
Programming in Standard ML

(WORKING DRAFT OF MAY 17, 2005.)

Robert Harper
Carnegie Mellon University

Spring Semester, 2005

Copyright c©2005. All Rights Reserved.

Preface

This book is an introduction to programming with the Standard ML pro-
gramming language. It began life as a set of lecture notes for Computer
Science 15–212: Principles of Programming, the second semester of the in-
troductory sequence in the undergraduate computer science curriculum at
Carnegie Mellon University. It has subsequently been used in many other
courses at Carnegie Mellon, and at a number of universities around the
world. It is intended to supersede my Introduction to Standard ML, which
has been widely circulated over the last ten years.

Standard ML is a formally defined programming language. The Defini-
tion of Standard ML (Revised) is the formal definition of the language. It is
supplemented by the Standard ML Basis Library, which defines a common
basis of types that are shared by all implementations of the language. Com-
mentary on Standard ML discusses some of the decisions that went into the
design of the first version of the language.

There are several implementations of Standard ML available for a wide
variety of hardware and software platforms. The best-known compilers
are Standard ML of New Jersey, Moscow ML, MLKit, and PolyML. These are
all freely available on the worldwide web. Please refer to The Standard ML
Home Page for up-to-date information on Standard ML and its implemen-
tations.

Numerous people have contributed directly and indirectly to this text.
I am especially grateful to the following people for their helpful comments
and suggestions: Marc Bezem, Terrence Brannon, Franck van Breugel, Karl
Crary, Mike Erdmann, Matthias Felleisen, Andrei Formiga, Stephen Harris,
Joel Jones, John Lafferty, Flavio Lerda, Adrian Moos, Bryce Nichols, Arthur
J. O’Dwyer, Frank Pfenning, Chris Stone, Dave Swasey, Michael Velten, Jo-
han Wallen, Scott Williams, and Jeannette Wing. Richard C. Cobbe helped
with font selection. I am also grateful to the many students of 15-212 who
used these notes and sent in their suggestions over the years.

http://www.cs.cmu.edu/afs/andrew/course/15/212/www
http://www.cs.cmu.edu/afs/andrew/course/15/212/www
http://www.cs.cmu.edu/~rwh/papers/ml-notes/tr.ps
http://mitpress.mit.edu/book-home.tcl?isbn=0262631814
http://mitpress.mit.edu/book-home.tcl?isbn=0262631814
http://www.cup.org/ObjectBuilder/ObjectBuilder.iwx?processName=productPage&product_id=0521791421&origin=redirect
http://mitpress.mit.edu/book-home.tcl?isbn=0262132710
http://mitpress.mit.edu/book-home.tcl?isbn=0262132710
http://cm.bell-labs.com/cm/cs/what/smlnj/
http://www.dina.kvl.dk/~sestoft/mosml.html
http://www.itu.dk/research/mlkit
http://www.polyml.org
http://www.standardml.org
http://www.standardml.org

iv

These notes are a work in progress. Corrections, comments and sugges-
tions are most welcome.

WORKING DRAFT MAY 17, 2005

Contents

Preface iii

I Overview 1

1 Programming in Standard ML 5
1.1 A Regular Expression Package 5
1.2 Sample Code . 13

II The Core Language 19

2 Types, Values, and Effects 23
2.1 Evaluation and Execution . 23
2.2 The ML Computation Model 24

2.2.1 Type Checking . 25
2.2.2 Evaluation . 27

2.3 Types, Types, Types . 28
2.4 Type Errors . 30

3 Declarations 33
3.1 Variables . 33
3.2 Basic Bindings . 34

3.2.1 Type Bindings . 34
3.2.2 Value Bindings . 34

3.3 Compound Declarations . 36
3.4 Limiting Scope . 37
3.5 Typing and Evaluation . 38

v

vi CONTENTS

4 Functions 41
4.1 Functions as Templates . 41
4.2 Functions and Application . 42
4.3 Binding and Scope, Revisited 45

5 Products and Records 49
5.1 Product Types . 49

5.1.1 Tuples . 49
5.1.2 Tuple Patterns . 51

5.2 Record Types . 54
5.3 Multiple Arguments and Multiple Results 56

6 Case Analysis 59
6.1 Homogeneous and Heterogeneous Types 59
6.2 Clausal Function Expressions 60
6.3 Booleans and Conditionals, Revisited 61
6.4 Exhaustiveness and Redundancy 62

7 Recursive Functions 65
7.1 Self-Reference and Recursion 66
7.2 Iteration . 69
7.3 Inductive Reasoning . 70
7.4 Mutual Recursion . 73

8 Type Inference and Polymorphism 75
8.1 Type Inference . 75
8.2 Polymorphic Definitions . 78
8.3 Overloading . 80

9 Programming with Lists 85
9.1 List Primitives . 85
9.2 Computing With Lists . 87

10 Concrete Data Types 91
10.1 Datatype Declarations . 91
10.2 Non-Recursive Datatypes . 92
10.3 Recursive Datatypes . 94
10.4 Heterogeneous Data Structures 97
10.5 Abstract Syntax . 98

WORKING DRAFT MAY 17, 2005

CONTENTS vii

11 Higher-Order Functions 101
11.1 Functions as Values . 101
11.2 Binding and Scope . 102
11.3 Returning Functions . 103
11.4 Patterns of Control . 106
11.5 Staging . 108

12 Exceptions 111
12.1 Exceptions as Errors . 111

12.1.1 Primitive Exceptions 112
12.1.2 User-Defined Exceptions 113

12.2 Exception Handlers . 114
12.3 Value-Carrying Exceptions . 118

13 Mutable Storage 121
13.1 Reference Cells . 121
13.2 Reference Patterns . 123
13.3 Identity . 124
13.4 Aliasing . 126
13.5 Programming Well With References 127

13.5.1 Private Storage . 128
13.5.2 Mutable Data Structures 129

13.6 Mutable Arrays . 131

14 Input/Output 135
14.1 Textual Input/Output . 135

15 Lazy Data Structures 139
15.1 Lazy Data Types . 141
15.2 Lazy Function Definitions . 142
15.3 Programming with Streams 144

16 Equality and Equality Types 147

17 Concurrency 149

III The Module Language 151

18 Signatures and Structures 155
18.1 Signatures . 155

MAY 17, 2005 WORKING DRAFT

viii CONTENTS

18.1.1 Basic Signatures . 155
18.1.2 Signature Inheritance 157

18.2 Structures . 159
18.2.1 Basic Structures . 159
18.2.2 Long and Short Identifiers 160

19 Signature Matching 163
19.1 Principal Signatures . 164
19.2 Matching . 165
19.3 Satisfaction . 169

20 Signature Ascription 171
20.1 Ascribed Structure Bindings 171
20.2 Opaque Ascription . 172
20.3 Transparent Ascription . 175
20.4 Transparency, Opacity, and Dependency 177

21 Module Hierarchies 179
21.1 Substructures . 179

22 Sharing Specifications 187
22.1 Combining Abstractions . 187

23 Parameterization 195
23.1 Functor Bindings and Applications 195
23.2 Functors and Sharing Specifications 198
23.3 Avoiding Sharing Specifications 200

IV Programming Techniques 205

24 Specifications and Correctness 209
24.1 Specifications . 209
24.2 Correctness Proofs . 211
24.3 Enforcement and Compliance 214

25 Induction and Recursion 217
25.1 Exponentiation . 217
25.2 The GCD Algorithm . 222

WORKING DRAFT MAY 17, 2005

CONTENTS ix

26 Structural Induction 227
26.1 Natural Numbers . 227
26.2 Lists . 229
26.3 Trees . 230
26.4 Generalizations and Limitations 231
26.5 Abstracting Induction . 232

27 Proof-Directed Debugging 235
27.1 Regular Expressions and Languages 235
27.2 Specifying the Matcher . 237

28 Persistent and Ephemeral Data Structures 245
28.1 Persistent Queues . 248
28.2 Amortized Analysis . 251

29 Options, Exceptions, and Continuations 255
29.1 The n-Queens Problem . 255
29.2 Solution Using Options . 257
29.3 Solution Using Exceptions . 258
29.4 Solution Using Continuations 260

30 Higher-Order Functions 263
30.1 Infinite Sequences . 264
30.2 Circuit Simulation . 267

31 Data Abstraction 271
31.1 Dictionaries . 271
31.2 Binary Search Trees . 272
31.3 Balanced Binary Search Trees 273
31.4 Abstraction vs. Run-Time Checking 277

32 Representation Independence and ADT Correctness 281

33 Modularity and Reuse 283

34 Dynamic Typing and Dynamic Dispatch 285

35 Concurrency 287

MAY 17, 2005 WORKING DRAFT

x CONTENTS

V Appendices 289

The Standard ML Basis Library 291

Compilation Management 293
35.1 Overview of CM . 293
35.2 Building Systems with CM . 293

Sample Programs 295

WORKING DRAFT MAY 17, 2005

Part I

Overview

1

3

Standard ML is a type-safe programming language that embodies many
innovative ideas in programming language design. It is a statically typed
language, with an extensible type system. It supports polymorphic type
inference, which all but eliminates the burden of specifying types of vari-
ables and greatly facilitates code re-use. It provides efficient automatic
storage management for data structures and functions. It encourages func-
tional (effect-free) programming where appropriate, but allows imperative
(effect-ful) programming where necessary. It facilitates programming with
recursive and symbolic data structures by supporting the definition of func-
tions by pattern matching. It features an extensible exception mechanism
for handling error conditions and effecting non-local transfers of control.
It provides a richly expressive and flexible module system for structur-
ing large programs, including mechanisms for enforcing abstraction, im-
posing hierarchical structure, and building generic modules. It is portable
across platforms and implementations because it has a precise definition.
It provides a portable standard basis library that defines a rich collection of
commonly-used types and routines.

Many implementations go beyond the standard to provide experimen-
tal language features, extensive libraries of commonly-used routines, and
useful program development tools. Details can be found with the docu-
mentation for your compiler, but here’s some of what you may expect.
Most implementations provide an interactive system supporting on-line
program development, including tools for compiling, linking, and analyz-
ing the behavior of programs. A few implementations are “batch compil-
ers” that rely on the ambient operating system to manage the construction
of large programs from compiled parts. Nearly every compiler generates
native machine code, even when used interactively, but some also gener-
ate code for a portable abstract machine. Most implementations support
separate compilation and provide tools for managing large systems and
shared libraries. Some implementations provide tools for tracing and step-
ping programs; many provide tools for time and space profiling. Most im-
plementations supplement the standard basis library with a rich collection
of handy components such as dictionaries, hash tables, or interfaces to the
ambient operating system. Some implementations support language exten-
sions such as support for concurrent programming (using message-passing
or locking), richer forms of modularity constructs, and support for “lazy”
data structures.

MAY 17, 2005 WORKING DRAFT

http://mitpress.mit.edu/book-home.tcl?isbn=0262631814
http://www.cup.org/ObjectBuilder/ObjectBuilder.iwx?processName=productPage&product_id=0521791421&origin=redirect

4

WORKING DRAFT MAY 17, 2005

Chapter 1

Programming in Standard ML

1.1 A Regular Expression Package

To develop a feel for the language and how it is used, let us consider the im-
plementation of a package for matching strings against regular expressions.
We’ll structure the implementation into two modules, an implementation
of regular expressions themselves and an implementation of a matching
algorithm for them.

These two modules are concisely described by the following signatures.

signature REGEXP = sig
datatype regexp =

Zero | One | Char of char |
Plus of regexp * regexp |
Times of regexp * regexp |
Star of regexp

exception SyntaxError of string
val parse : string -> regexp
val format : regexp -> string

end

signature MATCHER = sig
structure RegExp : REGEXP
val match : RegExp.regexp -> string -> bool

end

The signature REGEXP describes a module that implements regular expres-
sions. It consists of a description of the abstract syntax of regular expres-
sions, together with operations for parsing and unparsing them. The sig-

5

6 1.1 A Regular Expression Package

nature MATCHER describes a module that implements a matcher for a given
notion of regular expression. It contains a function match that, when given
a regular expression, returns a function that determines whether or not a
given string matches that expression. Obviously the matcher is dependent
on the implementation of regular expressions. This is expressed by a struc-
ture specification that specifies a hierarchical dependence of an implementa-
tion of a matcher on an implementation of regular expressions — any im-
plementation of the MATCHER signature must include an implementation of
regular expressions as a constituent module. This ensures that the matcher
is self-contained, and does not rely on implicit conventions for determining
which implementation of regular expressions it employs.

The definition of the abstract syntax of regular expressions in the sig-
nature REGEXP takes the form of a datatype declaration that is reminiscent
of a context-free grammar, but which abstracts from matters of lexical pre-
sentation (such as precedences of operators, parenthesization, conventions
for naming the operators, etc..) The abstract syntax consists of six clauses,
corresponding to the regular expressions 0, 1, a, r1 + r2, r1 r2, and r∗.1 The
functions parse and format specify the parser and unparser for regular
expressions. The parser takes a string as argument and yields a regular
expression; if the string is ill-formed, the parser raises the exception Syn-
taxError with an associated string describing the source of the error. The
unparser takes a regular expression and yields a string that parses to that
regular expression. In general there are many strings that parse to the same
regular expressions; the unparser generally tries to choose one that is easi-
est to read.

The implementation of the matcher consists of two modules: an imple-
mentation of regular expressions and an implementation of the matcher
itself. An implementation of a signature is called a structure. The imple-
mentation of the matching package consists of two structures, one imple-
menting the signature REGEXP, the other implementing MATCHER. Thus the
overall package is implemented by the following two structure declarations:

structure RegExp :> REGEXP = ...
structure Matcher :> MATCHER = ...

The structure identifier RegExp is bound to an implementation of the REGEXP
signature. Conformance with the signature is ensured by the ascription of
the signature REGEXP to the binding of RegExp using the “:>” notation. Not
only does this check that the implementation (which has been elided here)

1Some authors use ∅ for 0 and ” for 1.

WORKING DRAFT MAY 17, 2005

1.1 A Regular Expression Package 7

conforms with the requirements of the signature REGEXP, but it also ensures
that subsequent code cannot rely on any properties of the implementation
other than those explicitly specified in the signature. This helps to ensure
that modules are kept separate, facilitating subsequent changes to the code.

Similarly, the structure identifier Matcher is bound to a structure that
implements the matching algorithm in terms of the preceding implemen-
tation RegExp of REGEXP. The ascribed signature specifies that the structure
Matcher must conform to the requirements of the signature MATCHER. No-
tice that the structure Matcher refers to the structure RegExp in its imple-
mentation.

Once these structure declarations have been processed, we may use the
package by referring to its components using paths, or long identifiers. The
function Matcher.match has type

Matcher.RegExp.regexp -> string -> bool,

reflecting the fact that it takes a regular expression as implemented within
the package itself and yields a matching function on strings. We may build
a regular expression by applying the parser, Matcher.RegExp.parse, to a
string representing a regular expression, then passing the resulting value
of type Matcher.RegExp.regexp to Matcher.match.2

Here’s an example of the matcher in action:

val regexp =
Matcher.RegExp.parse "(a+b)*"

val matches =
Matcher.match regexp

val ex1 = matches "aabba" (* yields true *)
val ex2 = matches "abac" (* yields false *)

The use of long identifiers can get tedious at times. There are two typi-
cal methods for alleviating the burden. One is to introduce a synonym for
a long package name. Here’s an example:

2It might seem that one can apply Matcher.match to the output of RegExp.parse, since
Matcher.RegExp.parse is just RegExp.parse. However, this relationship is not stated in
the interface, so there is a pro forma distinction between the two. See Chapter 22 for more
information on the subtle issue of sharing.

MAY 17, 2005 WORKING DRAFT

8 1.1 A Regular Expression Package

structure M = Matcher
structure R = M.RegExp

val regexp = R.parse "((a + %).(b + %))*"
val matches = M.match regexp

val ex1 = matches "aabba"
val ex2 = matches "abac"

Another is to “open” the structure, incorporating its bindings into the cur-
rent environment:

open Matcher Matcher.RegExp

val regexp = parse "(a+b)*"
val matches = match regexp

val ex1 = matches "aabba"
val ex2 = matches "abac"

It is advisable to be sparing in the use of open because it is often hard to
anticipate exactly which bindings are incorporated into the environment
by its use.

Now let’s look at the internals of the structures RegExp and Matcher.
Here’s a bird’s eye view of RegExp:

structure RegExp :> REGEXP = struct
datatype regexp =
Zero | One | Char of char |
Plus of regexp * regexp |
Times of regexp * regexp |
Star of regexp

...
fun tokenize s = ...
...
fun parse s =

let
val (r, s’) =

parse rexp (tokenize (String.explode s))
in

case s’ of
nil => r

| => raise SyntaxError "Bad input."
end

WORKING DRAFT MAY 17, 2005

1.1 A Regular Expression Package 9

handle LexicalError =>
raise SyntaxError "Bad input."

...
fun format r =

String.implode (format exp r)
end

The elision indicates that portions of the code have been omitted so that we
can get a high-level view of the structure of the implementation.

The structure RegExp is bracketed by the keywords struct and end. The
type regexp is implemented precisely as specified by the datatype declara-
tion in the signature REGEXP. The parser is implemented by a function that,
when given a string, “explodes” it into a list of characters, transforms the
character list into a list of “tokens” (abstract symbols representing lexical
atoms), and finally parses the resulting list of tokens to obtain its abstract
syntax. If there is remaining input after the parse, or if the tokenizer en-
countered an illegal token, an appropriate syntax error is signalled. The
formatter is implemented by a function that, when given a piece of abstract
syntax, formats it into a list of characters that are then “imploded” to form
a string. The parser and formatter work with character lists, rather than
strings, because it is easier to process lists incrementally than it is to pro-
cess strings.

It is interesting to consider in more detail the structure of the parser
since it exemplifies well the use of pattern matching to define functions.
Let’s start with the tokenizer, which we present here in toto:

datatype token =
AtSign | Percent | Literal of char |
PlusSign | TimesSign |
Asterisk | LParen | RParen

exception LexicalError

fun tokenize nil = nil
| tokenize (#"+" :: cs) = PlusSign :: tokenize cs
| tokenize (#"." :: cs) = TimesSign :: tokenize cs
| tokenize (#"*" :: cs) = Asterisk :: tokenize cs
| tokenize (#"(" :: cs) = LParen :: tokenize cs
| tokenize (#")" :: cs) = RParen :: tokenize cs
| tokenize (#"@" :: cs) = AtSign :: tokenize cs
| tokenize (#"%" :: cs) = Percent :: tokenize cs
| tokenize (#"\\" :: c :: cs) =

MAY 17, 2005 WORKING DRAFT

10 1.1 A Regular Expression Package

Literal c :: tokenize cs
| tokenize (#"\\" :: nil) = raise LexicalError
| tokenize (#" " :: cs) = tokenize cs
| tokenize (c :: cs) = Literal c :: tokenize cs

The symbol “@” stands for the empty regular expression and the symbol
“%” stands for the regular expression accepting only the null string. Conca-
tentation is indicated by “.”, alternation by “+”, and iteration by “*”.

We use a datatype declaration to introduce the type of tokens corre-
sponding to the symbols of the input language. The function tokenize
has type char list -> token list; it transforms a list of characters into
a list of tokens. It is defined by a series of clauses that dispatch on the first
character of the list of characters given as input, yielding a list of tokens.
The correspondence between characters and tokens is relatively straight-
forward, the only non-trivial case being to admit the use of a backslash to
“quote” a reserved symbol as a character of input. (More sophisticated lan-
guages have more sophisticated token structures; for example, words (con-
secutive sequences of letters) are often regarded as a single token of input.)
Notice that it is quite natural to “look ahead” in the input stream in the case
of the backslash character, using a pattern that dispatches on the first two
characters (if there are such) of the input, and proceeding accordingly. (It is
a lexical error to have a backslash at the end of the input.)

Let’s turn to the parser. It is a simple recursive-descent parser imple-
menting the precedence conventions for regular expressions given earlier.
These conventions may be formally specified by the following grammar,
which not only enforces precedence conventions, but also allows for the
use of parenthesization to override them.

rexp : : = rtrm | rtrm+rexp
rtrm : : = rfac | rfac.rtrm
rfac : : = ratm | ratm*

ratm : : = @ | % | a | (rexp)

The implementation of the parser follows this grammar quite closely.
It consists of four mutually recursive functions, parse rexp, parse rtrm,
parse rfac, and parse ratm. These implement what is known as a recur-
sive descent parser that dispatches on the head of the token list to determine
how to proceed.

fun parse rexp ts =
let

WORKING DRAFT MAY 17, 2005

1.1 A Regular Expression Package 11

val (r, ts’) = parse rtrm ts
in

case ts’
of (PlusSign :: ts’’) =>

let
val (r’, ts’’’) = parse rexp ts’’

in
(Plus (r, r’), ts’’’)

end
| => (r, ts’)

end
and parse rtrm ts = ...
and parse rfac ts =

let
val (r, ts’) = parse ratm ts

in
case ts’
of (Asterisk :: ts’’) => (Star r, ts’’)
| => (r, ts’)

end
and parse ratm nil =

raise SyntaxError ("No atom")
| parse ratm (AtSign :: ts) = (Zero, ts)
| parse ratm (Percent :: ts) = (One, ts)
| parse ratm ((Literal c) :: ts) = (Char c, ts)
| parse ratm (LParen :: ts) =

let
val (r, ts’) = parse rexp ts

in
case ts’

of (RParen :: ts’’) => (r, ts’’)
| =>
raise SyntaxError "No close paren"

end

Notice that it is quite simple to implement “lookahead” using patterns that
inspect the token list for specified tokens. This parser makes no attempt to
recover from syntax errors, but one could imagine doing so, using standard
techniques.

This completes the implementation of regular expressions. Now for the

MAY 17, 2005 WORKING DRAFT

12 1.1 A Regular Expression Package

matcher. The matcher proceeds by a recursive analysis of the regular ex-
pression. The main difficulty is to account for concatenation — to match a
string against the regular expression r1 r2 we must match some initial seg-
ment against r1, then match the corresponding final segment against r2.
This suggests that we generalize the matcher to one that checks whether
some initial segment of a string matches a given regular expression, then
passes the remaining final segment to a continuation, a function that deter-
mines what to do after the initial segment has been successfully matched.
This facilitates implementation of concatentation, but how do we ensure
that at the outermost call the entire string has been matched? We achieve
this by using an initial continuation that checks whether the final segment is
empty.

Here’s the code, written as a structure implementing the signature MATCHER:

structure Matcher :> MATCHER =
struct

structure RegExp = RegExp
open RegExp

fun match is Zero k = false
| match is One cs k = k cs
| match is (Char c) nil = false
| match is (Char c) (d::cs) k = (c=d) andalso (k cs)
| match is (Plus (r1, r2)) cs k =

match is r1 cs k orelse match is r2 cs k
| match is (Times (r1, r2)) cs k =

match is r1 cs (fn cs’ => match is r2 cs’ k)
| match is (Star r) cs k =

k cs orelse
match is r cs (fn cs’ => match is (Star r) cs’ k)

fun match regexp string =
match is
regexp
(String.explode string)
(fn nil => true | => false)

end

Note that we incorporate the structure RegExp into the structure Matcher,
in accordance with the requirements of the signature. The function match
explodes the string into a list of characters (to facilitiate sequential pro-
cessing of the input), then calls match is with an initial continuation that

WORKING DRAFT MAY 17, 2005

1.2 Sample Code 13

ensures that the remaining input is empty to determine the result. The type
of match is is

RegExp.regexp -> char list ->
(char list -> bool) -> bool.

That is, match is takes in succession a regular expression, a list of char-
acters, and a continuation of type char list -> bool; it yields as result
a value of type bool. This is a fairly complicated type, but notice that
nowhere did we have to write this type in the code! The type inference
mechanism of ML took care of determining what that type must be based
on an analysis of the code itself.

Since match is takes a function as argument, it is said to be a higher-
order function. The simplicity of the matcher is due in large measure to the
ease with which we can manipulate functions in ML. Notice that we create
a new, unnamed function to pass as a continuation in the case of concatena-
tion — it is the function that matches the second part of the regular expres-
sion to the characters remaining after matching an initial segment against
the first part. We use a similar technique to implement matching against
an iterated regular expression — we attempt to match the null string, but if
this fails, we match against the regular expression being iterated followed
by the iteration once again. This neatly captures the “zero or more times”
interpretation of iteration of a regular expression.

Important: the code given above contains a subtle error. Can you
find it? If not, see chapter 27 for further discussion!

This completes our brief overview of Standard ML. The remainder of
these notes are structured into three parts. The first part is a detailed intro-
duction to the core language, the language in which we write programs in
ML. The second part is concerned with the module language, the means by
which we structure large programs in ML. The third is about programming
techniques, methods for building reliable and robust programs. I hope you
enjoy it!

1.2 Sample Code

Here is the complete code for this chapter:

signature REGEXP = sig

MAY 17, 2005 WORKING DRAFT

14 1.2 Sample Code

datatype regexp =
Zero | One | Char of char |
Plus of regexp * regexp | Times of regexp * regexp |
Star of regexp

exception SyntaxError of string
val parse : string -> regexp

val format : regexp -> string

end

signature MATCHER = sig

structure RegExp : REGEXP

val match : RegExp.regexp -> string -> bool

end

structure RegExp :> REGEXP = struct

datatype token =
AtSign | Percent | Literal of char | PlusSign | TimesSign |
Asterisk | LParen | RParen

exception LexicalError

fun tokenize nil = nil
| tokenize (#"+" :: cs) = (PlusSign :: tokenize cs)
| tokenize (#"." :: cs) = (TimesSign :: tokenize cs)
| tokenize (#"*" :: cs) = (Asterisk :: tokenize cs)
| tokenize (#"(" :: cs) = (LParen :: tokenize cs)
| tokenize (#")" :: cs) = (RParen :: tokenize cs)
| tokenize (#"@" :: cs) = (AtSign :: tokenize cs)
| tokenize (#"%" :: cs) = (Percent :: tokenize cs)
| tokenize (#"\\" :: c :: cs) = Literal c :: tokenize cs
| tokenize (#"\\" :: nil) = raise LexicalError
| tokenize (#" " :: cs) = tokenize cs
| tokenize (c :: cs) = Literal c :: tokenize cs

datatype regexp =
Zero | One | Char of char |
Plus of regexp * regexp | Times of regexp * regexp |
Star of regexp

WORKING DRAFT MAY 17, 2005

1.2 Sample Code 15

exception SyntaxError of string

fun parse_exp ts =
let

val (r, ts’) = parse_term ts
in

case ts’
of (PlusSign::ts’’) =>

let
val (r’, ts’’’) = parse_exp ts’’

in
(Plus (r, r’), ts’’’)

end
| _ => (r, ts’)

end

and parse_term ts =
let

val (r, ts’) = parse_factor ts
in

case ts’
of (TimesSign::ts’’) =>

let
val (r’, ts’’’) = parse_term ts’’

in
(Times (r, r’), ts’’’)

end
| _ => (r, ts’)

end

and parse_factor ts =
let

val (r, ts’) = parse_atom ts
in

case ts’
of (Asterisk :: ts’’) => (Star r, ts’’)
| _ => (r, ts’)

end

and parse_atom nil = raise SyntaxError ("Factor expected\n")
| parse_atom (AtSign :: ts) = (Zero, ts)
| parse_atom (Percent :: ts) = (One, ts)
| parse_atom ((Literal c) :: ts) = (Char c, ts)
| parse_atom (LParen :: ts) =

MAY 17, 2005 WORKING DRAFT

16 1.2 Sample Code

let
val (r, ts’) = parse_exp ts

in
case ts’
of nil => raise SyntaxError ("Right-parenthesis expected\n")
| (RParen :: ts’’) => (r, ts’’)
| _ => raise SyntaxError ("Right-parenthesis expected\n")

end

fun parse s =
let

val (r, ts) = parse_exp (tokenize (String.explode s))
in

case ts
of nil => r
| _ => raise SyntaxError "Unexpected input.\n"

end
handle LexicalError => raise SyntaxError "Illegal input.\n"

fun format_exp Zero = [#"@"]
| format_exp One = [#"%"]
| format_exp (Char c) = [c]
| format_exp (Plus (r1, r2)) =
let

val s1 = format_exp r1
val s2 = format_exp r2

in
[#"("] @ s1 @ [#"+"] @ s2 @ [#")"]

end
| format_exp (Times (r1, r2)) =
let

val s1 = format_exp r1
val s2 = format_exp r2

in
s1 @ [#"*"] @ s2

end
| format_exp (Star r) =
let

val s = format_exp r
in

[#"("] @ s @ [#")"] @ [#"*"]
end

fun format r = String.implode (format_exp r)

WORKING DRAFT MAY 17, 2005

1.2 Sample Code 17

end

structure Matcher :> MATCHER =
struct

structure RegExp = RegExp

open RegExp

fun match_is Zero _ k = false
| match_is One cs k = k cs
| match_is (Char c) nil _ = false
| match_is (Char c) (c’::cs) k = (c=c’) andalso (k cs)
| match_is (Plus (r1, r2)) cs k =
(match_is r1 cs k) orelse (match_is r2 cs k)

| match_is (Times (r1, r2)) cs k =
match_is r1 cs (fn cs’ => match_is r2 cs’ k)

| match_is (r as Star r1) cs k =
(k cs) orelse match_is r1 cs (fn cs’ => match_is r cs’ k)

fun match regexp string =
match_is regexp (String.explode string)
(fn nil => true | _ => false)

end

MAY 17, 2005 WORKING DRAFT

18 1.2 Sample Code

WORKING DRAFT MAY 17, 2005

Part II

The Core Language

19

21

All Standard ML is divided into two parts. The first part, the core lan-
guage, comprises the fundamental programming constructs of the language
— the primitive types and operations, the means of defining and using
functions, mechanisms for definining new types, and so on. The second
part, the module language, comprises the mechanisms for structuring pro-
grams into separate units and is described in Part III. Here we introduce
the core language.

