-variable or logic variable) X for x and continue with the bottom-up
construction of a derivation. When we reach initial sequents we check if there is
a substitution for the existential variables such that the hypothesis matches the
conclusion. If so, we apply this instantiation globally to the partial derivation
and continue to search for proofs of other subgoals. Finding an instantiation
for existential variables under which two propositions or terms match is called
unification. It is decidable if a unifying substitution or unifier exists, and if so,
we can effectively compute it in linear time. Moreover, we can do so with a
minimal commitment and we do not need to choose between various possible
unifiers.

Because of its central importance in both backward- and forward-directed
search, unification has been thoroughly investigated. Herbrand [Her30] is given
credit for the first description of a unification algorithm in a footnote of his
thesis, but it was not until 1965 that it was introduced into automated deduc-
tion through the seminal work by Alan Robinson [Rob65, Rob71]. The first
algorithms were exponential, and later almost linear [Hue76, MM82] and linear
algorithms [MM76, PW78] were discovered. In the practice of theorem proving,
generally variants of Robinson’s algorithm are still used, due to its low constant
overhead on the kind of problems encountered in practice. For further discussion
and a survey of unification, see [Kni89]. We describe a variant of Robinson’s
algorithm.

Before we describe the unification algorithm itself, we relate it to the problem
of proof search. We use here the sequent calculus with atomic initial sequents,
but it should be clear that precisely the same technique of residuation applies to
focused derivations. We enrich the judgment Γ −=⇒ A by a residual proposition

Draft of April 13, 2004

4.4 Unification 81

F such that

1. if Γ −=⇒ A then Γ −=⇒ A \ F and F is true, and

2. if Γ −=⇒ A \ F and F is true then Γ −=⇒ A.

Generally, we cannot prove such properties directly by induction, but we need
to generalize them, exhibiting the close relationship between the derivations of
the sequents and residual formulas F .

Residual formulas F are amenable to specialized procedures such as unifi-
cation, since they are drawn from a simpler logic or deductive system than the
general propositions A. In practice they are often solved incrementally rather
than collected throughout a derivation and only solved at the end. This is
important for the early detection of failures during proof search. Incremental
solution of residual formulas is the topic of Exercise ??.

What do we need in the residual propositions so that existential choices and
equalities between atomic propositions can be expressed? The basic proposition
is one of equality between atomic propositions, P1

.= P2. We also have conjunc-
tion F1 ∧ F2, since equalities may be collected from several subgoals, and > if
there are no residual propositions to be proven. Finally, we need the existen-
tial quantifier ∃x. F to express the scope of existential variables, and ∀x. F to
express the scope of parameters introduced in a derivation. We add equality
between terms, since it is required to describe the unification algorithm itself.
We refer to the logic with these connectives as unification logic, defined via a
deductive system.

Formulas F ::= P1
.= P2 | t1

.= t2 | F1 ∧ F2 | > | ∃x. F | ∀x. F

The main judgment “F is valid”, written |= F , is defined by the following
rules, which are consistent with, but more specialized than the rules for these
connectives in intuitionistic natural deduction (see Exercise ??).

.= I
|= P

.= P

.= I′
|= t

.= t

|= F1 |= F2
∧I

|= F1 ∧ F2

>I
|= >

|= [t/x]F
∃I

|= ∃x. F

|= [a/x]F
∀Ia

|= ∀x. F

The ∀Ia rule is subject to the usual proviso that a is a new parameter not
occurring in ∀x. F . There are no elimination rules, since we do not need to
consider hypotheses about the validity of a formula F which is the primary
reason for the simplicity of theorem proving in the unification logic.

Draft of April 13, 2004

82 Focused Derivations

We enrich the sequent calculus with residual formulas from the unification
logic, postponing all existential choices. Recall that in practice we merge resid-
uation and solution in order to discover unprovable residual formulas as soon as
possible. This merging of the phases is not represented in our system.

Initial Sequents. Initial sequents residuate an equality between its principal
propositions. Any solution to the equation will unify P ′ and P , which means
that this will translate to a correct application of the initial sequent rule in the
original system.

init
Γ, P ′ −=⇒ P \ P ′ .= P

Propositional Connectives. We just give a few sample rules for the con-
nectives which do not involve quantifiers, since all of them simply propagate or
combine unification formulas, regardless whether they are additive, multiplica-
tive, or exponential.

Γ, A
−=⇒ B \ F

⊃R
Γ −=⇒ A⊃B \ F

>R
Γ −=⇒ > \ >

Γ, A⊃B
−=⇒ A \ F1 Γ, A⊃B,B

−=⇒ C \ F2
⊃L

Γ, A⊃B
−=⇒ C \ F1 ∧ F2

Quantifiers. These are the critical rules. Since we residuate the existential
choices entirely, the ∃R and ∀L rules instantiate a quantifier by a new parameter,
which is existentially quantified in the residual formula in both cases. Similarly,
the ∀R and ∃L rule introduce a parameter which is universally quantified in the
residual formula.

Γ −=⇒ [a/x]A \ [a/x]F
∀Ra

Γ −=⇒ ∀x. A \ ∀x. F

Γ,∀x. A, [a/x]A −=⇒ C \ [a/x]F
∀La

Γ,∀x. A
−=⇒ C \ ∃x. F

Γ −=⇒ [a/x]A \ [a/x]F
∃Ra

Γ −=⇒ ∃x. A \ ∃x. F

Γ,∃x. A, [a/x]A −=⇒ C \ [a/x]F
∃La

Γ,∃x. A
−=⇒ C \ ∀x. A

The soundness of residuating equalities and existential choices in this manner
is straightforward.

Theorem 4.11 (Soundness of Equality Residuation)
If Γ −=⇒ A \ F and |= F then Γ −=⇒ A.

Draft of April 13, 2004

4.4 Unification 83

Proof: By induction on the structure of the given derivation R. We show the
critical cases. Note how in the case of the ∃R rule the derivation of |= ∃x. F
provides the essential witness term t.

Case:

R = init
Γ, P ′ −=⇒ P \ P ′ .= P

|= P ′ .= P By assumption
P ′ = P By inversion
Γ, P ′ −=⇒ P By rule init

Case:

R =

R1

Γ −=⇒ [a/x]A1 \ [a/x]F1

∃Ra

Γ −=⇒ ∃x. A1 \ ∃x. F1

|= ∃x. F1 By assumption
|= [t/x]F1 for some t By inversion
Γ −=⇒ [t/x]A1 \ [t/x]F1 By substitution for parameter a

Γ −=⇒ [t/x]A1 By i.h.
Γ −=⇒ ∃x. A1 By rule ∃R

Case:

R =

R1

Γ −=⇒ [a/x]A1 \ [a/x]F1

∀Ra

Γ −=⇒ ∀x. A1 \ ∀x. F1

|= ∀x. F1 By assumption
|= [b/x]F1 for a new parameter b By inversion
|= [a/x]F1 By substititution of a for b

Γ −=⇒ [a/x]A1 By i.h.
Γ −=⇒ ∀x. A1 By rule ∀R

2

The opposite direction is more difficult. The desired theorem:

If Γ −=⇒ A then Γ −=⇒ A \ F for some F with |= F

cannot be proved directly by induction, since the premisses of the two deriva-
tions are different in the ∃R and ∀L rules. However, one can be obtained from

Draft of April 13, 2004

84 Focused Derivations

the other by substituting terms for parameters. Since this must be done simul-
taneously, we introduce a new notation.

Parameter Substitution ρ ::= · | ρ, t/a

We assume all the parameters a substituted for by ρ are distinct to avoid ambi-
guity. We write A[ρ], F [ρ], and Γ[ρ], for the result of applying the substitution
ρ to a proposition, formula, or context, respectively.

Lemma 4.12 If Γ −=⇒ A where A = A′[ρ], Γ = Γ′[ρ] then Γ′ −=⇒ A′ \ F for
some F such that |= F [ρ].

Proof: The proof proceeds by induction on the structure of the given derivation
D. We show only two cases, the second of which required the generalization of
the induction hypothesis.

Case:

D = init
Γ1, P

−=⇒ P

Γ1 = Γ′1[ρ], P = P ′[ρ], and P = P ′′[ρ] Assumption
Γ′1, P

′ −=⇒ P ′′ \ P ′ .= P ′′ By rule init
|= P ′[ρ] .= P ′′[ρ] By rule .= I

Case:

D =

D1

Γ −=⇒ [t/x]A1

∃R
Γ −=⇒ ∃x. A1

∃x. A1 = A′[ρ] Assumption
A′ = ∃x. A′

1 for a new parameter a with
[a/x]A1 = ([a/x]A′

1)[ρ, a/a] By definition of substitution
[t/x]A1 = ([a/x]A′

1)[ρ, t/a] By substitution for parameter a
Γ = Γ′[ρ] Assumption
Γ′[ρ] = Γ′[ρ, t/a] Since a is new
Γ′ −=⇒ [a/x]A′

1 \ [a/x]F1, and
|= ([a/x]F1)[ρ, t/a] By i.h.
Γ′ −=⇒ ∃x. A′

1 \ ∃x. F1 By rule ∃R
|= (∃x. F1)[ρ] By rule ∃R and definition of substitution

2

Theorem 4.13 (Completeness of Equality Residuation)
If Γ −=⇒ A then Γ −=⇒ A \ F for some F and |= F .

Draft of April 13, 2004

4.4 Unification 85

Proof: From Lemma 4.12 with A′ = A, Γ′ = Γ, and ρ the identity substitution
on the parameters in Γ and A. 2

Next we describe an algorithm for proving residuated formulas, that is, an
algorithm for unification. We do this in two steps: first we solve the problem in
the fragment without parameters and universal quantifiers and then we extend
the solution to the general case.

There are numerous ways of describing unification algorithsm in the liter-
ature. We view it here as a process of transformation on a collection of con-
straints. In the first instance we consider global unification, where we are given
a single constraint formula (as generated by equality residuation, for example)
and we have to determine if it is true. Later, we will generalize the view in
order just partially transform the constraints to a normal form which is easily
seen to have most general solutions. This latter view will be particularly useful
when constraints are generated incrementally during proof search.

A collection of equational constraints is simply a collection of formulas in
the unification logic or an indication that the constraints are inconsistent (#).

Constraints C ::= · | F,C | #

We will freely exchange formulas among the constraints, just as we freely
exchange assumptions in the sequent calculus. The empty constraint “·” corre-
sponds to success, a contradiction to failure of proving the unification formula.
Constraints may contain free unification variables X which are interpreted ex-
istentially. They are also known as existential variables or logic variables. Note
that unification variables are never bound. We group the rules into several
classes. The first, breaks down the structure of the formulas in C.

F1 ∧ F2, C 7→ F1, F2, C
>, C 7→ C
∃x. F,C 7→ [X/x]F,C where X not free in F or C

The second group of rules breaks down equalities into simpler equalities.

p(t1, . . . , tn) .= p(s1 . . . , sn), C 7→ t1
.= s1, . . . , tn

.= sn, C
f(t1, . . . , tn) .= f(s1 . . . , sn), C 7→ t1

.= s1, . . . , tn
.= sn, C

p(t1, . . . , tn) .= q(s1 . . . , sn), C 7→ # where p 6= q
f(t1, . . . , tn) .= g(s1 . . . , sn), C 7→ # where f 6= g

Note that equations of predicate or function symbols without arguments (n = 0)
will either be simply removed or be inconsistent.

Finally, we will be left with equations where one of the two sides is a unifi-
cation variable (we are not yet considering parameters). In that case, we must
consider the right-hand side and distinguish several cases:

X
.= X, C 7→ C

X
.= t, C 7→ [t/X]C provided X not free in t

t
.= X, C 7→ [t/X]C provided X not free in t

X
.= t, C 7→ # if t 6= X and X free in t

t
.= X, C 7→ # if t 6= X and X free in t

Draft of April 13, 2004

86 Focused Derivations

The conditions on these rules are necessary in order to recognize cases such as
X

.= f(X), which has no solution: No matter which term we substitute for X,
the right-hand side will always have one more function symbol than the left-
hand side, so the equation cannot be satisfied. We refer to the condition “X
not free in t” as the occurs-check.

Note that the whole algorithm depends critically on the function symbols
being uninterpreted. As a trivial example, consider +(3, 4) .= +(2, 5) on which
the above algorithm would fail. Slighly trickier is something like X

.= −(−(X))
which is true for any integer X, but violates the occurs-check.

As a first step in the correctness proof we can verify that a unification will
always terminate.

Lemma 4.14 (Termination of Unification) Any sequence of reductions C 7→
C ′ 7→ C ′′ . . . must terminate and yield either # or the empty set of constraints
(·).

Proof: By nested induction, first on the number of variables (unification vari-
ables X or bound variables ∃x) in C, second on the total size of the constraint,
counting quantifiers, logical connectives, and variables occurrences.

The first set of rules for structural decomposition and the rule for eliminat-
ing X

.= X decreases the size of the constraints, without increasing the number
of variables. The set of rules for variables (except for X

.= X) reduces the num-
ber of variables in C by substitution for all occurrences of a variable (possibly
increasing the total size of the constraint). 2

In order to show the correctness of the unification algorithm, we would like
to show that each step preserves provability. That is, if C 7→ C ′ then C is
provable iff C ′ is provable. However, a difficulty arises in the case of existential
quantification, since we step from ∃x. F to [X/x]F and we have not defined
what it means for a formula with a unification variable to be provable. Intu-
itively, it should mean that not the formula itself, but some instance of it is
provable. Hence we define that a constraint is satisfiable to mean that there is
an instance that is provable. In order to define the concept of an instance we
define simultaneous substitution for the unification variables of a term.

The second concept we need is that of a substitution for existential variables.
We use a new notation, because this form of substitution is quite different from
substitutions for bound variables x or parameters a.

Substitutions θ ::= · | θ, t/X

We require that all variables X defined by a substitution are distinct. We write
dom(θ) for the variables defined by a substitution and cod(θ) for all the variables
occuring in the terms t. For a ground substitution cod(θ) is empty. For the tech-
nical development it is convenient to assume that the domain and co-domain of
a substitution share no variables. This rules out “circular” substitutions such
as f(X)/X and it also disallows identity substitutions X/X. The latter restric-
tion can be dropped, but it does no harm and is closer to the implementation.

Draft of April 13, 2004

4.4 Unification 87

As for contexts, we consider the order of the definitions in a substitution to be
irrelevant.

We write t[θ], A[θ], and Γ[θ] for the application of a substitution to a term,
proposition, or context. This is defined to be the identity on existential variables
that are not explicitly defined in the substitution.

We also need an operation of composition, written as θ1 ◦ θ2 with the prop-
erty that t[θ1 ◦ θ2] = (t[θ1])[θ2] and similarly for propositions and contexts.
Composition is defined by

(·) ◦ θ2 = θ2

(θ1, t/X) ◦ θ2 = (θ1 ◦ θ2), t[θ2]/X

In order for composition to be well-defined and have the desired properties we
require that dom(θ1), dom(θ2) and cod(θ2) are disjoint, but of course variables
in the co-domain of θ1 can be defined by θ2.

Now we define that constraint C = F1, . . . , Fn is satisfiable if there exists a
substitution θ for unification variables in C such that |= Fi[θ] for all 1 ≤ i ≤ n.
We write C sat if C is satisfiable.

Theorem 4.15 (Preservation of Satisfiability)
If C 7→ C ′ then C sat iff C ′ sat

Proof: In both directions, the proof is by cases on the definition of C 7→ C ′.
We show a three cases from left-to-right. The other cases and opposite direction
are similar.

Assume C 7→ C ′ and C sat. We have to show the C ′ sat.

Case: ∃x. F,C1 7→ [X/x]F,C1.

∃x. F,C1 sat Assumption
For some θ, |= (∃x. F)[θ]
and |= F1[θ] for every F1 in C1 By defn. of sat
|= ∃x. (F [θ]) By defn. of substitution
|= [t/x](F [θ]) By inversion
|= ([t/x]F)[θ] By props. of substitution
|= ([X/x]F)[θ, t/X] Since X not in F or t
|= F1[θ, t/X] for any F1 in C1 Since X not in C1

[X/x]F,C1 sat By defn. of sat

Case: X
.= t, C1 7→ [t/X]C1 where X not in t.

X
.= t, C1 sat Assumption

For some θ, |= (X .= t)[θ]
and |= F1[θ] for every F1 in C1 By defn. of sat
|= X[θ] .= t[θ] By defn. of substitution
X[θ] = t[θ] By inversion
θ = (θ′, t[θ]/X) By defn. of substitution

Draft of April 13, 2004

88 Focused Derivations

t[θ]/X = t[θ′]/X Since X not in t
|= F1[θ′, t[θ′]/X] for any F1 in C1 From above
|= ([t/X]F1)[θ′] By props. of substitution
[t/X]C1 sat By defn. of sat

Case: X
.= t, C1 7→ # where X in t, X 6= t.

X
.= t, C1 sat Assumption

|= (X .= t)[θ] for some θ By defn. of sat
|= X[θ] .= t[θ] By defn. of substitution
X[θ] = t[θ] By inversion
X[θ] = f(. . . X . . .)[θ] Since X in t, X 6= t
X[θ] = f(. . . X[θ] . . .) By defn. of substitution
Contradiction Right-hand side has more function symbols

than left-hand side
This case is impossible

2

The argument above requires some elementary reasoning about substitution.
Those proofs are usually straightforward by induction on the structure of the
term we substitute in, as long as the right condition on occurrences of variables
are known.

Termination of unification together with preservation of satisfiability gives
us the correctness of unification as a procedure.

4.5 Unification with Parameters

The generalization of the algorithm above to account for universal quanti-
fiers and parameters is not completely straightforward. The difficulty is that
∀x. ∃y. y

.= x is valid, while ∃y. ∀x. y
.= x is not. In unification logic, the fact

that the second cannot be derived is due to the parameter restriction.
.= I

|= a
.= a

∀Ia??
|= ∀x. a

.= x
∃I

|= ∃y. ∀x. y
.= x

In this derivation, the application of ∀Ia is incorrect. However, if we had a way
to postpone choosing the instantiation for y, say, by supplying an existential
variable instead, then the situation is far less clear.

“a/Y ”?? .= I
|= Y

.= a
∀Ia??

|= ∀x. Y
.= x

∃I
|= ∃y. ∀x. y

.= x

Draft of April 13, 2004

4.5 Unification with Parameters 89

In this derivation, it is the substitution of a for Y which will invalidate the
derivation at the ∀Ia rule application. Up to that point we could not really fail.
Written in our transformation notation:

∃y. ∀x. y
.= x

7→ ∀x. Y
.= x

7→ Y
.= a

7→?? ·

From this very simple example it seems clear that we need to prohibit fi-
nal step: Y may not be instantiated with a term that mentions parameter a.
There are two approaches to encoding this restriction. More or less standard
in theorem proving is Skolemization which we pursue in Exercise 4.3. The dual
solution notes for each existential variable which parameters may occur in its
substitution term. In the example above, Y was introduced at a point where a
did not yet occur, so the substitution of a for Y should be rejected.

In order to describe this concisely, we add a parameter context Ψ to the
judgment which lists distinct parameters.

Parameter Context Ψ ::= · | Ψ, a

We annotate each judgment with the parameter context and introduce the new
judgment “t is closed with respect to Ψ”, written as Ψ |= t term. It is defined
by the following rules.

parm
Ψ1, a,Ψ2 ` a term

Ψ ` t1 term · · · Ψ ` tn term
root

Ψ ` f(t1, . . . , tn) term

We modify the validity judgment for unification formulas to guarantee this con-
dition.

Ψ ` t term Ψ |= [t/x]F
∃I

Ψ |= ∃x. F

Ψ, a |= [a/x]F
∀Ia

Ψ |= ∀x. F

Now the state of the unification algorithm (that is, the current set of con-
straints) must record the parameter context. We write this as Ψ � C. Ψ is
simply carried along from left to right in most transformations.

(Ψ � F1 ∧ F2, C) 7→ (Ψ � F1, F2, C)
(Ψ �>, C) 7→ (Ψ � C)
(Ψ � f(t1, . . . , tn) .= f(s1 . . . , sn), C) 7→ (Ψ � t1

.= s1, . . . , tn
.= sn, C)

(Ψ � f(t1, . . . , tn) .= g(s1 . . . , sn), C) 7→ (Ψ � #) where f 6= g
(Ψ � a

.= a,C) 7→ (Ψ � C)
(Ψ � a

.= b, C) 7→ (Ψ � #) where a 6= b
(Ψ � a

.= f(t1, . . . , tn)) 7→ (Ψ � #)
(Ψ � f(t1, . . . , tn) .= a) 7→ (Ψ � #)

The notion of an existential variable must now be generalized to track the set
of parameters its substituend may depend on. We write X∆ for a unification

Draft of April 13, 2004

90 Focused Derivations

variable X that may depend on all the parameters in ∆, but no others. All
occurrences of a variable X must be annotated with the same ∆—we think of
∆ as an intrinsic property of X.

(Ψ � ∀x. F,C) 7→ (Ψ, a � [a/x]F,C) where a not in Ψ, F , or C
(Ψ � ∃x. F,C) 7→ (Ψ � [XΨ/x]F,C) where X not free in F or C

An equation XΨ
.= t could now be solved immediately, if all parameters of

t are contained in Ψ and X does not occur in t. A first attempt at such a rule
would be

(Ψ � X∆
.= t, C) 7→ (Ψ � [t/X]C) where ∆ ` t term and X not free in t

However, in general t will not be closed so we cannot prove that ∆ ` t term.
For example, consider the constraint

a � X·
.= f(Ya) ∧ Ya

.= a

where X cannot depend on any parameters and Y can depend on a. This
should have no solution, since X· would have to be equal to f(a), which is not
permissible. On the other hand,

a � X·
.= f(Ya) ∧ Ya

.= c

for a constant c has a solution where Ya is c and X· is f(c). So when we process
an equation X∆ = t we need to restrict any variable in t so it can depend only
on the parameters in ∆. In the example above, we would substitute Y ′

· for Ya.
In order to describe this restriction, we introduce a new form of constraints

which expresses the judgment ∆ ` t term in the presence of unification variables.
We write it as t |∆, thinking of it as the restriction of t to ∆. It is implemented
by the following transformations.

(Ψ � f(t1, . . . , tn) |∆, C) 7→ (Ψ � t1 |∆, . . . , tn |∆, C)
(Ψ � a |∆, C) 7→ (Ψ � C) if a ∈ ∆
(Ψ � a |∆, C) 7→ (Ψ � #) if a /∈ ∆
(Ψ � Y∆′ |∆, C) 7→ (Ψ � [Y∆′∩∆/Y]C)

the collection of the above four rules implement a process called pruning. Now
we can finally write down the correct rule for existential variables.

(Ψ � X∆
.= t, C) 7→ (Ψ � t |∆, [t/X]C) provided X not free in t

From an implementation point of view, it makes sense to first solve t |∆ before
substitution t for X. In fact, it is probably beneficial to combine it with the
occurs-check to the term t need only be traversed once.

The soundness and completeness theorems from above extend to the problem
with parameters, but become more difficult. The principal new notion we need
is an admissible substitution θ which has the property that for every existential
variable X∆ we have ∆ ` X[θ] term (see Exercise 4.4).

Draft of April 13, 2004

4.6 Exercises 91

The ML implementation takes advantage of the fact that whenever a vari-
able must be restricted, one of the two contexts is a prefix of the other. This
is because every equation in a formula F lies beneath a path of possibly al-
ternating quantifiers, a so-called mixed quantifier prefix. When we apply the
rules above algorithmically, we instantiate each existentially quantified variable
with a new free existential variable which depends on all parameters which were
introduced for the universally quantified variables to its left. Clearly, then, for
any two variables in the same equation, one context is a prefix of the other. Our
ML implementation does take advantage of this observation by simplifying the
intersection operation.

We can take this optimization a step further and only record with an integer
(a kind of time stamp), which parameters an existential variable may depend on.
This improves the efficiency of the algorithm even further, since we only need
to calculate the minimum of two integers instead of intersecting two contexts
during restriction. In the ML code for this class, we did not optimize to this
extent.

4.6 Exercises

Exercise 4.1 Give an alternative proof of the inversion properties (Theorem 4.1)
which does not use induction, but instead relies on admissibility of cut in the
sequent calculus (Theorem 3.11).

Exercise 4.2 Formulate one or several cut rules directly on inversion sequents
as presented in Section 4.1 and prove that they are admissible. Does this simplify
the development of the completeness result for inversion proofs? Show how
admissibility might be used, or illustrate why it is not much help.

Exercise 4.3 An alternative to indexing unification variables with the param-
eters they may depend on is Skolemization. Instead of changing the notion
of unification variable, we change the notion of parameter, replacing it by a
so-called Skolem function. The two quantifier rules become

∀x. F,C 7→ [f(X1, . . . , Xn)/x]F,C where f not in F , or C, and X1, . . . , Xn

are all free unification variables in F
∃x. F,C 7→ [X/x]F,C where X not free in F or C

Now, incorrect dependencies are avoided due to the occurs-check. Reconsider
our simple example:

∃y. ∀x. y
.= x

7→ ∀x. Y
.= x

7→ Y
.= f(Y)

7→ #

Skolemization is attractive because it allows us to use a simpler algorithm for
unification. Moreover, in some logics such as classical logic it can be applied

Draft of April 13, 2004

92 Focused Derivations

statically, before we ever attempt to prove the proposition, completely elim-
inating parameters from consideration. On the other hand, Skolemization is
unsound in some higher-order logics. Also, it is more difficult to recover a proof
of proposition if we Skolemize during search.

Prove the correctness of the unification algorithm for the full unification logic
(including universal quantifiers) which employs Skolemization.

Exercise 4.4 Extend the proofs of termination and preservation of satisfiabil-
ity from the purely existential case in Section 4.4 to allow for the presence of
parameters as sketched in Section 4.5. An important concept will likely be that
of admissible substitution θ which has the property that for every existential
variable X∆ we have ∆ ` X[θ] term. You should be careful to make a precise
connection between the constraint t |∆ and the judgment ∆ ` t term (where
the latter is not defined for unification variables).

Draft of April 13, 2004

Chapter 5

The Inverse Method

After the definition of logic via natural deduction, we have developed a succes-
sion of techniques for theorem proving based on sequent calculi. We considered
a sequent Γ =⇒ C as a goal, to be solved by backwards-directed search which
was modeled by the bottom-up construction of a derivation. The critical choices
were disjunctive non-determinism (resolved by guessing and backtracking) and
existential non-determinism (resolved by introducing existential variables and
unification). The limiting factor in more refined theorem provers based on this
method is generally the number of disjunctive choices which have to be made.
It is complicated by the fact that existential variables are global in a partial
derivation, which means that choices in one conjunctive branch have effects in
other branches. This effects redundancy elimination, since subgoals are not
independent of each other.

The diametrically opposite approach would be to work forward from the
initial sequents until the goal sequent is reached. If we guarantee a fair strategy
in the selection of axioms and inference rules, every goal sequent can be derived
this way. Without further improvements, this is clearly infeasible, since there
are too many derivations for us to hope that we can find one for the goal sequent
in this manner.

The inverse method is based on the property that in a cut-free derivation
of a goal sequent, we only need to consider subformulas of the goal and their
substitution instances. For example, when we have derived both A and B in
the forward direction, we only derive their conjunction A ∧ B if A ∧ B is a
subformula of the goal sequent.

The nature of forward search under these restrictions is quite different from
the backward search. Since we always add new consequences to the sequents al-
ready derived, knowledge grows monotonically and no disjunctive non-determinism
arises. Similarly for existential non-determinism, if we keep sequents in their
maximally general form. On the other hand, there is a potentially very large
amount of conjunctive non-determinism, since we have to apply all applicable
rules to all sequents in a fair manner in order to guarantee completeness. The
critical factor in forward search is to limit conjunctive non-determinism. We

Draft of April 13, 2004

94 The Inverse Method

can view this as redundancy elimination: among the many ways that a given
sequent may be derived, we try to actually consider a few as possible. The
techniques developed in the preceding chapters, with some modifications, can
be applied in this new setting.

Historically, the inverse method is due to Maslov [Mas64]. It has been
adapted to intuitionistic and other non-classical logics by Voronkov [Vor92],
Mints [Min94], and Tammet [Tam96, Tam97].

5.1 Forward Sequent Calculus

As a first step towards the inverse method, we write out a sequent calculus
appropriate for forward search. This stems from a basic reinterpretation of a
sequent during search. Previously, Γ =⇒ C expressed that we may use all
hypotheses in Γ to prove that C is true. Now we will think of Γ −→ C to mean
that we needed all the hypotheses in Γ in order to prove that C is true.

This means that weakening is no longer valid for sequents Γ −→ C and we
have to take special care when we formulate correctness theorems. Secondly,
we do not need to keep duplicate assumptions, so we view Γ in the sequent
Γ −→ C as a set of assumptions. We write Γ1 ∪ Γ2 for the union of two sets of
assumptions, and Γ, A stands for Γ ∪ {A}.1

Initial Sequents. Previously, we allowed Γ, A =⇒ A, since the assumptions
in Γ can be used, but are just not needed in this case. In the forward calculus,
initial sequents

init
A −→ A

express that only the hypothesis A is needed to derive the truth of A and nothing
else.