MAY 17, 2005 WORKING DRAFT

22

WORKING DRAFT MAY 17, 2005

Chapter 2

Types, Values, and Effects

2.1 Evaluation and Execution

Most familiar programming languages, such as C or Java, are based on an
imperative model of computation. Programs are thought of as specifying a
sequence of commands that modify the memory of the computer. Each step
of execution examines the current contents of memory, performs a simple
computation, modifies the memory, and continues with the next instruc-
tion. The individual commands are executed for their effect on the mem-
ory (which we may take to include both the internal memory and registers
and the external input/output devices). The progress of the computation
is controlled by evaluation of expressions, such as boolean tests or arith-
metic operations, that are executed for their value. Conditional commands
branch according to the value of some expression. Many languages main-
tain a distinction between expressions and commands, but often (in C, for
example) expressions may also modify the memory, so that even expres-
sion evaluation has an effect.

Computation in ML is of a somewhat different nature. The emphasis
in ML is on computation by evaluation of expressions, rather than execution
of commands. The idea of computation is as a generalization of your expe-
rience from high school algebra in which you are given a polynomial in a
variable x and are asked to calculate its value at a given value of x. We
proceed by “plugging in” the given value for x, and then, using the rules of
arithmetic, determine the value of the polynomial. The evaluation model of
computation used in ML is based on the same idea, but rather than restrict
ourselves to arithmetic operations on the reals, we admit a richer variety of
values and a richer variety of primitive operations on them.

23

24 2.2 The ML Computation Model

The evaluation model of computation enjoys several advantages over
the more familiar imperative model. Because of its close relationship to
mathematics, it is much easier to develop mathematical techniques for rea-
soning about the behavior of programs. These techniques are important
tools for helping us to ensure that programs work properly without having
to resort to tedious testing and debugging that can only show the presence
of errors, never their absence. Moreover, they provide important tools for
documenting the reasoning that went into the formulation of a program,
making the code easier to understand and maintain.

What is more, the evaluation model subsumes the imperative model as
a special case. Execution of commands for the effect on memory can be
seen as a special case of evaluation of expressions by introducing primitive
operations for allocating, accessing, and modifying memory. Rather than
forcing all aspects of computation into the framework of memory modifi-
cation, we instead take expression evaluation as the primary notion. Doing
so allows us to support imperative programming without destroying the
mathematical elegance of the evaluation model for programs that don’t use
memory. As we will see, it is quite remarkable how seldom memory modi-
fication is required. Nevertheless, the language provides for storage-based
computation for those few times that it is actually necessary.

2.2 The ML Computation Model

Computation in ML consists of evaluation of expressions. Each expression
has three important characteristics:

• It may or may not have a type.

• It may or may not have a value.

• It may or may not engender an effect.

These characteristics are all that you need to know to compute with an
expression.

The type of an expression is a description of the value it yields, should
it yield a value at all. For example, for an expression to have type int is to
say that its value (should it have one) is a number, and for an expression
to have type real is to say that its value (if any) is a floating point number.
In general we can think of the type of an expression as a “prediction” of
the form of the value that it has, should it have one. Every expression is
required to have at least one type; those that do are said to be well-typed.

WORKING DRAFT MAY 17, 2005

2.2 The ML Computation Model 25

Those without a type are said to be ill-typed; they are considered ineligible
for evaluation. The type checker determines whether or not an expression is
well-typed, rejecting with an error those that are not.

A well-typed expression is evaluated to determine its value, if indeed
it has one. An expression can fail to have a value because its evaluation
never terminates or because it raises an exception, either because of a run-
time fault such as division by zero or because some programmer-defined
condition is signalled during its evaluation. If an expression has a value,
the form of that value is predicted by its type. For example, if an expres-
sion evaluates to a value v and its type is bool, then v must be either true
or false; it cannot be, say, 17 or 3.14. The soundness of the type system
ensures the accuracy of the predictions made by the type checker.

Evaluation of an expression might also engender an effect. Effects in-
clude such phenomena as raising an exception, modifying memory, per-
forming input or output, or sending a message on the network. It is impor-
tant to note that the type of an expression says nothing about its possible
effects! An expression of type int might well display a message on the
screen before returning an integer value. This possibility is not accounted
for in the type of the expression, which classifies only its value. For this
reason effects are sometimes called side effects, to stress that they happen
“off to the side” during evaluation, and are not part of the value of the ex-
pression. We will ignore effects until chapter 13. For the time being we will
assume that all expressions are effect-free, or pure.

2.2.1 Type Checking

What is a type? What types are there? Generally speaking, a type is defined
by specifying three things:

• a name for the type,

• the values of the type, and

• the operations that may be performed on values of the type.

Often the division of labor into values and operations is not completely
clear-cut, but it nevertheless serves as a very useful guideline for describing
types.

Let’s consider first the type of integers. Its name is int. The values of
type int are the numerals 0, 1, ˜1, 2, ˜2, and so on. (Note that negative

MAY 17, 2005 WORKING DRAFT

26 2.2 The ML Computation Model

numbers are written with a prefix tilde, rather than a minus sign!) Opera-
tions on integers include addition, +, subtraction, -, multiplication, *, quo-
tient, div, and remainder, mod. Arithmetic expressions are formed in the
familiar manner, for example, 3*2+6, governed by the usual rules of prece-
dence. Parentheses may be used to override the precedence conventions,
just as in ordinary mathematical practice. Thus the preceding expression
may be equivalently written as (3*2)+6, but we may also write 3*(2+6) to
override the default precedences.

The formation of expressions is governed by a set of typing rules that
define the types of expressions in terms of the types of their constituent ex-
pressions (if any). The typing rules are generally quite intuitive since they
are consistent with our experience in mathematics and in other program-
ming languages. In their full generality the rules are somewhat involved,
but we will sneak up on them by first considering only a small fragment of
the language, building up additional machinery as we go along.

Here are some simple arithmetic expressions, written using infix nota-
tion for the operations (meaning that the operator comes between the ar-
guments, as is customary in mathematics):

3
3 + 4
4 div 3
4 mod 3

Each of these expressions is well-formed; in fact, they each have type
int. This is indicated by a typing assertion of the form exp : typ, which states
that the expression exp has the type typ. A typing assertion is said to be
valid iff the expression exp does indeed have the type typ. The following are
all valid typing assertions:

3 : int
3 + 4 : int
4 div 3 : int
4 mod 3 : int

Why are these typing assertions valid? In the case of the value 3, it
is an axiom that integer numerals have integer type. What about the ex-
pression 3+4? The addition operation takes two arguments, each of which
must have type int. Since both arguments in fact have type int, it fol-
lows that the entire expression is of type int. For more complex cases we
reason analogously, for example, deducing that (3+4) div (2+3): int by
observing that (3+4): int and (2+3): int.

WORKING DRAFT MAY 17, 2005

2.2 The ML Computation Model 27

The reasoning involved in demonstrating the validity of a typing as-
sertion may be summarized by a typing derivation consisting of a nested
sequence of typing assertions, each justified either by an axiom, or a typ-
ing rule for an operation. For example, the validity of the typing assertion
(3+7) div 5 : int is justified by the following derivation:

1. (3+7): int, because

(a) 3 : int because it is an axiom

(b) 7 : int because it is an axiom

(c) the arguments of + must be integers, and the result of + is an
integer

2. 5 : int because it is an axiom

3. the arguments of div must be integers, and the result is an integer

The outermost steps justify the assertion (3+4) div 5 : int by demonstrat-
ing that the arguments each have type int. Recursively, the inner steps
justify that (3+4): int.

2.2.2 Evaluation

Evaluation of expressions is defined by a set of evaluation rules that deter-
mine how the value of a compound expression is determined as a function
of the values of its constituent expressions (if any). Since the value of an op-
erator is determined by the values of its arguments, ML is sometimes said
to be a call-by-value language. While this may seem like the only sensible
way to define evaluation, we will see in chapter 15 that this need not be the
case — some operations may yield a value without evaluating their argu-
ments. Such operations are sometimes said to be lazy, to distinguish them
from eager operations that require their arguments to be evaluated before
the operation is performed.

An evaluation assertion has the form exp⇓val. This assertion states that
the expression exp has value val. It should be intuitively clear that the fol-
lowing evaluation assertions are valid.

5 ⇓ 5
2+3 ⇓ 5
(2+3) div (1+4) ⇓ 1

MAY 17, 2005 WORKING DRAFT

28 2.3 Types, Types, Types

An evaluation assertion may be justified by an evaluation derivation, which
is similar to a typing derivation. For example, we may justify the assertion
(3+7) div 5 ⇓ 2 by the derivation

1. (3+7) ⇓ 10 because

(a) 3 ⇓ 3 because it is an axiom

(b) 7 ⇓ 7 because it is an axiom

(c) Adding 3 to 7 yields 10.

2. 5 ⇓ 5 because it is an axiom

3. Dividing 10 by 5 yields 2.

Note that is an axiom that a numeral evaluates to itself; numerals are fully-
evaluated expressions, or values. Second, the rules of arithmetic are used to
determine that adding 3 and 7 yields 10.

Not every expression has a value. A simple example is the expression 5
div 0, which is undefined. If you attempt to evaluate this expression it will
incur a run-time error, reflecting the erroneous attempt to find the number
n that, when multiplied by 0, yields 5. The error is expressed in ML by rais-
ing an exception; we will have more to say about exceptions in chapter 12.
Another reason that a well-typed expression might not have a value is that
the attempt to evaluate it leads to an infinite loop. We don’t yet have the
machinery in place to define such expressions, but we will soon see that it
is possible for an expression to diverge, or run forever, when evaluated.

2.3 Types, Types, Types

What types are there besides the integers? Here are a few useful base types
of ML:

• Type name: real

– Values: 3.14, 2.17, 0.1E6, . . .

– Operations: +, -, *, /, =, <, . . .

• Type name: char

– Values: #"a", #"b", . . .

– Operations: ord,chr,=, <, . . .

WORKING DRAFT MAY 17, 2005

2.3 Types, Types, Types 29

• Type name: string

– Values: "abc", "1234", . . .
– Operations: ˆ , size, =, <, . . .

• Type name: bool

– Values: true, false
– Operations: if exp then exp1 else exp2

There are many, many (in fact, infinitely many!) others, but these are
enough to get us started. (See V for a complete description of the primitive
types of ML, including the ones given above.)

Notice that some of the arithmetic operations for real numbers are writ-
ten the same way as for the corresponding operation on integers. For ex-
ample, we may write 3.1+2.7 to perform a floating point addition of two
floating point numbers. This is called overloading; the addition operation
is said to be overloaded at the types int and real. In an expression involv-
ing addition the type checker tries to resolve which form of addition (fixed
point or floating point) you mean. If the arguments are int’s, then fixed
point addition is used; if the arguments are real’s, then floating addition is
used; otherwise an error is reported.1 Note that ML does not perform any
implicit conversions between types! For example, the expression 3+3.14 is
rejected as ill-formed! If you intend floating point addition, you must write
instead real(3)+3.14, which converts the integer 3 to its floating point
representation before performing the addition. If, on the other hand, you
intend integer addition, you must write 3+round(3.14), which converts
3.14 to an integer by rounding before performing the addition.

Finally, note that floating point division is a different operation from in-
teger quotient! Thus we write 3.1/2.7 for the result of dividing 3.1 by
2.7, which results in a floating point number. We reserve the operator div
for integers, and use / for floating point division.

The conditional expression

if exp then exp1 else exp2

is used to discriminate on a Boolean value. It has type typ if exp has type
bool and both exp1 and exp2 have type typ. Notice that both “arms” of the
conditional must have the same type! It is evaluated by first evaluating
exp, then proceeding to evaluate either exp1 or exp2, according to whether
the value of exp is true or false. For example,

1If the type of the arguments cannot be determined, the type defaults to int.

MAY 17, 2005 WORKING DRAFT

30 2.4 Type Errors

if 1<2 then "less" else "greater"

evaluates to "less" since the value of the expression 1<2 is true.
Note that the expression

if 1<2 then 0 else (1 div 0)

evaluates to 0, even though 1 div 0 incurs a run-time error. This is be-
cause evaluation of the conditional proceeds either to the then clause or to
the else clause, depending on the outcome of the boolean test. Whichever
clause is evaluated, the other is simply discarded without further consider-
ation.

Although we may, in fact, test equality of two boolean expressions, it is
rarely useful to do so. Beginners often writen conditionals of the form

if exp = true then exp1 else exp2.

But this is equivalent to the simpler expression

if exp then exp1 else exp2.

Similarly, rather than write

if exp = false then exp1 else exp2,

it is better to write

if not exp then exp1 else exp2

or, better yet, just

if exp then exp2 else exp1.

2.4 Type Errors

Now that we have more than one type, we have enough rope to hang our-
selves by forming ill-typed expressions. For example, the following expres-
sions are not well-typed:

size 45
#"1" + 1
#"2" ˆ "1"
3.14 + 2

WORKING DRAFT MAY 17, 2005

2.4 Type Errors 31

In each case we are “misusing” an operator with arguments of the wrong
type.

This raises a natural question: is the following expression well-typed or
not?

if 1<2 then 0 else ("abc"+4)

Since the boolean test will come out true, the else clause will never be
executed, and hence need not be constrained to be well-typed. While this
reasoning is sensible for such a simple example, in general it is impossible
for the type checker to determine the outcome of the boolean test during
type checking. To be safe the type checker “assumes the worst” and insists
that both clauses of the conditional be well-typed, and in fact have the same
type, to ensure that the conditional expression can be given a type, namely
that of both of its clauses.

MAY 17, 2005 WORKING DRAFT

32 2.4 Type Errors

WORKING DRAFT MAY 17, 2005

Chapter 3

Declarations

3.1 Variables

Just as in any other programming language, values may be assigned to
variables, which may then be used in expressions to stand for that value.
However, in sharp contrast to most familiar languages, variables in ML do
not vary! A value may be bound to a variable using a construct called a value
binding. Once a variable is bound to a value, it is bound to it for life; there is
no possibility of changing the binding of a variable once it has been bound.
In this respect variables in ML are more akin to variables in mathematics
than to variables in languages such as C.

A type may also be bound to a type constructor using a type binding. A
bound type constructor stands for the type bound to it, and can never stand
for any other type. For this reason a type binding is sometimes called a type
abbreviation — the type constructor stands for the type to which it is bound.1

A value or type binding introduces a “new” variable or type construc-
tor, distinct from all others of that class, for use within its range of signifi-
cance, or scope. Scoping in ML is static, or lexical, meaning that the range of
significance of a variable or type constructor is determined by the program
text, not by the order of evaluation of its constituent expressions. (Lan-
guages with dynamic scope adopt the opposite convention.) For the time
being variables and type constructors have global scope, meaning that the
range of significance of the variable or type constructor is the “rest” of the
program — the part that lexically follows the binding. However, we will
soon introduce mechanisms for limiting the scopes of variables or type con-

1By the same token a value binding might also be called a value abbreviation, but for some
reason it never is.

33

34 3.2 Basic Bindings

structors to a given expression.

3.2 Basic Bindings

3.2.1 Type Bindings

Any type may be given a name using a type binding. At this stage we have
so few types that it is hard to justify binding type names to identifiers, but
we’ll do it anyway because we’ll need it later. Here are some examples of
type bindings:

type float = real
type count = int and average = real

The first type binding introduces the type constructor float, which sub-
sequently is synonymous with real. The second introduces two type con-
structors, count and average, which stand for int and real, respectively.

In general a type binding introduces one or more new type constructors
simultaneously in the sense that the definitions of the type constructors may
not involve any of the type constructors being defined. Thus a binding such
as

type float = real and average = float

is nonsensical (in isolation) since the type constructors float and average
are introduced simultaneously, and hence cannot refer to one another.

The syntax for type bindings is

type tycon1 = typ1
and ...
and tyconn = typn

where each tyconi is a type constructor and each typi is a type expression.

3.2.2 Value Bindings

A value may be given a name using a value binding. Here are some exam-
ples:

val m : int = 3+2
val pi : real = 3.14 and e : real = 2.17

WORKING DRAFT MAY 17, 2005

3.2 Basic Bindings 35

The first binding introduces the variable m, specifying its type to be int
and its value to be 5. The second introduces two variables, pi and e, si-
multaneously, both having type real, and with pi having value 3.14 and e
having value 2.17. Notice that a value binding specifies both the type and
the value of a variable.

The syntax of value bindings is

val var1 : typ1 = exp1
and ...
and varn : typn = expn,

where each vari is a variable, each typi is a type expression, and each expi is
an expression.

A value binding of the form

val var : typ = exp

is type-checked by ensuring that the expression exp has type typ. If not, the
binding is rejected as ill-formed. If so, the binding is evaluated using the
bind-by-value rule: first exp is evaluated to obtain its value val, then val is
bound to var. If exp does not have a value, then the declaration does not
bind anything to the variable var.

The purpose of a binding is to make a variable available for use within
its scope. In the case of a type binding we may use the type variable intro-
duced by that binding in type expressions occurring within its scope. For
example, in the presence of the type bindings above, we may write

val pi : float = 3.14

since the type constructor float is bound to the type real, the type of the
expression 3.14. Similarly, we may make use of the variable introduced by
a value binding in value expressions occurring within its scope.

Continuing from the preceding binding, we may use the expression

sin pi

to stand for 0.0 (approximately), and we may bind this value to a variable
by writing

val x : float = sin pi

As these examples illustrate, type checking and evaluation are context
dependent in the presence of type and value bindings since we must refer
to these bindings to determine the types and values of expressions. For

MAY 17, 2005 WORKING DRAFT

36 3.3 Compound Declarations

example, to determine that the above binding for x is well-formed, we must
consult the binding for pi to determine that it has type float, consult the
binding for float to determine that it is synonymous with real, which is
necessary for the binding of x to have type float.

The rough-and-ready rule for both type-checking and evaluation is that
a bound variable or type constructor is implicitly replaced by its binding
prior to type checking and evaluation. This is sometimes called the substi-
tution principle for bindings. For example, to evaluate the expression cos x
in the scope of the above declarations, we first replace the occurrence of x
by its value (approximately 0.0), then compute as before, yielding (approx-
imately) 1.0. Later on we will have to refine this simple principle to take
account of more sophisticated language features, but it is useful nonethe-
less to keep this simple idea in mind.

3.3 Compound Declarations

Bindings may be combined to form declarations. A binding is an atomic
declaration, even though it may introduce many variables simultaneously.
Two declarations may be combined by sequential composition by simply writ-
ing them one after the other, optionally separated by a semicolon. Thus we
may write the declaration

val m : int = 3+2
val n : int = m*m

which binds m to 5 and n to 25. Subsequently, we may evaluate m+n to
obtain the value 30. In general a sequential composition of declarations has
the form dec1 . . . decn, where n is at least 2. The scopes of these declarations
are nested within one another: the scope of dec1 includes dec2, . . . , decn, the
scope of dec2 includes dec3, . . . , decn, and so on.

One thing to keep in mind is that binding is not assignment. The binding
of a variable never changes; once bound to a value, it is always bound to
that value (within the scope of the binding). However, we may shadow a
binding by introducing a second binding for a variable within the scope of
the first binding. Continuing the above example, we may write

val n : real = 2.17

to introduce a new variable n with both a different type and a different
value than the earlier binding. The new binding eclipses the old one, which
may then be discarded since it is no longer accessible. (Later on, we will

WORKING DRAFT MAY 17, 2005

3.4 Limiting Scope 37

see that in the presence of higher-order functions shadowed bindings are
not always discarded, but are preserved as private data in a closure. One
might say that old bindings never die, they just fade away.)

3.4 Limiting Scope

The scope of a variable or type constructor may be delimited by using let
expressions and local declarations. A let expression has the form

let dec in exp end

where dec is any declaration and exp is any expression. The scope of the
declaration dec is limited to the expression exp. The bindings introduced by
dec are discarded upon completion of evaluation of exp.

Similarly, we may limit the scope of one declaration to another declara-
tion by writing

local dec in dec′ end

The scope of the bindings in dec is limited to the declaration dec′. After
processing dec′, the bindings in dec may be discarded.

The value of a let expression is determined by evaluating the decla-
ration part, then evaluating the expression relative to the bindings intro-
duced by the declaration, yielding this value as the overall value of the let
expression. An example will help clarify the idea:

let
val m : int = 3
val n : int = m*m

in
m*n

end

This expression has type int and value 27, as you can readily verify by first
calculating the bindings for m and n, then computing the value of m*n rela-
tive to these bindings. The bindings for m and n are local to the expression
m*n, and are not accessible from outside the expression.

If the declaration part of a let expression eclipses earlier bindings, the
ambient bindings are restored upon completion of evaluation of the let
expression. Thus the following expression evaluates to 54:

MAY 17, 2005 WORKING DRAFT

38 3.5 Typing and Evaluation

val m : int = 2
val r : int =

let
val m : int = 3
val n : int = m*m

in
m*n

end * m

The binding of m is temporarily overridden during the evaluation of the let
expression, then restored upon completion of this evaluation.

3.5 Typing and Evaluation

To complete this chapter, let’s consider in more detail the context-sensitivity
of type checking and evaluation in the presence of bindings. The key ideas
are:

• Type checking must take account of the declared type of a variable.

• Evaluation must take account of the declared value of a variable.

This is achieved by maintaining environments for type checking and
evaluation. The type environment records the types of variables; the value
environment records their values. For example, after processing the com-
pound declaration

val m : int = 0
val x : real = Math.sqrt(2.0)
val c : char = #"a"

the type environment contains the information

val m : int
val x : real
val c : char

and the value environment contains the information

val m = 0
val x = 1.414
val c = #"a"

WORKING DRAFT MAY 17, 2005

3.5 Typing and Evaluation 39

In a sense the value declarations have been divided in “half”, separating
the type from the value information.

Thus we see that value bindings have significance for both type check-
ing and evaluation. In contrast type bindings have significance only for
type checking, and hence contribute only to the type environment. A type
binding such as

type float = real

is recorded in its entirety in the type environment, and no change is made
to the value environment. Subsequently, whenever we encounter the type
constructor float in a type expression, it is replaced by real in accordance
with the type binding above.

In chapter 2 we said that a typing assertion has the form exp : typ, and
that an evaluation assertion has the form exp ⇓ val. While two-place typing
and evaluation assertions are sufficient for closed expressions (those with-
out variables), we must extend these relations to account for open expres-
sions (those with variables). Each must be equipped with an environment
recording information about type constructors and variables introduced by
declarations.

Typing assertions are generalized to have the form

typenv ` exp : typ

where typenv is a type environment that records the bindings of type con-
structors and the types of variables that may occur in exp.2 We may think
of typenv as a sequence of specifications of one of the following two forms:

1. type typvar = typ

2. val var : typ

Note that the second form does not include the binding for var, only its
type!

Evaluation assertions are generalized to have the form

valenv ` exp ⇓ val

where valenv is a value environment that records the bindings of the variables
that may occur in exp. We may think of valenv as a sequence of specifica-
tions of the form

2The turnstile symbol, “`”, is simply a punctuation mark separating the type environ-
ment from the expression and its type.

MAY 17, 2005 WORKING DRAFT

40 3.5 Typing and Evaluation

val var = val

that bind the value val to the variable var.
Finally, we also need a new assertion, called type equivalence, that deter-

mines when two types are equivalent, relative to a type environment. This
is written

typenv ` typ1 ≡ typ2

Two types are equivalent iff they are the same when the type constructors
defined in typenv are replaced by their bindings.

The primary use of a type environment is to record the types of the
value variables that are available for use in a given expression. This is
expressed by the following axiom:

. . .val var : typ . . .` var : typ

In words, if the specification val var : typ occurs in the type environment,
then we may conclude that the variable var has type typ. This rule glosses
over an important point. In order to account for shadowing we require
that the rightmost specification govern the type of a variable. That way re-
binding of variables with the same name but different types behaves as
expected.

Similarly, the evaluation relation must take account of the value envi-
ronment. Evaluation of variables is governed by the following axiom:

. . .val var = val . . .` var ⇓ val

Here again we assume that the val specification is the rightmost one gov-
erning the variable var to ensure that the scoping rules are respected.

The role of the type equivalence assertion is to ensure that type con-
structors always stand for their bindings. This is expressed by the follow-
ing axiom:

. . .type typvar = typ . . .` typvar ≡ typ

Once again, the rightmost specification for typvar governs the assertion.

WORKING DRAFT MAY 17, 2005

Chapter 4

Functions

4.1 Functions as Templates

So far we just have the means to calculate the values of expressions, and to
bind these values to variables for future reference. In this chapter we will
introduce the ability to abstract the data from a calculation, leaving behind
the bare pattern of the calculation. This pattern may then be instantiated as
often as you like so that the calculation may be repeated with specified data
values plugged in.

For example, consider the expression 2*(3+4). The data might be taken
to be the values 2, 3, and 4, leaving behind the pattern � * (� + �), with
“holes” where the data used to be. We might equally well take the data to
just be 2 and 3, and leave behind the pattern � * (� + 4). Or we might
even regard * and + as the data, leaving 2 � (3 � 4) as the pattern! What
is important is that a complete expression can be recovered by filling in the
holes with chosen data.

Since a pattern can contain many different holes that can be indepen-
dently instantiated, it is necessary to give names to the holes so that instan-
tiation consists of plugging in a given value for all occurrences of a name in
an expression. These names are, of course, just variables, and instantiation
is just the process of substituting a value for all occurrences of a variable
in a given expression. A pattern may therefore be viewed as a function of
the variables that occur within it; the pattern is instantiated by applying the
function to argument values.

This view of functions is similar to our experience from high school
algebra. In algebra we manipulate polynomials such as x2 + 2x + 1 as
a form of expression denoting a real number, with the variable x repre-

41

42 4.2 Functions and Application

senting a fixed, but unknown, quantity. (Indeed, variables in algebra are
sometimes called unknowns, or indeterminates.) It is also possible to think
of a polynomial as a function on the real line: given a real number x, a
polynomial determines a real number y computed by the given combi-
nation of arithmetic operations. Indeed, we sometimes write equations
such as f (x) = x2 + 2x + 1, to stand for the function f determined by
the polynomial. In the univariate case we can get away with just writ-
ing the polynomial for the function, but in the multivariate case we must
be more careful: we may regard the polynomial x2 + 2xy + y2 to be a func-
tion of x, a function of y, or a function of both x and y. In these cases
we write f (x) = x2 + 2xy + y2 when x varies and y is held fixed, and
g(y) = x2 + 2xy + y2 when y varies for fixed x, and h(x, y) = x2 + 2xy + y2,
when both vary jointly.

In algebra it is usually left implicit that the variables x and y range over
the real numbers, and that f , g, and h are functions on the real line. How-
ever, to be fully explicit, we sometimes write something like

f : R → R : x ∈ R 7→ x2 + 2x + 1

to indicate that f is a function on the reals sending x ∈ R to x2 + 2x + 1 ∈ R.
This notation has the virtue of separating the name of the function, f , from
the function itself, the mapping that sends x ∈ R to x2 + 2x + 1. It also em-
phasizes that functions are a kind of “value” in mathematics (namely, a cer-
tain set of ordered pairs), and that the variable f is bound to that value (i.e.,
that set) by the declaration. This viewpoint is especially important once we
consider operators, such as the differential operator, that map functions to
functions. For example, if f is a differentiable function on the real line, the
function D f is its first derivative, another function on the real line. In the
case of the function f defined above the function D f sends x ∈ R to 2x + 2.

4.2 Functions and Application

The treatment of functions in ML is very similar, except that we stress the al-
gorithmic aspects of functions (how they determine values from arguments),
as well as the extensional aspects (what they compute). As in mathematics, a
function in ML is a kind of value, namely a value of function type of the form
typ -> typ′. The type typ is the domain type (the type of arguments) of the
function, and typ′ is its range type (the type of its results). We compute with
a function by applying it to an argument value of its domain type and calcu-

WORKING DRAFT MAY 17, 2005

4.2 Functions and Application 43

lating the result, a value of its range type. Function application is indicated
by juxtaposition: we simply write the argument next to the function.

The values of function type consist of primitive functions, such as addi-
tion and square root, and function expressions, which are also called lambda
expressions,1 of the form

fn var : typ => exp

The variable var is called the parameter, and the expression exp is called
the body. It has type typ->typ′ provided that exp has type typ′ under the
assumption that the parameter var has the type typ.

To apply such a function expression to an argument value val, we add
the binding

val var = val

to the value environment, and evaluate exp, obtaining a value val′. Then
the value binding for the parameter is removed, and the result value, val′,
is returned as the value of the application.

For example, Math.sqrt is a primitive function of type real->real that
may be applied to a real number to obtain its square root. For example, the
expression Math.sqrt 2.0 evaluates to 1.414 (approximately). We can,
if we wish, parenthesize the argument, writing Math.sqrt (2.0) for the
sake of clarity; this is especially useful for expressions such as Math.sqrt
(Math.sqrt 2.0). The square root function is built in. We may write the
fourth root function as the following function expression:

fn x : real => Math.sqrt (Math.sqrt x)

It may be applied to an argument by writing an expression such as

(fn x : real => Math.sqrt (Math.sqrt x)) (16.0),

which calculates the fourth root of 16.0. The calculation proceeds by bind-
ing the variable x to the argument 16.0, then evaluating the expression
Math.sqrt (Math.sqrt x) in the presence of this binding. When evalua-
tion completes, we drop the binding of x from the environment, since it is
no longer needed.

Notice that we did not give the fourth root function a name; it is an
“anonymous” function. We may give it a name using the declaration forms
introduced in chapter 3. For example, we may bind the fourth root function
to the variable fourthroot using the following declaration:

1For purely historical reasons.

MAY 17, 2005 WORKING DRAFT

44 4.2 Functions and Application

val fourthroot : real -> real =
fn x : real => Math.sqrt (Math.sqrt x)

We may then write fourthroot 16.0 to compute the fourth root of 16.0.
This notation for defining functions quickly becomes tiresome, so ML

provides a special syntax for function bindings that is more concise and
natural. Instead of using the val binding above to define fourthroot, we
may instead write

fun fourthroot (x:real):real = Math.sqrt (Math.sqrt x)

This declaration has the same meaning as the earlier val binding, namely it
binds fn x:real => Math.sqrt(Math.sqrt x) to the variable fourthroot.

It is important to note that function applications in ML are evaluated
according to the call-by-value rule: the arguments to a function are evalu-
ated before the function is called. Put in other terms, functions are defined
to act on values, rather than on unevaluated expressions. Thus, to evaluate
an expression such as fourthroot (2.0+2.0), we proceed as follows:

1. Evaluate fourthroot to the function value fn x : real => Math.sqrt
(Math.sqrt x).

2. Evaluate the argument 2.0+2.0 to its value 4.0

3. Bind x to the value 4.0.

4. Evaluate Math.sqrt (Math.sqrt x) to 1.414 (approximately).

(a) Evaluate Math.sqrt to a function value (the primitive square
root function).

(b) Evaluate the argument expression Math.sqrt x to its value, ap-
proximately 2.0.

i. Evaluate Math.sqrt to a function value (the primitive square
root function).

ii. Evaluate x to its value, 4.0.
iii. Compute the square root of 4.0, yielding 2.0.

(c) Compute the square root of 2.0, yielding 1.414.

5. Drop the binding for the variable x.

Notice that we evaluate both the function and argument positions of an
application expression — both the function and argument are expressions

WORKING DRAFT MAY 17, 2005

4.3 Binding and Scope, Revisited 45

yielding values of the appropriate type. The value of the function position
must be a value of function type, either a primitive function or a lambda
expression, and the value of the argument position must be a value of the
domain type of the function. In this case the result value (if any) will be of
the range type of the function. Functions in ML are first-class, meaning that
they may be computed as the value of an expression. We are not limited to
applying only named functions, but rather may compute “new” functions
on the fly and apply these to arguments. This is a source of considerable
expressive power, as we shall see in the sequel.

Using similar techniques we may define functions with arbitrary do-
main and range. For example, the following are all valid function declara-
tions:

fun srev (s:string):string = implode (rev (explode s))
fun pal (s:string):string = s ˆ (srev s)
fun double (n:int):int = n + n
fun square (n:int):int = n * n
fun halve (n:int):int = n div 2
fun is even (n:int):bool = (n mod 2 = 0)

Thus pal "ot" evaluates to the string "otto", and is even 4 evaluates to
true.

4.3 Binding and Scope, Revisited

A function expression of the form

fn var:typ => exp

binds the variable var within the body exp of the function. Unlike val bind-
ings, function expressions bind a variable without giving it a specific value.
The value of the parameter is only determined when the function is ap-
plied, and then only temporarily, for the duration of the evaluation of its
body.

It is worth reviewing the rules for binding and scope of variables that
we introduced in chapter 3 in the presence of function expressions. As be-
fore we adhere to the principle of static scope, according to which variables
are taken to refer to the nearest enclosing binding of that variable, whether by
a val binding or by a fn expression.

Thus, in the following example, the occurrences of x in the body of the
function f refer to the parameter of f, whereas the occurrences of x in the
body of g refer to the preceding val binding.

MAY 17, 2005 WORKING DRAFT

46 4.3 Binding and Scope, Revisited

val x:real = 2.0
fun f(x:real):real = x+x
fun g(y:real):real = x+y

Local val bindings may shadow parameters, as well as other val bindings.
For example, consider the following function declaration:

fun h(x:real):real =
let val x:real = 2.0 in x+x end * x

The inner binding of x by the val declaration shadows the parameter x of
h, but only within the body of the let expression. Thus the last occurrence
of x refers to the parameter of h, whereas the preceding two occurrences
refer to the inner binding of x to 2.0.

The phrases “inner” and “outer” binding refer to the logical structure, or
abstract syntax of an expression. In the preceding example, the body of h lies
“within” the scope of the parameter x, and the expression x+x lies within
the scope of the val binding for x. Since the occurrences of x within the
body of the let lie within the scope of the inner val binding, they are taken
to refer to that binding, rather than to the parameter. On the other hand the
last occurrence of x does not lie within the scope of the val binding, and
hence refers to the parameter of h.

In general the names of parameters do not matter; we can rename them
at will without affecting the meaning of the program, provided that we
simultaneously (and consistently) rename the binding occurrence and all
uses of that variable. Thus the functions f and g below are completely
equivalent to each other:

fun f(x:int):int = x*x
fun g(y:int):int = y*y

A parameter is just a placeholder; its name is not important.
Our ability to rename parameters is constrained by the static scoping

rule. We may rename a parameter to whatever we’d like, provided that we
don’t change the way in which uses of a variable are resolved. For example,
consider the following situation:

val x:real = 2.0
fun h(y:real):real = x+y

The parameter y to h may be renamed to z without affecting its meaning.
However, we may not rename it to x, for doing so changes its meaning!
That is, the function

WORKING DRAFT MAY 17, 2005

4.3 Binding and Scope, Revisited 47

fun h’(x:real):real = x+x

does not have the same meaning as h, because now both occurrences of x in
the body of h’ refer to the parameter, whereas in h the variable x refers to
the outer val binding, whereas the variable y refers to the parameter.

While this may seem like a minor technical issue, it is essential that you
master these concepts now, for they play a central, and rather subtle, role
later on.

MAY 17, 2005 WORKING DRAFT

48 4.3 Binding and Scope, Revisited

WORKING DRAFT MAY 17, 2005

Chapter 5

Products and Records

5.1 Product Types

A distinguishing feature of ML is that aggregate data structures, such as
tuples, lists, arrays, or trees, may be created and manipulated with ease.
In contrast to most familiar languages it is not necessary in ML to be con-
cerned with allocation and deallocation of data structures, nor with any
particular representation strategy involving, say, pointers or address arith-
metic. Instead we may think of data structures as first-class values, on a par
with every other value in the language. Just as it is unnecessary to think
about “allocating” integers to evaluate an arithmetic expression, it is un-
necessary to think about allocating more complex data structures such as
tuples or lists.

5.1.1 Tuples

This chapter is concerned with the simplest form of aggregate data struc-
ture, the n-tuple. An n-tuple is a finite ordered sequence of values of the
form

(val1,...,valn),

where each vali is a value. A 2-tuple is usually called a pair, a 3-tuple a
triple, and so on.

An n-tuple is a value of a product type of the form

typ1*... *typn.

Values of this type are n-tuples of the form

49

50 5.1 Product Types

(val1,...,valn),

where vali is a value of type typi (for each 1 ≤ i ≤ n).
Thus the following are well-formed bindings:

val pair : int * int = (2, 3)
val triple : int * real * string = (2, 2.0, "2")
val quadruple

: int * int * real * real
= (2,3,2.0,3.0)

val pair of pairs
: (int * int) * (real * real)
= ((2,3),(2.0,3.0))

The nesting of parentheses matters! A pair of pairs is not the same as
a quadruple, so the last two bindings are of distinct values with distinct
types.

There are two limiting cases, n = 0 and n = 1, that deserve special
attention. A 0-tuple, which is also known as a null tuple, is the empty se-
quence of values, (). It is a value of type unit, which may be thought of
as the 0-tuple type.1 The null tuple type is surprisingly useful, especially
when programming with effects. On the other hand there seems to be no
particular use for 1-tuples, and so they are absent from the language.

As a convenience, ML also provides a general tuple expression of the
form

(exp1,...,expn),

where each expi is an arbitrary expression, not necessarily a value. Tuple
expressions are evaluated from left to right, so that the above tuple expres-
sion evaluates to the tuple value yielding the tuple value

(val1,...,valn),

provided that exp1 evaluates to val1, exp2 evaluates to val2, and so on. For
example, the binding

val pair : int * int = (1+1, 5-2)

binds the value (2, 3) to the variable pair.
Strictly speaking, it is not essential to have tuple expressions as a prim-

itive notion in the language. Rather than write

1In Java (and other languages) the type unit is misleadingly written void, which sug-
gests that the type has no members, but in fact it has exactly one!

WORKING DRAFT MAY 17, 2005

5.1 Product Types 51

(exp1,...,expn),

with the (implicit) understanding that the expi’s are evaluated from left to
right, we may instead write

let val x1 = exp1
val x2 = exp2
...
val xn = expn

in (x1,...,xn) end

which makes the evaluation order explicit.

5.1.2 Tuple Patterns

One of the most powerful, and distinctive, features of ML is the use of
pattern matching to access components of aggregate data structures. For
example, suppose that val is a value of type

(int * string) * (real * char)

and we wish to retrieve the first component of the second component of
val, a value of type real. Rather than explicitly “navigate” to this position
to retrieve it, we may simply use a generalized form of value binding in
which we select that component using a pattern:

val ((,), (r:real,)) = val

The left-hand side of the val binding is a tuple pattern that describes a
pair of pairs, binding the first component of the second component to the
variable r. The underscores indicate “don’t care” positions in the pattern
— their values are not bound to any variable. If we wish to give names to
all of the components, we may use the following value binding:

val ((i:int, s:string), (r:real, c:char)) = val

If we’d like we can even give names to the first and second components of
the pair, without decomposing them into constituent parts:

val (is:int*string,rc:real*char) = val

The general form of a value binding is

val pat = exp,

MAY 17, 2005 WORKING DRAFT

52 5.1 Product Types

where pat is a pattern and exp is an expression. A pattern is one of three
forms:

1. A variable pattern of the form var:typ.

2. A tuple pattern of the form (pat1,...,patn), where each pati is a pat-
tern. This includes as a special case the null-tuple pattern, ().

3. A wildcard pattern of the form .

The type of a pattern is determined by an inductive analysis of the form
of the pattern:

1. A variable pattern var:typ is of type typ.

2. A tuple pattern (pat1,...,patn) has type typ1*· · · *typn, where each
pati is a pattern of type typi. The null-tuple pattern () has type unit.

3. The wildcard pattern has any type whatsoever.

A value binding of the form

val pat = exp

is well-typed iff pat and exp have the same type; otherwise the binding is
ill-typed and is rejected.

For example, the following bindings are well-typed:

val (m:int, n:int) = (7+1,4 div 2)
val (m:int, r:real, s:string) = (7, 7.0, "7")
val ((m:int,n:int), (r:real, s:real)) = ((4,5),(3.1,2.7))
val (m:int, n:int, r:real, s:real) = (4,5,3.1,2.7)

In contrast, the following are ill-typed:

val (m:int,n:int,r:real,s:real) = ((4,5),(3.1,2.7))
val (m:int, r:real) = (7+1,4 div 2)
val (m:int, r:real) = (7, 7.0, "7")

Value bindings are evaluated using the bind-by-value principle discussed
earlier, except that the binding process is now more complex than before.
First, we evaluate the right-hand side of the binding to a value (if indeed it
has one). This happens regardless of the form of the pattern — the right-
hand side is always evaluated. Second, we perform pattern matching to de-
termine the bindings for the variables in the pattern.

WORKING DRAFT MAY 17, 2005

5.1 Product Types 53

The process of matching a value against a pattern is defined by a set of
rules for reducing bindings with complex patterns to a set of bindings with
simpler patterns, stopping once we reach a binding with a variable pattern.
The rules are as follows:

1. The variable binding val var = val is irreducible.

2. The wildcard binding val = val is discarded.

3. The tuple binding

val (pat1,...,patn) =
(val1,...,valn)

is reduced to the set of n bindings

val pat1 = val1
...

val patn = valn

In the case that n = 0 the tuple binding is simply discarded.

These simplifications are repeated until all bindings are irreducible, which
leaves us with a set of variable bindings that constitute the result of pattern
matching.

For example, evaluation of the binding

val ((m:int,n:int), (r:real, s:real)) = ((2,3),(2.0,3.0))

proceeds as follows. First, we compose this binding into the following two
bindings:

val (m:int, n:int) = (2,3)
val (r:real, s:real) = (2.0,3.0).

Then we decompose each of these bindings in turn, resulting in the follow-
ing set of four atomic bindings:

val m:int = 2
val n:int = 3
val r:real = 2.0
val s:real = 3.0

At this point the pattern-matching process is complete.

MAY 17, 2005 WORKING DRAFT

54 5.2 Record Types

5.2 Record Types

Tuples are most useful when the number of positions is small. When the
number of components grows beyond a small number, it becomes difficult
to remember which position plays which role. In that case it is more natural
to attach a label to each component of the tuple that mediates access to it.
This is the notion of a record type.

A record type has the form

{lab1:typ1,...,labn:typn},

where n ≥ 0, and all of the labels labi are distinct. A record value has the
form

{lab1=val1,...,labn=valn},

where vali has type typi. A record pattern has the form

{lab1=pat1,...,labn=patn}

which has type

{lab1:typ1,...,labn:typn}

provided that each pati has type typi.
A record value binding of the form

val
{lab1=pat1,...,labn=patn} =
{lab1=val1,...,labn=valn}

is decomposed into the following set of bindings

val pat1 = val1
...

val patn = valn.

Since the components of a record are identified by name, not position, the
order in which they occur in a record value or record pattern is not impor-
tant. However, in a record expression (in which the components may not
be fully evaluated), the fields are evaluated from left to right in the order
written, just as for tuple expressions.

Here are some examples to help clarify the use of record types. First, let
us define the record type hyperlink as follows:

WORKING DRAFT MAY 17, 2005

5.2 Record Types 55

type hyperlink =
{ protocol : string,

address : string,
display : string }

The record binding

val mailto rwh : hyperlink =
{ protocol="mailto",

address="rwh@cs.cmu.edu",
display="Robert Harper" }

defines a variable of type hyperlink. The record binding

val { protocol=prot, display=disp, address=addr } = mailto rwh

decomposes into the three variable bindings

val prot = "mailto"
val addr = "rwh@cs.cmu.edu"
val disp = "Robert Harper"

which extract the values of the fields of mailto rwh.
Using wild cards we can extract selected fields from a record. For ex-

ample, we may write

val {protocol=prot, address= , display= } = mailto rwh

to bind the variable prot to the protocol field of the record value mailto rwh.
It is quite common to encounter record types with tens of fields. In

such cases even the wild card notation doesn’t help much when it comes to
selecting one or two fields from such a record. For this we often use ellipsis
patterns in records, as illustrated by the following example.

val {protocol=prot,...} = intro home

The pattern {protocol=prot,...} stands for the expanded pattern

{protocol=prot, address= , display= }

in which the elided fields are implicitly bound to wildcard patterns.
In general the ellipsis is replaced by as many wildcard bindings as are

necessary to fill out the pattern to be consistent with its type. In order for
this to occur the compiler must be able to determine unambiguously the type of
the record pattern. Here the right-hand side of the value binding determines

MAY 17, 2005 WORKING DRAFT

56 5.3 Multiple Arguments and Multiple Results

the type of the pattern, which then determines which additional fields to
fill in. In some situations the context does not disambiguate, in which case
you must supply additional type information, or avoid the use of ellipsis
notation.

Finally, ML provides a convenient abbreviated form of record pattern

{lab1,...,labn}

which stands for the pattern

{lab1=var1,...,labn=varn}

where the variables vari are variables with the same name as the corre-
sponding label labi. For example, the binding

val { protocol, address, display } = mailto rwh

decomposes into the sequence of atomic bindings

val protocol = "mailto"
val address = "rwh@cs.cmu.edu"
val display = "Robert Harper"

This avoids the need to think up a variable name for each field; we can just
make the label do “double duty” as a variable.

5.3 Multiple Arguments and Multiple Results

A function may bind more than one argument by using a pattern, rather
than a variable, in the argument position. Function expressions are gener-
alized to have the form

fn pat => exp

where pat is a pattern and exp is an expression. Application of such a func-
tion proceeds much as before, except that the argument value is matched
against the parameter pattern to determine the bindings of zero or more
variables, which are then used during the evaluation of the body of the
function.

For example, we may make the following definition of the Euclidean
distance function:

val dist
: real * real -> real
= fn (x:real, y:real) => sqrt (x*x + y*y)

WORKING DRAFT MAY 17, 2005

5.3 Multiple Arguments and Multiple Results 57

This function may then be applied to a pair (a two-tuple!) of arguments to
yield the distance between them. For example, dist (2.0,3.0) evaluates
to (approximately) 4.0.

Using fun notation, the distance function may be defined more con-
cisely as follows:

fun dist (x:real, y:real):real = sqrt (x*x + y*y)

The meaning is the same as the more verbose val binding given earlier.
Keyword parameter passing is supported through the use of record pat-

terns. For example, we may define the distance function using keyword
parameters as follows:

fun dist’ {x=x:real, y=y:real} = sqrt (x*x + y*y)

The expression dist’ {x=2.0,y=3.0} invokes this function with the indi-
cated x and y values.

Functions with multiple results may be thought of as functions yielding
tuples (or records). For example, we might compute two different notions
of distance between two points at once as follows:

fun dist2 (x:real, y:real):real*real
= (sqrt (x*x+y*y), abs(x-y))

Notice that the result type is a pair, which may be thought of as two results.
These examples illustrate a pleasing regularity in the design of ML.

Rather than introduce ad hoc notions such as multiple arguments, multiple
results, or keyword parameters, we make use of the general mechanisms
of tuples, records, and pattern matching.

It is sometimes useful to have a function to select a particular compo-
nent from a tuple or record (e.g., the third component or the component
with a given label). Such functions may be easily defined using pattern
matching. But since they arise so frequently, they are pre-defined in ML
using sharp notation. For any tuple type

typ1*· · ·*typn,

and each 1 ≤ i ≤ n, there is a function #i of type

typ1*· · ·*typn->typi

defined as follows:

fun #i (, ..., , x, , ...,) = x

MAY 17, 2005 WORKING DRAFT

58 5.3 Multiple Arguments and Multiple Results

where x occurs in the ith position of the tuple (and there are underscores in
the other n− 1 positions).

Thus we may refer to the second field of a three-tuple val by writing
#2(val). It is bad style, however, to over-use the sharp notation; code is
generally clearer and easier to maintain if you use patterns wherever pos-
sible. Compare, for example, the following definition of the Euclidean dis-
tance function written using sharp notation with the original.

fun dist (p:real*real):real
= sqrt((#1 p)*(#1 p)+(#2 p)*(#2 p))

You can easily see that this gets out of hand very quickly, leading to un-
readable code. Use of the sharp notation is strongly discouraged!

A similar notation is provided for record field selection. The following
function #lab selects the component of a record with label lab.

fun #lab {lab=x,...} = x

Notice the use of ellipsis! Bear in mind the disambiguation requirement:
any use of #lab must be in a context sufficient to determine the full record
type of its argument.

WORKING DRAFT MAY 17, 2005

Chapter 6

Case Analysis

6.1 Homogeneous and Heterogeneous Types

Tuple types have the property that all values of that type have the same
form (n-tuples, for some n determined by the type); they are said to be
homogeneous. For example, all values of type int*real are pairs whose
first component is an integer and whose second component is a real. Any
type-correct pattern will match any value of that type; there is no possi-
bility of failure of pattern matching. The pattern (x:int,y:real) is of
type int*real and hence will match any value of that type. On the other
hand the pattern (x:int,y:real,z:string) is of type int*real*string
and cannot be used to match against values of type int*real; attempting
to do so fails at compile time.

Other types have values of more than one form; they are said to be het-
erogeneous types. For example, a value of type int might be 0, 1, ˜1, . . . or
a value of type char might be #"a" or #"z". (Other examples of hetero-
geneous types will arise later on.) Corresponding to each of the values of
these types is a pattern that matches only that value. Attempting to match
any other value against that pattern fails at execution time with an error con-
dition called a bind failure.

Here are some examples of pattern-matching against values of a hetero-
geneous type:

val 0 = 1-1
val (0,x) = (1-1, 34)
val (0, #"0") = (2-1, #"0")

The first two bindings succeed, the third fails. In the case of the second, the

59

60 6.2 Clausal Function Expressions

variable x is bound to 34 after the match. No variables are bound in the
first or third examples.

6.2 Clausal Function Expressions

The importance of constant patterns becomes clearer once we consider how
to define functions over heterogeneous types. This is achieved in ML using
a clausal function expression whose general form is

fn pat1 => exp1

|
...

| patn => expn

Each pati is a pattern and each expi is an expression involving the variables
of the pattern pati. Each component pat=>exp is called a clause, or a rule. The
entire assembly of rules is called a match.

The typing rules for matches ensure consistency of the clauses. Specifi-
cally, there must exist types typ1 and typ2 such that

1. Each pattern pati has type typ1.

2. Each expression expi has type typ2, given the types of the variables in
pattern pati.

If these requirements are satisfied, the function has the type typ1->typ2.
Application of a clausal function to a value val proceeds by considering

the clauses in the order written. At stage i, where 1 ≤ i ≤ n, the argument
value val is matched against the pattern pati; if the pattern match succeeds,
evaluation continues with the evaluation of expression expi, with the vari-
ables of pati replaced by their values as determined by pattern matching.
Otherwise we proceed to stage i + 1. If no pattern matches (i.e., we reach
stage n + 1), then the application fails with an execution error called a match
failure.

Here’s an example. Consider the following clausal function:

val recip : int -> int =
fn 0 => 0 | n:int => 1 div n

This defines an integer-valued reciprocal function on the integers, where
the reciprocal of 0 is arbitrarily defined to be 0. The function has two
clauses, one for the argument 0, the other for non-zero arguments n. (Note

WORKING DRAFT MAY 17, 2005

6.3 Booleans and Conditionals, Revisited 61

that n is guaranteed to be non-zero because the patterns are considered in
order: we reach the pattern n:int only if the argument fails to match the
pattern 0.)

The fun notation is also generalized so that we may define recip using
the following more concise syntax:

fun recip 0 = 0
| recip (n:int) = 1 div n

One annoying thing to watch out for is that the fun form uses an equal sign
to separate the pattern from the expression in a clause, whereas the fn form
uses a double arrow.

Case analysis on the values of a heterogeneous type is performed by
application of a clausally-defined function. The notation

case exp
of pat1 => exp1
| ...
| patn => expn

is short for the application

(fn pat1 => exp1
| ...
| patn => expn)

exp.

Evaluation proceeds by first evaluating exp, then matching its value succes-
sively against the patterns in the match until one succeeds, and continuing
with evaluation of the corresponding expression. The case expression fails
if no pattern succeeds to match the value.

6.3 Booleans and Conditionals, Revisited

The type bool of booleans is perhaps the most basic example of a hetero-
geneous type. Its values are true and false. Functions may be defined on
booleans using clausal definitions that match against the patterns true and
false.

For example, the negation function may be defined clausally as follows:

fun not true = false
| not false = true

MAY 17, 2005 WORKING DRAFT

62 6.4 Exhaustiveness and Redundancy

The conditional expression

if exp then exp1 else exp2

is short-hand for the case analysis

case exp
of true => exp1
| false => exp2

which is itself short-hand for the application

(fn true => exp1 | false => exp2) exp.

The “short-circuit” conjunction and disjunction operations are defined
as follows. The expression exp1 andalso exp2 is short for

if exp1 then exp2 else false

and the expression exp1 orelse exp2 is short for

if exp1 then true else exp2.

You should expand these into case expressions and check that they behave
as expected. Pay particular attention to the evaluation order, and observe
that the call-by-value principle is not violated by these expressions.

6.4 Exhaustiveness and Redundancy

Matches are subject to two forms of “sanity check” as an aid to the ML
programmer. The first, called exhaustiveness checking, ensures that a well-
formed match covers its domain type in the sense that every value of the
domain must match one of its clauses. The second, called redundancy check-
ing, ensures that no clause of a match is subsumed by the clauses that pre-
cede it. This means that the set of values covered by a clause in a match
must not be contained entirely within the set of values covered by the pre-
ceding clauses of that match.

Redundant clauses are always a mistake — such a clause can never be
executed. Redundant rules often arise accidentally. For example, the sec-
ond rule of the following clausal function definition is redundant:

fun not True = false
| not False = true

WORKING DRAFT MAY 17, 2005

6.4 Exhaustiveness and Redundancy 63

By capitalizing True we have turned it into a variable, rather than a con-
stant pattern. Consequently, every value matches the first clause, rendering
the second redundant.

Since the clauses of a match are considered in the order they are writ-
ten, redundancy checking is correspondingly order-sensitive. In particu-
lar, changing the order of clauses in a well-formed, irredundant match can
make it redundant, as in the following example:

fun recip (n:int) = 1 div n
| recip 0 = 0

The second clause is redundant because the first matches any integer value,
including 0.

Inexhaustive matches may or may not be in error, depending on whether
the match might ever be applied to a value that is not covered by any
clause. Here is an example of a function with an inexhaustive match that is
plausibly in error:

fun is numeric #"0" = true
| is numeric #"1" = true
| is numeric #"2" = true
| is numeric #"3" = true
| is numeric #"4" = true
| is numeric #"5" = true
| is numeric #"6" = true
| is numeric #"7" = true
| is numeric #"8" = true
| is numeric #"9" = true

When applied to, say, #"a", this function fails. Indeed, the function never
returns false for any argument!

Perhaps what was intended here is to include a catch-all clause at the
end:

MAY 17, 2005 WORKING DRAFT

64 6.4 Exhaustiveness and Redundancy

fun is numeric #"0" = true
| is numeric #"1" = true
| is numeric #"2" = true
| is numeric #"3" = true
| is numeric #"4" = true
| is numeric #"5" = true
| is numeric #"6" = true
| is numeric #"7" = true
| is numeric #"8" = true
| is numeric #"9" = true
| is numeric = false

The addition of a final catch-all clause renders the match exhaustive, be-
cause any value not matched by the first ten clauses will surely be matched
by the eleventh.