Conjunction. In the right rule for conjunction, we previously concluded Γ =⇒
A ∧ B from Γ =⇒ A and Γ =⇒ B. This expressed that all assumptions Γ are
available in both branches. Now we need to take the union of the two sets of
assumptions, expressing that both are needed to prove the conclusion.

Γ1 −→ A Γ2 −→ B
∧R

Γ1 ∪ Γ2 −→ A ∧B

On the left rules, so such considerations arise.

Γ, A −→ C
∧L1

Γ, A ∧B −→ C

Γ, B −→ C
∧L2

Γ, A ∧B −→ C

Note that if A ∧ B is already present in Γ in the two left rules, it will not be
added again.

1In the language of judgments, Γ −→ A is a strict hypothetical judgment.

Draft of April 13, 2004

5.1 Forward Sequent Calculus 95

Truth. As in the backward sequent calculus, there is only a right rule. Unlike
the backward sequent calculus, it does not permit any hypotheses.

>R
· −→ >

Implication. In the backward sequent calculus, the right rule for implication
has the form

Γ, A =⇒ B
⊃R.

Γ =⇒ A⊃B

In the forward direction this would not be sufficient, because it would allow us
to conclude A ⊃ B only if A is actually needed in the proof of B. To account
for this case, we introduce two separate rules.

Γ, A −→ B
⊃R1

Γ −→ A⊃B

Γ −→ B ⊃R2
Γ −→ A⊃B

Another, more efficient possibility combines these rules into one which removes
A from the context of the premise if it is there and otherwise leaves it unchanged
(see Section ??). In the left rule we have to take a union as in the right rule for
conjunction.

Γ1 −→ A Γ2, B −→ C
⊃L

Γ1 ∪ Γ2, A⊃B −→ C

Note that the principal proposition A ⊃ B does not occur in the premises.
However, it might occur in Γ1 or Γ2, in which case it is not added again in the
conclusion.

Disjunction. This introduces no new considerations.

Γ −→ A ∨R1
Γ −→ A ∨B

Γ −→ B ∨R2
Γ −→ A ∨B

Γ1, A −→ C Γ2, B −→ C
∨L

Γ1,Γ2, A ∨B −→ C

Falsehood. There is only a left rule.

⊥L
⊥ −→ C

We postpone the consideration of negation and quantifiers.
The soundness of the forward sequent calculus is easy to establish.

Theorem 5.1 (Soundness of Forward Sequent Calculus)
If Γ −→ C then Γ =⇒ C

Draft of April 13, 2004

96 The Inverse Method

Proof: By induction on the structure of the derivation F of Γ −→ C. We show
only some of the cases, since the patterns are very similar in the remaining ones.
In order to avoid confusion, we write Γ, A and Γ ∪ {A} for forward sequents to
be more explicit about possible contractions.

Case:

F = init
C −→ C

C =⇒ C By rule init

Case:

F =

F1

Γ1 −→ C1

F2

Γ2 −→ C2

∧R
Γ1 ∪ Γ2 −→ C1 ∧ C2

Γ1 =⇒ C1 By i.h. on F1

Γ1 ∪ Γ2 =⇒ C1 By weakening
Γ2 =⇒ C2 By i.h. on F2

Γ1 ∪ Γ2 =⇒ C2 By weakening
Γ1 ∪ Γ2 =⇒ C1 ∧ C2 By rule ∧R

Case:

F =

F1

Γ1 −→ A
F2

Γ2, B −→ C
⊃L

Γ1 ∪ Γ2 ∪ {A⊃B} −→ C

Γ1 =⇒ A By i.h. on F1

Γ1 ∪ Γ2, A⊃B =⇒ A By weakening
Γ2, B =⇒ C By i.h. on F2

Γ1 ∪ Γ2, A⊃B,B =⇒ C By weakening
Γ1 ∪ Γ2, A⊃B =⇒ C By rule ⊃L
Γ1 ∪ Γ2 ∪ {A⊃B} =⇒ C By contraction (if needed)

2

Completeness is more difficult. In fact, it is false! For example, for atomic
propositions P and Q we can not derive P,Q =⇒ P . Fortunately, the absence of
weakening is the only source of difficulty and can easily be taken into account.

Theorem 5.2 (Completeness of Forward Sequent Calculus)
If Γ =⇒ C then Γ′ −→ C for some Γ′ ⊆ Γ.

Proof: By induction on the structure of S for Γ =⇒ C.

Draft of April 13, 2004

5.2 Negation and Empty Succedents 97

Case:

S = init
Γ1, C =⇒ C

C −→ C By rule init
{C} ⊆ Γ1, C By definition of ⊆

Case:

S =

S1

Γ, A =⇒ B
⊃R

Γ =⇒ A⊃B

Γ′′ −→ B for some Γ′′ ⊆ Γ, A By i.h. on S1

Γ′′ = Γ′, A and Γ′ ⊆ Γ First subcase
Γ′ −→ A⊃B By rule ⊃R1

Γ′′ ⊆ Γ Second subcase
Γ′′ −→ A⊃B By rule ⊃R2

Case:

S =

S1

Γ1, A⊃B =⇒ A
S2

Γ1, A⊃B,B =⇒ C
⊃L

Γ1, A⊃B =⇒ C

Γ′1 −→ A for some Γ′1 ⊆ Γ1, A⊃B By i.h. on S1

Γ′2 −→ C for some Γ′2 ⊆ Γ1, A⊃B,B By i.h. on S2

Γ′2 = Γ′′2 , B and Γ′′2 ⊆ Γ1, A⊃B First subcase
Γ′1 ∪ Γ′′2 ∪ {A⊃B} −→ C By rule ⊃L
Γ′1 ∪ Γ′′2 ∪ {A⊃B} ⊆ Γ1 ∪ {A⊃B} By properties of ⊆
Γ′2 ⊆ Γ1, A⊃B Second subcase
Γ′ = Γ′2 satisfies claim

2

5.2 Negation and Empty Succedents

In the backward sequent calculus, the rules for negation

Γ, A =⇒ p
¬Rp

Γ =⇒ ¬A

Γ,¬A =⇒ A
¬L

Γ,¬A =⇒ C

require propositional parameters p. In Gentzen’s original formulation of the
sequent calculus he avoided this complication by allowing an empty right-hand
side. A sequent of the form

Γ =⇒ ·

Draft of April 13, 2004

98 The Inverse Method

can then be interpreted as

Γ =⇒ p for a parameter p not in Γ

As a result we can substitute an arbitrary proposition for the right-hand side (the
defining property for parametric judgments) and obtain an evident judgment.
In the sequent calculus with empty right-hand sides, this can be accomplished
by weakening on the right:

If Γ =⇒ · then Γ =⇒ C for any proposition C.

When the right-hand side can be empty or a singleton we write Γ =⇒ γ,
where γ = C or γ = ·.

In a forward sequent calculus we can take advantage of this in order to avoid
overcommitment in the rules for negation and falsehood. We first show the
forward rules for negation; then we reexamine all the previous rules.

Negation. We just take advantage of the new form of judgment, avoiding, for
example, a commitment to a particular proposition C in the ¬L rule.

Γ, A −→ ·
¬R

Γ −→ ¬A

Γ −→ A
¬L

Γ,¬A −→ ·

Interestingly, we do not need a second right rule for negation as for implication
(see Exercise ??).

Falsehood. Falsehood can similarly benefit from avoiding commitment. Note
that previously the rule stated ⊥ −→ C, although there are many possible
choices for C. Now we just replace this by

⊥L
⊥ −→ ·

There still is no right rule.

Initial Sequents. They do not change.

init
A −→ A

Conjunction. The right rule requires no change.

Γ1 −→ A Γ2 −→ B
∧R

Γ1 ∪ Γ2 −→ A ∧B

On the left rules simply need to allow for an empty right-hand side.

Γ, A −→ γ
∧L1

Γ, A ∧B −→ γ

Γ, B −→ γ
∧L2

Γ, A ∧B −→ γ

Draft of April 13, 2004

5.2 Negation and Empty Succedents 99

Truth. Does not change.
>R

· −→ >

Implication. The possibility of empty right-hand sides requires a third right
rule for implication. Again, in an implementation the three rules might be
combined into a more efficient one.

Γ, A −→ B
⊃R1

Γ −→ A⊃B

Γ −→ B ⊃R2
Γ −→ A⊃B

Γ, A −→ ·
⊃R3

Γ −→ A⊃B

Γ1 −→ A Γ2, B −→ γ
⊃L

Γ1 ∪ Γ2, A⊃B −→ γ

Disjunction. The rule for disjunction on the right remains the same, but the
left rule now has to account for several possibilities, depending on whether the
right-hand sides of the premises are empty. Essentially, we take the union of the
right-hand sides of the two premises, except that the result must be a singleton
or empty for the sequent to be well-formed.

Γ −→ A ∨R1
Γ −→ A ∨B

Γ −→ B ∨R2
Γ −→ A ∨B

Γ1, A −→ γ1 Γ2, B −→ γ2
∨L

Γ1 ∪ Γ2, A ∨B −→ γ1 ∪ γ2

In detail, either γ1 or γ2 is empty, or γ1 = γ2 = C = γ1 ∪ γ2. The rule does not
apply otherwise.

The statement of the soundness theorem does not change much with empty
succedents.

Theorem 5.3 (Soundness of Forward Sequent Calculus)

1. If Γ −→ C then Γ =⇒ C, and

2. if Γ −→ · then Γ =⇒ C for all C.

Proof: By induction on the derivation F of Γ −→ γ. 2

In the completeness theorem, we now need to allow possible weakening on
the left or on the right.

Theorem 5.4 (Completeness of Forward Sequent Calculus)

1. If Γ =⇒ C then Γ′ −→ C or Γ′ −→ · for some Γ′ ⊆ Γ.

Proof: By induction on the derivation S of Γ =⇒ C. 2

Draft of April 13, 2004

100 The Inverse Method

5.3 The Subformula Property

It is a general property of cut-free sequent calculi that all propositions occurring
in a derivation are subformulas of the endsequent. In the forward direction we
can therefore restrict the application of a rule to the case where the principal
formula in the conclusion is a subformula of the goal sequent. We refine this
property further by tracking positive and negative subformula occurrences. We
then restrict left rule to introduce only negative subformulas of the goal sequent
and right rules to positive subformulas of the goal sequent. To this end we
introduce signed formulas.

Positive A+ ::= P+ | A+
1 ∧A+

2 | A−
1 ⊃A+

2 | A+
1 ∨A+

2 | >+ | ⊥+ | ¬A−

Negative A− ::= P− | A−
1 ∧A−

2 | A+
1 ⊃A−

2 | A−
1 ∨A−

2 | >− | ⊥− | ¬A+

It is obvious that every proposition can be annotated both positively and
negatively, and that such an annotation is unique. We write Γ− for a context
A−

1 , . . . , A−
n and γ+ for an empty succedent or C+. All inference rules for

the sequent calculus can be annotated so that for a goal sequent Γ− −→ γ+,
each sequent arising in the derivation has the same form, with only negative
propositions on the left and positive propositions on the right (see Exercise 5.1).
We say that A is a subformula of Γ or γ if A is a subformula of an element of
Γ or γ, respectively, and similarly for signed propositions.

Theorem 5.5 (Signed Subformula Property)
Given a derivation S of Γ− −→ γ+. Then each sequent in S has the form
A−

1 , . . . , A−
n −→ B+ or A−

1 , . . . , A−
n −→ · where all A−

i and B+ are signed
subformulas of Γ− or γ+.

Proof: By straightforward induction on the structure of S. 2

Note that this is a very strong theorem, since it asserts not only that every
provable goal sequent has a derivation consisting of subformulas, but that all
derivations of a provable sequent consist only of subformulas. A sequent not
consisting of subformulas cannot contribute to a derivation of a goal sequent in
the (cut-free) forward sequent calculus.

The subformula property immediately gives rise to a procedure for forward
theorem proving. We start with all initial sequents of the form A− −→ A+

where both A− and A+ are signed subformulas of the goal sequent. We also
have to add · −→ >+ and ⊥− −→ · if >+ or ⊥− are subformulas of the goal
sequent, respectively.

Then we apply all possible inference rules where the principal proposition
in the conclusion is a subformula of the goal sequent. We stop with success
when we have generated the goal sequent, or if the goal sequent can be obtained
from a generated sequent by weakening. We fail if any possible way of applying
inference rules yields only sequents already in the database. In that case the goal
sequent cannot be derivable if we have not encountered it (or a strengthened
form of it) already.

Draft of April 13, 2004

5.4 Naming Subformulas 101

We now show an example derivation in a linearized format. The goal sequent
is A⊃ (B ⊃ C) −→ ((A ∧B)⊃ C). After signing each subformula we obtain

(A+ ⊃ (B+ ⊃ C−)−)− −→ (((A− ∧B−)−)⊃ C+)+

If show only the top-level sign, this leads to the following list of signed subfor-
mulas.

A+, B+, C−, A−, B−, C+,
(B ⊃ C)−, (A ∧B)−,
(A⊃ (B ⊃ C))−, ((A ∧B)⊃ C)+

This means we have both positive and negative occurrences of A, B, and C and
we have to consider three initial sequents.

1 A− −→ A+ init

2 B− −→ B+ init

3 C− −→ C+ init

4 (A ∧B)− −→ A+ ∧L1 1

5 (A ∧B)− −→ B+ ∧L1 2

6 (A ∧B)−, (B ⊃ C)− −→ C+ ⊃L 5 3

7 (A ∧B)−, (A⊃ (B ⊃ C))− −→ C+ ⊃L 4 6

8 (A⊃ (B ⊃ C))− −→ ((A ∧B)⊃ C)+ ⊃R1 7
We use the horizontal lines to indicate iterations of an algorithm which

derives all possible new consequences from the sequents already established. We
have elided those sequents that do not contribute to the final derivation. For
example, in the first step we can use ⊃R2 to conclude C− −→ ((A∧B)⊃C)+,
from C− −→ C+, since the succedent is a positive subformula of the goal
sequent.

Note that the inference of line 7 contains an implicit contraction, since (A∧
B)− is an assumption in both premises (4 and 6).

5.4 Naming Subformulas

Without any further optimizations, the check if a given inference rule should be
used in the forward direction is complicated, since we have to repeatedly scan
the goal sequent for subformula occurrences. An integral part of the inverse
method is to avoid this scan by introducing names for non-atomic subformulas
and then specialize the inference rules to work only the names. We will not be
formal about this optimization, since we view it as an implementation technique,
but not an improvement of a logical nature. By expanding all newly defined
names we obtain a derivation as in the previous section.