Having said that, it is a very bad idea to simply add a catch-all clause
to the end of every match to suppress inexhaustiveness warnings from the
compiler. The exhaustiveness checker is your friend! Each such warning is
a suggestion to double-check that match to be sure that you’ve not made
a silly error of omission, but rather have intentionally left out cases that
are ruled out by the invariants of the program. In chapter 10 we will see
that the exhaustiveness checker is an extremely valuable tool for managing
code evolution.

WORKING DRAFT MAY 17, 2005

Chapter 7

Recursive Functions

So far we’ve only considered very simple functions (such as the reciprocal
function) whose value is computed by a simple composition of primitive
functions. In this chapter we introduce recursive functions, the principal
means of iterative computation in ML. Informally, a recursive function is
one that computes the result of a call by possibly making further calls to
itself. Obviously, to avoid infinite regress, some calls must return their re-
sults without making any recursive calls. Those that do must ensure that
the arguments are, in some sense, “smaller” so that the process will even-
tually terminate.

This informal description obscures a central point, namely the means
by which we may convince ourselves that a function computes the result
that we intend. In general we must prove that for all inputs of the do-
main type, the body of the function computes the “correct” value of result
type. Usually the argument imposes some additional assumptions on the
inputs, called the pre-conditions. The correctness requirement for the re-
sult is called a post-condition. Our burden is to prove that for every input
satisfying the pre-conditions, the body evaluates to a result satisfying the
post-condition. In fact we may carry out such an analysis for many differ-
ent pre- and post-condition pairs, according to our interest. For example,
the ML type checker proves that the body of a function yields a value of
the range type (if it terminates) whenever it is given an argument of the do-
main type. Here the domain type is the pre-condition, and the range type
is the post-condition. In most cases we are interested in deeper properties,
examples of which we shall consider below.

To prove the correctness of a recursive function (with respect to given
pre- and post-conditions) it is typically necessary to use some form of in-

65

66 7.1 Self-Reference and Recursion

ductive reasoning. The base cases of the induction correspond to those
cases that make no recursive calls; the inductive step corresponds to those
that do. The beauty of inductive reasoning is that we may assume that the
recursive calls work correctly when showing that a case involving recur-
sive calls is correct. We must separately show that the base cases satisfy
the given pre- and post-conditions. Taken together, these two steps are
sufficient to establish the correctness of the function itself, by appeal to an
induction principle that justifies the particular pattern of recursion.

No doubt this all sounds fairly theoretical. The point of this chapter is
to show that it is also profoundly practical.

7.1 Self-Reference and Recursion

In order for a function to “call itself”, it must have a name by which it can
refer to itself. This is achieved by using a recursive value binding, which are
ordinary value bindings qualified by the keyword rec. The simplest form
of a recursive value binding is as follows:

val rec var:typ = val.

As in the non-recursive case, the left-hand is a pattern, but here the right-
hand side must be a value. In fact the right-hand side must be a function
expression, since only functions may be defined recursively in ML. The
function may refer to itself by using the variable var.

Here’s an example of a recursive value binding:

val rec factorial : int->int =
fn 0 => 1 | n:int => n * factorial (n-1)

Using fun notation we may write the definition of factorial much more
clearly and concisely as follows:

fun factorial 0 = 1
| factorial (n:int) = n * factorial (n-1)

There is obviously a close correspondence between this formulation of factorial
and the usual textbook definition of the factorial function in terms of recur-
sion equations:

0! = 1
n! = n× (n− 1)! (n > 0)

Recursive value bindings are type-checked in a manner that may, at first
glance, seem paradoxical. To check that the binding

WORKING DRAFT MAY 17, 2005

7.1 Self-Reference and Recursion 67

val rec var : typ = val

is well-formed, we ensure that the value val has type typ, assuming that var
has type typ. Since var refers to the value val itself, we are in effect assuming
what we intend to prove while proving it!

(Incidentally, since val is required to be a function expression, the type
typ will always be a function type.)

Let’s look at an example. To check that the binding for factorial
given above is well-formed, we assume that the variable factorial has type
int->int, then check that its definition, the function

fn 0 => 1 | n:int => n * factorial (n-1),

has type int->int. To do so we must check that each clause has type
int->int by checking for each clause that its pattern has type int and that
its expression has type int. This is clearly true for the first clause of the def-
inition. For the second, we assume that n has type int, then check that n *
factorial (n-1) has type int. This is so because of the rules for the prim-
itive arithmetic operations and because of our assumption that factorial
has type int->int.

How are applications of recursive functions evaluated? The rules are
almost the same as before, with one modification. We must arrange that
all occurrences of the variable standing for the function are replaced by the
function itself before we evaluate the body. That way all references to the
variable standing for the function itself are indeed references to the function
itself!

Suppose that we have the following recursive function binding

val rec var : typ =
fn pat1 => exp1
| ...
| patn => expn

and we wish to apply var to the value val of type typ. As before, we consider
each clause in turn, until we find the first pattern pati matching val. We
proceed, as before, by evaluating expi, replacing the variables in pati by the
bindings determined by pattern matching, but, in addition, we replace all
occurrences of the var by its binding in expi before continuing evaluation.

For example, to evaluate factorial 3, we proceed by retrieving the
binding of factorial and evaluating

(fn 0=>1 | n:int => n*factorial(n-1))(3).

MAY 17, 2005 WORKING DRAFT

68 7.1 Self-Reference and Recursion

Considering each clause in turn, we find that the first doesn’t match, but the
second does. We therefore continue by evaluating its right-hand side, the
expression n * factorial(n-1), after replacing n by 3 and factorial by
its definition. We are left with the sub-problem of evaluating the expression

3 * (fn 0 => 1 | n:int => n*factorial(n-1))(2)

Proceeding as before, we reduce this to the sub-problem of evaluating

3 * (2 * (fn 0=>1 | n:int => n*factorial(n-1))(1)),

which reduces to the sub-problem of evaluating

3 * (2 * (1 * (fn 0=>1 | n:int => n*factorial(n-1))(0))),

which reduces to

3 * (2 * (1 * 1)),

which then evaluates to 6, as desired.
Observe that the repeated substitution of factorial by its definition

ensures that the recursive calls really do refer to the factorial function it-
self. Also observe that the size of the sub-problems grows until there are
no more recursive calls, at which point the computation can complete. In
broad outline, the computation proceeds as follows:

1. factorial 3

2. 3 * factorial 2

3. 3 * 2 * factorial 1

4. 3 * 2 * 1 * factorial 0

5. 3 * 2 * 1 * 1

6. 3 * 2 * 1

7. 3 * 2

8. 6

Notice that the size of the expression first grows (in direct proportion to
the argument), then shrinks as the pending multiplications are completed.
This growth in expression size corresponds directly to a growth in run-time
storage required to record the state of the pending computation.

WORKING DRAFT MAY 17, 2005

7.2 Iteration 69

7.2 Iteration

The definition of factorial given above should be contrasted with the fol-
lowing two-part definition:

fun helper (0,r:int) = r
| helper (n:int,r:int) = helper (n-1,n*r)

fun factorial (n:int) = helper (n, 1)

First we define a “helper” function that takes two parameters, an integer
argument and an accumulator that records the running partial result of the
computation. The idea is that the accumulator re-associates the pending
multiplications in the evaluation trace given above so that they can be per-
formed prior to the recursive call, rather than after it completes. This re-
duces the space required to keep track of those pending steps. Second, we
define factorial by calling helper with argument n and initial accumula-
tor value 1, corresponding to the product of zero terms (empty prefix).

As a matter of programming style, it is usual to conceal the definitions
of helper functions using a local declaration. In practice we would make
the following definition of the iterative version of factorial:

local
fun helper (0,r:int) = r
| helper (n:int,r:int) = helper (n-1,n*r)

in
fun factorial (n:int) = helper (n,1)

end

This way the helper function is not visible, only the function of interest is
“exported” by the declaration.

The important thing to observe about helper is that it is iterative, or tail
recursive, meaning that the recursive call is the last step of evaluation of an
application of it to an argument. This means that the evaluation trace of a
call to helper with arguments (3,1) has the following general form:

1. helper (3, 1)

2. helper (2, 3)

3. helper (1, 6)

4. helper (0, 6)

MAY 17, 2005 WORKING DRAFT

70 7.3 Inductive Reasoning

5. 6

Notice that there is no growth in the size of the expression because there
are no pending computations to be resumed upon completion of the re-
cursive call. Consequently, there is no growth in the space required for an
application, in contrast to the first definition given above. Tail recursive
definitions are analogous to loops in imperative languages: they merely
iterate a computation, without requiring auxiliary storage.

7.3 Inductive Reasoning

Time and space usage are important, but what is more important is that
the function compute the intended result. The key to the correctness of
a recursive function is an inductive argument establishing its correctness.
The critical ingredients are these:

1. An input-output specification of the intended behavior stating pre-conditions
on the arguments and a post-condition on the result.

2. A proof that the specification holds for each clause of the function,
assuming that it holds for any recursive calls.

3. An induction principle that justifies the correctness of the function as a
whole, given the correctness of its clauses.

We’ll illustrate the use of inductive reasoning by a graduated series of
examples. First consider the simple, non-tail recursive definition of factorial
given in section 7.1. One reasonable specification for factorial is as fol-
lows:

1. Pre-condition: n ≥ 0.

2. Post-condition: factorial n evaluates to n!.

We are to establish the following statement of correctness of factorial:

if n ≥ 0, then factorial n evaluates to n!.

That is, we show that the pre-conditions imply the post-condition holds of
the result of any application. This is called a total correctness assertion be-
cause it states not only that the post-condition holds of any result of appli-
cation, but, moreover, that every application in fact yields a result (subject
to the pre-condition on the argument).

WORKING DRAFT MAY 17, 2005

7.3 Inductive Reasoning 71

In contrast, a partial correctness assertion does not insist on termination,
only that the post-condition holds whenever the application terminates.
This may be stated as the assertion

if n ≥ 0 and factorial n evaluates to p, then p = n!.

Notice that this statement is true of a function that diverges whenever it is
applied! In this sense a partial correctness assertion is weaker than a total
correctness assertion.

Let us establish the total correctness of factorial using the pre- and
post-conditions stated above. To do so, we apply the principle of mathemat-
ical induction on the argument n. Recall that this means we are to establish
the specification for the case n = 0, and, assuming it to hold for n >= 0,
show that it holds for n + 1. The base case, n = 0, is trivial: by definition
factorial n evaluates to 1, which is 0!. Now suppose that n = m + 1 for
some m >= 0. By the inductive hypothesis we have that factorial m
evaluates to m! (since m ≥ 0), and so by definition factorial n evaluates
to

n×m! = (m + 1)×m!
= (m + 1)!
= n!,

as required. This completes the proof.
That was easy. What about the iterative definition of factorial? We

focus on the behavior of helper. A suitable specification is given as follows:

1. Pre-condition: n ≥ 0.

2. Post-condition: helper (n, r) evaluates to n!× r.

To show the total correctness of helper with respect to this specification,
we once again proceed by mathematical induction on n. We leave it as an
exercise to give the details of the proof.

With this in hand it is easy to prove the correctness of factorial — if
n ≥ 0 then factorial n evaluates to the result of helper (n, 1), which
evaluates to n!× 1 = n!. This completes the proof.

Helper functions correspond to lemmas, main functions correspond to
theorems. Just as we use lemmas to help us prove theorems, we use helper
functions to help us define main functions. The foregoing argument shows
that this is more than an analogy, but lies at the heart of good programming
style.

Here’s an example of a function defined by complete induction (or strong
induction), the Fibonacci function, defined on integers n >= 0:

MAY 17, 2005 WORKING DRAFT

72 7.3 Inductive Reasoning

(* for n>=0, fib n yields the nth Fibonacci number *)
fun fib 0 = 1
| fib 1 = 1
| fib (n:int) = fib (n-1) + fib (n-2)

The recursive calls are made not only on n-1, but also n-2, which is why
we must appeal to complete induction to justify the definition. This defi-
nition of fib is very inefficient because it performs many redundant com-
putations: to compute fib n requires that we compute fib (n-1) and fib
(n-2). To compute fib (n-1) requires that we compute fib (n-2) a sec-
ond time, and fib (n-3). Computing fib (n-2) requires computing fib
(n-3) again, and fib (n-4). As you can see, there is considerable redun-
dancy here. It can be shown that the running time fib of is exponential in
its argument, which is quite awful.

Here’s a better solution: for each n >= 0 compute not only the nth
Fibonacci number, but also the (n− 1)st as well. (For n = 0 we define the
“−1st” Fibonacci number to be zero). That way we can avoid redundant
recomputation, resulting in a linear-time algorithm. Here’s the code:

(* for n>=0, fib’ n evaluates to (a, b), where
a is the nth Fibonacci number, and
b is the (n-1)st *)

fun fib’ 0 = (1, 0)
| fib’ 1 = (1, 1)
| fib’ (n:int) =

let
val (a:int, b:int) = fib’ (n-1)

in
(a+b, a)

end

You might feel satisfied with this solution since it runs in time linear in
n. It turns out (see Graham, Knuth, and Patashnik, Concrete Mathematics
(Addison-Wesley 1989) for a derivation) that the recurrence

F0 = 1
F1 = 1
Fn = Fn−1 + Fn−2

has a closed-form solution over the real numbers. This means that the nth
Fibonacci number can be calculated directly, without recursion, by using

WORKING DRAFT MAY 17, 2005

7.4 Mutual Recursion 73

floating point arithmetic. However, this is an unusual case. In most in-
stances recursively-defined functions have no known closed-form solution,
so that some form of iteration is inevitable.

7.4 Mutual Recursion

It is often useful to define two functions simultaneously, each of which calls
the other (and possibly itself) to compute its result. Such functions are said
to be mutually recursive. Here’s a simple example to illustrate the point,
namely testing whether a natural number is odd or even. The most obvi-
ous approach is to test whether the number is congruent to 0 mod 2, and
indeed this is what one would do in practice. But to illustrate the idea of
mutual recursion we instead use the following inductive characterization:
0 is even, and not odd; n > 0 is even iff n− 1 is odd; n > 0 is odd iff n− 1
is even. This may be coded up using two mutually-recursive procedures as
follows:

fun even 0 = true
| even n = odd (n-1)

and odd 0 = false
| odd n = even (n-1)

Notice that even calls odd and odd calls even, so they are not definable
separately from one another. We join their definitions using the keyword
and to indicate that they are defined simultaneously by mutual recursion.

MAY 17, 2005 WORKING DRAFT

74 7.4 Mutual Recursion

WORKING DRAFT MAY 17, 2005

Chapter 8

Type Inference and
Polymorphism

8.1 Type Inference

So far we’ve mostly written our programs in what is known as the explicitly
typed style. This means that whenever we’ve introduced a variable, we’ve
assigned it a type at its point of introduction. In particular every variable in
a pattern has a type associated with it. As you may have noticed, this gets
a little tedious after a while, especially when you’re using clausal function
definitions. A particularly pleasant feature of ML is that it allows you to
omit this type information whenever it can be determined from context.
This process is known as type inference since the compiler is inferring the
missing type information based on context.

For example, there is no need to give a type to the variable s in the
function

fn s:string => s ˆ "\n".

The reason is that no other type for s makes sense, since s is used as an
argument to string concatenation. Consequently, you may write simply

fn s => s ˆ "\n",

leaving ML to insert “:string” for you.
When is it allowable to omit this information? Almost always, with

very few exceptions. It is a deep, and important, result about ML that miss-
ing type information can (almost) always be reconstructed completely and

75

76 8.1 Type Inference

unambiguously where it is omitted. This is called the principal typing prop-
erty of ML: whenever type information is omitted, there is always a most
general (i.e., least restrictive) way to recover the omitted type information. If
there is no way to recover the omitted type information, then the expres-
sion is ill-typed. Otherwise there is a “best” way to fill in the blanks, which
will (almost) always be found by the compiler. This is an amazingly useful,
and widely under-appreciated, property of ML. It means, for example, that
the programmer can enjoy the full benefits of a static type system without
paying any notational penalty whatsoever!

The prototypical example is the identity function, fn x=>x. The body of
the function places no constraints on the type of x, since it merely returns x
as the result without performing any computation on it. Since the behavior
of the identity function is the same for all possible choices of type for its
argument, it is said to be polymorphic. Therefore the identity function has
infinitely many types, one for each choice of the type of the parameter x.
Choosing the type of x to be typ, the type of the identity function is typ->typ.
In other words every type for the identity function has the form typ->typ,
where typ is the type of the argument.

Clearly there is a pattern here, which is captured by the notion of a
type scheme. A type scheme is a type expression involving one or more
type variables standing for an unknown, but arbitrary type expression. Type
variables are written ’a (pronounced “α”), ’b (pronounced “β”), ’c (pro-
nounced “γ”), etc.. An instance of a type scheme is obtained by replacing
each of the type variables occurring in it with a type scheme, with the same
type scheme replacing each occurrence of a given type variable. For ex-
ample, the type scheme ’a->’a has instances int->int, string->string,
(int*int)->(int*int), and (’b->’b)->(’b->’b), among infinitely many
others. However, it does not have the type int->string as instance, since
we are constrained to replace all occurrences of a type variable by the same
type scheme. However, the type scheme ’a->’b has both int->int and
int->string as instances since there are different type variables occurring
in the domain and range positions.

Type schemes are used to express the polymorphic behavior of func-
tions. For example, we may write fn x:’a=>x for the polymorphic identity
function of type ’a->’a, meaning that the behavior of the identity func-
tion is independent of the type of x. Similarly, the behavior of the func-
tion fn (x,y)=>x+1 is independent of the type of y, but constrains the
type of x to be int. This may be expressed using type schemes by writ-
ing this function in the explicitly-typed form fn (x:int,y:’a)=>x+1 with
type int*’a->int.

WORKING DRAFT MAY 17, 2005

8.1 Type Inference 77

In these examples we needed only one type variable to express the poly-
morphic behavior of a function, but usually we need more than one. For
example, the function fn (x,y) = x constrains neither the type of x nor
the type of y. Consequently we may choose their types freely and inde-
pendently of one another. This may be expressed by writing this function
in the form fn (x:’a,y:’b)=>x with type scheme ’a*’b->’a. Notice that
while it is correct to assign the type ’a*’a->’a to this function, doing so
would be overly restrictive since the types of the two parameters need not
be the same. However, we could not assign the type ’a*’b->’c to this func-
tion because the type of the result must be the same as the type of the first
parameter: it returns its first parameter when invoked! The type scheme
’a*’b->’a precisely captures the constraints that must be satisfied for the
function to be type correct. It is said to be the most general or principal type
scheme for the function.

It is a remarkable fact about ML that every expression (with the exception
of a few pesky examples that we’ll discuss below) has a principal type scheme.
That is, there is (almost) always a best or most general way to infer types for
expressions that maximizes generality, and hence maximizes flexibility in the
use of the expression. Every expression “seeks its own depth” in the sense
that an occurrence of that expression is assigned a type that is an instance
of its principal type scheme determined by the context of use.

For example, if we write

(fn x=>x)(0),

the context forces the type of the identity function to be int->int, and if
we write

(fn x=>x)(fn x=>x)(0)

the context forces the instance (int->int)->(int->int) of the principal
type scheme for the identity at the first occurrence, and the instance int->int
for the second.

How is this achieved? Type inference is a process of constraint satis-
faction. First, the expression determines a set of equations governing the
relationships among the types of its subexpressions. For example, if a func-
tion is applied to an argument, then a constraint equating the domain type
of the function with the type of the argument is generated. Second, the con-
straints are solved using a process similar to Gaussian elimination, called
unification. The equations can be classified by their solution sets as follows:

1. Overconstrained: there is no solution. This corresponds to a type error.

MAY 17, 2005 WORKING DRAFT

78 8.2 Polymorphic Definitions

2. Underconstrained: there are many solutions. There are two sub-cases:
ambiguous (due to overloading, which we will discuss further in sec-
tion 8.3), or polymorphic (there is a “best” solution).

3. Uniquely determined: there is precisely one solution. This corresponds
to a completely unambiguous type inference problem.

The free type variables in the solution to the system of equations may be
thought of as determining the “degrees of freedom” or “range of polymor-
phism” of the type of an expression — the constraints are solvable for any
choice of types to substitute for these free type variables.

This description of type inference as a constraint satisfaction procedure
accounts for the notorious obscurity of type checking errors in ML. If a
program is not type correct, then the system of constraints associated with
it will not have a solution. The type inference procedure attempts to find
a solution to these constraints, and at some point discovers that it cannot
succeed. It is fundamentally impossible to attribute this inconsistency to
any particular constraint; all that can be said is that the constraint set as a
whole has no solution. The checker usually reports the first unsatisfiable
equation it encounters, but this may or may not correspond to the “reason”
(in the mind of the programmer) for the type error. The usual method for
finding the error is to insert sufficient type information to narrow down the
source of the inconsistency until the source of the difficulty is uncovered.

8.2 Polymorphic Definitions

There is an important interaction between polymorphic expressions and
value bindings that may be illustrated by the following example. Suppose
that we wish to bind the identity function to a variable I so that we may
refer to it by name. We’ve previously observed that the identity function
is polymorphic, with principal type scheme ’a->’a. This may be captured
by ascribing this type scheme to the variable I at the val binding. That is,
we may write

val I : ’a->’a = fn x=>x

to ascribe the type scheme ’a->’a to the variable I. (We may also write

fun I(x:’a):’a = x

for an equivalent binding of I.) Having done this, each use of I determines a
distinct instance of the ascribed type scheme ’a->’a. That is, both I 0 and I I

WORKING DRAFT MAY 17, 2005

8.2 Polymorphic Definitions 79

0 are well-formed expressions, the first assigning the type int->int to I,
the second assigning the types

(int->int)->(int->int)

and

int->int

to the two occurrences of I. Thus the variable I behaves precisely the same
as its definition, fn x=>x, in any expression where it is used.

As a convenience ML also provides a form of type inference on value
bindings that eliminates the need to ascribe a type scheme to the variable
when it is bound. If no type is ascribed to a variable introduced by a val
binding, then it is implicitly ascribed the principal type scheme of the right-
hand side. For example, we may write

val I = fn x=>x

or

fun I(x) = x

as a binding for the variable . The type checker implicitly assigns the prin-
cipal type scheme, ’a->’a, of the binding to the variable I. In practice we
often allow the type checker to infer the principal type of a variable, but it
is often good form to explicitly indicate the intended type as a consistency
check and for documentation purposes.

The treatment of val bindings during type checking ensures that a bound
variable has precisely the same type as its binding. In other words the type
checker behaves as though all uses of the bound variable are implicitly re-
placed by its binding before type checking. Since this may involve replica-
tion of the binding, the meaning of a program is not necessarily preserved
by this transformation. (Think, for example, of any expression that opens
a window on your screen: if you replicate the expression and evaluate it
twice, it will open two windows. This is not the same as evaluating it only
once, which results in one window.)

To ensure semantic consistency, variables introduced by a val binding
are allowed to be polymorphic only if the right-hand side is a value. This
is called the value restriction on polymorphic declarations. For fun bind-
ings this restriction is always met since the right-hand side is implicitly a
lambda expression, which is a value. However, it might be thought that the
following declaration introduces a polymorphic variable of type ’a -> ’a,
but in fact it is rejected by the compiler:

MAY 17, 2005 WORKING DRAFT

80 8.3 Overloading

val J = I I

The reason is that the right-hand side is not a value; it requires computation
to determine its value. It is therefore ruled out as inadmissible for polymor-
phism; the variable J may not be used polymorphically in the remainder of
the program. In this case the difficulty may be avoided by writing instead

fun J x = I I x

because now the binding of J is a lambda, which is a value.
In some rare circumstances this is not possible, and some polymor-

phism is lost. For example, the following declaration of a value of list type1

val l = nil @ nil

does not introduce an identifier with a polymorphic type, even though the
almost equivalent declaration

val l = nil

does do so. Since the right-hand side is a list, we cannot apply the “trick”
of defining l to be a function; we are stuck with a loss of polymorphism in
this case. This particular example is not very impressive, but occasionally
similar examples do arise in practice.

Why is the value restriction necessary? Later on, when we study mu-
table storage, we’ll see that some restriction on polymorphism is essen-
tial if the language is to be type safe. The value restriction is an easily-
remembered sufficient condition for soundness, but as the examples above
illustrate, it is by no means necessary. The designers of ML were faced with
a choice of simplicity vs flexibility; in this case they opted for simplicity at
the expense of some expressiveness in the language.

8.3 Overloading

Type information cannot always be omitted. There are a few corner cases
that create problems for type inference, most of which arise because of con-
cessions that are motivated by long-standing, if dubious, notational prac-
tices.

The main source of difficulty stems from overloading of arithmetic oper-
ators. As a concession to long-standing practice in informal mathematics

1To be introduced in chapter 9.

WORKING DRAFT MAY 17, 2005

8.3 Overloading 81

and in many programming languages, the same notation is used for both
integer and floating point arithmetic operations. As long as we are pro-
gramming in an explicitly-typed style, this convention creates no particular
problems. For example, in the function

fn x:int => x+x

it is clear that integer addition is called for, whereas in the function

fn x:real => x+x

it is equally obvious that floating point addition is intended.
However, if we omit type information, then a problem arises. What are

we to make of the function

fn x => x+x ?

Does “+” stand for integer or floating point addition? There are two dis-
tinct reconstructions of the missing type information in this example, cor-
responding to the preceding two explictly-typed programs. Which is the
compiler to choose?

When presented with such a program, the compiler has two choices:

1. Declare the expression ambiguous, and force the programmer to pro-
vide enough explicit type information to resolve the ambiguity.

2. Arbitrarily choose a “default” interpretation, say the integer arith-
metic, that forces one interpretation or another.

Each approach has its advantages and disadvantages. Many compilers
choose the second approach, but issue a warning indicating that it has done
so. To avoid ambiguity, explicit type information is required from the pro-
grammer.

The situation is actually a bit more subtle than the preceding discussion
implies. The reason is that the type inference process makes use of the sur-
rounding context of an expression to help resolve ambiguities. For exam-
ple, if the expression fn x=>x+x occurs in the following, larger expression,
there is in fact no ambiguity:

(fn x => x+x)(3).

Since the function is applied to an integer argument, there is no question
that the only possible resolution of the missing type information is to treat
x as having type int, and hence to treat + as integer addition.

MAY 17, 2005 WORKING DRAFT

82 8.3 Overloading

The important question is how much context is considered before the
situation is considered ambiguous? The rule of thumb is that context is
considered up to the nearest enclosing function declaration. For example,
consider the following example:

let
val double = fn x => x+x

in
(double 3, double 4)

end

The function expression fn x=>x+x will be flagged as ambiguous, even
though its only uses are with integer arguments. The reason is that value
bindings are considered to be “units” of type inference for which all am-
biguity must be resolved before type checking continues. If your compiler
adopts the integer interpretation as default, the above program will be ac-
cepted (with a warning), but the following one will be rejected:

let
val double = fn x => x+x

in
(double 3.0, double 4.0)

end

Finally, note that the following program must be rejected because no
resolution of the overloading of addition can render it meaningful:

let
val double = fn x => x+x

in
(double 3, double 3.0)

end

The ambiguity must be resolved at the val binding, which means that the
compiler must commit at that point to treating the addition operation as
either integer or floating point. No single choice can be correct, since we
subsequently use double at both types.

A closely related source of ambiguity arises from the “record elision”
notation described in chapter 5. Consider the function #name, defined by

fun #name {name=n:string, ...} = n

WORKING DRAFT MAY 17, 2005

8.3 Overloading 83

which selects the name field of a record. This definition is ambiguous because
the compiler cannot uniquely determine the domain type of the function!
Any of the following types are legitimate domain types for #name, none of
which is “best”:

{name:string}
{name:string,salary:real}
{name:string,salary:int}
{name:string,address:string}

Of course there are infinitely many such examples, none of which is clearly
preferable to the other. This function definition is therefore rejected as am-
biguous by the compiler — there is no one interpretation of the function
that suffices for all possible uses.

In chapter 5 we mentioned that functions such as #name are pre-defined
by the ML compiler, yet we just now claimed that such a function definition
is rejected as ambiguous. Isn’t this a contradiction? Not really, because
what happens is that each occurrence of #name is replaced by the function

fn {name=n,...} = n

and then context is used to resolve the “local” ambiguity. This works well,
provided that the complete record type of the arguments to #name can be
determined from context. If not, the uses are rejected as ambiguous. Thus,
the following expression is well-typed

fn r : {name:string,address:string,salary:int} =>
(#name r, #address r)

because the record type of r is explicitly given. If the type of rwere omitted,
the expression would be rejected as ambiguous (unless the context resolves
the ambiguity.)

MAY 17, 2005 WORKING DRAFT

84 8.3 Overloading

WORKING DRAFT MAY 17, 2005

Chapter 9

Programming with Lists

9.1 List Primitives

In chapter 5 we noted that aggregate data structures are especially easy
to handle in ML. In this chapter we consider another important aggregate
type, the list type. In addition to being an important form of aggregate type
it also illustrates two other general features of the ML type system:

1. Type constructors, or parameterized types. The type of a list reveals the
type of its elements.

2. Recursive types. The set of values of a list type are given by an induc-
tive definition.

Informally, the values of type typ list are the finite lists of values of
type typ. More precisely, the values of type typ list are given by an induc-
tive definition, as follows:

1. nil is a value of type typ list.

2. if h is a value of type typ, and t is a value of type typ list, then h::t
is a value of type typ list.

3. Nothing else is a value of type typ list.

The type expression typ list is a postfix notation for the application of
the type constructor list to the type typ. Thus list is a kind of “function”
mapping types to types: given a type typ, we may apply list to it to get
another type, written typ list. The forms nil and :: are the value con-
structors of type typ list. The nullary (no argument) constructor nil may

85

86 9.1 List Primitives

be thought of as the empty list. The binary (two argument) constructor ::
constructs a non-empty list from a value h of type typ and another value t
of type typ list; the resulting value, h::t, of type typ list, is pronounced
“h cons t” (for historical reasons). We say that “h is cons’d onto t”, that h is
the head of the list, and that t is its tail.

The definition of the values of type typ list given above is an example
of an inductive definition. The type is said to be recursive because this defi-
nition is “self-referential” in the sense that the values of type typ list are
defined in terms of (other) values of the same type. This is especially clear
if we examine the types of the value constructors for the type typ list:

val nil : typ list
val (op ::) : typ * typ list -> typ list

The notation op :: is used to refer to the :: operator as a function, rather
than to use it to form a list, which requires infix notation.

Two things are notable here:

1. The :: operation takes as its second argument a value of type typ
list, and yields a result of type typ list. This self-referential aspect
is characteristic of an inductive definition.

2. Both nil and op :: are polymorphic in the type of the underlying el-
ements of the list. Thus nil is the empty list of type typ list for
any element type typ, and op :: constructs a non-empty list inde-
pendently of the type of the elements of that list.

It is easy to see that a value val of type typ list has the form

val1::(val2:: (· · · ::(valn::nil)· · ·))

for some n ≥ 0, where vali is a value of type typi for each 1 ≤ i ≤ n.
For according to the inductive definition of the values of type typ list,
the value val must either be nil, which is of the above form, or val1::val′,
where val′ is a value of type typ list. By induction val′ has the form

(val2:: (· · · ::(valn::nil)· · ·))

and hence val again has the specified form.
By convention the operator :: is right-associative, so we may omit the

parentheses and just write

val1::val2::· · ·::valn::nil

WORKING DRAFT MAY 17, 2005

9.2 Computing With Lists 87

as the general form of val of type typ list. This may be further abbreviated
using list notation, writing

[val1, val2, ..., valn]

for the same list. This notation emphasizes the interpretation of lists as
finite sequences of values, but it obscures the fundamental inductive char-
acter of lists as being built up from nil using the :: operation.

9.2 Computing With Lists

How do we compute with values of list type? Since the values are defined
inductively, it is natural that functions on lists be defined recursively, using
a clausal definition that analyzes the structure of a list. Here’s a definition
of the function length that computes the number of elements of a list:

fun length nil = 0
| length (::t) = 1 + length t

The definition is given by induction on the structure of the list argument.
The base case is the empty list, nil. The inductive step is the non-empty list
::t (notice that we do not need to give a name to the head). Its definition

is given in terms of the tail of the list t, which is “smaller” than the list
::t. The type of length is ’a list -> int; it is defined for lists of values

of any type whatsoever.
We may define other functions following a similar pattern. Here’s the

function to append two lists:

fun append (nil, l) = l
| append (h::t, l) = h :: append (t, l)

This function is built into ML; it is written using infix notation as exp1 @
exp2. The running time of append is proportional to the length of the first
list, as should be obvious from its definition.

Here’s a function to reverse a list.

fun rev nil = nil
| rev (h::t) = rev t @ [h]

Its running time is O(n2), where n is the length of the argument list. This
can be demonstrated by writing down a recurrence that defines the running
time T(n) on a list of length n.

T(0) = O(1)
T(n + 1) = T(n) + O(n)

MAY 17, 2005 WORKING DRAFT

88 9.2 Computing With Lists

Solving the recurrence we obtain the result T(n) = O(n2).
Can we do better? Oddly, we can take advantage of the non-associativity

of :: to give a tail-recursive definition of rev.

local
fun helper (nil, a) = a
| helper (h::t, a) = helper (t, h::a)

in
fun rev’ l = helper (l, nil)

end

The general idea of introducing an accumulator is the same as before, ex-
cept that by re-ordering the applications of :: we reverse the list! The
helper function reverses its first argument and prepends it to its second
argument. That is, helper (l, a) evaluates to (rev l) @ a, where we
assume here an independent definition of rev for the sake of the specifi-
cation. Notice that helper runs in time proportional to the length of its
first argument, and hence rev’ runs in time proportional to the length of
its argument.

The correctness of functions defined on lists may be established using
the principle of structural induction. We illustrate this by establishing that
the function helper satisfies the following specification:

for every l and a of type typ list, helper(l, a) evaluates to
the result of appending a to the reversal of l.

That is, there are no pre-conditions on l and a, and we establish the post-
condition that helper (l, a) yields (rev l) @ a.

The proof is by structural induction on the list l. If l is nil, then helper
(l,a) evaluates to a, which fulfills the post-condition. If l is the list h::t,
then the application helper (l, a) reduces to the value of helper (t,
(h::a)). By the inductive hypothesis this is just (rev t) @ (h :: a), which
is equivalent to (rev t) @ [h] @ a. But this is just rev (h::t) @ a, which
was to be shown.

The principle of structural induction may be summarized as follows. To
show that a function works correctly for every list l, it suffices to show

1. The correctness of the function for the empty list, nil, and

2. The correctness of the function for h::t, assuming its correctness for
t.

WORKING DRAFT MAY 17, 2005

9.2 Computing With Lists 89

As with mathematical induction over the natural numbers, structural in-
duction over lists allows us to focus on the basic and incremental behavior
of a function to establish its correctness for all lists.

MAY 17, 2005 WORKING DRAFT

90 9.2 Computing With Lists

WORKING DRAFT MAY 17, 2005

Chapter 10

Concrete Data Types

10.1 Datatype Declarations

Lists are one example of the general notion of a recursive type. ML provides
a general mechanism, the datatype declaration, for introducing programmer-
defined recursive types. Earlier we introduced type declarations as an ab-
breviation mechanism. Types are given names as documentation and as a
convenience to the programmer, but doing so is semantically inconsequen-
tial — one could replace all uses of the type name by its definition and not
affect the behavior of the program. In contrast the datatype declaration
provides a means of introducing a new type that is distinct from all other
types and that does not merely stand for some other type. It is the means
by which the ML type system may be extended by the programmer.

The datatype declaration in ML has a number of facets. A datatype
declaration introduces

1. One or more new type constructors. The type constructors intro-
duced may, or may not, be mutually recursive.

2. One or more new value constructors for each of the type constructors
introduced by the declaration.

The type constructors may take zero or more arguments; a zero-argument,
or nullary, type constructor is just a type. Each value constructor may also
take zero or more arguments; a nullary value constructor is just a constant.
The type and value constructors introduced by the declaration are “new”
in the sense that they are distinct from all other type and value construc-
tors previously introduced; if a datatype re-defines an “old” type or value

91

92 10.2 Non-Recursive Datatypes

constructor, then the old definition is shadowed by the new one, rendering
the old ones inaccessible in the scope of the new definition.

10.2 Non-Recursive Datatypes

Here’s a simple example of a nullary type constructor with four nullary
value constructors.

datatype suit = Spades | Hearts | Diamonds | Clubs

This declaration introduces a new type suit with four nullary value con-
structors, Spades, Hearts, Diamonds, and Clubs. This declaration may be
read as introducing a type suit such that a value of type suit is either
Spades, or Hearts, or Diamonds, or Clubs. There is no significance to the
ordering of the constructors in the declaration; we could just as well have
written

datatype suit = Hearts | Diamonds | Spades | Clubs

(or any other ordering, for that matter). It is conventional to capitalize the
names of value constructors, but this is not required by the language.

Given the declaration of the type suit, we may define functions on it by
case analysis on the value constructors using a clausal function definition.
For example, we may define the suit ordering in the card game of bridge
by the function

fun outranks (Spades, Spades) = false
| outranks (Spades,) = true
| outranks (Hearts, Spades) = false
| outranks (Hearts, Hearts) = false
| outranks (Hearts,) = true
| outranks (Diamonds, Clubs) = true
| outranks (Diamonds,) = false
| outranks (Clubs,) = false

This defines a function of type suit * suit -> bool that determines whether
or not the first suit outranks the second.

Data types may be parameterized by a type. For example, the declaration

datatype ’a option = NONE | SOME of ’a

introduces the unary type constructor ’a option with two value construc-
tors, NONE, with no arguments, and SOME, with one. The values of type typ
option are

WORKING DRAFT MAY 17, 2005

10.2 Non-Recursive Datatypes 93

1. The constant NONE, and

2. Values of the form SOME val, where val is a value of type typ.

For example, some values of type string option are NONE, SOME "abc",
and SOME "def".

The option type constructor is pre-defined in Standard ML. One com-
mon use of option types is to handle functions with an optional argument.
For example, here is a function to compute the base-b exponential function
for natural number exponents that defaults to base 2:

fun expt (NONE, n) = expt (SOME 2, n)
| expt (SOME b, 0) = 1
| expt (SOME b, n) =
if n mod 2 = 0 then

expt (SOME (b*b), n div 2)
else

b * expt (SOME b, n-1)

The advantage of the option type in this sort of situation is that it avoids
the need to make a special case of a particular argument, e.g., using 0 as
first argument to mean “use the default exponent”.

A related use of option types is in aggregate data structures. For exam-
ple, an address book entry might have a record type with fields for various
bits of data about a person. But not all data is relevant to all people. For
example, someone may not have a spouse, but they all have a name. For
this we might use a type definition of the form

type entry = { name:string, spouse:string option }

so that one would create an entry for an unmarried person with a spouse
field of NONE.

Option types may also be used to represent an optional result. For ex-
ample, we may wish to define a function reciprocal that returns the re-
ciprocal of an integer, if it has one, and otherwise indicates that it has no
reciprocal. This is achieve by defining reciprocal to have type int ->
int option as follows:

fun reciprocal 0 = NONE
| reciprocal n = SOME (1 div n)

To use the result of a call to reciprocal we must perform a case analysis of
the form

MAY 17, 2005 WORKING DRAFT

94 10.3 Recursive Datatypes

case (reciprocal exp
of NONE => exp1
| SOME r => exp2

where exp1 covers the case that exp has no reciprocal, and exp2 covers the
case that exp has reciprocal r.

10.3 Recursive Datatypes

The next level of generality is the recursive type definition. For example,
one may define a type typ tree of binary trees with values of type typ at
the nodes using the following declaration:

datatype ’a tree =
Empty |
Node of ’a tree * ’a * ’a tree

This declaration corresponds to the informal definition of binary trees with
values of type typ at the nodes:

1. The empty tree Empty is a binary tree.

2. If tree 1 and tree 2 are binary trees, and val is a value of type typ, then
Node (tree 1, val, tree 2) is a binary tree.

3. Nothing else is a binary tree.

The distinguishing feature of this definition is that it is recursive in the sense
that binary trees are constructed out of other binary trees, with the empty
tree serving as the base case.

(Incidentally, a leaf in a binary tree is here represented as a node both of
whose children are the empty tree. This definition of binary trees is analo-
gous to starting the natural numbers with zero, rather than one. One can
think of the children of a node in a binary tree as the “predecessors” of that
node, the only difference compared to the usual definition of predecessor
being that a node has two, rather than one, predecessors.)

To compute with a recursive type, use a recursive function. For exam-
ple, here is the function to compute the height of a binary tree:

fun height Empty = 0
| height (Node (lft, , rht)) =

1 + max (height lft, height rht)

WORKING DRAFT MAY 17, 2005

10.3 Recursive Datatypes 95

Notice that height is called recursively on the children of a node, and is
defined outright on the empty tree. This pattern of definition is another
instance of structural induction (on the tree type). The function height is
said to be defined by induction on the structure of a tree. The general idea
is to define the function directly for the base cases of the recursive type (i.e.,
value constructors with no arguments or whose arguments do not involve
values of the type being defined), and to define it for non-base cases in
terms of its definitions for the constituent values of that type. We will see
numerous examples of this as we go along.

Here’s another example. The size of a binary tree is the number of nodes
occurring in it. Here’s a straightforward definition in ML:

fun size Empty = 0
| size (Node (lft, , rht)) =
1 + size lft + size rht

The function size is defined by structural induction on trees.
A word of warning. One reason to capitalize value constructors is to

avoid a pitfall in the ML syntax that we mentioned in chapter 2. Suppose
we gave the following definition of size:

fun size empty = 0
| size (Node (lft, , rht)) =
1 + size lft + size rht

The compiler will warn us that the second clause of the definition is redun-
dant! Why? Because empty, spelled with a lower-case “e”, is a variable, not
a constructor, and hence matches any tree whatsoever. Consequently the
second clause never applies. By capitalizing constructors we can hope to
make mistakes such as these more evident, but in practice you are bound
to run into this sort of mistake.

The tree data type is appropriate for binary trees: those for which each
node has exactly two children. (Of course, either or both children might
be the empty tree, so we may consider this to define the type of trees with
at most two children; it’s a matter of terminology which interpretation you
prefer.) It should be obvious how to define the type of ternary trees, whose
nodes have at most three children, and so on for other fixed arities. But
what if we wished to define a type of trees with a variable number of chil-
dren? In a so-called variadic tree some nodes might have three children,
some might have two, and so on. This can be achieved in at least two ways.
One way combines lists and trees, as follows:

MAY 17, 2005 WORKING DRAFT

96 10.3 Recursive Datatypes

datatype ’a tree =
Empty |
Node of ’a * ’a tree list

Each node has a list of children, so that distinct nodes may have different
numbers of children. Notice that the empty tree is distinct from the tree
with one node and no children because there is no data associated with the
empty tree, whereas there is a value of type ’a at each node.

Another approach is to simultaneously define trees and “forests”. A
variadic tree is either empty, or a node gathering a “forest” to form a tree;
a forest is either empty or a variadic tree together with another forest. This
leads to the following definition:

datatype ’a tree =
Empty |
Node of ’a * ’a forest

and ’a forest =
None |
Tree of ’a tree * ’a forest

This example illustrates the introduction of two mutually recursive datatypes.
Mutually recursive datatypes beget mutually recursive functions. Here’s

a definition of the size (number of nodes) of a variadic tree:

fun size tree Empty = 0
| size tree (Node (, f)) = 1 + size forest f

and size forest None = 0
| size forest (Tree (t, f’)) = size tree t + size forest f’

Notice that we define the size of a tree in terms of the size of a forest, and
vice versa, just as the type of trees is defined in terms of the type of forests.

Many other variations are possible. Suppose we wish to define a notion
of binary tree in which data items are associated with branches, rather than
nodes. Here’s a datatype declaration for such trees:

datatype ’a tree =
Empty |
Node of ’a branch * ’a branch

and ’a branch =
Branch of ’a * ’a tree

In contrast to our first definition of binary trees, in which the branches from
a node to its children were implicit, we now make the branches themselves
explicit, since data is attached to them.

WORKING DRAFT MAY 17, 2005

10.4 Heterogeneous Data Structures 97

For example, we can collect into a list the data items labelling the branches
of such a tree using the following code:

fun collect Empty = nil
| collect (Node (Branch (ld, lt), Branch (rd, rt))) =
ld :: rd :: (collect lt) @ (collect rt)

10.4 Heterogeneous Data Structures

Returning to the original definition of binary trees (with data items at the
nodes), observe that the type of the data items at the nodes must be the
same for every node of the tree. For example, a value of type int tree has
an integer at every node, and a value of type string tree has a string at every
node. Therefore an expression such as

Node (Empty, 43, Node (Empty, "43", Empty))

is ill-typed. The type system insists that trees be homogeneous in the sense
that the type of the data items is the same at every node.

It is quite rare to encounter heterogeneous data structures in real pro-
grams. For example, a dictionary with strings as keys might be represented
as a binary search tree with strings at the nodes; there is no need for het-
erogeneity to represent such a data structure. But occasionally one might
wish to work with a heterogeneous tree, whose data values at each node are
of different types. How would one represent such a thing in ML?

To discover the answer, first think about how one might manipulate
such a data structure. When accessing a node, we would need to check
at run-time whether the data item is an integer or a string; otherwise we
would not know whether to, say, add 1 to it, or concatenate "1" to the
end of it. This suggests that the data item must be labelled with sufficient
information so that we may determine the type of the item at run-time. We
must also be able to recover the underlying data item itself so that familiar
operations (such as addition or string concatenation) may be applied to it.

The required labelling and discrimination is neatly achieved using a
datatype declaration. Suppose we wish to represent the type of integer-or-
string trees. First, we define the type of values to be integers or strings,
marked with a constructor indicating which:

datatype int or string =
Int of int |
String of string

MAY 17, 2005 WORKING DRAFT

98 10.5 Abstract Syntax

Then we define the type of interest as follows:

type int or string tree =
int or string tree

Voila! Perfectly natural and easy — heterogeneity is really a special case of
homogeneity!

10.5 Abstract Syntax

Datatype declarations and pattern matching are extremely useful for defin-
ing and manipulating the abstract syntax of a language. For example, we
may define a small language of arithmetic expressions using the following
declaration:

datatype expr =
Numeral of int |
Plus of expr * expr |
Times of expr * expr

This definition has only three clauses, but one could readily imagine adding
others. Here is the definition of a function to evaluate expressions of the
language of arithmetic expressions written using pattern matching:

fun eval (Numeral n) = Numeral n
| eval (Plus (e1, e2)) =

let
val Numeral n1 = eval e1
val Numeral n2 = eval e2

in
Numeral (n1+n2)

end
| eval (Times (e1, e2)) =

let
val Numeral n1 = eval e1
val Numeral n2 = eval e2

in
Numeral (n1*n2)

end

The combination of datatype declarations and pattern matching con-
tributes enormously to the readability of programs written in ML. A less

WORKING DRAFT MAY 17, 2005

10.5 Abstract Syntax 99

obvious, but more important, benefit is the error checking that the com-
piler can perform for you if you use these mechanisms in tandem. As an
example, suppose that we extend the type expr with a new component for
the reciprocal of a number, yielding the following revised definition:

datatype expr =
Numeral of int |
Plus of expr * expr |
Times of expr * expr |
Recip of expr

First, observe that the “old” definition of eval is no longer applicable to
values of type expr! For example, the expression

eval (Plus (Numeral 1, Numeral 2))

is ill-typed, even though it doesn’t use the Recip constructor. The reason is
that the re-declaration of expr introduces a “new” type that just happens to
have the same name as the “old” type, but is in fact distinct from it. This is
a boon because it reminds us to recompile the old code relative to the new
definition of the expr type.

Second, upon recompiling the definition of eval we encounter an inex-
haustive match warning: the old code no longer applies to every value of
type expr according to its new definition! We are of course lacking a case
for Recip, which we may provide as follows:

fun eval (Numeral n) = Numeral n
| eval (Plus (e1, e2)) = ... as before ...
| eval (Times (e1, e2)) = ... as before ...
| eval (Recip e) =
let

val Numeral n = eval e
in

Numeral (1 div n)
end

The value of the checks provided by the compiler in such cases cannot be
overestimated. When recompiling a large program after making a change
to a datatype declaration the compiler will automatically point out every
line of code that must be changed to conform to the new definition; it is
impossible to forget to attend to even a single case. This is a tremendous
help to the developer, especially if she is not the original author of the code
being modified and is another reason why the static type discipline of ML
is a positive benefit, rather than a hindrance, to programmers.

MAY 17, 2005 WORKING DRAFT

100 10.5 Abstract Syntax

WORKING DRAFT MAY 17, 2005

Chapter 11

Higher-Order Functions

11.1 Functions as Values

Values of function type are first-class, which means that they have the same
rights and privileges as values of any other type. In particular, functions
may be passed as arguments and returned as results of other functions,
and functions may be stored in and retrieved from data structures such as
lists and trees. We will see that first-class functions are an important source
of expressive power in ML.

Functions which take functions as arguments or yield functions as re-
sults are known as higher-order functions (or, less often, as functionals or oper-
ators). Higher-order functions arise frequently in mathematics. For exam-
ple, the differential operator is the higher-order function that, when given a
(differentiable) function on the real line, yields its first derivative as a func-
tion on the real line. We also encounter functionals mapping functions to
real numbers, and real numbers to functions. An example of the former is
provided by the definite integral viewed as a function of its integrand, and
an example of the latter is the definite integral of a given function on the
interval [a, x], viewed as a function of a, that yields the area under the curve
from a to x as a function of x.

Higher-order functions are less familiar tools for many programmers
since the best-known programming languages have only rudimentary mech-
anisms to support their use. In contrast higher-order functions play a promi-
nent role in ML, with a variety of interesting applications. Their use may
be classified into two broad categories:

1. Abstracting patterns of control. Higher-order functions are design pat-
terns that “abstract out” the details of a computation to lay bare the

101

102 11.2 Binding and Scope

skeleton of the solution. The skeleton may be fleshed out to form a
solution of a problem by applying the general pattern to arguments
that isolate the specific problem instance.

2. Staging computation. It arises frequently that computation may be
staged by expending additional effort “early” to simplify the compu-
tation of “later” results. Staging can be used both to improve effi-
ciency and, as we will see later, to control sharing of computational
resources.

11.2 Binding and Scope

Before discussing these programming techniques, we will review the criti-
cally important concept of scope as it applies to function definitions. Recall
that Standard ML is a statically scoped language, meaning that identifiers
are resolved according to the static structure of the program. A use of the
variable var is considered to be a reference to the nearest lexically enclosing
declaration of var. We say “nearest” because of the possibility of shadow-
ing; if we re-declare a variable var, then subsequent uses of var refer to the
“most recent” (lexically!) declaration of it; any “previous” declarations are
temporarily shadowed by the latest one.

This principle is easy to apply when considering sequences of declara-
tions. For example, it should be clear by now that the variable y is bound
to 32 after processing the following sequence of declarations:

val x = 2 (* x=2 *)
val y = x*x (* y=4 *)
val x = y*x (* x=8 *)
val y = x*y (* y=32 *)

In the presence of function definitions the situation is the same, but it can
be a bit tricky to understand at first.

Here’s an example to test your grasp of the lexical scoping principle:

val x = 2
fun f y = x+y
val x = 3
val z = f 4

After processing these declarations the variable z is bound to 6, not to 7!
The reason is that the occurrence of x in the body of f refers to the first

WORKING DRAFT MAY 17, 2005

11.3 Returning Functions 103

declaration of x since it is the nearest lexically enclosing declaration of the
occurence, even though it has been subsequently re-declared.

This example illustrates three important points:

1. Binding is not assignment! If we were to view the second binding of
x as an assignment statement, then the value of z would be 7, not 6.

2. Scope resolution is lexical, not temporal. We sometimes refer to the
“most recent” declaration of a variable, which has a temporal flavor,
but we always mean “nearest lexically enclosing at the point of oc-
currence”.

3. ”Shadowed” bindings are not lost. The “old” binding for x is still
available (through calls to f), even though a more recent binding has
shadowed it.

One way to understand what’s going on here is through the concept
of a closure, a technique for implementing higher-order functions. When a
function expression is evaluated, a copy of the environment is attached to
the function. Subsequently, all free variables of the function (i.e., those vari-
ables not occurring as parameters) are resolved with respect to the environ-
ment attached to the function; the function is therefore said to be “closed”
with respect to the attached environment. This is achieved at function ap-
plication time by “swapping” the attached environment of the function for
the environment active at the point of the call. The swapped environment
is restored after the call is complete. Returning to the example above, the
environment associated with the function f contains the declaration val x
= 2 to record the fact that at the time the function was evaluated, the vari-
able x was bound to the value 2. The variable x is subsequently re-bound
to 3, but when f is applied, we temporarily reinstate the binding of x to 2,
add a binding of y to 4, then evaluate the body of the function, yielding 6.
We then restore the binding of x and drop the binding of y before yielding
the result.

11.3 Returning Functions

While seemingly very simple, the principle of lexical scope is the source of
considerable expressive power. We’ll demonstrate this through a series of
examples.

To warm up let’s consider some simple examples of passing functions
as arguments and yielding functions as results. The standard example of

MAY 17, 2005 WORKING DRAFT

104 11.3 Returning Functions

passing a function as argument is the map’ function, which applies a given
function to every element of a list. It is defined as follows:

fun map’ (f, nil) = nil
| map’ (f, h::t) = (f h) :: map’ (f, t)

For example, the application

map’ (fn x => x+1, [1,2,3,4])

evaluates to the list [2,3,4,5].
Functions may also yield functions as results. What is surprising is that

we can create new functions during execution, not just return functions that
have been previously defined. The most basic (and deceptively simple) ex-
ample is the function constantly that creates constant functions: given a
value k, the application constantly k yields a function that yields k when-
ever it is applied. Here’s a definition of constantly:

val constantly = fn k => (fn a => k)

The function constantly has type ’a -> (’b -> ’a). We used the fn nota-
tion for clarity, but the declaration of the function constantly may also be
written using fun notation as follows:

fun constantly k a = k

Note well that a white space separates the two successive arguments to
constantly! The meaning of this declaration is precisely the same as the
earlier definition using fn notation.

The value of the application constantly 3 is the function that is con-
stantly 3; i.e., it always yields 3 when applied. Yet nowhere have we de-
fined the function that always yields 3. The resulting function is “created”
by the application of constantly to the argument 3, rather than merely
“retrieved” off the shelf of previously-defined functions. In implementa-
tion terms the result of the application constantly 3 is a closure consisting
of the function fn a => k with the environment val k = 3 attached to it.
The closure is a data structure (a pair) that is created by each application of
constantly to an argument; the closure is the representation of the “new”
function yielded by the application. Notice, however, that the only differ-
ence between any two results of applying the function constantly lies in
the attached environment; the underlying function is always fn a => k. If
we think of the lambda as the “executable code” of the function, then this

WORKING DRAFT MAY 17, 2005

11.3 Returning Functions 105

amounts to the observation that no new code is created at run-time, just new
instances of existing code.

This also points out why functions in ML are not the same as code point-
ers in C. You may be familiar with the idea of passing a pointer to a C func-
tion to another C function as a means of passing functions as arguments
or yielding functions as results. This may be considered to be a form of
“higher-order” function in C, but it must be emphasized that code pointers
are significantly less expressive than closures because in C there are only
statically many possibilities for a code pointer (it must point to one of the
functions defined in your code), whereas in ML we may generate dynami-
cally many different instances of a function, differing in the bindings of the
variables in its environment. The non-varying part of the closure, the code,
is directly analogous to a function pointer in C, but there is no counterpart
in C of the varying part of the closure, the dynamic environment.

The definition of the function map’ given above takes a function and list
as arguments, yielding a new list as result. Often it occurs that we wish to
map the same function across several different lists. It is inconvenient (and
a tad inefficient) to keep passing the same function to map’, with the list
argument varying each time. Instead we would prefer to create a instance
of map specialized to the given function that can then be applied to many
different lists. This leads to the following definition of the function map:

fun map f nil = nil
| map f (h::t) = (f h) :: (map f t)

The function map so defined has type (’a->’b) -> ’a list -> ’b list.
It takes a function of type ’a -> ’b as argument, and yields another func-
tion of type ’a list -> ’b list as result.

The passage from map’ to map is called currying. We have changed a
two-argument function (more properly, a function taking a pair as argu-
ment) into a function that takes two arguments in succession, yielding after
the first a function that takes the second as its sole argument. This passage
can be codified as follows:

fun curry f x y = f (x, y)

The type of curry is

(’a*’b->’c) -> (’a -> (’b -> ’c)).