We return to the previous example to illustrate the technique. The goal
sequent is A ⊃ (B ⊃ C) −→ (A ∧ B) ⊃ C. After naming each subformula we
obtain the signed atomic propositions

A+, B+, C−, A−, B−, C+,

Draft of April 13, 2004

102 The Inverse Method

and the new names
L−1 = B+ ⊃ C−

L−2 = A− ∧B−

L−3 = A+ ⊃ L−1
L+

4 = L−2 ⊃ C+

We can now write out the general sequent calculus inference rules, specialized
to the above labels. Since the goal sequent contains no negative occurrence of
negation or falsehood, we may restrict the right-hand sides of all rules to be
non-empty. This means only two implication right rules are necessary instead
of three for L+

4 .

Γ1 −→ B+ Γ2, C
− −→ γ

⊃L (L−1)
Γ1 ∪ Γ2, L

−
1 −→ γ

Γ, A− −→ γ
∧L1 (L−2)

Γ, L−2 −→ γ

Γ, B− −→ γ
∧L2 (L−2)

Γ, L−2 −→ γ

Γ1 −→ A+ Γ2, L
−
1 −→ γ

⊃L (L−3)
Γ1 ∪ Γ2, L

−
3 −→ γ

Γ, L−2 −→ C+

⊃R1 (L+
4)

Γ −→ L+
4

Γ −→ C+

⊃R2 (L+
4)

Γ −→ L+
4

In its labeled form, the derivation above looks as follows.
1 A− −→ A+ init

2 B− −→ B+ init

3 C− −→ C+ init

4 L−2 −→ A+ ∧L1 1

5 L−2 −→ B+ ∧L1 2

6 L−2 , L−1 −→ C+ ⊃L 5 3

7 L−2 , L−3 −→ C+ ⊃L 4 6

8 L−3 −→ L+
4 ⊃R1 7

In the algorithm for labeling subterms we can avoid some redundancy if
we give identical subterms the same label. However, this is not required for
soundness and completeness, it only trims the search space.

Another choice arises for initial sequents. As in backwards search, we may re-
strict ourselves to atomic initial sequents or we may allow arbitrary labeled sub-
formulas as long as they occur both negatively and positively. Tammet [Tam96]
reports that allowing non-atomic initial sequents led to significant speed-up on a
certain class of test problems. Of course, in their named form, even non-atomic
sequents have the simple form L− −→ L+ for a label L.

Draft of April 13, 2004

5.5 Forward Subsumption 103

5.5 Forward Subsumption

For the propositional case, we can obtain a decision procedure from the inverse
method. We stop with success if we have reached the goal sequent (or a strength-
ened form of it) and with failure if any possible application of an inference rule
leads to a sequent that is already present. This means we should devise a data
structure or algorithm which allows us to check easily if the conclusion of an
inference rule application is already present in the database of derived sequents.
This check for equality should allow for permutations of hypotheses.

We can improve this further by not just checking equality modulo permu-
tations, but taking weakening into account. For example, if we have derived
L−1 , L−2 −→ L+

4 then the sequent L−1 , L−2 , L−3 −→ L+
4 is redundant and could

simply be obtained from the previous sequent by weakening. Similarly, L−1 −→ ·
has more information than L−1 −→ L+

2 , so the latter clause does not need to
be kept if we have the former clause. Note that we already need this form of
weakening to determine success if the goal sequent has assumptions. We say
the a sequent S subsumes a sequent S′ (written as S ≤ S′) if S′ can be obtains
from S by weakening on the right and left.

In the propositional case, there is a relatively simple way to implement sub-
sumption. We introduce a total ordering among all atomic propositions and
also the new literals introduced during the naming process. Then we keep the
antecedents of each sequent as an ordered list of atoms and literals. The union
operation required in the implementation of inference rules with two premises,
and the subset test required for subsumption can now both be implemented
efficiently.

The reverse, called backward subsumption discards a previously derived se-
quent S if the new sequent S′ subsumes S. Generally, backward subsumption is
considered less fundamentally important. For example, it is not necessary to ob-
tain a decision procedure for the propositional case. Implementations generally
appear to be optimized for efficient forward subsumption.

[the remainder of this section is speculative]

However, it seems possible to exploit backward subsumption in a stronger
way. Instead of simply deleting the subsumed sequent, we could strengthen its
consequences, essentially by replaying the rules applied to it on the stronger
sequent.

5.6 Proof Terms for the Inverse Method

The simplicity of the proof for the completeness theorem (Theorem 5.4) indicates
that a proof term assignment should be relatively straightforward. The implicit
contraction necessary when taking the union of two sets of antecedents presents
the only complication. A straightforward solution seems to be to label each
antecedent not with just a single variable, but with a set of variables. When
taking the union of two sets of antecedents, we also need to take the union of

Draft of April 13, 2004

104 The Inverse Method

the corresponding label sets. But this would require globally different variables
for labeling antecedents in order to avoid interference between the premises of
two-premise rules. Another possibility would be to assign a unique label to each
negative subformula of the goal sequent and simply use this label in the proof
term. This strategy will have to be reexamined in the first-order case, since a
given literal may appear with different arguments.

Note that proof term assignment in the forward sequent calculus can be
done on-line or off-line. In the on-line method we construct an appropriate
proof term for each sequent at each inference step in a partial derivation. In
the off-line method we keep track of the minimal information so we can recover
the actual sequence of inference steps to arrive a the final conclusion. From this
we reconstruct a proof term only once a complete sequent derivation has been
found.

The on-line method would be preferable if we could use the proof term
information to guide further inferences or subsumption; otherwise the off-line
method is preferable since the overhead is reduced to a a validation phase once
a proof has been found.

5.7 Forward Sequent Calculus for First-Order
Logic

Generalizing the basic ideas of the inverse method as introduced in the preced-
ing sections requires unification (see Section 4.4), although it is employed in a
different way than in backward search. The underlying method can be traced
directly to Robinson’s original work on resolution [Rob65], and precise connec-
tions to classical resolution have been established in the literature [Tam97].

The extension of the forward sequent calculus to the first-order case is
straightforward.

Γ, [t/x]A −→ γ
∀L

Γ,∀x. A −→ γ

Γ −→ [a/x]A
∀Ra

Γ −→ ∀x. A

Γ, [a/x]A −→ γ
∃La

Γ,∃x. A −→ γ

Γ −→ [t/x]A
∃R

Γ −→ ∃x. A

Recall the restriction on the ∀R and ∃L rules: the derivation of premise
must be parametric in a. That is, a may not occur in Γ or A. Soundness
and completeness of this calculus with respect to the backward sequent calculus
extends in a straightforward way.

These rules suggest an extension of the subformula property. We write A <
B for A is an immediate subformula of B, ± for an arbitrary sign (+ or −) and

Draft of April 13, 2004

5.7 Forward Sequent Calculus for First-Order Logic 105

∓ for its complement.

A± < (A ∧B)± B± < (A ∧B)±

A± < (A ∨B)± B± < (A ∨B)±

A∓ < (A⊃B)± B± < (A⊃B)±

[a/x]A+ < (∀x. A)+ for all parameters a
[t/x]A− < (∀x. A)− for all terms t
[t/x]A+ < (∃x. A)+ for all terms t
[a/x]A− < (∃x. A)− for all parameters a

We write A <∗ B for the reflexive and transitive closure of the immediate
subformula relation. Also, we write A <∗ Γ if there is a formula B in Γ such
that A <∗ B, and ∆ <∗ Γ if for every A in ∆, A <∗ Γ.

The signed subformula property (Theorem 5.5) directly extends to the first-
order case, using the definitions above:

For all sequents ∆− −→ A+ or ∆− −→ · in a derivation of Γ− −→
C+ or Γ− −→ · we have ∆−, A+ <∗ Γ−, C+.

Before formalizing the first-order inverse method, we now go through sev-
eral examples which show how to take advantage of this extended subformula
property in order to construct a search algorithm.

The first example is

(∀x. P (x)⊃ P (g(x))) −→ P (c)⊃ P (g(g(c)))

for a unary predicate P , function f and constant c. We begin by enumerating
and naming subformulas. First, the atomic subformulas, from left to right.

(i) P (t)+ for all terms t
(ii) P (g(s))− for all terms s
(iii) P (c)−

(iv) P (g(g(c)))+

Now, we have to consider all initial sequents Q −→ Q where Q is a subformula
of the goal sequent above. To this end we unify positive and negative atomic
propositions, treating t and s as variables, since they stand for arbitrary terms.
We obtain:

1. P (g(s))− −→ P (g(s))+ for all term s, from (ii) and (i)
2. P (g(g(c)))− −→ P (g(g(c)))+ from (ii) and (iv)
3. P (c)− −→ P (c)+ from (iii) and (i)

Note that the sequent (1) above represents a schematic judgment in the same
way that inferences rules are schematic, where s is a schematic variable ranging
over arbitrary terms. This will be true not only of the initial sequents, but
of the sequents we derive. This is one of the major generalizations from the
propositional case of the inverse method.

Draft of April 13, 2004

106 The Inverse Method

We can see that the initial sequents described in line (1) includes those in
line (2), since we can use g(c) for s. This is an extended form of subsumption:
not only do we check is one sequent can be weakened to another, but we also
have to allow for instantiation of variables (s, in this case).

Next, we introduce names for compound subformulas.

L1(t)− = P (t)+ ⊃ P (g(t))− for terms t
L−2 = ∀x. L1(x)−

L+
3 = P (c)− ⊃ P (g(g(c)))+

From the general forward sequent rules, we can now construct versions of
the inference rules specialized to subformulas of the goal sequent.

Γ1 −→ P (t)+ Γ2, P (g(t))− −→ γ
⊃L

Γ1 ∪ Γ2, L1(t)− −→ γ

Γ, L1(t)− −→ γ
∀L

Γ, L−2 −→ γ

Γ, P (c)− −→ P (g(g(c)))+
⊃R1

Γ −→ L+
3

Γ −→ P (g(g(c)))+
⊃R2

Γ −→ L+
3

Γ, P (c)− −→ ·
⊃R3

Γ −→ L+
3

The notation distinguishes the cases where an arbitrary term t is involved
in the rule because of the principal connective (in the ∀L rule) and where an
arbitrary term t is involved because of subformula considerations (in the ⊃L
rule).

We can now use these rules, starting from the remaining two initial sequents
to derive the goal sequent L−2 −→ L+

3 . We omit some, but not all sequents that
could be generated, but do not contribute to the final derivation.

1. P (g(s))− −→ P (g(s))+ init, for all terms s
3. P (c)− −→ P (c)+ init
4. P (c)−, L1(c)− −→ P (g(c))+ ⊃L 3 1[c/s]
5. P (g(t))−, L1(g(t))− −→ P (g(g(t)))− ⊃L 1[t/s] 1[g(t)/s], for all t
6. P (g(g(c)))− −→ L+

3 ⊃R2 1[g(c)/s]
7. P (g(t))−, L−2 −→ P (g(g(t)))+ ∀L 5, for all t

8. P (c)−, L−2 , L1(c)− −→ P (g(g(c)))+ ⊃L 3 7[c/t]
9. P (c)−, L−2 −→ P (g(g(c)))+ ∀L 8,with contraction
10. L−2 −→ L+

3 ⊃R1 9

Inference previously involved matching a sequents against the premises of an
inference rule. As this example shows, we now have to unify derived sequents

Draft of April 13, 2004

5.7 Forward Sequent Calculus for First-Order Logic 107

with the premises of the inference rules. The schematic variables in the sequent
as well as in the inference rule may be instantiated in this process, thereby
determining the most general conclusion. It is important in this process to note
that the scope of each schematic variable includes only a particular sequent or
inference rule. Schematic variables called t in different sequents are different—
usually this is accounted for by systematically renaming variables before starting
unification.

The example above does not involve any parameters, only schematic vari-
ables. We now consider another example involving parameters,

∃y. ∀x. P (x, y) −→ ∀x. ∃y. P (x, y)

for a binary predicate P . Clearly, this judgment should be derivable. Again, we
first generate positive and negative atomic subformulas.

(i) P (t, a)− for all terms t and parameters a
(ii) P (b, s)+ for all parameters b and terms s

Because of the negative existential and positive universal quantification the
allowed instances of the atomic subformulas are restricted to parameters in
certain places. However, it should be understood that a in line (i) is only a
schematic variable ranging over parameters and may be instantiated to different
parameters for different uses of a negative formula P (,)−.

Next we generate all possible atomic initial sequents. This means we have to
look for common instances of the positive and negative atomic formulas schemas
listed above. The only possible instances have the form

1. P (b, a)− −→ P (b, a)+ for all parameters b and terms s

Now we list the possible compound subformulas.

L1(a)− = ∀x. P (x, a)− for parameters a
L−2 = ∃y. L1(y)−

L3(b)+ = ∃y. P (b, y)+ for parameters b
L+

4 = ∀x. L3(x)+

The specialized inference rules read:

Γ, P (t, a)− −→ γ
∀L

Γ, L1(a)− −→ γ

Γ, L1(a)− −→ γ
∃La

Γ, L−2 −→ γ

Γ −→ P (b, s)+
∃R

Γ −→ L3(b)+

Γ −→ L3(b)+
∀Rb

Γ −→ L+
4

Note that the ∃L and ∀R rules have parametric premises, which means we
have to enforce the side condition that parameter a or b do not occur elsewhere in
the premises of these two rules, respectively. The derivation takes the following

Draft of April 13, 2004

108 The Inverse Method

simple form. We omit signs for brevity, and it should be understood that b and
a are quantified locally in each sequent.

1. P (b, a) −→ P (b, a) init
2. L1(a) −→ P (b, a) ∀L 1
3. P (b, a) −→ L3(b) ∃R 1
4. L1(a) −→ L3(b) ∃R 2
5. L1(a) −→ L3(b) ∀L 3 (subsumed by 4)
6. L2 −→ L3(b) ∃La 4
7. L1(a) −→ L4 ∀Rb 4
8. L2 −→ L4 ∀Rb 6 or ∃La 7

Note that the ∃L and ∀R rule are not applicable to sequents (2) or (3),
because the side conditions on the parameters would be violated.

Next we consider the converse, which should not be derivable.

∀x. ∃y. P (x, y) −→ ∃y. ∀x. P (x, y)

Again, we first generate the atomic subformulas.

(i) P (t, a)− for all terms t and parameters a
(ii) P (b, s)+ for all parameters b and terms s

Then the possible initial sequents.

1. P (b, a)− −→ P (b, a)+ for all parameters b and terms a

Then, the compound subformulas.

L1(t)− = ∃y. P (t, y)− for terms t
L−2 = ∀x. L1(x)−

L3(s)+ = ∀x. P (x, s)+ for terms s
L+

4 = ∃y. L3(y)+

From this we derive the specialized rules of inference.