Given a two-argument function, curry returns another function that, when
applied to the first argument, yields a function that, when applied to the

MAY 17, 2005 WORKING DRAFT

106 11.4 Patterns of Control

second, applies the original two-argument function to the first and second
arguments, given separately.

Observe that map may be alternately defined by the binding

fun map f l = curry map’ f l

Applications are implicitly left-associated, so that this definition is equiva-
lent to the more verbose declaration

fun map f l = ((curry map’) f) l

11.4 Patterns of Control

We turn now to the idea of abstracting patterns of control. There is an
obvious similarity between the following two functions, one to add up the
numbers in a list, the other to multiply them.

fun add up nil = 0
| add up (h::t) = h + add up t

fun mul up nil = 1
| mul up (h::t) = h * mul up t

What precisely is the similarity? We will look at it from two points of view.
One view is that in each case we have a binary operation and a unit

element for it. The result on the empty list is the unit element, and the
result on a non-empty list is the operation applied to the head of the list
and the result on the tail. This pattern can be abstracted as the function
reduce defined as follows:

fun reduce (unit, opn, nil) =
unit

| reduce (unit, opn, h::t) =
opn (h, reduce (unit, opn, t))

Here is the type of reduce:

val reduce : ’b * (’a*’b->’b) * ’a list -> ’b

The first argument is the unit element, the second is the operation, and the
third is the list of values. Notice that the type of the operation admits the
possibility of the first argument having a different type from the second
argument and result.

Using reduce, we may re-define add up and mul up as follows:

WORKING DRAFT MAY 17, 2005

11.4 Patterns of Control 107

fun add up l = reduce (0, op +, l)
fun mul up l = reduce (1, op *, l)

To further check your understanding, consider the following declaration:

fun mystery l = reduce (nil, op ::, l)

(Recall that “op ::” is the function of type ’a * ’a list -> ’a list that
adds a given value to the front of a list.) What function does mystery com-
pute?

Another view of the commonality between add up and mul up is that
they are both defined by induction on the structure of the list argument,
with a base case for nil, and an inductive case for h::t, defined in terms of
its behavior on t. But this is really just another way of saying that they are
defined in terms of a unit element and a binary operation! The difference
is one of perspective: whether we focus on the pattern part of the clauses
(the inductive decomposition) or the result part of the clauses (the unit and
operation). The recursive structure of add up and mul up is abstracted by
the reduce functional, which is then specialized to yield add up and mul up.
Said another way, the function reduce abstracts the pattern of defining a function
by induction on the structure of a list.

The definition of reduce leaves something to be desired. One thing to
notice is that the arguments unit and opn are carried unchanged through
the recursion; only the list parameter changes on recursive calls. While
this might seem like a minor overhead, it’s important to remember that
multi-argument functions are really single-argument functions that take a
tuple as argument. This means that each time around the loop we are con-
structing a new tuple whose first and second components remain fixed,
but whose third component varies. Is there a better way? Here’s another
definition that isolates the “inner loop” as an auxiliary function:

fun better reduce (unit, opn, l) =
let

fun red nil = unit
| red (h::t) = opn (h, red t)

in
red l

end

Notice that each call to better reduce creates a new function red that uses
the parameters unit and opn of the call to better reduce. This means that
red is bound to a closure consisting of the code for the function together

MAY 17, 2005 WORKING DRAFT

108 11.5 Staging

with the environment active at the point of definition, which will provide
bindings for unit and opn arising from the application of better reduce
to its arguments. Furthermore, the recursive calls to red no longer carry
bindings for unit and opn, saving the overhead of creating tuples on each
iteration of the loop.

11.5 Staging

An interesting variation on reduce may be obtained by staging the compu-
tation. The motivation is that unit and opn often remain fixed for many
different lists (e.g., we may wish to sum the elements of many different
lists). In this case unit and opn are said to be “early” arguments and the
list is said to be a “late” argument. The idea of staging is to perform as
much computation as possible on the basis of the early arguments, yield-
ing a function of the late arguments alone.

In the case of the function reduce this amounts to building red on the
basis of unit and opn, yielding it as a function that may be later applied to
many different lists. Here’s the code:

fun staged reduce (unit, opn) =
let

fun red nil = unit
| red (h::t) = opn (h, red t)

in
red

end

The definition of staged reduce bears a close resemblance to the defini-
tion of better reduce; the only difference is that the creation of the closure
bound to red occurs as soon as unit and opn are known, rather than each
time the list argument is supplied. Thus the overhead of closure creation
is “factored out” of multiple applications of the resulting function to list
arguments.

We could just as well have replaced the body of the let expression with
the function

fn l => red l

but a moment’s thought reveals that the meaning is the same.
Note well that we would not obtain the effect of staging were we to use

the following definition:

WORKING DRAFT MAY 17, 2005

11.5 Staging 109

fun curried reduce (unit, opn) nil = unit
| curried reduce (unit, opn) (h::t) =
opn (h, curried reduce (unit, opn) t)

If we unravel the fun notation, we see that while we are taking two ar-
guments in succession, we are not doing any useful work in between the
arrival of the first argument (a pair) and the second (a list). A curried func-
tion does not take significant advantage of staging. Since staged reduce
and curried reduce have the same iterated function type, namely

(’b * (’a * ’b -> ’b)) -> ’a list -> ’b

the contrast between these two examples may be summarized by saying not
every function of iterated function type is curried. Some are, and some aren’t.
The “interesting” examples (such as staged reduce) are the ones that aren’t
curried. (This directly contradicts established terminology, but it is neces-
sary to deviate from standard practice to avoid a serious misapprehension.)

The time saved by staging the computation in the definition of staged reduce
is admittedly minor. But consider the following definition of an append
function for lists that takes both arguments at once:

fun append (nil, l) = l
| append (h::t, l) = h :: append(t,l)

Suppose that we will have occasion to append many lists to the end of a
given list. What we’d like is to build a specialized appender for the first list
that, when applied to a second list, appends the second to the end of the
first. Here’s a naive solution that merely curries append:

fun curried append nil l = l
| curried append (h::t) l = h :: append t l

Unfortunately this solution doesn’t exploit the fact that the first argument
is fixed for many second arguments. In particular, each application of the
result of applying curried append to a list results in the first list being tra-
versed so that the second can be appended to it.

We can improve on this by staging the computation as follows:

fun staged append nil = fn l => l
| staged append (h::t) =

let
val tail appender = staged append t

in
fn l => h :: tail appender l

end

MAY 17, 2005 WORKING DRAFT

110 11.5 Staging

Notice that the first list is traversed once for all applications to a second ar-
gument. When applied to a list [v1,...,vn], the function staged append
yields a function that is equivalent to, but not quite as efficient as, the func-
tion

fn l => v1 :: v2 :: ... :: vn :: l.

This still takes time proportional to n, but a substantial savings accrues
from avoiding the pattern matching required to destructure the original
list argument on each call.

WORKING DRAFT MAY 17, 2005

Chapter 12

Exceptions

In the first chapter of these notes we mentioned that expressions in Stan-
dard ML always have a type, may have a value, and may have an effect. So
far we’ve concentrated on typing and evaluation. In this chapter we will
introduce the concept of an effect. While it’s hard to give a precise general
definition of what we mean by an effect, the idea is that an effect is any
action resulting from evaluation of an expression other than returning a
value. From this point of view we might consider non-termination to be
an effect, but we don’t usually think of failure to terminate as a positive
“action” in its own right, rather as a failure to take any action.

The main examples of effects in ML are these:

1. Exceptions. Evaluation may be aborted by signaling an exceptional
condition.

2. Mutation. Storage may be allocated and modified during evaluation.

3. Input/output. It is possible to read from an input source and write to
an output sink during evaluation.

4. Communication. Data may be sent to and received from communica-
tion channels.

This chapter is concerned with exceptions; the other forms of effects will be
considered later.

12.1 Exceptions as Errors

ML is a safe language in the sense that its execution behavior may be un-
derstood entirely in terms of the constructs of the language itself. Behav-

111

112 12.1 Exceptions as Errors

ior such as “dumping core” or incurring a “bus error” are extra-linguistic
notions that may only be explained by appeal to the underlying imple-
mentation of the language. These cannot arise in ML. This is ensured by
a combination of a static type discipline, which rules out expressions that
are manifestly ill-defined (e.g., adding a string to an integer or casting an
integer as a function), and by dynamic checks that rule out violations that
cannot be detected statically (e.g., division by zero or arithmetic overflow).
Static violations are signalled by type checking errors; dynamic violations
are signalled by raising exceptions.

12.1.1 Primitive Exceptions

The expression 3 + "3" is ill-typed, and hence cannot be evaluated. In
contrast the expression 3 div 0 is well-typed (with type int), but incurs a
run-time fault that is signalled by raising the exception Div. We will indi-
cate this by writing

3 div 0 ⇓ raise Div

An exception is a form of “answer” to the question “what is the value of
this expression?”. In most implementations an exception such as this is
reported by an error message of the form “Uncaught exception Div”, to-
gether with the line number (or some other indication) of the point in the
program where the exception occurred.

Exceptions have names so that we may distinguish different sources of
error in a program. For example, evaluation of the expression maxint *
maxint (where maxint is the largest representable integer) causes the ex-
ception Overflow to be raised, indicating that an arithmetic overflow error
arose in the attempt to carry out the multiplication. This is usefully distin-
guished from the exception Div, corresponding to division by zero.

(You may be wondering about the overhead of checking for arithmetic
faults. The compiler must generate instructions that ensure that an over-
flow fault is caught before any subsequent operations are performed. This
can be quite expensive on pipelined processors, which sacrifice precise de-
livery of arithmetic faults in the interest of speeding up execution in the
non-faulting case. Unfortunately it is necessary to incur this overhead if
we are to avoid having the behavior of an ML program depend on the un-
derlying processor on which it is implemented.)

Another source of run-time exceptions is an inexhaustive match. Sup-
pose we define the function hd as follows

WORKING DRAFT MAY 17, 2005

12.1 Exceptions as Errors 113

fun hd (h::) = h

This definition is inexhaustive since it makes no provision for the possibil-
ity of the argument being nil. What happens if we apply hd to nil? The
exception Match is raised, indicating the failure of the pattern-matching
process:

hd nil ⇓ raise Match

The occurrence of a Match exception at run-time is indicative of a vio-
lation of a pre-condition to the invocation of a function somewhere in the
program. Recall that it is often sensible for a function to be inexhaustive,
provided that we take care to ensure that it is never applied to a value
outside of its domain. Should this occur (because of a programming mis-
take, evidently), the result is nevertheless well-defined because ML checks
for, and signals, pattern match failure. That is, ML programs are implic-
itly “bullet-proofed” against failures of pattern matching. The flip side is
that if no inexhaustive match warnings arise during type checking, then
the exception Match can never be raised during evaluation (and hence no
run-time checking need be performed).

A related situation is the use of a pattern in a val binding to destructure
a value. If the pattern can fail to match a value of this type, then a Bind
exception is raised at run-time. For example, evaluation of the binding

val h:: = nil

raises the exception Bind since the pattern h:: does not match the value
nil. Here again observe that a Bind exception cannot arise unless the com-
piler has previously warned us of the possibility: no warning, no Bind ex-
ception.

12.1.2 User-Defined Exceptions

So far we have considered examples of pre-defined exceptions that indicate
fatal error conditions. Since the built-in exceptions have a built-in mean-
ing, it is generally inadvisable to use these to signal program-specific error
conditions. Instead we introduce a new exception using an exception dec-
laration, and signal it using a raise expression when a run-time violation
occurs. That way we can associate specific exceptions with specific pieces
of code, easing the process of tracking down the source of the error.

Suppose that we wish to define a “checked factorial” function that en-
sures that its argument is non-negative. Here’s a first attempt at defining
such a function:

MAY 17, 2005 WORKING DRAFT

114 12.2 Exception Handlers

exception Factorial

fun checked factorial n =
if n < 0 then

raise Factorial
else if n=0 then

1
else n * checked factorial (n-1)

The declaration exception Factorial introduces an exception Factorial,
which we raise in the case that checked factorial is applied to a negative
number.

The definition of checked factorial is unsatisfactory in at least two re-
spects. One, relatively minor, issue is that it does not make effective use of
pattern matching, but instead relies on explicit comparison operations. To
some extent this is unavoidable since we wish to check explicitly for nega-
tive arguments, which cannot be done using a pattern. A more significant
problem is that checked factorial repeatedly checks the validity of its ar-
gument on each recursive call, even though we can prove that if the initial
argument is non-negative, then so must be the argument on each recursive
call. This fact is not reflected in the code. We can improve the definition by
introducing an auxiliary function:

exception Factorial

local
fun fact 0 = 1
| fact n = n * fact (n-1)

in
fun checked factorial n =

if n >= 0 then
fact n

else
raise Factorial

end

Notice that we perform the range check exactly once, and that the auxiliary
function makes effective use of pattern-matching.

12.2 Exception Handlers

The use of exceptions to signal error conditions suggests that raising an
exception is fatal: execution of the program terminates with the raised ex-

WORKING DRAFT MAY 17, 2005

12.2 Exception Handlers 115

ception. But signaling an error is only one use of the exception mechanism.
More generally, exceptions can be used to effect non-local transfers of control.
By using an exception handler we may “catch” a raised exception and con-
tinue evaluation along some other path. A very simple example is provided
by the following driver for the factorial function that accepts numbers from
the keyboard, computes their factorial, and prints the result.

fun factorial driver () =
let

val input = read integer ()
val result =

toString (checked factorial input)
in

print result
end
handle Factorial => print "Out of range."

An expression of the form exp handle match is called an exception han-
dler. It is evaluated by attempting to evaluate exp. If it returns a value,
then that is the value of the entire expression; the handler plays no role in
this case. If, however, exp raises an exception exc, then the exception value
is matched against the clauses of the match (exactly as in the application
of a clausal function to an argument) to determine how to proceed. If the
pattern of a clause matches the exception exc, then evaluation resumes with
the expression part of that clause. If no pattern matches, the exception exc is
re-raised so that outer exception handlers may dispatch on it. If no handler
handles the exception, then the uncaught exception is signaled as the fi-
nal result of evaluation. That is, computation is aborted with the uncaught
exception exc.

In more operational terms, evaluation of exp handle match proceeds by
installing an exception handler determined by match, then evaluating exp.
The previous binding of the exception handler is preserved so that it may
be restored once the given handler is no longer needed. Raising an excep-
tion consists of passing a value of type exn to the current exception handler.
Passing an exception to a handler de-installs that handler, and re-installs
the previously active handler. This ensures that if the handler itself raises
an exception, or fails to handle the given exception, then the exception is
propagated to the handler active prior to evaluation of the handle expres-
sion. If the expression does not raise an exception, the previous handler is
restored as part of completing the evaluation of the handle expression.

MAY 17, 2005 WORKING DRAFT

116 12.2 Exception Handlers

Returning to the function factorial driver, we see that evaluation
proceeds by attempting to compute the factorial of a given number (read
from the keyboard by an unspecified function read integer), printing the
result if the given number is in range, and otherwise reporting that the
number is out of range. The example is trivialized to focus on the role
of exceptions, but one could easily imagine generalizing it in a number of
ways that also make use of exceptions. For example, we might repeatedly
read integers until the user terminates the input stream (by typing the end
of file character). Termination of input might be signaled by an EndOfFile
exception, which is handled by the driver. Similarly, we might expect that
the function read integer raises the exception SyntaxError in the case
that the input is not properly formatted. Again we would handle this ex-
ception, print a suitable message, and resume.

Here’s a sketch of a more complicated factorial driver:

fun factorial driver () =
let

val input = read integer ()
val result =

toString (checked factorial input)
val = print result

in
factorial driver ()

end
handle EndOfFile => print "Done."

| SyntaxError =>
let

val = print "Syntax error."
in

factorial driver ()
end

| Factorial =>
let

val = print "Out of range."
in

factorial driver ()
end

We will return to a more detailed discussion of input/output later in these
notes. The point to notice here is that the code is structured with a com-
pletely uncluttered “normal path” that reads an integer, computes its fac-

WORKING DRAFT MAY 17, 2005

12.2 Exception Handlers 117

torial, formats it, prints it, and repeats. The exception handler takes care
of the exceptional cases: end of file, syntax error, and domain error. In the
latter two cases we report an error, and resume reading. In the former we
simply report completion and we are done.

The reader is encouraged to imagine how one might structure this pro-
gram without the use of exceptions. The primary benefits of the exception
mechanism are as follows:

1. They force you to consider the exceptional case (if you don’t, you’ll
get an uncaught exception at run-time), and

2. They allow you to segregate the special case from the normal case in
the code (rather than clutter the code with explicit checks).

These aspects work hand-in-hand to facilitate writing robust programs.

A typical use of exceptions is to implement backtracking, a program-
ming technique based on exhaustive search of a state space. A very simple,
if somewhat artificial, example is provided by the following function to
compute change from an arbitrary list of coin values. What is at issue is
that the obvious “greedy” algorithm for making change that proceeds by
doling out as many coins as possible in decreasing order of value does not
always work. Given only a 5 cent and a 2 cent coin, we cannot make 16
cents in change by first taking three 5’s and then proceeding to dole out 2’s.
In fact we must use two 5’s and three 2’s to make 16 cents. Here’s a method
that works for any set of coins:

exception Change

fun change 0 = nil
| change nil = raise Change
| change (coin::coins) amt =

if coin > amt then
change coins amt

else
(coin :: change (coin::coins) (amt-coin))
handle Change => change coins amt

The idea is to proceed greedily, but if we get “stuck”, we undo the most
recent greedy decision and proceed again from there. Simulate evaluation
of the example of change [5,2] 16 to see how the code works.

MAY 17, 2005 WORKING DRAFT

118 12.3 Value-Carrying Exceptions

12.3 Value-Carrying Exceptions

So far exceptions are just “signals” that indicate that an exceptional condi-
tion has arisen. Often it is useful to attach additional information that is
passed to the exception handler. This is achieved by attaching values to
exceptions.

For example, we might associate with a SyntaxError exception a string
indicating the precise nature of the error. In a parser for a language we
might write something like

raise SyntaxError "Integer expected"

to indicate a malformed expression in a situation where an integer is ex-
pected, and write

raise SyntaxError "Identifier expected"

to indicate a badly-formed identifier.
To associate a string with the exception SyntaxError, we declare it as

exception SyntaxError of string.

This declaration introduces the exception SyntaxError as an exception car-
rying a string as value. This declaration introduces the exception constructor
SyntaxError.

Exception constructors are in many ways similar to value constructors.
In particular they can be used in patterns, as in the following code frag-
ment:

... handle SyntaxError msg => print "Syntax error: " ^ msg

Here we specify a pattern for SyntaxError exceptions that also binds the
string associated with the exception to the identifier msg and prints that
string along with an error indication.

Recall that we may use value constructors in two ways:

1. We may use them to create values of a datatype (perhaps by applying
them to other values).

2. We may use them to match values of a datatype (perhaps also match-
ing a constituent value).

The situation with exception constructors is symmetric.

WORKING DRAFT MAY 17, 2005

12.3 Value-Carrying Exceptions 119

1. We may use them to create an exception (perhaps with an associated
value).

2. We may use them to match an exception (perhaps also matching the
associated value).

Value constructors have types, as we previously mentioned. For exam-
ple, the list constructors nil and :: have types ’a list and ’a * ’a list
-> ’a list, respectively. What about exception constructors? A “bare”
exception constructor (such as Factorial above) has type exn and a value-
carrying exception constructor (such as SyntaxError) has type string ->
exn. Thus Factorial is a value of type exn, and

SyntaxError "Integer expected"

is a value of type exn.
The type exn is the type of exception packets, the data values associated

with exceptions. The primitive operation raise takes any value of type
exn as argument and raises an exception with that value. The clauses of
a handler may be applied to any value of type exn using the rules of pat-
tern matching described earlier; if an exception constructor is no longer in
scope, then the handler cannot catch it (other than via a wild-card pattern).

The type exn may be thought of as a kind of built-in datatype, except that
the constructors of this type are not determined once and for all (as they
are with a datatype declaration), but rather are incrementally introduced as
needed in a program. For this reason the type exn is sometimes called an
extensible datatype.

MAY 17, 2005 WORKING DRAFT

120 12.3 Value-Carrying Exceptions

WORKING DRAFT MAY 17, 2005

Chapter 13

Mutable Storage

In this chapter we consider a second form of effect, called a storage effect, the
allocation or mutation of storage during evaluation. The introduction of
storage effects has profound consequences, not all of which are desirable.
(Indeed, one connotation of the phrase side effect is an unintended conse-
quence of a medication!) While it is excessive to dismiss storage effects as
completely undesirable, it is advantageous to minimize the use of storage
effects except in situations where the task clearly demands them. We will
explore some techniques for programming with storage effects later in this
chapter, but first we introduce the primitive mechanisms for programming
with mutable storage in ML.

13.1 Reference Cells

To support mutable storage the execution model that we described in chap-
ter 2 is enriched with a memory consisting of a finite set of mutable cells. A
mutable cell may be thought of as a container in which a data value of a
specified type is stored. During execution of a program the contents of
a cell may be retrieved or replaced by any other value of the appropriate
type. Since cells are used by issuing “commands” to modify and retrieve
their contents, programming with cells is called imperative programming.

Changing the contents of a mutable cell introduces a temporal aspect to
evaluation. We speak of the current contents of a cell, meaning the value
most recently assigned to it. We also speak of previous and future values
of a reference cell when discussing the behavior of a program. This is in
sharp contrast to the effect-free fragment of ML, for which no such con-
cepts apply. For example, the binding of a variable does not change while

121

122 13.1 Reference Cells

evaluating within the scope of that variable, lending a “permanent” quality
to statements about variables — the “current” binding is the only binding
that variable will ever have.

The type typ ref is the type of reference cells containing values of type
typ. Reference cells are, like all values, first class — they may be bound
to variables, passed as arguments to functions, returned as results of func-
tions, appear within data structures, and even be stored within other refer-
ence cells.

A reference cell is created, or allocated, by the function ref of type typ ->
typ ref. When applied to a value val of type typ, ref allocates a “new” cell,
initializes its content to val, and returns a reference to the cell. By “new”
we mean that the allocated cell is distinct from all other cells previously
allocated, and does not share storage with them.

The contents of a cell of type typ is retrieved using the function ! of type
typ ref -> typ. Applying ! to a reference cell yields the current contents
of that cell. The contents of a cell is changed by applying the assignment
operator op :=, which has type typ ref * typ -> unit. Assignment is
usually written using infix syntax. When applied to a cell and a value, it
replaces the content of that cell with that value, and yields the null-tuple as
result.

Here are some examples:

val r = ref 0
val s = ref 0
val = r := 3
val x = !s + !r
val t = r
val = t := 5
val y = !s + !r
val z = !t + !r

After execution of these bindings, the variable x is bound to 3, the variable
y is bound to 5, and z is bound to 10.

Notice the use of a val binding of the form val = exp when exp is
to be evaluated purely for its effect. The value of exp is discarded by the
binding, since the left-hand side is a wildcard pattern. In most cases the
expression exp has type unit, so that its value is guaranteed to be the null-
tuple, (), if it has a value at all.

A wildcard binding is used to define sequential composition of expres-
sions in ML. The expression

WORKING DRAFT MAY 17, 2005

13.2 Reference Patterns 123

exp1; exp2

is shorthand for the expression

let
val = exp1

in
exp2

end

that first evaluates exp1 for its effect, then evaluates exp2.
Functions of type typ->unit are sometimes called procedures, because

they are executed purely for their effect. This is apparent from the type: it
is assured that the value of applying such a function is the null-tuple, (),
so the only point of applying it is for its effects on memory.

13.2 Reference Patterns

It is a common mistake to omit the exclamation point when referring to
the content of a reference, especially when that cell is bound to a variable.
In more familiar languages such as C all variables are implicitly bound to
reference cells, and they are implicitly de-referenced whenever they are used
so that a variable always stands for its current contents. This is both a
boon and a bane. It is obviously helpful in many common cases since it
alleviates the burden of having to explicitly dereference variables whenever
their content is required. However, it shifts the burden to the programmer
in the case that the address, and not the content, is intended. In C one writes
& x for the address of (the cell bound to) x. Whether explicit or implicit de-
referencing is preferable is to a large extent a matter of taste. The burden
of explicit de-referencing is not nearly so onerous in ML as it might be in
other languages simply because reference cells are used so infrequently in
ML programs, whereas they are the sole means of binding variables in more
familiar languages.

An alternative to explicitly de-referencing cells is to use ref patterns. A
pattern of the form ref pat matches a reference cell whose content matches
the pattern pat. This means that the cell’s contents are implicitly retrieved
during pattern matching, and may be subsequently used without explicit
de-referencing. In fact, the function ! may be defined using a ref pattern
as follows:

fun !(ref a) = a

MAY 17, 2005 WORKING DRAFT

124 13.3 Identity

When called with a reference cell, it is de-referenced and its contents is
bound to a, which is returned as result. In practice it is common to use
both explicit de-referencing and ref patterns, depending on the situation.

13.3 Identity

Reference cells raise delicate issues of equality that considerably complicate
reasoning about programs. In general we say that two expressions (of the
same type) are equal iff they cannot be distinguished by any operation in
the language. That is, two expressions are distinct iff there is some way
within the language to tell them apart. This is called Leibniz’s Principle of
identity of indiscernables — we equate everything that we cannot tell apart
— and the indiscernability of identicals — that which we deem equal cannot
be told apart.

What makes Leibniz’s Principle tricky to grasp is that it hinges on what
we mean by a “way to tell expressions apart”. The crucial idea is that we
can tell two expressions apart iff there is a complete program containing one
of the expressions whose observable behavior changes when we replace that
expression by the other. That is, two expressions are considered equal iff
there is no such scenario that distinguishes them. But what do we mean by
“complete program”? And what do we mean by “observable behavior”?

For the present purposes we will consider a complete program to be
any expression of basic type (say, int or bool or string). The idea is that
a complete program is one that computes a concrete result such as a num-
ber. The observable behavior of a complete program includes at least these
aspects:

1. Its value, or lack thereof, either by non-termination or by raising an
uncaught exception.

2. Its visible side effects, include visible modifications to mutable stor-
age or any input/output it may perform.

In contrast here are some behaviors that we will not count as observations:

1. Execution time or space usage.

2. “Private” uses of storage (e.g., internally-allocated reference cells).

3. The name of uncaught exceptions (i.e., we will not distinguish be-
tween terminating with the uncaught exception Bind and the un-
caught exception Match.

WORKING DRAFT MAY 17, 2005

13.3 Identity 125

With these ideas in mind, it should be plausible that if we evaluate these
bindings

val r = ref 0
val s = ref 0

then r and s are not equivalent. Consider the following usage of r to com-
pute an integer result:

(s := 1 ; !r)

Clearly this expression evaluates to 0, and mutates the binding of s. Now
replace r by s to obtain

(s := 1 ; !s)

This expression evaluates to 1, and mutates s as before. These two complete
programs distinguish r from s, and therefore must be considered distinct.

Had we replaced the binding for s by the binding

val s = r

then the two expressions that formerly distinguished r from s no long do so
— they are, after all, bound to the same reference cell! In fact, no program
can be concocted that would distinguish them. In this case r and s are
equivalent.

Now consider a third, very similar scenario. Let us declare r and s as
follows:

val r = ref ()
val s = ref ()

Are r and s equivalent or not? We might first try to distinguish them by
a variant of the experiment considered above. This breaks down because
there is only one possible value we can assign to a variable of type unit
ref! Indeed, one may suspect that r and s are equivalent in this case, but
in fact there is a way to distinguish them! Here’s a complete program in-
volving r that we will use to distinguish r from s:

if r=r then "it’s r" else "it’s not"

Now replace the first occurrence of r by s to obtain

if s=r then "it’s r" else "it’s not"

MAY 17, 2005 WORKING DRAFT

126 13.4 Aliasing

and the result is different.
This example hinges on the fact that ML defines equality for values of

reference type to be reference equality (or, occasionally, pointer equality). Two
reference cells (of the same type) are equal in this sense iff they both arise
from the exact same use of the ref operation to allocate that cell; otherwise
they are distinct. Thus the two cells bound to r and s above are observably
distinct (by testing reference equality), even though they can only ever hold
the value (). Had equality not been included as a primitive, any two refer-
ence cells of unit type would have been equal.