Γ, P (t, a)− −→ γ
∃La

Γ, L1(t)− −→ γ

Γ, L1(t)− −→ γ
∀L

Γ, L−2 −→ γ

Γ −→ P (b, s)+
∀R

Γ −→ L3(s)+

Γ −→ L3(s)+
∃R

Γ −→ L+
4

Given an initial sequent

1. P (b, a)− −→ P (b, a)+ for all parameters b and terms a

we see that no inference rules are applicable, because the side condition on
parameter occurrences would be violated. Therefore the goal sequent cannot be
derivable.

Draft of April 13, 2004

5.8 Factoring 109

5.8 Factoring

The examples in the previous section suggest the following algorithm:

1. Determine all signed schematic atomic subformulas of the given goal se-
quent.

2. Unify positive and negative atomic subformulas after renaming variables
so they have none in common. This yields a set of initial sequents from
which subsumed copies should be eliminated.

3. Name all signed compound subformulas as new predicates on their free
variables.

4. Specialize the inference rules to these subformulas.

5. Starting from the initial sequents, apply the specialized inference rules in
a fair way by unifying (freshly renamed) copies of sequents derived so far
with premises of the inference rules, generating most general conclusions
as a new schematic sequents.

6. Stop with success when the goal sequent has been derived.

Perhaps somewhat surprisingly, this method is incomplete using only the
rules given so far. As a counterexample, consider

· −→ ∃x. P (x)⊃ P (x) ∧ P (c)

for a unary predicate P and constant c. Initial sequents:

1. P (t) −→ P (t) for all terms t
2. P (c) −→ P (c) (subsumed by (1))

Signed subformulas:

L+
1 (s) = P (s)+ ∧ P (c)+

L+
2 (s) = P (s)− ⊃ L1(s)+

L+
3 = ∃x. L+

2 (x)

Specialized rules (omitting polarities and the irrelevant ⊃R3):

Γ1 −→ P (s) Γ2 −→ P (c)
∧I

Γ1 ∪ Γ2 −→ L1

Γ, P (s) −→ L1(s)
⊃R1

Γ −→ L2(s)

Γ −→ L1(s)
⊃R2

Γ −→ L2(s)

Γ −→ L2(t)
∃R

Γ −→ L3

Draft of April 13, 2004

110 The Inverse Method

Initially, we can only apply ∧I, after renaming a copy of (1).

1. P (t) −→ P (t) init, for all terms t
3. P (t), P (c) −→ L1(t) ∧R 1[t/t] 1[c/t], for all terms t

Now there are two ways to apply the ⊃R1 rule, but either P (t) or P (c) is left
behind as an assumption, and the goal sequent cannot be derived.

The problem is that even though the sequent

P (c) −→ L1(c)

should be derivable, it is only the contraction of an instance of sequent (3).
We therefore extend the system with an explicit rule which permits contraction
after instantiation, called factoring. That is, after we derive a new sequent, we
consider possible most general unifiers among antecedents of the sequent and
add the results (while continuing to check for subsumption).

In the example above, we proceed as follows:

1. P (t) −→ P (t) init, for all terms t
3. P (t), P (c) −→ L1(t) ∧R 1[t/t] 1[c/t], for all terms t
4. P (c) −→ L1(c) factor 3[c/t]
5. · −→ L2(c) ⊃R1 4
6. · −→ L3 ∃R

Usually, this is done eagerly for each rule which unions assumptions and
therefore might allow new factors to be derived. It is also possible to delay
this until the rules which require factoring (such as ⊃R), but this might require
factoring to be done repeatedly and may prohibit some subsumption.

In our inference rule notation, where unification of sequents with premises
of rules is implicit, this factoring rule would simply look like a contraction.

Γ, A, A −→ C
contract

Γ, A −→ C

Previously, this was implicit, since we maintained assumptions as sets.

5.9 Inverse Focusing

In the system presented so far the non-determinism in forward reasoning is still
unacceptable, despite the use of subsumption. We can now analyze the rules in
a way that is analogous to Chapter 4, taking advantage of inversion and focus-
ing properties. This eliminates many derivations, significantly improving overall
efficiency at a high level of abstraction. Similar optimizations have been pro-
posed by Tammet [Tam96] and Mints [Min94], although the exact relationship
between these system and the one presented below have yet to be investigated.
The work here exploits Andreoli’s observation [?] that focused derivations cor-
respond to interpreting propositions as derived rules of inference. Much of this

Draft of April 13, 2004

5.9 Inverse Focusing 111

section, however, is speculative in the sense that no formal properties have been
proven.

Our overall strategy is to restrict the inverse method further so that it can
find only focused proofs.

Given a sequent Γ =⇒ A, use ordinary backward reasoning to decompose
·; Γ a=⇒ A; · into a collection of subgoals, all of which have the form ∆; · a=⇒ ·;R.
Note that this set is uniquely determined (modulo names of parameters that may
be introduced). We prove each of the subgoals completely independently.

We call sequents of the form ∆; · a=⇒ ·;R stable sequents. Recall that ∆
consists only of left synchronous propositions (P , A ⊃ B, ∀x. A) and R only
of right synchronous propositions (P , A ∨ B, ⊥, ∃x. A). In our version of
the inverse method, we only generate stable sequents, so we write them as
∆ −→ R. Furthermore, instead of naming all subformulas, we only name the
subformulas that could occur in stable sequents in the search for a proof of the
given proposition.

As a first example, consider proving (A⊃ (B ⊃ C))⊃ ((A ∧B)⊃ C). Here,
A, B, and C are considered atomic formulas. We begin by decomposing all
top-level asynchronous connectives.

B,A,A⊃ (B ⊃ C); · a=⇒ ·;C
B,A;A⊃ (B ⊃ C) a=⇒ ·;C
B;A⊃ (B ⊃ C), A a=⇒ ·;C
·;A⊃ (B ⊃ C), A, B

a=⇒ ·;C
·;A⊃ (B ⊃ C), A ∧B

a=⇒ ·;C
·;A⊃ (B ⊃ C), A ∧B

a=⇒ C; ·
·;A⊃ (B ⊃ C) a=⇒ (A ∧B)⊃ C; ·
·; · a=⇒ (A⊃ (B ⊃ C))⊃ ((A ∧B)⊃ C); ·

Next we consider how a bottom-up proof search could proceed: it could focus
on any of the three propositions in the premise, but not on the conclusion (since
C is atomic).

Focusing on B or A succeeds only if the conclusion is B and A, respectively.
This leads to the initial sequents

A −→ A
B −→ B

If we focus on A⊃ (B ⊃C), in a situation where have some unknown ∆ and R,
the proof fragment would have to look as follows:

(1) ∆; · a=⇒ ·;A
(2) ∆; · s=⇒ A; · blurR 1
(3) ∆; · a=⇒ ·;B
(4) ∆; · s=⇒ B; · blurR 3
(5) ∆;C s=⇒ ·;R
(6) ∆;B ⊃ C

s=⇒ ·;R ⊃L 5 4
(7) ∆;A⊃ (B ⊃ C) s=⇒ ·;R ⊃L 6 2

Draft of April 13, 2004

112 The Inverse Method

Here (1) and (3) are stable sequents, but what about (5)? The only rule that
applies is init, for C = R. This means any use of focusing with the hypothesis
A⊃ (B ⊃C) will reduce the goal of proving C to the goal of proving A and B.
Writing is as a derived rule (and changing it to the forward direction)

∆1 −→ A ∆2 −→ B

∆1,∆2, A⊃ (B ⊃ C) −→ C

Next we observe that B, A, and A⊃(B⊃C) would occur in any (bottom-up)
focused sequent that is part of the proof search tree. We call such assumptions
global and do not explicitly write them in our sequents. As a result we have
exactly two axioms and one rule of inference.

· −→ A

· −→ B

∆1 −→ A ∆2 −→ B

∆1,∆2 −→ C

The overall goal is to prove · −→ C, which follows in one inference. We also
observe that ∆1 and ∆2 in the sole inference rule will always be empty, since
all initial sequents have an empty right-hand side, and all inference rules (only
one, here) preserve this property. We claim, without substantiating it, that this
is true for any Horn theory.

As a second example, consider ((A ∨C) ∧ (B ⊃C))⊃ ((A⊃B)⊃C). First,
we decompose the asynchronous connectives, which yields two independent the-
orems to prove.

A⊃B,B ⊃ C,A; · a=⇒ ·;C
A⊃B,B ⊃ C,C; · a=⇒ ·;C

The second one is trivial. For the first one, focusing on the three possible
assumptions, and deleting global assumptions, yields one starting sequent and
two rules of inference.

· −→ A

∆ −→ B

∆ −→ C

∆ −→ A

∆ −→ B

Now · −→ C follows in two (forced) steps.
As an example of an unprovable sequent, consider the reverse implication

((A⊃B)⊃ C)⊃ ((A ∨ C) ∧ (B ⊃ C)). Asynchronous decomposition yields two
independent stable sequents to be proven.

(A⊃B)⊃ C; · a=⇒ ·;A ∨ C

B, (A⊃B)⊃ C; · a=⇒ ·;C

Draft of April 13, 2004

5.9 Inverse Focusing 113

Analysing the first one, we apply synchronous decomposition on the right and
on the left. On the right we have two possible derivation fragments.

∆; · a=⇒ ·;A

∆; · s=⇒ A; ·

∆; · s=⇒ A ∨ C; ·

∆; · a=⇒ ·;A ∨ C

∆; · a=⇒ ·;C

∆; · s=⇒ C; ·

∆; · s=⇒ A ∨ C; ·

∆; · a=⇒ ·;A ∨ C

This yields two derived rules of inference in the forward direction.

∆ −→ A

∆ −→ A ∨ C

∆ −→ C

∆ −→ A ∨ C

Focusing on the left-hand side instead, we obtain:

∆; C s=⇒ ·;R

∆, A; · a=⇒ ·;B
3 steps

∆; · a=⇒ A⊃B; ·

∆; · s=⇒ A⊃B; ·

∆; (A⊃B)⊃ C
s=⇒ ·;R

The leftmost open premise forces R = C, so we obtain the rule

∆, A −→ B

∆ −→ C

We have to be careful when applying this rule, because A may not acutally be
present on the left-hand side (or, if we consider empty succedents, B on the
right-hand side). We should mark A and B as optional (although at least one
of them must be there, otherwise the rule makes no progress and the conclusion
is subsumed by the premise). We indicate this with square brackets.

∆, [A] −→ [B]

∆ −→ C

Because focusing on (A⊃B)⊃C adds A as a new assumption, and B as a new
conclusion we need to iterate the process of deriving rules. B in the conclusion
yields no rule (we cannot focus on an atomic succedent), but A in the premise
does because we also have a positive occurrence of A in a prior rule, which yields
the initial sequent

A −→ A

Draft of April 13, 2004

114 The Inverse Method

Summarizing the situation, we have

∆ −→ A

∆ −→ A ∨ C

∆ −→ C

∆ −→ A ∨ C

∆, [A] −→ [B]

∆ −→ C

A −→ A

Forward reasoning saturates after one step, without proving C, which means
that this sequent we started with is unprovable. This means the original formula
is (intuitionistically) unprovable. However, we can still consider the second
subgoal

B, (A⊃B)⊃ C; · a=⇒ ·;C

Applying a similiar analysis to before, we obtain:

∆, [A] −→ [B]

∆ −→ C

B −→ B

After one step we obtain · −→ C (applying the only rule without matching A),
which is what we needed to prove. So this subgoal is indeed provable.

Next we consider a first-order example, (∀x. A(x)⊃ C)⊃ ((∃x. A(x))⊃ C),
where x not free in C. First, we decompose the asynchronous connectives.

A(b),∀x. A(x)⊃ C; · a=⇒ ·;C
A(b);∀x. A(x)⊃ C

a=⇒ ·;C
·;∀x. A(x)⊃ C,A(b) a=⇒ ·;C
·;∀x. A(x)⊃ C,∃x. A(x) a=⇒ ·;C
·;∀x. A(x)⊃ C,∃x. A(x) a=⇒ C; ·
·;∀x. A(x)⊃ C

a=⇒ (∃x. A(x))⊃ C; ·
·; · a=⇒ (∀x. A(x)⊃ C)⊃ ((∃x. A(x))⊃ C); ·

In the resulting stable sequent we have a new parameter b. Since it will be
available in any sequent of its proof, we can consider it as a parameter with
global scope (that is, a constant). Focusing on A(b) (and erasing the global
assumption A(b)) yields the initial sequent

· −→ A(b)

Draft of April 13, 2004

5.10 Exercises 115

Focusing on the implication yields

∆; C s=⇒ ·;R

∆; · a=⇒ ·;A(t)

∆; · s=⇒ A(t); ·

∆; A(t)⊃ C
s=⇒ ·;R

∆;∀x. A(x)⊃ C
s=⇒ ·;R

The left-most open goal forces R = C, and we obtain the rule

∆ −→ A(t)

∆ −→ C

Note that this rule is schematic in t. Now we obtain our overall goal C in one
step, using b for t.

It does not show up very prominently in our examples, but for completeness
of this method it is critical that we continue the construction of derived rules
with the new subformulas that arise when focusing on any proposition in a
stable sequent ends in a collection of new stable sequent.

So, given a stable sequent to start with, we pick a synchronous proposition on
the left or right. We iterate synchronous decomposition, obtaining asynchronous
subgoals. Those asynchronous subgoals are now decomposed in turn, until we
have again all stable sequents. The new propositions in these stable sequents
must be named, and then recursively analyzed in the same way.

We must also take care to allow some formula occurrences in the premises of
the derived rule to be absent from the sequents they are matched against. We
only sketched this here in one of the examples. Finally, we conjecture that it is
sufficient to consider contraction (factoring) on stable sequents.

5.10 Exercises

Exercise 5.1 Show the forward sequent calculus on signed propositions and
prove that if Γ −→ A then Γ− −→ A+.

Exercise 5.2 In the exercise we explore add the connective A ≡ B as a primi-
tive to inverse method.

1. Following Exercise 2.6, introduce appropriate left and right rules to the
backward sequent calculus.

2. Transform the rules to be appropriate for the forward sequent calculus.

3. Extend the notion of positive and negative subformula.

4. Extend the technique of subformula naming and inference rule specializa-
tion.

Draft of April 13, 2004

116 The Inverse Method

5. Show inverse derivations for each of the following.

(a) Reflexivity: −→ A ≡ A.

(b) Symmetry: A ≡ B −→ B ≡ A.

(c) Transitivity: A ≡ B,B ≡ C −→ A ≡ C.

6. Compare your technique with thinking of A ≡ B as a syntactic abbre-
viation for (A ⊃ B) ∧ (B ⊃ A). Do you see significant advantages or
disadvantages of your method?

Draft of April 13, 2004

Chapter 6

Labeled Deduction

Starting from a system of natural deduction for the definition of intuitionistic
logic, we have made a remarkable journey, including the sequent calculus, fo-
cusing, and the inverse method. Many, if not all of the idea are shared between
many reasonable and useful logics: intuitionistic logic, classical logic, linear
logic, modal logic, temporal logic, and probably many more. In this chapter we
see another surprisingly robust idea: labeled deduction. There are many views
of labeled deduction. One of the most general is that we relativize our notion of
truth. While intuistionistic logic is based on a single unary judgment, namely
A true, labeled deduction is based on binary judgments of the form A true[p],
where p is a label or world. We may read A true[p] as “A is true at world p.”

The uses of a relativized notions of truth are many; we concentrate here
only on a single one. The motivation comes from developing a sequent calculus
for intuitionistic logic in which all rules are invertible. Alternatively, it can be
seen as a means of interpreting intuitionistic logic in classical logic (we have
already seen the opposite). Wallen’s book [Wal90] is the seminal work in this
area with respect to automated deduction and is still fresh after more than
a decade. A newer reference is Waaler’s article in Handbook of Automated
Reasoning [Waa01]. Often cited is also Fitting’s book [Fit83], but it seems to
be difficult to obtain.

6.1 Multiple Conclusions

One of the problems with focusing is that disjunction on the right-hand side
is opaque: if we have a conclusion A ∨ B may have to try to prove A or B
and then backtrack to prove the other without sharing of information between
the attempts. Moreover, while focusing on a left synchronous formula, we com-
pletely ignore the shape of the succedent. An idea to remedy this situation is
to replace A∨B by A,B on the right-hand side, postponing the choice between
A and B. It is difficult to give a satisfactory judgmental reading of multiple
propositions on the right, but let us suspend this issue and simply read A,B on

Draft of April 13, 2004

118 Labeled Deduction

the right as a postponed choice between A and B.
Our basic judgment form is now

Γ m=⇒ ∆

to be read as “Under assumptions Γ prove one of ∆,” although it will not be the
case that there is always one element in ∆ that we can actually prove. Initial
sequents, conjunction, and disjunction are as in the judgment for classical logic,
Γ # ∆, in which Γ are assumptions about truth and ∆ assumptions about
falsehood.

init
Γ, P

m=⇒ P,∆

Γ, A, B
m=⇒ ∆

∧L
Γ, A ∧B

m=⇒ ∆

Γ m=⇒ A,∆ Γ m=⇒ B,∆
∧R

Γ m=⇒ A ∧B,∆

Γ, A
m=⇒ ∆ Γ, B

m=⇒ ∆
∨L

Γ, A ∨B
m=⇒ ∆

Γ m=⇒ A,B,∆
∨R

Γ m=⇒ A ∨B,∆

Since we have already observed that conjunction and disjunction are really
the same for intuitionistic and classical logic, perhaps the rules above do not
come as a suprise. But how to we salvage the intuitionistic nature of the logic?
Consider the problem of (A⊃B) ∨A, which is classically true for all A and B,
but not intuitionistically. The classical proof is

init
A # B,A

⊃F
· # (A⊃B), A

∨F
· # (A⊃B) ∨A

If we try to interpret this proof intuitionistically, replacing # by m=⇒, we see
that the right rule for implication looks very suspicious: the scope of the as-
sumption A should be B (since we say: A ⊃ B), and yet it appears to include
the other disjunct, A. In this way we avoid ever producing evidence for one of
the propositions on the right: we exploit one to prove the other.

To avoid this counterexample, we have to change the implication right rule
to be the following:

Γ, A⊃B
m=⇒ A,∆ Γ, B

m=⇒ ∆
⊃L

Γ, A⊃B
m=⇒ ∆

Γ, A
m=⇒ B

⊃R
Γ m=⇒ A⊃B,∆

The crucial point is that before we can use ⊃R we have to commit a choice
to preserve the scope of the new assumption A. This sequent calculus admits
weakening and contraction on both sides and a cut elimination theorem. It is

Draft of April 13, 2004

6.1 Multiple Conclusions 119

also sound and complete, although a theorem to that effect must be formulated
carefully.

Before that, we can add the logical constants for truth and falsehood.

Γ m=⇒ ∆
>L

Γ,> m=⇒ ∆
>R

Γ m=⇒ >,∆

⊥L
Γ,⊥ m=⇒ ∆

Γ m=⇒ ∆
⊥R

Γ m=⇒ ⊥,∆

Negation can be derived from implication and falsehood.

Γ,¬A
m=⇒ A,∆

¬L
Γ,¬A

m=⇒ ∆

Γ, A
m=⇒ ·

¬R
Γ m=⇒ ¬A,∆

Note that ¬R makes a commitment, erasing ∆, as for implication.
The first, natural idea at soundness would state that if Γ m=⇒ ∆, then there

is a proposition C in ∆ such that Γ =⇒ C. This, unfortunately, is false, as
can be seen from A ∨ B

m=⇒ B,A is is provable and, yet, neither B or A by
itself follows from A ∨ B. We write

∨
(A1, . . . , An) for A1 ∨ · · · ∨ An which is

interpreted as ⊥ if n = 0.

Theorem 6.1 (Soundness of Multiple-Conclusion Sequent Calculus) If
Γ m=⇒ ∆ then Γ =⇒

∨
∆.

Proof: By induction on the given derivation. Most cases are immediate. We
show only the implication cases.

Case:

D =

D1

Γ, A
m=⇒ B

⊃R
Γ m=⇒ A⊃B,∆

Γ, A =⇒ B By i.h.
Γ =⇒ A⊃B By rule ⊃R
Γ =⇒ (A⊃B) ∨

∨
∆ By repeated ∨R

Case:

D =

D1

Γ, A⊃B
m=⇒ A,∆

D2

Γ, B
m=⇒ ∆

⊃L
Γ, A⊃B

m=⇒ ∆

Draft of April 13, 2004

120 Labeled Deduction

Γ, A⊃B =⇒ A ∨ C for C =
∨

∆ By i.h.
Γ, B =⇒ C By i.h.
Γ =⇒ B ⊃ C By rule ⊃R
Γ, A⊃B,B ⊃ C,A ∨ C =⇒ C Direct proof
Γ, A⊃B,B ⊃ C =⇒ C By admissibility of cut
Γ, A⊃B =⇒ C By admissibility of cut

2

Theorem 6.2 (Completness of Multiple-Conclusion Sequent Calculus)
If Γ =⇒ A then Γ m=⇒ A

Proof: By induction on the given derivation. Most cases are immediate. In
the case of ∨R we need to apply weakening after the induction hypothesis. 2

6.2 Propositional Labeled Deduction

The next problem is to avoid or at least postpone the choice associated with
the ⊃R rule. However, it is clear we cannot simply leave ∆ around, since this
would yield classical logic, as the example in the previous section demonstrates.
Instead we label assumptions and conclusion in such a way that the new as-
sumption A will be prohibited from being used in the proof of any proposition
in the conclusion except for its natural scope, B. In other words, we enforce
scoping by labeling. We need label parameters a, b, . . . and labels, where a label
is simply a sequence of label parameters.

Labels p, q ::= a1 a2 . . . an

We use ε to denote the empty sequence of labels. An assumption A true[p] is
supposed to be available to prove any conclusion B true[pq], that is, the scope
of any label includes any extension of that label. We abbreviate A true[p] as
A[p]. Initial sequents then have the form

init
Γ, A[p] =⇒ A[pq],∆

In the implication right rule we create a new scope, by introducing a new label
parameter.

Γ, A[pa] =⇒ B[pa],∆
⊃Ra

Γ =⇒ (A⊃B)[p],∆

Important is that the parameter a must be new. Therefore, for no conlusion
C[q] in ∆ could q be an extension of pa. Effectively, the scope of A[pa] excludes
∆.

Revisiting an earlier example (and anticipating that ∨ propagates its labels
to both subformulas), we see that it is not provable because ε is not an extension

Draft of April 13, 2004

6.2 Propositional Labeled Deduction 121

of a.
?

A[a] =⇒ B[a], A[ε]
⊃Ra

· =⇒ (A⊃B)[ε], A[ε]
∨R

· =⇒ (A⊃B) ∨A[ε]

The implication left rule incorporates the fact that an assumption (A⊃B)[p]
is available in any extension of p. When we apply ⊃L we have to choose the
world in which we can show A[pq]. It is in this world that we can assume B[pq].

Γ, (A⊃B)[p] =⇒ A[pq] Γ, B[pq] =⇒ ∆
⊃L

Γ, (A⊃B)[p] =⇒ ∆

As an example, consider the beginning of the proof of transitivity.

A⊃B[a], B ⊃ C[ab], A[abc] =⇒ C[abc]
⊃Rc

A⊃B[a], B ⊃ C[ab] =⇒ A⊃ C[ab]
⊃Rb

A⊃B[a] =⇒ (B ⊃ C)⊃A⊃ C[a]
⊃Ra

=⇒ (A⊃B)⊃ (B ⊃ C)⊃ (A⊃ C)[ε]

At this point we have to apply implication left to either A⊃B[a] or B ⊃C[ab].
The difficulty is to guess at which extended label to apply it. If we apply the
⊃L rule to A⊃ B[a] we can we see we must be able to prove A[aq] for some q.
But we have available only A[abc], so q must be an extension of bc.

init
A⊃B[a], B ⊃ C[ab], A[abc] =⇒ A[abc] B ⊃ C[ab], A[abc], B[abc] =⇒ C[abc]

⊃L
A⊃B[a], B ⊃ C[ab], A[abc] =⇒ C[abc]

We continue in the right premise with another implication left rule, this time
choosing q = c so we can prove B[abq].

init
B ⊃ C[ab], A[abc], B[abc] =⇒ B[abc]

init
A[abc], B[abc], C[abc] =⇒ C[abc]

⊃L
B ⊃ C[ab], A[abc], B[abc] =⇒ C[abc]

In the rules for remaining propositional connectives, the labels do not change
because no new scope is introduced.

Γ, A[p], B[p] =⇒ ∆
∧L

Γ, (A ∧B)[p] =⇒ ∆

Γ =⇒ A[p],∆ Γ =⇒ B[p],∆
∧R

Γ =⇒ (A ∧B)[p],∆

Γ, A[p] =⇒ ∆ Γ, B[p] =⇒ ∆
∨L

Γ, (A ∨B)[p] =⇒ ∆

Γ =⇒ A[p], B[p],∆
∨R

Γ =⇒ (A ∨B)[p],∆

Truth and falsehood are also straightforward.

Draft of April 13, 2004

122 Labeled Deduction

Γ =⇒ ∆
>L

Γ,>[p] =⇒ ∆
>R

Γ =⇒ >[p],∆

⊥L
Γ,⊥[p] =⇒ ∆

Γ =⇒ ∆
⊥R

Γ =⇒ ⊥[p],∆

A way to think about the ⊥L rule is to consider that ⊥[p] entails the empty
right-hand side from which we can generate ∆ by weakening. So it makes sense
even if all the worlds in ∆ are out of the scope defined by p. We can determine
the laws for negation from considerations for implication and falsehood.

Γ, (¬A)[p] =⇒ A[pq],∆
¬L

Γ, (¬A)[p] =⇒ ∆

Γ, A[pa] =⇒ ∆
¬Ra

Γ =⇒ (¬A)[p],∆

The ¬R rule is subject to the proviso that a does not appear in the conclusion.
Showing the soundness and completeness of labeled deduction is not a triv-

ial enterprise; we show here only completeness. A critical notion is that of a
monotone sequent. We write p � q if there exists a p′ such that p p′ = q and say
p is a prefix of q. We say a sequent A1[p1], . . . , An[pn] =⇒ C1[q1], . . . , Cm[qm]
is monotone at q if qj = q for all 1 ≤ j ≤ m and every pi is a prefix of q, that
is, pi � q for all 1 ≤ i ≤ m.

Theorem 6.3 (Completeness of Labeled Deduction) If Γ m=⇒ ∆ is deriv-
able then for any monotone labeling Γ′ =⇒ ∆′ of Γ m=⇒ ∆, we have that
Γ′ =⇒ ∆′ is derivable.

Proof: By induction on the structure of the given derivation. We show a few
cases.
Case:

D = init
Γ, P

m=⇒ P,∆

Γ′, P [p] =⇒ P [q],∆′ monotone at q Assumption
p � q By defn. of monotonicity
Γ′, P [p] =⇒ P [q],∆′ By rule init

Case:

D =

D1

Γ, A
m=⇒ B

⊃R
Γ m=⇒ A⊃B,∆

Γ′ =⇒ (A⊃B)[q],∆′ monotone at q Assumption
Γ′, A[qa] =⇒ B[qa] monotone at qa for a new a By defn. of monotonicity
Γ′, A[qa] =⇒ B[qa] derivable By i.h.
Γ′ =⇒ (A⊃B)[q] derivable By rule ⊃Ra

Γ′ =⇒ (A⊃B)[q],∆′ derivable By weakening

Draft of April 13, 2004

6.3 First-Order Labeled Deduction 123

Case:

D =

D1

Γ, A⊃B
m=⇒ A,∆

D2

Γ, B
m=⇒ ∆

⊃L
Γ, A⊃B

m=⇒ ∆

Γ′, A⊃B[p] =⇒ ∆′ monotone at q Assumption
Γ′, A⊃B[p] =⇒ A[q],∆′ monotone at q By defn. of monotonicity
Γ′, A⊃B[p] =⇒ A[q],∆′ derivable By i.h.
Γ′, B[q] =⇒ ∆′ monotone at q By defn. of monotonicity
Γ′, B[q] =⇒ ∆′ derivable By i.h.
Γ′, (A⊃B)[p] =⇒ ∆′ By rule ⊃L and p � q

2

The soundness proof is considerably more difficult. Standard techniques are
via so-called Kripke models or by direct translation from matrix proofs to the
sequent calculus. On of the problems is that the (unlabeled) proof will generally
have to proceed with a different order of the inferences than the labeled proof.
The interested reader is refered to Wallen [Wal90], Waaler [Waa01], and Schmitt
et al. [KS00, SLKN01].

6.3 First-Order Labeled Deduction

In first-order intuitionistic logic, it is not just the implication that introduces a
new scope, but also universal quantification. This means we have to change both
the multiple-conclusion sequent calculus and the labeled deduction system. The
changes in the multiple-conclusion calculus is quite straightforward; the change
to the labeled calculus are more extensive. We show here only the rules, but
not any proofs. The reader is refered to the literature cited at the beginning of
this chapter for details.