Why does ML provide such a fine-grained notion of equality? “True”
equality, as defined by Leibniz’s Principle, is, unfortunately, undecidable
— there is no computer program that determines whether two expressions
are equivalent in this sense. ML provides a useful, conservative approxi-
mation to true equality that in some cases is not defined (you cannot test
two functions for equality) and in other cases is too picky (it distinguishes
reference cells that are otherwise indistinguishable). Such is life.

13.4 Aliasing

To see how reference cells complicate programming, let us consider the
problem of aliasing. Any two variables of the same reference type might
be bound to the same reference cell, or to two different reference cells. For
example, after the declarations

val r = ref 0
val s = ref 0

the variables r and s are not aliases, but after the declaration

val r = ref 0
val s = r

the variables r and s are aliases for the same reference cell.
These examples show that we must be careful when programming with

variables of reference type. This is particularly problematic in the case of
functions, because we cannot assume that two different argument variables
are bound to different reference cells. They might, in fact, be bound to the
same reference cell, in which case we say that the two variables are aliases
for one another. For example, in a function of the form

fn (x:typ ref, y:typ ref) => exp

WORKING DRAFT MAY 17, 2005

13.5 Programming Well With References 127

we may not assume that x and y are bound to different reference cells.
We must always ask ourselves whether we’ve properly considered aliasing
when writing such a function. This is harder to do than it sounds. Aliasing
is a huge source of bugs in programs that work with reference cells.

13.5 Programming Well With References

Using references it is possible to mimic the style of programming used in
imperative languages such as C. For example, we might define the factorial
function in imitation of such languages as follows:

fun imperative fact (n:int) =
let

val result = ref 1
val i = ref 0
fun loop () =

if !i = n then
()

else
(i := !i + 1;
result := !result * !i;
loop ())

in
loop (); !result

end

Notice that the function loop is essentially just a while loop; it repeatedly
executes its body until the contents of the cell bound to i reaches n. The tail
call to loop is essentially just a goto statement to the top of the loop.

It is (appallingly) bad style to program in this fashion. The purpose of the
function imperative fact is to compute a simple function on the natural
numbers. There is nothing about its definition that suggests that state must
be maintained, and so it is senseless to allocate and modify storage to com-
pute it. The definition we gave earlier is shorter, simpler, more efficient,
and hence more suitable to the task. This is not to suggest, however, that
there are no good uses of references. We will now discuss some important
uses of state in ML.

MAY 17, 2005 WORKING DRAFT

128 13.5 Programming Well With References

13.5.1 Private Storage

The first example is the use of higher-order functions to manage shared
private state. This programming style is closely related to the use of ob-
jects to manage state in object-oriented programming languages. Here’s an
example to frame the discussion:

local
val counter = ref 0

in
fun tick () = (counter := !counter + 1; !counter)
fun reset () = (counter := 0)

end

This declaration introduces two functions, tick of type unit -> int and
reset of type unit -> unit. Their definitions share a private variable counter
that is bound to a mutable cell containing the current value of a shared
counter. The tick operation increments the counter and returns its new
value, and the reset operation resets its value to zero. The types of the op-
erations suggest that implicit state is involved. In the absence of exceptions
and implicit state, there is only one useful function of type unit->unit,
namely the function that always returns its argument (and it’s debatable
whether this is really useful!).

The declaration above defines two functions, tick and reset, that share
a single private counter. Suppose now that we wish to have several differ-
ent instances of a counter — different pairs of functions tick and reset that
share different state. We can achieve this by defining a counter generator (or
constructor) as follows:

fun new counter () =
let

val counter = ref 0
fun tick () = (counter := !counter + 1; !counter)
fun reset () = (counter := 0)

in
{ tick = tick, reset = reset }

end

The type of new counter is

unit -> { tick : unit->int, reset : unit->unit }.

WORKING DRAFT MAY 17, 2005

13.5 Programming Well With References 129

We’ve packaged the two operations into a record containing two func-
tions that share private state. There is an obvious analogy with class-based
object-oriented programming. The function new counter may be thought
of as a constructor for a class of counter objects. Each object has a private in-
stance variable counter that is shared between the methods tick and reset
of the object represented as a record with two fields.

Here’s how we use counters.

val c1 = new counter ()
val c2 = new counter ()
#tick c1 ();
(* 1 *)
#tick c1 ();
(* 2 *)
#tick c2 ();
(* 1 *)
#reset c1 ();
#tick c1 ();
(* 1 *)
#tick c2 ();
(* 2 *)

Notice that c1 and c2 are distinct counters that increment and reset inde-
pendently of one another.

13.5.2 Mutable Data Structures

A second important use of references is to build mutable data structures.
The data structures (such as lists and trees) we’ve considered so far are
immutable in the sense that it is impossible to change the structure of the list
or tree without building a modified copy of that structure. This is both a
benefit and a drawback. The principal benefit is that immutable data struc-
tures are persistent in that operations performed on them do not destroy
the original structure — in ML we can eat our cake and have it too. For ex-
ample, we can simultaneously maintain a dictionary both before and after
insertion of a given word. The principal drawback is that if we aren’t really
relying on persistence, then it is wasteful to make a copy of a structure if
the original is going to be discarded anyway. What we’d like in this case
is to have an “update in place” operation to build an ephemeral (opposite of
persistent) data structure. To do this in ML we make use of references.

MAY 17, 2005 WORKING DRAFT

130 13.5 Programming Well With References

A simple example is the type of possibly circular lists, or pcl’s. Informally,
a pcl is a finite graph in which every node has at most one neighbor, called
its predecessor, in the graph. In contrast to ordinary lists the predecessor
relation is not necessarily well-founded: there may be an infinite sequence
of nodes arranged in descending order of predecession. Since the graph
is finite, this can only happen if there is a cycle in the graph: some node
has an ancestor as predecessor. How can such a structure ever come into
existence? If the predecessors of a cell are needed to construct a cell, then
the ancestor that is to serve as predecessor in the cyclic case can never be
created! The “trick” is to employ backpatching: the predecessor is initialized
to Nil, so that the node and its ancestors can be constructed, then it is reset
to the appropriate ancestor to create the cycle.

This can be achieved in ML using the following datatype declaration:

datatype ’a pcl = Pcl of ’a pcell ref
and ’a pcell = Nil | Cons of ’a * ’a pcl;

A value of type typ pcl is essentially a reference to a value of type typ
pcell. A value of type typ pcell is either Nil, the cell at the end of a non-
circular possibly-circular list, or Cons (h, t), where h is a value of type typ
and t is another such possibly-circular list.

Here are some convenient functions for creating and taking apart possibly-
circular lists:

fun cons (h, t) = Pcl (ref (Cons (h, t)));
fun nill () = Pcl (ref Nil);

fun phd (Pcl (ref (Cons (h,)))) = h;
fun ptl (Pcl (ref (Cons (, t)))) = t;

To implement backpatching, we need a way to “zap” the tail of a possibly-
circular list.

fun stl (Pcl (r as ref (Cons (h,))), u) =
(r := Cons (h, u));

If you’d like, it would make sense to require that the tail of the Cons cell
be the empty pcl, so that you’re only allowed to backpatch at the end of a
finite pcl.

Here is a finite and an infinite pcl.

val finite = cons (4, cons (3, cons (2, cons (1, nill ()))))

val tail = cons (1, nill());
val infinite = cons (4, cons (3, cons (2, tail)));
val = stl (tail, infinite)

WORKING DRAFT MAY 17, 2005

13.6 Mutable Arrays 131

The last step backpatches the tail of the last cell of infinite to be infinite
itself, creating a circular list.

Now let us define the size of a pcl to be the number of distinct nodes
occurring in it. It is an interesting problem is to define a size function
for pcls that makes no use of auxiliary storage (e.g., no set of previously-
encountered nodes) and runs in time proportional to the number of cells in
the pcl. The idea is to think of running a long race between a tortoise and a
hare. If the course is circular, then the hare, which quickly runs out ahead
of the tortoise, will eventually come from behind and pass it! Conversely,
if this happens, the course must be circular.

local
fun race (Nil, Nil) = 0

| race (Cons (, Pcl (ref c)), Nil) =
1 + race (c, Nil)

| race (Cons (, Pcl (ref c)), Cons (, Pcl (ref Nil))) =
1 + race (c, Nil)

| race (Cons (, l), Cons (, Pcl (ref (Cons (, m))))) =
1 + race’ (l, m)

and race’ (Pcl (r as ref c), Pcl (s as ref d)) =
if r=s then 0 else race (c, d)

in
fun size (Pcl (ref c)) = race (c, c)

end

The hare runs twice as fast as the tortoise. We let the tortoise do the count-
ing; the hare’s job is simply to detect cycles. If the hare reaches the finish
line, it simply waits for the tortoise to finish counting. This covers the first
three clauses of race. If the hare has not yet finished, we must continue
with the hare running at twice the pace, checking whether the hare catches
the tortoise from behind. Notice that it can never arise that the tortoise
reaches the end before the hare does! Consequently, the definition of race
is inexhaustive.

13.6 Mutable Arrays

In addition to reference cells, ML also provides mutable arrays as a primi-
tive data structure. The type typ array is the type of arrays carrying values
of type typ. The basic operations on arrays are these:

val array : int * ’a -> ’a array

MAY 17, 2005 WORKING DRAFT

132 13.6 Mutable Arrays

val length : ’a array -> int
val sub : ’a array * int -> ’a
val update : ’a array * int * ’a -> unit

The function array creates a new array of a given length, with the given
value as the initial value of every element of the array. The function length
returns the length of an array. The function sub performs a subscript oper-
ation, returning the ith element of an array A, where 0 ≤ i < length(A).
(These are just the basic operations on arrays; please see V for complete
information.)

One simple use of arrays is for memoization. Here’s a function to com-
pute the nth Catalan number, which may be thought of as the number of
distinct ways to parenthesize an arithmetic expression consisting of a se-
quence of n consecutive multiplication’s. It makes use of an auxiliary sum-
mation function that you can easily define for yourself. (Applying sum to f
and n computes the sum of f 0 + · · ·+ f n.)

fun C 1 = 1
| C n = sum (fn k => (C k) * (C (n-k))) (n-1)

This definition of C is hugely inefficient because a given computation may
be repeated exponentially many times. For example, to compute C 10 we
must compute C 1, C 2, . . . , C 9, and the computation of C i engenders the
computation of C 1, . . . , C i − 1 for each 1 ≤ i ≤ 9. We can do better by
caching previously-computed results in an array, leading to an enormous
improvement in execution speed. Here’s the code:

local
val limit : int = 100
val memopad : int option array =

Array.array (limit, NONE)
in

fun C’ 1 = 1
| C’ n = sum (fn k => (C k)*(C (n-k))) (n-1)

and C n =
if n < limit then

case Array.sub (memopad, n)
of SOME r => r
| NONE =>
let

val r = C’ n

WORKING DRAFT MAY 17, 2005

13.6 Mutable Arrays 133

in
Array.update (memopad, n, SOME r);
r

end
else

C’ n
end

Note carefully the structure of the solution. The function C is a memoized
version of the Catalan number function. When called it consults the memo-
pad to determine whether or not the required result has already been com-
puted. If so, the answer is simply retrieved from the memopad, otherwise
the result is computed, stored in the cache, and returned. The function C’
looks superficially similar to the earlier definition of C, with the important
difference that the recursive calls are to C, rather than C’ itself. This ensures
that sub-computations are properly cached and that the cache is consulted
whenever possible.

The main weakness of this solution is that we must fix an upper bound
on the size of the cache. This can be alleviated by implementing a more
sophisticated cache management scheme that dynamically adjusts the size
of the cache based on the calls made to it.

MAY 17, 2005 WORKING DRAFT

134 13.6 Mutable Arrays

WORKING DRAFT MAY 17, 2005

Chapter 14

Input/Output

The Standard ML Basis Library (described in V) defines a three-layer in-
put and output facility for Standard ML. These modules provide a rudi-
mentary, platform-independent text I/O facility that we summarize briefly
here. The reader is referred to V for more details. Unfortunately, there is at
present no standard library for graphical user interfaces; each implemen-
tation provides its own package. See your compiler’s documentation for
details.

14.1 Textual Input/Output

The text I/O primitives are based on the notions of an input stream and an
output stream, which are values of type instream and outstream, respec-
tively. An input stream is an unbounded sequence of characters arising
from some source. The source could be a disk file, an interactive user, or
another program (to name a few choices). Any source of characters can
be attached to an input stream. An input stream may be thought of as a
buffer containing zero or more characters that have already been read from
the source, together with a means of requesting more input from the source
should the program require it. Similarly, an output stream is an unbounded
sequence of characters leading to some sink. The sink could be a disk file,
an interactive user, or another program (to name a few choices). Any sink
for characters can be attached to an output stream. An output stream may
be thought of as a buffer containing zero or more characters that have been
produced by the program but have yet to be flushed to the sink.

Each program comes with one input stream and one output stream,
called stdIn and stdOut, respectively. These are ordinarily connected to

135

136 14.1 Textual Input/Output

the user’s keyboard and screen, and are used for performing simple text
I/O in a program. The output stream stdErr is also pre-defined, and is
used for error reporting. It is ordinarily connected to the user’s screen.

Textual input and output are performed on streams using a variety of
primitives. The simplest are inputLine and print. To read a line of input
from a stream, use the function inputLine of type instream -> string. It
reads a line of input from the given stream and yields that line as a string
whose last character is the line terminator. If the source is exhausted, return
the empty string. To write a line to stdOut, use the function print of type
string -> unit. To write to a specific stream, use the function output of
type outstream * string -> unit, which writes the given string to the
specified output stream. For interactive applications it is often important
to ensure that the output stream is flushed to the sink (e.g., so that it is
displayed on the screen). This is achieved by calling flushOut of type
outstream -> unit, which ensures that the output stream is flushed to
the sink. The print function is a composition of output (to stdOut) and
flushOut.

A new input stream may be created by calling the function openIn of
type string -> instream. When applied to a string, the system attempts
to open a file with that name (according to operating system-specific nam-
ing conventions) and attaches it as a source to a new input stream. Simi-
larly, a new output stream may be created by calling the function openOut
of type string -> outstream. When applied to a string, the system at-
tempts to create a file with that name (according to operating system-specific
naming conventions) and attaches it as a sink for a new output stream. An
input stream may be closed using the function closeIn of type instream
-> unit. A closed input stream behaves as if there is no further input avail-
able; request for input from a closed input stream yield the empty string.
An output stream may be closed using closeOut of type outstream ->
unit. A closed output stream is unavailable for further output; an attempt
to write to a closed output stream raises the exception TextIO.IO.

The function input of type instream -> string is a blocking read op-
eration that returns a string consisting of the characters currently available
from the source. If none are currently available, but the end of source has
not been reached, then the operation blocks until at least one character is
available from the source. If the source is exhausted or the input stream is
closed, input returns the null string. To test whether an input operation
would block, use the function canInput of type instream * int -> int
option. Given a stream s and a bound n, the function canInput determines
whether or not a call to input on s would immediately yield up to n charac-

WORKING DRAFT MAY 17, 2005

14.1 Textual Input/Output 137

ters. If the input operation would block, canInput yields NONE; otherwise
it yields SOME k, with 0 ≤ k ≤ n being the number of characters immedi-
ately available on the input stream. If canInput yields SOME 0, the stream
is either closed or exhausted. The function endOfStream of type instream
-> bool tests whether the input stream is currently at the end (no further
input is available from the source). This condition is transitive since, for ex-
ample, another process might append data to an open file in between calls
to endOfStream.

The function output of type outstream * string -> unit writes a
string to an output stream. It may block until the sink is able to accept
the entire string. The function flushOut of type outstream -> unit forces
any pending output to the sink, blocking until the sink accepts the remain-
ing buffered output.

This collection of primitive I/O operations is sufficient for performing
rudimentary textual I/O. For further information on textual I/O, and sup-
port for binary I/O and Posix I/O primitives, see the Standard ML Basis
Library.

MAY 17, 2005 WORKING DRAFT

138 14.1 Textual Input/Output

WORKING DRAFT MAY 17, 2005

Chapter 15

Lazy Data Structures

In ML all variables are bound by value, which means that the bindings of
variables are fully evaluated expressions, or values. This general principle
has several consequences:

1. The right-hand side of a val binding is evaluated before the binding
is effected. If the right-hand side has no value, the val binding does
not take effect.

2. In a function application the argument is evaluated before being passed
to the function by binding that value to the parameter of the function.
If the argument does not have a value, then neither does the applica-
tion.

3. The arguments to value constructors are evaluated before the con-
structed value is created.

According to the by-value discipline, the bindings of variables are evalu-
ated, regardless of whether that variable is ever needed to complete execu-
tion. For example, to compute the result of applying the function fn x =>
1 to an argument, we never actually need to evaluate the argument, but we
do anyway. For this reason ML is sometimes said to be an eager language.

An alternative is to bind variables by name,1 which means that the bind-
ing of a variable is an unevaluated expression, known as a computation or a
suspension or a thunk.2 This principle has several consequences:

1The terminology is historical, and not well-motivated. It is, however, firmly established.
2For reasons that are lost in the mists of time.

139

140

1. The right-hand side of a val binding is not evaluated before the bind-
ing is effected. The variable is bound to a computation (unevaluated
expression), not a value.

2. In a function application the argument is passed to the function in
unevaluated form by binding it directly to the parameter of the func-
tion. This holds regardless of whether the argument has a value or
not.

3. The arguments to value constructor are left unevaluated when the
constructed value is created.

According to the by-name discipline, the bindings of variables are only
evaluated (if ever) when their values are required by a primitive operation.
For example, to evaluate the expression x+x, it is necessary to evaluate the
binding of x in order to perform the addition. Languages that adopt the
by-name discipline are, for this reason, said to be lazy.

This discussion glosses over another important aspect of lazy evalua-
tion, called memoization. In actual fact laziness is based on a refinement
of the by-name principle, called the by-need principle. According to the by-
name principle, variables are bound to unevaluated computations, and are
evaluated only as often as the value of that variable’s binding is required
to complete the computation. In particular, to evaluate the expression x+x
the value of the binding of x is needed twice, and hence it is evaluated
twice. According to the by-need principle, the binding of a variable is eval-
uated at most once — not at all, if it is never needed, and exactly once if it
ever needed at all. Re-evaluation of the same computation is avoided by
memoization. Once a computation is evaluated, its value is saved for future
reference should that computation ever be needed again.

The advantages and disadvantages of lazy vs. eager languages have
been hotly debated. We will not enter into this debate here, but rather con-
tent ourselves with the observation that laziness is a special case of eagerness.
(Recent versions of) ML have lazy data types that allow us to treat uneval-
uated computations as values of such types, allowing us to incorporate
laziness into the language without disrupting its fundamental character on
which so much else depends. This affords the benefits of laziness, but on a
controlled basis — we can use it when it is appropriate, and ignore it when
it is not.

The main benefit of laziness is that it supports demand-driven computa-
tion. This is useful for representing on-line data structures that are created

WORKING DRAFT MAY 17, 2005

15.1 Lazy Data Types 141

only insofar as we examine them. Infinite data structures, such as the se-
quence of all prime numbers in order of magnitude, are one example of
an on-line data structure. Clearly we cannot ever “finish” creating the se-
quence of all prime numbers, but we can create as much of this sequence
as we need for a given run of a program. Interactive data structures, such
as the sequence of inputs provided by the user of an interactive system, are
another example of on-line data structures. In such a system the user’s in-
puts are not pre-determined at the start of execution, but rather are created
“on demand” in response to the progress of computation up to that point.
The demand-driven nature of on-line data structures is precisely what is
needed to model this behavior.

Note: Lazy evaluation is a non-standard feature of ML that is supported
only by the SML/NJ compiler. The lazy evaluation features must be en-
abled by executing the following at top level:

Compiler.Control.lazysml := true;
open Lazy;

15.1 Lazy Data Types

SML/NJ provides a general mechanism for introducing lazy data types by
simply attaching the keyword lazy to an ordinary datatype declaration.
The ideas are best illustrated by example. We will focus attention on the
type of infinite streams, which may be declared as follows:

datatype lazy ’a stream = Cons of ’a * ’a stream

Notice that this type definition has no “base case”! Had we omitted the key-
word lazy, such a datatype would not be very useful, since there would
be no way to create a value of that type!

Adding the keyword lazy makes all the difference. Doing so specifies
that the values of type typ stream are computations of values of the form

Cons (val, val′),

where val is of type typ, and val′ is another such computation. Notice how
this description captures the “incremental” nature of lazy data structures.
The computation is not evaluated until we examine it. When we do, its
structure is revealed as consisting of an element val together with another
suspended computation of the same type. Should we inspect that compu-
tation, it will again have this form, and so on ad infinitum.

MAY 17, 2005 WORKING DRAFT

142 15.2 Lazy Function Definitions

Values of type typ stream are created using a val rec lazy declaration
that provides a means for building a “circular” data structure. Here is a
declaration of the infinite stream of 1’s as a value of type int stream:

val rec lazy ones = Cons (1, ones)

The keyword lazy indicates that we are binding ones to a computation,
rather than a value. The keyword rec indicates that the computation is
recursive (or self-referential or circular). It is the computation whose underly-
ing value is constructed using Cons (the only possibility) from the integer 1
and the very same computation itself.

We can inspect the underlying value of a computation by pattern match-
ing. For example, the binding

val Cons (h, t) = ones

extracts the “head” and “tail” of the stream ones. This is performed by
evaluating the computation bound to ones, yielding Cons (1, ones), then
performing ordinary pattern matching to bind h to 1 and t to ones.

Had the pattern been “deeper”, further evaluation would be required,
as in the following binding:

val Cons (h, (Cons (h’, t’)) = ones

To evaluate this binding, we evaluate ones to Cons (1, ones), binding h
to 1 in the process, then evaluate ones again to Cons (1, ones), binding h’
to 1 and t’ to ones. The general rule is pattern matching forces evaluation of
a computation to the extent required by the pattern. This is the means by which
lazy data structures are evaluated only insofar as required.

15.2 Lazy Function Definitions

The combination of (recursive) lazy function definitions and decomposi-
tion by pattern matching are the core mechanisms required to support lazy
evaluation. However, there is a subtlety about function definitions that re-
quires careful consideration, and a third new mechanism, the lazy function
declaration.

Using pattern matching we may easily define functions over lazy data
structures in a familiar manner. For example, we may define two functions
to extract the head and tail of a stream as follows:

fun shd (Cons (h,)) = h
fun stl (Cons (, s)) = s

WORKING DRAFT MAY 17, 2005

15.2 Lazy Function Definitions 143

These are functions that, when applied to a stream, evaluate it, and match
it against the given patterns to extract the head and tail, respectively.

While these functions are surely very natural, there is a subtle issue that
deserves careful discussion. The issue is whether these functions are “lazy
enough”. From one point of view, what we are doing is decomposing a
computation by evaluating it and retrieving its components. In the case of
the shd function there is no other interpretation — we are extracting a value
of type typ from a value of type typ stream, which is a computation of a
value of the form Cons (exph, expt). We can adopt a similar viewpoint
about stl, namely that it is simply extracting a component value from a
computation of a value of the form Cons (exph, expt).

However, in the case of stl, another point of view is also possible.
Rather than think of stl as extracting a value from a stream, we may in-
stead think of it as creating a stream out of another stream. Since streams
are computations, the stream created by stl (according to this view) should
also be suspended until its value is required. Under this interpretation the
argument to stl should not be evaluated until its result is required, rather
than at the time stl is applied. This leads to a variant notion of “tail” that
may be defined as follows:

fun lazy lstl (Cons (, s)) = s

The keyword lazy indicates that an application of lstl to a stream does not
immediately perform pattern matching on its argument, but rather sets up
a stream computation that, when forced, forces the argument and extracts
the tail of the stream.

The behavior of the two forms of tail function can be distinguished us-
ing print statements as follows:

val rec lazy s = (print "."; Cons (1, s))
val = stl s (* prints "." *)
val = stl s (* silent *)

val rec lazy s = (print "."; Cons (1, s));
val = lstl s (* silent *)
val = stl s (* prints "." *)

Since stl evaluates its argument when applied, the “.” is printed when it
is first called, but not if it is called again. However, since lstl only sets
up a computation, its argument is not evaluated when it is called, but only
when its result is evaluated.

MAY 17, 2005 WORKING DRAFT

144 15.3 Programming with Streams

15.3 Programming with Streams

Let’s define a function smap that applies a function to every element of a
stream, yielding another stream. The type of smap should be (’a -> ’b)
-> ’a stream -> ’b stream. The thing to keep in mind is that the appli-
cation of smap to a function and a stream should set up (but not compute)
another stream that, when forced, forces the argument stream to obtain the
head element, applies the given function to it, and yields this as the head
of the result.

Here’s the code:

fun smap f =
let

fun lazy loop (Cons (x, s)) =
Cons (f x, loop s)

in
loop

end

We have “staged” the computation so that the partial application of smap
to a function yields a function that loops over a given stream, applying the
given function to each element. This loop is a lazy function to ensure that it
merely sets up a stream computation, rather than evaluating its argument
when it is called. Had we dropped the keyword lazy from the definition of
the loop, then an application of smap to a function and a stream would im-
mediately force the computation of the head element of the stream, rather
than merely set up a future computation of the same result.

To illustrate the use of smap, here’s a definition of the infinite stream of
natural numbers:

val one plus = smap (fn n => n+1)
val rec lazy nats = Cons (0, one plus nats)

Now let’s define a function sfilter of type

(’a -> bool) -> ’a stream -> ’a stream

that filters out all elements of a stream that do not satisfy a given predicate.

fun sfilter pred =
let

fun lazy loop (Cons (x, s)) =
if pred x then

WORKING DRAFT MAY 17, 2005

15.3 Programming with Streams 145

Cons (x, loop s)
else

loop s
in

loop
end

We can use sfilter to define a function sieve that, when applied to a
stream of numbers, retains only those numbers that are not divisible by a
preceding number in the stream:

fun m mod n = m - n * (m div n)
fun divides m n = n mod m = 0
fun lazy sieve (Cons (x, s)) =

Cons (x, sieve (sfilter (not o (divides x)) s))

(This example uses o for function composition.)
We may now define the infinite stream of primes by applying sieve to

the natural numbers greater than or equal to 2:

val nats2 = stl (stl nats)
val primes = sieve nats2

To inspect the values of a stream it is often useful to use the following func-
tion that takes n ≥ 0 elements from a stream and builds a list of those n
values:

fun take 0 = nil
| take n (Cons (x, s)) = x :: take (n-1) s

Here’s an example to illustrate the effects of memoization:

val rec lazy s = Cons ((print "."; 1), s)
val Cons (h,) = s;
(* prints ".", binds h to 1 *)
val Cons (h,) = s;
(* silent, binds h to 1 *)

Replace print ".";1 by a time-consuming operation yielding 1 as result,
and you will see that the second time we force s the result is returned in-
stantly, taking advantage of the effort expended on the time-consuming
operation induced by the first force of s.

MAY 17, 2005 WORKING DRAFT

146 15.3 Programming with Streams

WORKING DRAFT MAY 17, 2005

Chapter 16

Equality and Equality Types

147

148

WORKING DRAFT MAY 17, 2005

Chapter 17

Concurrency

Concurrent ML (CML) is an extension of Standard ML with mechanisms
for concurrent programming. It is available as part of the Standard ML of
New Jersey compiler. The eXene Library for programming the X windows
system is based on CML.

149

http://cm.bell-labs.com/cm/cs/who/jhr/sml/cml/index.html
http://cm.bell-labs.com/cm/cs/what/smlnj/index.html
http://cm.bell-labs.com/cm/cs/what/smlnj/index.html
http://cm.bell-labs.com/cm/cs/who/jhr/sml/eXene/index.html

150

WORKING DRAFT MAY 17, 2005

Part III

The Module Language

151

153

The Standard ML module language comprises the mechanisms for struc-
turing programs into separate units. Program units are called structures. A
structure consists of a collection of components, including types and val-
ues, that constitute the unit. Composition of units to form a larger unit is
mediated by a signature, which describes the components of that unit. A
signature may be thought of as the type of a unit. Large units may be struc-
tured into hierarchies using substructures. Generic, or parameterized, units
may be defined as functors.

MAY 17, 2005 WORKING DRAFT

154

WORKING DRAFT MAY 17, 2005

Chapter 18

Signatures and Structures

The fundamental constructs of the ML module system are signatures and
structures. A signature may be thought of as an interface or specification of
a structure, and a structure may correspondingly be thought of as an imple-
mentation of a signature. Many languages (such as Modula, Ada, or Java)
have similar constructs: signatures are analogous to interfaces or package
specifications or class types, and structures are analogous to implementa-
tions or packages or classes. However, these are only rough analogies that
should not be taken too seriously.