Γ,∀x. A(x), A(t) m=⇒ ∆
∀L

Γ,∀x. A(x) m=⇒ ∆

Γ m=⇒ A(b)
∀Rb

Γ m=⇒ ∀x. A(x),∆

Γ, A(b) m=⇒ ∆
∃Lb

Γ,∃x. A(x) m=⇒ ∆

Γ m=⇒ A(t),∃x. A(x),∆
∃R

Γ m=⇒ ∃x. A(x),∆

The side condition on ∀Rb and ∃Lb is the usual: b must not occur in the
conclusion. Note that ∆ is erased in the premise of ∀R, and that an extra copy
of ∃x. A(x) is kept in the ∃R rule.

The fact that universal quantification creates a new scope means that in
the labeled deductive systems, terms must now also be labeled. We have a
new judgment t term[p] which means t is a well-formed term at p. We may

Draft of April 13, 2004

124 Labeled Deduction

abbreviate this as t[p]. We introduce a new set of assumptions in order to track
the labels at which they have been introduced.

Labeled Parameter Contexts Σ ::= · | Σ, a term[p]

We have two principal judgments.

Σ; Γ =⇒ ∆
Σ ` t term[p]

The first just adds an explicit parameter context to a sequent, the second test
whether terms are well-formed. The latter is defined by the following rules:

a term[p] in Σ
parm

Σ ` a term[pq]

Σ ` ti term[p] for all 1 ≤ i ≤ n
func

Σ ` f(t1, . . . tn) term[p]

As propositional assumptions, term assumptions remain valid in future worlds
(allowing pq in the parameter rule). In the rules for Σ; Γ =⇒ ∆, Σ is car-
ried through from conclusion to premises in all rules except those containing
quantifiers. The new rules for quantifiers are:

Σ ` t[pq] Σ; Γ,∀x. A(x)[p], A(t)[pq] =⇒ ∆
∀L

Σ; Γ,∀x. A(x)[p] =⇒ ∆

Σ, b[pa]; Γ =⇒ A(b)[pa],∆
∀Rb,a

Σ; Γ =⇒ ∀x. A(x)[p],∆

Σ, b[p]; Γ, A(b)[p] =⇒ ∆
∃Lb

Σ; Γ,∃x. A(x)[p] =⇒ ∆

Σ ` t[p] Σ; Γ =⇒ A(t)[p],∃x. A(x)[p],∆
∃R

Σ; Γ =⇒ ∃x. A(x)[p],∆

6.4 Matrix Methods

The system of labeled deduction, if propositional or first-order, still has non-
invertible rules. Specifically, implication and universal quantification on the left
are synchronous, as well as existential quantification on right. These proposi-
tions may have to wait for a label or term parameter to be introduced before
they can be decomposed.

In order to postpone these choices we can introduce free variables, standing
both for labels and terms, and employ unification (again, both for labels and
terms) for possibly initial sequents. These kinds of algorithms are usually de-
scribed as so-called matrix methods, connections methods, or mating methods,
originally developed for classical logic.

Draft of April 13, 2004

6.4 Matrix Methods 125

This is a large subject, and we forego a special treatment here. A good
introduction, with further pointers to the literature, can be found in Waaler’s
article [Waa01] in the Handbook of Automated Reasoning. Highly recommended
is also Wallen’s book [Wal90], although it does not fully address some of the
more difficult aspects of the implementation such as label unification.

Draft of April 13, 2004

126 Labeled Deduction

Draft of April 13, 2004

Chapter 7

Equality

Reasoning with equality in first order logic can be accomplished axiomatically.
That is, we can simply add reflexivity, symmetry, transitivity, and congruence
rules for each predicate and function symbol and use the standard theorem
proving technology developed in the previous chapters. This approach, however,
does not take strong advantage of inherent properties of equality and leads to
a very large and inefficent search space.

While there has been a deep investigation of equality reasoning in classi-
cal logic, much less is known for intuitionistic logic. Some recent references
are [Vor96, DV99].

In this chapter we develop some of the techniques of equational reasoning,
starting again from first principles in the definition of logic. We therefore reca-
pitulate some of the material in earlier chapters, now adding equality as a new
primitive predicate symbol.

7.1 Natural Deduction

We characterize equality by its introduction rule, which simply states that s
.= s

for any term s.
.= I

s
.= s

We have already seen this introduction rule in unification logic in Section 4.4.
In the context of unification logic, however, we did not consider hypothetical
judgments, so we did not need or specify elimination rules for equality.

If we know s
.= t we can replace any number of occurrences of s in a true

proposition and obtain another true proposition.

s
.= t [s/x]A .= E1

[t/x]A

Draft of April 13, 2004

128 Equality

Symmetrically, we can also replace occurrences of t by s.

s
.= t [t/x]A .= E2

[s/x]A

It might seem that this second rule is redundant, and in some sense it is. In
particular, it is a derivable rule of the calculus with only .= E1:

s
.= t

.= I
s

.= s .= E1
t

.= s [t/x]A .= E1
[s/x]A

However, this deduction is not normal (as defined below), and without the sec-
ond elimination rule the normalization theorem would not hold and cut elim-
ination in the sequent calculus would fail. We continue this discussion below,
after introducing normal derivations.

Next, we check the local soundness and completeness of the rules. First,
local soundness:

.= I
s

.= s
D

[s/x]A
.= E1

` [s/x]A

=⇒R
D

[s/x]A

and the reduction for .= E2 is identical.
Second, we have to verify local completeness. There are two symmetric

expansions

D
s

.= t
=⇒E

D
s

.= t

.= I
s

.= s
.= E1

s
.= t

and

D
s

.= t
=⇒E

D
s

.= t

.= I
t

.= t
.= E2

s
.= t

witnessing local completeness.
Note that the second is redundant in the sense that for local completeness

we only need to show that there is some way to apply elimination rules so that
we can reconstitute the connective by introduction rules. This is an interesting
example where local completeness (in the absence of the .= E2 rule) does not
imply global completeness.

Draft of April 13, 2004

7.1 Natural Deduction 129

Next we define normal and extraction derivations. These properties are given
by the inherent role of introduction and elimination rules.

.= I
s

.= s ⇑

s
.= t ↓ [s/x]A ⇑ .= E1

[t/x]A ⇑

s
.= t ↓ [t/x]A ⇑ .= E2

[s/x]A ⇑

The elimination rule is similar to the rules for disjunction in the sense that there
is a side derivation whose conclusion is copied from the premise to the conclusion
of the elimination rule. In the case of disjunction, the copy is identical; here,
some copies of s are replaced by t or vice versa.

Now we can see, why the derivation of .= E2 is not normal:

s
.= t ↓

.= I
s

.= s ⇑ .= E1
t

.= s? [t/x]A ⇑ .= E1
[s/x]A ⇑

The judgment marked with ? should be t
.= s ⇑ considering it is the conclusion

of an equality elimination inference, and it should be t
.= s ↓ considering it is

the left premise of an equality elimination. Since no coercion from ⇑ to ↓ is
available for normal derivations the deduction above cannot be annotated.

We assign proof terms only in their compact form (see Section 3.2). This
means we have to analyse how much information is needed in the proof term
to allow bi-directional type checking. Recall that we have introduction terms
I and elimination terms E and that introduction terms are checked against a
given type, while elimination term must carry enough information so that their
type is unique. Following these considerations leads to the following new terms.

Intro Terms I ::= . . . | refl for .= I

Elim Terms E ::= . . . | substλx.A
1 E I for .= E1

| substλx.A
2 E I for .= E2

The typing rules are straightforward. Recall that we localize the hypothesize
to make the rules more explicit.

.= I
Γ↓ ` refl : s

.= s ⇑

Γ↓ ` E : s
.= t ↓ Γ↓ ` I : [s/x]A ⇑ .= E1

Γ↓ ` substλx.A
1 E I : [t/x]A ⇑

Γ↓ ` E : s
.= t ↓ Γ↓ ` I : [t/x]A ⇑ .= E2

Γ↓ ` substλx.A
2 E I : [s/x]A ⇑

Draft of April 13, 2004

130 Equality

We record the proposition A and an indication of the bound variable x in order
to provide enough information for bi-direction type checking. Recall the desired
property (Theorem 3.4):

1. Given Γ↓, I, and A. Then either Γ↓ ` I : A ⇑ or not.

2. Given Γ↓ and E. Then either there is a unique A such that
Γ↓ ` E : A ↓ or there is no such A.

First, it is clear that the constant refl for equality introduction does not need
to carry any terms, since s

.= s is given.
Second, to check substλx.A

1 E I against A′ we first synthesize the type of E
obtaining s

.= t and thereby s and t. Knowing t and A′ does not determine A
(consider, for example, [t/x]A = q(t, t) which allows A = q(x, x), A = q(x, t),
A = q(t, x) and A = q(t, t)). However, A is recorded explicitly in the proof term,
together with the variable x. Therefore we can now check whether the given
type [t/x]A is equal to A′. If that succeeds we have to check the introduction
term I against [s/x]A to verify the correctness of the whole term.

7.2 Sequent Calculus

The rules for the sequent calculus are determined by the definition of normal
deduction as in Chapter 3. Introduction rules are turned into right rules; elim-
ination rules into left rules.

.= R
Γ =⇒ s

.= s

Γ, s
.= t =⇒ [s/x]A .= L1

Γ, s
.= t =⇒ [t/x]A

Γ, s
.= t =⇒ [t/x]A .= L2

Γ, s
.= t =⇒ [s/x]A

The proof for admissibility of cut in this calculus runs into difficulties when
the cut formula was changed in the application of the .= L1 or .= L2 rules.
Consider, for example, the cut between

D =

D1

Γ, s
.= t =⇒ [s/x]A

.= L1
Γ, s

.= t =⇒ [t/x]A
and

E
Γ, s

.= t, [t/x]A =⇒ C

If [t/x]A is the principal formula of the last inference in E , we would normally
apply the induction hypothesis to D1 and E , in effect pushing the cut past the
last inference in D. We cannot do this here, since [s/x]A and [t/x]A do not
match. None of the rules in the sequent calculus without equality changed the
conclusion in a left rule, so this situation did not arise before.

The simplest remedy seems to be to restrict the equality rules so they must be
applied last in the bottom-up construction of a proof, and only to atomic formu-
las or other equalities. In this way, they cannot interfere with other inferences—
they have been pushed up to the leaves of the derivation. This restriction is

Draft of April 13, 2004

7.2 Sequent Calculus 131

interesting for other purposes as well, since it allows us to separate equality
reasoning from logical reasoning during the proof search process.

We introduce one new syntactice category and two new judgments. E stands
for a basic proposition, which is either an atomic proposition P or an equation
s

.= t.
Γ E=⇒ E E has an equational derivation from Γ
Γ R=⇒ A A has a regular derivation from Γ

Equational derivations are defined as follows.

init
Γ, P

E=⇒ P

.= R
Γ E=⇒ s

.= s

Γ, s
.= t

E=⇒ [s/x]E .= L1

Γ, s
.= t

E=⇒ [t/x]E

Γ, s
.= t

E=⇒ [s/x]E .= L1

Γ, s
.= t

E=⇒ [t/x]E

Regular derivations have all the inference rules of sequent derivations without
equality (except for initial sequents) plus the following coercion.

Γ E=⇒ E eq
Γ R=⇒ E

Regular derivations are sound and complete with respect to the unrestricted
calculus. Soundness is direct.

Theorem 7.1 (Soudness of Regular Derivations)

1. If Γ E=⇒ E then Γ =⇒ E

2. If Γ R=⇒ A then Γ =⇒ A

Proof: By straightforward induction over the given derivations. 2

In order to prove completeness we need a lemma which states that the un-
restricted left equality rules are admissible in the restricted calculus. Because
new assumptions are made, the statment of the lemma must actually be slightly
more general by allowing substitution into hypotheses.

Lemma 7.2 (Admissibility of Generalized Equality Rules)

1. If [s/x]Γ, s
.= t

R=⇒ [s/x]A then [t/x]Γ, s
.= t

R=⇒ [t/x]A.

2. If [t/x]Γ, s
.= t

R=⇒ [t/x]A then [s/x]Γ, s
.= t

R=⇒ [s/x]A.

3. If [s/x]Γ, s
.= t

E=⇒ [s/x]A then [t/x]Γ, s
.= t

E=⇒ [t/x]A.

4. If [s/x]Γ, s
.= t

E=⇒ [s/x]A then [t/x]Γ, s
.= t

E=⇒ [t/x]A.

Draft of April 13, 2004

132 Equality

Proof: By induction on the structure of the given derivations S or E , where the
second and fourth parts are completely symmetric to the first and third part.
In most cases this follows directly from the induction hypothesis. We show a
few characteristic cases.
Case:

S =

S1

[s/x]Γ, s
.= t, [s/x]A1

R=⇒ [s/x]A2

⊃R
[s/x]Γ, s

.= t
R=⇒ [s/x]A1 ⊃ [s/x]A2

[t/x]Γ, s
.= t, [t/x]A1

R=⇒ [t/x]A2 By i.h. on S1

[t/x]Γ, s
.= t

R=⇒ [t/x]A1 ⊃ [t/x]A2 By rule ⊃R

Case:

S =

E
[s/x]Γ, s

.= t
E=⇒ [s/x]E

eq
[s/x]Γ, s

.= t
R=⇒ [s/x]E

[t/x]Γ, s
.= t

E=⇒ [t/x]E By i.h. (3) on E
[t/x]Γ, s

.= t
R=⇒ [t/x]E By rule eq

Case:

E = init
[s/x]Γ′, [s/x]P1, s

.= t
E=⇒ [s/x]P2

We obtain the first equation below from the assumption that E is an initial
sequent.

[s/x]P1 = [s/x]P2 Given
[t/x]Γ′, [t/x]P1, s

.= t
E=⇒ [t/x]P1 By rule init

[t/x]Γ′, [t/x]P1, s
.= t

E=⇒ [s/x]P1 By rule .= L2

[t/x]Γ′, [t/x]P1, s
.= t

E=⇒ [s/x]P2 Same, by given equality
[t/x]Γ′, [t/x]P1, s

.= t
E=⇒ [t/x]P2 By rule .= L1

Case:

E =

E ′

[s/x]Γ′, [s/x]q .= [s/x]r, s .= t
E=⇒ [[s/x]q/y]E′

.= L1

[s/x]Γ′, [s/x]q .= [s/x]r, s .= t
E=⇒ [s/x]E

Note that we wrote the premise so that E′ does contain an occurrence of
x. We obtain the first equation below from the form of the inference rule
.= L1.

Draft of April 13, 2004

7.2 Sequent Calculus 133

[s/x]E = [[s/x]r/y]E′ Given
[s/x]Γ′, [s/x]q .= [s/x]r, s .= t

E=⇒ [s/x][q/y]E′ Same as E ′ (x not in E′)
[t/x]Γ′, [t/x]q .= [t/x]r, s .= t

E=⇒ [t/x][q/y]E′ By i.h. on E ′

[t/x]Γ′, [t/x]q .= [t/x]r, s .= t
E=⇒ [[t/x]q/y]E′ Same, since x not in E′

[t/x]Γ′, [t/x]q .= [t/x]r, s .= t
E=⇒ [[t/x]r/y]E′ By rule .= L1

[t/x]Γ′, [t/x]q .= [t/x]r, s .= t
E=⇒ [t/x][r/y]E′ Same, since x not in E′

[t/x]Γ′, [t/x]q .= [t/x]r, s .= t
E=⇒ [s/x][r/y]E′ By rule .= L2

[t/x]Γ′, [t/x]q .= [t/x]r, s .= t
E=⇒ [[s/x]r/y]E′ Same, since x not in E′

[t/x]Γ′, [t/x]q .= [t/x]r, s .= t
E=⇒ [s/x]E Same, by given equality

[t/x]Γ′, [t/x]q .= [t/x]r, s .= t
E=⇒ [t/x]E By rule .= L1

Case:

E =

E ′

[s/x]Γ, s
.= t

E=⇒ [s/x]E′
.= L1

[s/x]Γ, s
.= t

E=⇒ [s/x]E

Note that we wrote the premise so that E′ does contain an occurrence of
x. We obtain the first line below from the shape of the conclusion in the
inference rule .= L1 with the principal formula s

.= t.

[s/x]E = [t/x]E′ Given
[t/x]Γ, s

.= t
E=⇒ [t/x]E′ By i.h. on E ′

[t/x]Γ, s
.= t

E=⇒ [s/x]E Same, by given equality
[t/x]Γ, s

.= t
E=⇒ [t/x]E By rule .= L1

2

A second lemma is helpful to streamline the completeness proof.

Lemma 7.3 (Atomic Initial Sequents) Γ, A
R=⇒ A.

Proof: By induction on the structure of A. This is related to repeated local
expansion. We show a few of cases.

Case: A = P .

Γ, P
E=⇒ P By rule init

Γ, P
R=⇒ P By rule eq

Case: A = (s .= t).

Γ, s
.= t

E=⇒ s
.= s By rule .= R

Γ, s
.= t

E=⇒ s
.= t By rule .= L1

Draft of April 13, 2004

134 Equality

Case: A = A1 ∧A2.

Γ, A1
R=⇒ A1 By i.h. on A1

Γ, A1 ∧A2
R=⇒ A1 By rule ∧L1

Γ, A2
R=⇒ A2 By i.h. on A2

Γ, A1 ∧A2
R=⇒ A2 By rule ∧L2

Γ, A1 ∧A2
R=⇒ A1 ∧A2 By rule ∧R

2

With these two lemmas, completeness is relatively simple.

Theorem 7.4 (Completeness of Regular Derivations)

If Γ =⇒ A then Γ R=⇒ A.

Proof: By induction on the structure of the given derivation S. We show some
cases; most are straightforward.

Case:

S =

S2

Γ, A1 =⇒ A2

⊃R
Γ =⇒ A1 ⊃A2

Γ, A1
R=⇒ A2 By i.h. on S2

Γ R=⇒ A1 ⊃A2 By rule ⊃R

Case:

S = init
Γ′, A =⇒ A

Γ′, A R=⇒ A By Lemma 7.3

Case:

S =

S1

Γ′, s .= t =⇒ [s/x]A
.= L1

Γ′, s .= t =⇒ [t/x]A

Γ′, s .= t
R=⇒ [s/x]A By i.h. on S1

Γ′, s .= t
R=⇒ [t/x]A By Lemma 7.2

2

Draft of April 13, 2004

7.2 Sequent Calculus 135

Regular derivations are the basis for proof search procedures. Furthermore,
we can prove admissibility of cut, essentially following the same argument as in
the system without equality for regular derivations. On equality derivations, we
have to employ a new argument.

Theorem 7.5 (Admissibility of Cut with Equality)

1. If Γ E=⇒ E and Γ, E
E=⇒ F then Γ E=⇒ F .

2. If Γ E=⇒ E and Γ, E
R=⇒ C then Γ R=⇒ C.

3. If Γ R=⇒ A and Γ, A
E=⇒ F then Γ R=⇒ F .

4. If Γ R=⇒ A and Γ, A
R=⇒ C then Γ R=⇒ C.

Proof: We prove the properties in sequence, using earlier ones to in the proofs
of later ones.

Part (1): Given

E
Γ E=⇒ E

and
F

Γ, E
E=⇒ F

we construct a derivation for Γ E=⇒ F by nested induction on the structure of
E and F . That is, in appeals to the induction hypothesis, E may be smaller (in
which case F may be arbitrary), or E stays the same and F gets smaller.

Cases: If E is a side formula of the last inference in F we appeal to the induc-
tion hypothesis on the premise and reapply the inference on the result. If
F is an initial sequent we can directly construct the desired derivation.
In the remaining cases, we assume E is the principal formula of the last
inference in F .

Case:

E =
.= R

Γ E=⇒ s
.= s

and F =

F1

Γ, s
.= s

E=⇒ [s/x]F1 .= L1

Γ, s
.= s

E=⇒ [s/x]F1

Γ =⇒ [s/x]F1 By i.h. on E and F1

Case:

E =

E1

Γ′, q .= r
E=⇒ [q/x]s′ = [q/x]t′

.= L1

Γ′, q .= r
E=⇒ [r/x]s′ .= [r/x]t′

Γ′, q .= r, [r/x]s′ .= [r/x]t′ E=⇒ F F , in this case
Γ′, q .= r, [q/x]s′ .= [q/x]t′ E=⇒ F By Lemma 7.2
Γ′, q .= r

E=⇒ F By i.h. on E1 and above

Draft of April 13, 2004

136 Equality

Part (2): Given

E
Γ E=⇒ E

and
S

Γ, E
R=⇒ C

we construct a derivation for Γ R=⇒ C by induction over the structure of S.
Since E is either atomic or an equality, it cannot be the principal formula of an
inference in S. When we reach a coercion from E=⇒ to R=⇒ in S we appeal to
Part (1).

Part (3): Given

S
Γ R=⇒ A

and
F

Γ, A
E=⇒ F

we construct a derivation for Γ E=⇒ F by nested induction on the structure of F
and S. If A is the principal formula of an inference in F then A must be atomic
or an equality. In the former case we can derive the desired conclusion directly;
in the latter case we proceed by induction over S. Since A is an equality, it
cannot be the principal formula of an inference in S. When we reach a coercion
for E=⇒ to R=⇒ in S we appeal to Part (1).

Part (4): Given

S
Γ R=⇒ A

and
T

Γ, A
R=⇒ C

we construct a derivation for Γ R=⇒ C by nested induction on the structure of
A, and the derivations S and T as in the proof of admissibility of cut without
equality (Theorem 3.11). When we reach coercions from equality derivations
we appeal to Parts 3 or 2. 2

Draft of April 13, 2004

Bibliography

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in
linear logic. Journal of Logic and Computation, 2(3):197–347, 1992.

[Byr99] John Byrnes. Proof Search and Normal Forms in Natural Deduction.
PhD thesis, Department of Philosophy, Carnegie Mellon University,
May 1999.

[Cur30] H.B. Curry. Grundlagen der kombinatorischen Logik. American
Journal of Mathematics, 52:509–536, 789–834, 1930.

[DV99] Anatoli Degtyarev and Andrei Voronkov. Equality reasoning in
sequent-based calculi. In Alan Robinson and Andrei Voronkov, edi-
tors, Handbook of Automated Reasoning. Elsevier Science Publishers,
1999. In preparation.

[Fit83] Melvin Fitting. Proof Methods for Modal and Intuitionistic Logics.
D.Reidel Publishing Co., Dordrecht, 1983.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen.
Mathematische Zeitschrift, 39:176–210, 405–431, 1935. Translated
under the title Investigations into Logical Deductions in [Sza69].

[Her30] Jacques Herbrand. Recherches sur la théorie de la démonstration.
Travaux de la Société des Sciences et de Lettres de Varsovic, 33,
1930.

[Her95] Hugo Herbelin. Séquents qu’on calcule. PhD thesis, Universite Paris
7, January 1995.

[Hil22] David Hilbert. Neubegründung der Mathematik (erste Mitteilung).
In Abhandlungen aus dem mathematischen Seminar der Hamburgis-
chen Universität, pages 157–177, 1922. Reprinted in [Hil35].

[Hil35] David Hilbert. Gesammelte Abhandlungen, volume 3. Springer-
Verlag, Berlin, 1935.

[How69] W. A. Howard. The formulae-as-types notion of construction. Un-
published manuscript, 1969. Reprinted in To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, 1980.

Draft of April 13, 2004

138 BIBLIOGRAPHY

[How98] Jacob M. Howe. Proof Search Issues in Some Non-Classical Logics.
PhD thesis, University of St. Andrews, Scotland, 1998.

[Hua94] Xiarong Huang. Human Oriented Proof Presentation: A Reconstruc-
tive Approach. PhD thesis, Universität des Saarlandes, Saarbrücken,
Germany, 1994. Published by infix, St. Augustin, Germany, Disser-
tationen zur Künstlichen Intelligenz, Volume 112, 1996.

[Hue76] Gérard Huet. Résolution d’équations dans des langages d’ordre
1, 2, . . . , ω. PhD thesis, Université Paris VII, September 1976.

[Kle52] Stephen Cole Kleene. Introduction to Metamathematics. North-
Holland, 1952.

[Kni89] Kevin Knight. Unification: A multi-disciplinary survey. ACM Com-
puting Surveys, 2(1):93–124, March 1989.

[KS00] Christoph Kreitz and Stephan Schmitt. A uniform procedure for
converting matrix proofs into sequent-style systems. Information
and Computation, 162(1–2):226–254, 2000.

[LS86] Joachim Lambek and Philip J. Scott. Introduction to Higher Order
Categorical Logic. Cambridge University Press, Cambridge, England,
1986.

[Mas64] S. Maslov. The inverse method of establishing deducibility in the
classical predicate calculus. Soviet Mathematical Doklady, 5:1420–
1424, 1964.

[Min94] G. Mints. Resolution strategies for the intuitionistic logic. In Con-
straint Programming, pages 289–311. NATO ASI Series F, Springer-
Verlag, 1994.

[ML85a] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Technical Report 2, Scuola di Spe-
cializzazione in Logica Matematica, Dipartimento di Matematica,
Università di Siena, 1985.

[ML85b] Per Martin-Löf. Truth of a proposition, evidence of a judgement,
validity of a proof. Notes to a talk given at the workshop Theory of
Meaning, Centro Fiorentino di Storia e Filosofia della Scienza, June
1985.

[ML94] Per Martin-Löf. Analytic and synthetic judgements in type theory. In
Paolo Parrini, editor, Kant and Contemporary Epistemology, pages
87–99. Kluwer Academic Publishers, 1994.

[MM76] Alberto Martelli and Ugo Montanari. Unification in linear time and
space: A structured presentation. Internal Report B76-16, Istituto di
Elaborazione delle Informazione, Consiglio Nazionale delle Ricerche,
Pisa, Italy, July 1976.

Draft of April 13, 2004

BIBLIOGRAPHY 139

[MM82] Alberto Martelli and Ugo Montanari. An efficient unification algo-
rithm. ACM Transactions on Programming Languages and Systems,
4(2):258–282, April 1982.

[Par92] Michel Parigot. λµ-calculus: An algorithmic interpretation of clas-
sical natural deduction. In A. Voronkov, editor, Proceedings of the
International Conference on Logic Programming and Automated Rea-
soning, pages 190–201, St. Petersburg, Russia, July 1992. Springer-
Verlag LNCS 624.

[Pfe95] Frank Pfenning. Structural cut elimination. In D. Kozen, editor, Pro-
ceedings of the Tenth Annual Symposium on Logic in Computer Sci-
ence, pages 156–166, San Diego, California, June 1995. IEEE Com-
puter Society Press.

[Pra65] Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm,
1965.

[PW78] M. S. Paterson and M. N. Wegman. Linear unification. Journal of
Computer and System Sciences, 16(2):158–167, April 1978.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, January 1965.

[Rob71] J. A. Robinson. Computational logic: The unification computation.
Machine Intelligence, 6:63–72, 1971.

[SLKN01] Stephan Schmitt, Lori Lorigo, Christoph Kreitz, and Alexey Nogin.
Jprover: Integrating connection-based theorem proving into interac-
tive proof assistants. In R.Goré, A.Leitsch, and T.Nipkow, editors,
Proceedings of the International Joint Conference on Automated Rea-
soning (IJCAR’01), pages 421–426, Siena, Italy, June 2001. Springer
Verlag LNAI 2083.

[Sza69] M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen.
North-Holland Publishing Co., Amsterdam, 1969.

[Tam96] T. Tammet. A resolution theorem prover for intuitionistic logic. In
M. McRobbie and J. Slaney, editors, Proceedings of the 13th Interna-
tional Conference on Automated Deduction (CADE-13), pages 2–16,
New Brunswick, New Jersey, 1996. Springer-Verlag LNCS 1104.

[Tam97] T. Tammet. Resolution, inverse method and the sequent calculus.
In A. Leitsch G. Gottlog and D. Mundici, editors, Proceedings of
the 5th Kurt Gödel Colloquium on Computational Logic and Proof
Theory (KGC’97), pages 65–83, Vienna, Austria, 1997. Springer-
Verlag LNCS 1289.

Draft of April 13, 2004

140 BIBLIOGRAPHY

[Vor92] Andrei Voronkov. Theorem proving in non-standard logics based on
the inverse method. In D. Kapur, editor, Proceedings of the 11th
International Conference on Automated Deduction, pages 648–662,
Saratoga Springs, New York, 1992. Springer-Verlag LNCS 607.

[Vor96] Andrei Voronkov. Proof-search in intuitionistic logic with equality,
or back to simultaneous rigid e-unification. In M.A. McRobbie and
J.K. Slaney, editors, Proceedings of the 13th International Conference
on Automated Deduction, pages 32–46, New Brunswick, New Jersey,
July/August 1996. Springer-Verlag LNAI 1104.

[Waa01] Arild Waaler. Connections in nonclassical logics. In Alan Robinson
and Andrei Voronkov, editors, Handbook of Automated Reasoning,
volume 2, chapter 22, pages 1487–1578. Elsevier Science and MIT
Press, 2001.

[Wal90] Lincoln A. Wallen. Automated Deduction in Non-Classical Logics.
MIT Press, 1990.

Draft of April 13, 2004