18.1 Signatures

A signature is a specification, or a description, of a program unit, or structure.
Structures consist of declarations of type constructors, exception construc-
tors, and value bindings. A signature is an item-by-item specification of
these components of a structure. A structure matches, or implements, a sig-
nature iff the requirements of the signature are met by the structure. (This
will be made precise below.)

18.1.1 Basic Signatures

A basic signature expression has the form sig specs end, where specs is a
sequence of specifications. There are four basic forms of specification that
may occur in specs:1

1There are two other forms of specification beyond these four, substructure specifications
and sharing specifications. These will be introduced in chapter 21.

155

156 18.1 Signatures

1. A type specification of the form

type (tyvar1,...,tyvarn) tycon [=
typ],

where the definition typ of tycon may or may not be present.

2. A datatype specification, which has precisely the same form as a datatype
declaration.

3. An exception specification of the form

exception excon of typ.

4. A value specification of the form

val id : typ.

The sequence of specifications are to be understood in the order given, and
no component may be specified more than once. Each specification may
refer to the type constructors introduced earlier in the sequence.

Signatures may be given names using a signature binding

signature sigid = sigexp,

where sigid is a signature identifier and sigexp is a signature expression.
Signature identifiers are abbreviations for the signatures to which they are
bound. In practice we nearly always bind signature expressions to identi-
fiers and refer to them by name.

Here is an illustrative example of a signature definition. We will refer
back to this definition often in the rest of this chapter.

signature QUEUE =
sig

type ’a queue
exception Empty
val empty : ’a queue
val insert : ’a * ’a queue -> ’a queue
val remove : ’a queue -> ’a * ’a queue

end

The signature QUEUE specifies a structure that must provide

1. a unary type constructor ’a queue,

WORKING DRAFT MAY 17, 2005

18.1 Signatures 157

2. a nullary exception Empty,

3. a polymorphic value empty of type ’a queue,

4. two polymorphic functions, insert and remove, with the specified
type schemes.

Notice that queues are polymorphic in the type of elements of the queue —
the same operations are used regardless of the element type.

18.1.2 Signature Inheritance

Signatures may be built up from one another using two principal tools,
signature inclusion and signature specialization. Each is a form of inheritance
in which a new signature is created by enriching another signature with
additional information.

Signature inclusion is used to add more components to an existing sig-
nature. For example, if we wish to add an emptiness test to the signature
QUEUE we might define the augmented signature, QUEUE WITH EMPTY, using
the following signature binding:

signature QUEUE WITH EMPTY =
sig
include QUEUE
val is empty : ’a queue -> bool

end

As the notation suggests, the signature QUEUE is included into the body of
the signature QUEUE WITH EMPTY, and an additional component is added.

It is not strictly necessary to use include to define this signature. In-
deed, we may define it directly using the following signature binding:

signature QUEUE WITH EMPTY =
sig
type ’a queue
exception Empty
val empty : ’a queue
val insert : ’a * ’a queue -> ’a queue
val remove : ’a queue -> ’a * ’a queue
val is empty : ’a queue -> bool

end

MAY 17, 2005 WORKING DRAFT

158 18.1 Signatures

There is no semantic difference between the two definitions of QUEUE WITH EMPTY.
Signature inclusion is a convenience that documents the “history” of how
the more refined signature was created.

Signature specialization is used to augment an existing signature with
additional type definitions. For example, if we wish to refine the signature
QUEUE to specify that the type constructor ’a queue must be defined as a
pair of lists, we may proceed as follows:

signature QUEUE AS LISTS =
QUEUE where type ’a queue = ’a list * ’a list

There where type clause “patches” the signature QUEUE by adding a defi-
nition for the type constructor ’a queue.

The signature QUEUE AS LISTS may also be defined directly as follows:

signature QUEUE AS LISTS =
sig

type ’a queue = ’a list * ’a list
exception Empty
val empty : ’a queue
val insert : ’a * ’a queue -> ’a queue
val remove : ’a queue -> ’a * ’a queue

end

A where type clause may not be used to re-define a type that is already
defined in a signature. For example, the following is illegal:

signature QUEUE AS LISTS AS LIST =
QUEUE AS LISTS where type ’a queue = ’a list

If you wish to replace the definition of a type constructor in a signature
with another definition using where type, you must go back to a common
ancestor in which that type is not yet defined.

signature QUEUE AS LIST =
QUEUE where type ’a queue = ’a list

Two signatures are said to be equivalent iff they differ only up to the type
equivalences induced by type abbreviations.2 For example, the signature
QUEUE where type ’a queue = ’a list is equivalent to the signature

2In some languages signatures are compared by name, which means that two signatures
are equivalent iff they are the same signature identifier. This is not the case in ML.

WORKING DRAFT MAY 17, 2005

18.2 Structures 159

signature QUEUE AS LIST =
sig
type ’a queue = ’a list
exception Empty
val empty : ’a list
val insert : ’a * ’a list -> ’a list
val remove : ’a list -> ’a * ’a list

end

Within the scope of the definition of the type ’a queue as ’a list, the two
are equivalent, and hence the specifications of the value components are
equivalent.

This principle of equivalence is sometimes called progagation of type shar-
ing. Within the scope of the type declaration in the signature QUEUE AS LIST,
the type constructors ’a queue and ’a list are said to share, or are equiva-
lent. Therefore they may be used interchangeably within their scope, as we
have done above, without affecting the meaning.

18.2 Structures

A structure is a unit of program consisting of a sequence of declarations
of types, exceptions, and values. Structures are implementations of signa-
tures; signatures are the “types” of structures.

18.2.1 Basic Structures

The basic form of structure is an encapsulated sequence of declarations of
the form struct decs end. The declarations in decs are of one of the follow-
ing four forms:

1. A type declaration defining a type constructor.

2. A datatype declaration defining a new datatype.

3. An exception declaration defining a new exception constructor with a
specified argument type.

4. A value declaration defining a new value variable with a specified type.

These are precisely the declarations introduced in Part II.
A structure expression is well-formed iff it consists of a well-formed se-

quence of well-formed declarations (according to the rules given in Part II).

MAY 17, 2005 WORKING DRAFT

160 18.2 Structures

A structure expression is evaluated by evaluating each of the declarations
within it, in the order given. This amounts to evaluating the right-hand
sides of each value declaration in turn to determine its value, which is then
bound to the corresponding value identifier. This means, in particular, that
any side effects that arise out of evaluating the constituent value bindings
occur when the structure expression is evaluated. A structure value is a
structure expression in which all bindings are fully evaluated.

A structure may be bound to a structure identifier using a structure bind-
ing of the form

structure strid = strexp

This declaration defines strid to stand for the value of strexp. Such a decla-
ration is well-formed exactly when strexp is well-formed. It is evaluated by
evaluating the right-hand side, and binding the resulting structure value to
strid.

Here is an example of a structure binding:

structure Queue =
struct

type ’a queue = ’a list * ’a list
exception Empty
val empty = (nil, nil)
fun insert (x, (b,f)) = (x::b, f)
fun remove (nil, nil) = raise Empty
| remove (bs, nil) = remove (nil, rev bs)
| remove (bs, f::fs) = (f, (bs, fs))

end

Recall that a fun binding is really an abbreviation for a val rec binding!
Thus the bindings of the value identifiers insert and remove are function
expressions.

18.2.2 Long and Short Identifiers

Once a structure has been bound to a structure identifier, we may access
its components using paths, or long identifiers, or qualified names. A path has
the form strid.id.3 It stands for the id component of the structure bound
to strid. For example, Queue.empty refers to the empty component of the

3In chapter 21, we will generalize this to admit an arbitrary sequence of strid’s separated
by a dot.

WORKING DRAFT MAY 17, 2005

18.2 Structures 161

structure Queue. It has type ’a Queue.queue (note well the syntax!), stating
that it is a polymorphic value whose type is built up from the unary type
constructor Queue.queue. Similarly, the function Queue.insert has type ’a
* ’a Queue.queue -> ’a Queue.queue and Queue.remove has type ’a Queue.queue
-> ’a * ’a Queue.queue.

Type definitions permeate structure boundaries. For example, the type
’a Queue.queue is equivalent to the type ’a list because it is defined to
be so in the structure Q. We will shortly introduce the means for limiting the
visibility of type definitions. Unless special steps are taken, the definitions
of types within a structure determine the definitions of the long identifiers
that refer to those types within a structure. Consequently, it is correct to
write an expression such as

val q = Queue.insert (1, ([6,5,4],[1,2,3]))

even though the list [6,5,4]was not obtained by using the operations from
the structure Q. This is because the type int Queue.queue is equivalent to
the type int list, and hence the call to insert is well-typed.

The use of long identifiers can get out of hand, cluttering the program,
rather than clarifying it. Suppose that we are frequently using the Queue op-
erations in a program, so that the code is cluttered with calls to Queue.empty,
Queue.insert, and Queue.remove. One way to reduce clutter is to intro-
duce a structure abbreviation of the form structure strid = strid′ that intro-
duces one structure identifier as an abbreviation for another. For example,
after declaring

structure Q = Queue

we may write Q.empty, Q.insert, and Q.remove, rather than the more ver-
bose forms mentioned above.

Another way to reduce clutter is to open the structure Queue to incorpo-
rate its bindings directly into the current environment. An open declaration
has the form

open strid1 ... stridn

which incorporates the bindings from the given structures in left-to-right
order (later structures override earlier ones when there is overlap). For
example, the declaration

open Queue

MAY 17, 2005 WORKING DRAFT

162 18.2 Structures

incorporates the body of the structure Queue into the current environment
so that we may write just empty, insert, and remove, without qualification,
to refer to the corresponding components of the structure Queue.

Although this is surely convenient, using open has its disadvantages.
One is that we cannot simultaneously open two structures that have a com-
ponent with the same name. For example, if we write

open Queue Stack

where the structure Stack also has a component empty, then uses of empty
(without qualification) will stand for Stack.empty, not for Queue.empty.

Another problem with open is that it is hard to control its behavior, since
it incorporates the entire body of a structure, and hence may inadvertently
shadow identifiers that happen to be also used in the structure. For exam-
ple, if the structure Queue happened to define an auxiliary function helper,
that function would also be incorporated into the current environment by
the declaration open Queue, which may not have been intended. This turns
out to be a source of many bugs; it is best to use open sparingly, and only
then in a let or local declaration (to limit the damage).

WORKING DRAFT MAY 17, 2005

Chapter 19

Signature Matching

When does a structure implement a signature? Roughly speaking, the
structure must provide all of the components and satisfy all of the type defi-
nitions required by the signature. Exception components must be provided
with types equivalent to those in the signature. Value components must
be provided with types at least as general as those in the signature. Type
components must be provided with the right arities, and with equivalent
definitions (if any).

These are useful rules of thumb; nailing them down is surprisingly
tricky. Let us mention a few issues that complicate matters:

• To minimize bureaucracy, a structure may provide more components
than are strictly required by the signature. If a signature requires
components x, y, and z, it is sufficient for the structure to provide
x, y, z, and w.

• To enhance reuse, a structure may provide values with more general
types than are required by the signature. If a signature demands a
function of type int->int, it is enough to provide a function of type
’a->’a.

• To avoid over-specification, a datatype may be provided where a type is
required, and a value constructor may be provided where a value is
required.

• To increase flexibility, a structure may consist of declarations presented
in any sensible order, not just the order specified in the signature,
provided that the requirements of the specification are met.

163

164 19.1 Principal Signatures

What it means for a structure to implement a signature is very similar
to what it means for an expression to have a type. An expression exp has
type typ iff typ is an instance of the principal type of exp. Similarly, we will
define a structure to implement a signature iff the principal signature of the
structure matches that signature.

19.1 Principal Signatures

The principal signature of a structure is, in a precise sense, the most specific
description of the components of that structure. It captures everything that
needs to be known about that structure during type checking. It is an im-
portant, and highly non-trivial, property of ML that there is always a prin-
cipal signature for any well-formed structure. For the purposes of type
checking, the principal signature is the official proxy for the structure. We
need never examine the code of the structure durng type checking, once its
principal signature has been determined.

A structure expression is assigned a principal signature by a component-
by-component analysis of its constituent declarations. The principal signa-
ture of a structure is obtained as follows:1

1. Corresponding to a declaration of the form

type (tyvar1,...,tyvarn) tycon = typ,

the principal signature contains the specification

type (tyvar1,...,tyvarn) tycon = typ

The principal signature includes the definition of tycon.

2. Corresponding to a declaration of the form

datatype (tyvar1,...,tyvarn) tycon =
con1 of typ1 | ... | conk of typk

the principal signature contains the specification

datatype (tyvar1,...,tyvarn) tycon =
con1 of typ1 | ... | conk of typk

1These rules gloss over some technical complications that arise only in unusual circum-
stances. See The Definition of Standard ML [2] for complete details.

WORKING DRAFT MAY 17, 2005

19.2 Matching 165

The specification is identical to the declaration.

3. Corresponding to a declaration of the form

exception id of typ

the principal signature contains the specification

exception id of typ

4. Corresponding to a declaration of the form

val id = exp

the principal signature contains the specification

val id : typ

where typ is the principal type scheme of the expression exp (relative
to the preceding declarations). Keep in mind that fun bindings are
really (recursive) val bindings of function type.

In brief, the principal signature contains all of the type definitions, datatype
definitions, and exception bindings of the structure, plus the principal types
of its value bindings.

An important point to keep in mind is that the principal signature of
a structure is obtained by inspecting the code of that structure. While this
may seem like an obvious point, it has important implications for manag-
ing dependencies between modules. We will return to this point in sec-
tion 20.4 of chapter 20.

19.2 Matching

A candidate signature sigexpc is said to match a target signature sigexpt iff
sigexpc has all of the components and all of the type equations specified by
sigexpt. More precisely,

1. Every type constructor in the target must also be present in the can-
didate, with the same arity (number of arguments) and an equivalent
definition (if any).

2. Every datatype in the target must be present in the candidate, with
equivalent types for the value constructors.

MAY 17, 2005 WORKING DRAFT

166 19.2 Matching

3. Every exception in the target must be present in the candidate, with
an equivalent argument type.

4. Every value in the target must be present in the candidate, with at
least as general a type.

The candidate may have additional components not mentioned in the tar-
get, or satisfy additional type equations not required in the target, but it
cannot have fewer of either. The target signature may therefore be seen
as a weakening of the candidate signature, since all of the properties of the
latter are true of the former.

It is easy to see that the matching relation is reflexive — every signature
matches itself — and transitive — if sigexp1 matches sigexp2 and sigexp2
matches sigexp3, then sigexp1 matches sigexp3. This means that the signature
matching relation is a pre-order. It is also a partial order, which is to say
that if sigexp1 matches sigexp2 and vice versa, then sigexp1 and sigexp2 are
equivalent signatures (to within propagation of type equations).

It will be helpful to consider some examples. Recall the following sig-
natures from chapter 18.

signature QUEUE =
sig
type ’a queue
exception Empty
val empty : ’a queue
val insert : ’a * ’a queue -> ’a queue
val remove : ’a queue -> ’a * ’a queue

end

signature QUEUE WITH EMPTY =
sig
include QUEUE
val is empty : ’a queue -> bool

end

signature QUEUE AS LISTS =
QUEUE where type ’a queue = ’a list * ’a list

The signature QUEUE WITH EMPTY matches the signature QUEUE, because
all of requirements of QUEUE are met by QUEUE WITH EMPTY. The converse
does not hold, because QUEUE lacks the component is empty, which is re-
quired by QUEUE WITH EMPTY.

WORKING DRAFT MAY 17, 2005

19.2 Matching 167

The signature QUEUE AS LISTS matches the signature QUEUE. It is identi-
cal to QUEUE, apart from the additional specification of the type ’a queue.
The converse fails, because the signature QUEUE does not satisfy the require-
ment that ’a queue be equivalent to ’a list * ’a list.

Matching does not distinguish between equivalent signatures. For ex-
ample, consider the following signature:

signature QUEUE AS LIST = sig
type ’a queue = ’a list
exception Empty
val empty : ’a list
val insert : ’a * ’a list -> ’a list
val remove : ’a list -> ’a * ’a list
val is empty : ’a list -> bool

end

At first glance you might think that this signature does not match the signa-
ture QUEUE, since the components of QUEUE AS LIST have superficially dis-
similar types from those in QUEUE. However, the signature QUEUE AS LIST is
equivalent to the signature QUEUE with type ’a queue = ’a list, which
matches QUEUE for reasons noted earlier. Therefore, QUEUE AS LIST matches
QUEUE as well.

Signature matching may also involve instantiation of polymorphic types.
The types of values in the candidate may be more general than required by
the target. For example, the signature

signature MERGEABLE QUEUE =
sig
include QUEUE
val merge : ’a queue * ’a queue -> ’a queue

end

matches the signature

signature MERGEABLE INT QUEUE =
sig
include QUEUE
val merge : int queue * int queue -> int queue

end

because the polymorphic type of merge in MERGEABLE QUEUE instantiates to
its type in MERGEABLE INT QUEUE.

MAY 17, 2005 WORKING DRAFT

168 19.2 Matching

Finally, a datatype specification matches a signature that specifies a type
with the same name and arity (but no definition), and zero or more value
components corresponding to some (or all) of the value constructors of the
datatype. The types of the value components must match exactly the types
of the corresponding value constructors; no specialization is allowed in this
case. For example, the signature

signature RBT DT =
sig

datatype ’a rbt =
Empty |
Red of ’a rbt * ’a * ’a rbt |
Black of ’a rbt * ’a * ’a rbt

end

matches the signature

signature RBT =
sig

type ’a rbt
val Empty : ’a rbt
val Red : ’a rbt * ’a * ’a rbt -> ’a rbt

end

The signature RBT specifies the type ’a rbt as abstract, and includes two
value specifications that are met by value constructors in the signature
RBT DT.

One way to understand this is to mentally rewrite the signature RBT DT
in the (fanciful) form2

signature RBT DTS =
sig

type ’a rbt
con Empty : ’a rbt
con Red : ’a rbt * ’a * ’a rbt -> ’a rbt
con Black : ’a rbt * ’a * ’a rbt -> ’a rbt

The rule is simply that a val specification may be matched by a con speci-
fication.

2Unfortunately, the “signature” RBT DTS is not a legal ML signature!

WORKING DRAFT MAY 17, 2005

19.3 Satisfaction 169

19.3 Satisfaction

Returning to the motivating question of this chapter, a candidate structure
implements a target signature iff the principal signature of the candidate
structure matches the target signature. By the reflexivity of the matching re-
lation it is immediate that a structure satisfies its principal signature. There-
fore any signature implemented by a structure is weaker than the principal
signature of that structure. That is, the principal signature is the strongest
signature implemented by a structure.

MAY 17, 2005 WORKING DRAFT

170 19.3 Satisfaction

WORKING DRAFT MAY 17, 2005

Chapter 20

Signature Ascription

Signature ascription imposes the requirement that a structure implement a
signature and, in so doing, weakens the signature of that structure for all
subsequent uses of it. There are two forms of ascription in ML. Both require
that a structure implement a signature; they differ in the extent to which the
assigned signature of the structure is weakened by the ascription.

1. Transparent, or descriptive ascription. The structure is assigned the tar-
get signature augmented by propagating to the target the definitions
of those types in the candidate.

2. Opaque, or restrictive ascription. The structure is assigned the target
signature as is, without augmentation.

Both forms of ascription hide components not present in the target signa-
ture.

Using modules effectively requires careful control over the propagation
of type information. What is held back is as at least as important as what
is revealed. Opaque ascription is the means by which type information is
curtailed; transparent ascription is the means by which it is propagated.

20.1 Ascribed Structure Bindings

The most common form of signature ascription is in a structure binding.
There are two forms, the transparent

structure strid : sigexp = strexp

and the opaque

171

172 20.2 Opaque Ascription

structure strid :> sigexp = strexp

The only difference is that transparent ascription is written using a single
colon, “:”, whereas opaque ascription is written as “:>”.

Ascribed structure bindings are type checked as follows. First, the com-
piler checks that strexp implements sigexp according to the rules given in chap-
ter 19. Specifically, the principal signature sigexp0 of strexp is determined
and matched against sigexp. This determines an augmentation sigexp′ of
sigexp by propagating type equations from the principal signature, sigexp0.
Second, the structure identifier is assigned a signature based on the form of
ascription. For an opaque ascription, it is assigned the signature sigexp; for
a transparent ascription, it is assigned the signature sigexp′.

Incidentally, this makes clear that transparent ascription is really a spe-
cial case of opaque ascription! Since the augmented signature, sigexp′, is
itself a signature, we could have written it ourselves and opaquely ascribed
it to strexp, with the same net effect as a transparent ascription. Thus trans-
parent ascription is really a form of “signature inference” in which we are
asking the compiler to fill in details that it is too inconvenient to write our-
selves. As we will see below, this is more than a minor convenience!

Ascribed signature bindings are evaluated by first evaluating strexp.
Then a view of the resulting value is formed by dropping all components
that are not present in the target signature, sigexp.1 The structure variable
strid is bound to the view. The formation of the view ensures that the com-
ponents of a structure may always be accessed in constant time, and that
there are no “space leaks” because of components that are present in the
structure, but not in the signature.

20.2 Opaque Ascription

The primary use of opaque ascription is to enforce data abstraction. A good
example is provided by the implementation of queues as, say, pairs of lists.

structure Queue :> QUEUE =
struct

1There are some technical complications to do with dropping type components. For
example, if we attempt to include only the value constructors of a datatype, and not the
datatype itself, the compiler will implicitly include the datatype to ensure that the types
of the constructors are expressible in the signature of the view. Any such type implicitly
included in the view is marked as “hidden”. See The Definition of Standard ML for complete
details.

WORKING DRAFT MAY 17, 2005

20.2 Opaque Ascription 173

type ’a queue = ’a list * ’a list
val empty = (nil, nil)
fun insert (x, (bs, fs)) = (x::bs, fs)
exception Empty
fun remove (nil, nil) = raise Empty

| remove (bs, f::fs) = (f, (bs, fs))
| remove (bs, nil) = remove (nil, rev bs)

end

The use of opaque ascription ensures that the type ’a Queue.queue is ab-
stract. No definition is provided for it in the signature QUEUE, and therefore
it has no definition in terms of other types of the language; the type ’a
Queue.queue is abstract.

The principal effect of rendering ’a Queue.queue abstract is that only
the operations empty, insert, and remove may be performed on values of
that type. We may not make use of the fact that a queue is “really” a pair
of lists simply because it is implemented this way. Instead we have ob-
scured this fact by opaquely ascribing a signature that does not define the
type ’a queue. This ensures that all clients of the structure Queue are insu-
lated from the details of how queues are implemented. This means that the
implementation can be changed without fear of breaking any client code,
a strong tool for enhancing maintainability of large programs. Were ab-
straction not enforced, the client might well (inadvertently or deliberately)
make use of the representation of queues as pairs of lists, forcing all client
code to be reconsidered whenever a change of representation occurs.

A closely-related reason for hiding the representation of a type is that it
allows us to isolate the enforcement of representation invariants to the im-
plementation of the abstraction. We may think of the type ’a Queue.queue
as the type of states of an abstract machine whose sole instructions are
empty (the initial state), insert, and remove. Internally to the structure
Queue we may wish to impose invariants on the internal state of the ma-
chine. The beauty of data abstraction is that it supports an elegant tech-
nique for enforcing such invariants.

The technique, called the assume-ensure, or rely-guarantee, technique re-
duces enforcement of representation invariants to these two requirements:

1. All initialization instructions must ensure that the invariant holds true
of the machine state after execution.

2. All state transition instructions may assume that the invariant holds
of the inputs states, and must ensure that it holds of the output state.

MAY 17, 2005 WORKING DRAFT

174 20.2 Opaque Ascription

By induction on the number of “instructions” executed, the invariant must
hold for all states — i.e., it must really be invariant!

Now suppose that we wish to implement an abstract type of priority
queues for an arbitrary element type. The queue operations are no longer
polymorphic in the element type because they actually “touch” the ele-
ments to determine their relative priorities. Here is a possible signature for
priority queues that expresses this dependency:2

signature PQ =
sig
type elt
val lt : elt * elt -> bool
type queue
exception Empty
val empty : queue
val insert : elt * queue -> queue
val remove : queue -> elt * queue

end

Now let us consider an implementation of priority queues in which the
elements are taken to be strings. Since priority queues form an abstract
type, we would expect to use opaque ascription to ensure that its represen-
tation is hidden. This suggests an implementation along these lines:

structure PrioQueue :> PQ =
struct
type elt = string
val lt : string * string -> bool = (op <)
type queue = ...
...

end

But not only is the type PrioQueue.queue abstract, so is PrioQueue.elt!
This leaves us no means of creating a value of type PrioQueue.elt, and
hence we can never call PrioQueue.insert. The problem is that the in-
terface is “too abstract” — it should only obscure the identity of the type
queue, and not that of the type elt.

The solution is to augment the signature PQ with a definition for the
type elt, then opaquely ascribe this to PrioQueue:

2In chapter 21 we’ll introduce better means for structuring this module, but the central
points discussed here will not be affected.

WORKING DRAFT MAY 17, 2005

20.3 Transparent Ascription 175

signature STRING PQ = PQ where type elt = string

structure PrioQueue :> STRING PQ = ...

Now the type PrioQueue.elt is equivalent to string, and we may call
PrioQueue.insert with a string, as expected.

The moral is that there is always an element of judgement involved in
deciding which types to hold abstract, and which to make opaque. In the
case of priority queues, the determining factor is that we specified only the
operations on elt that were required for the implementation of priority
queues, and no others. This means that elt could not usefully be held
abstract, but must instead be specified in the signature. On the other hand
the operations on queues are intended to be complete, and so we hold the
type abstract.

20.3 Transparent Ascription

Transparent ascription cuts down on the need for explicit specification of
type definitions in signatures. As we remarked earlier, we can always re-
place uses of transparent ascription by a use of opaque ascription with a
hand-crafted augmented signature. This can become burdensome. On the
other hand, excessive use of transparent ascription impedes modular pro-
gramming by exposing type information that would better be left abstract.

The prototypical use of transparent ascription is to form a view of a
structure that eliminates the components that are not necessary in a given
context without obscuring the identities of its type components. Consider
the signature ORDERED defined as follows:

signature ORDERED =
sig
type t
val lt : t * t -> bool

end

This signature specifies a type t equipped with a comparison operation lt.
It should be clear that it would not make sense to opaquely ascribe this

signature to a structure. Doing so would preclude ever calling the lt op-
eration, for there would be no means of creating values of type t. Such a
signature is only useful once it has been augmented with a definition for
the type t. This is precisely what transparent ascription does for you.

For example, consider the following structure binding:

MAY 17, 2005 WORKING DRAFT

176 20.3 Transparent Ascription

structure String : ORDERED =
struct

type t = string
val clt = Char.<
fun lt (s, t) = ... clt ...

end

This structure implements string comparison in terms of character compar-
ison (say, to implement the lexicographic ordering of strings). Ascription
of the signature ORDERED ensures two things:

1. The auxiliary function clt is pruned out of the structure. It was in-
tended for internal use, and was not meant to be externally visible.

2. The type String.t is equivalent to string, even though this fact is
not present in the signature ORDERED. Transparent ascription com-
putes an augmentation of ORDERED with this definition exposed. The
“true” signature of String is the signature

ORDERED where type t = string

which makes clear the underlying definition of t.

A related use of transparent ascription is to document an interpretation
of a type without rendering it abstract. For example, we may wish to con-
sider the integers ordered in two different ways, one by the standard arith-
metic comparison, the other by divisibility. We might make the following
declarations to express this:

structure IntLt : ORDERED =
struct
type t = int
val lt = (op <)

end

structure IntDiv : ORDERED =
struct
type t = int
fun lt (m, n) = (n mod m = 0)

end

The ascription specifies the interpretation of int as partially ordered, in
two senses, but does not hide the type of elements. In particular, IntLt.t
and IntDiv.t are both equivalent to int.

WORKING DRAFT MAY 17, 2005

20.4 Transparency, Opacity, and Dependency 177

20.4 Transparency, Opacity, and Dependency

An important observation is that transparent ascription is, in a sense, a
form of opaque ascription. The target signature is augmented with the type
definitions of the candidate, and then the augmented signature is opaquely
ascribed to the structure. In principle one can always write out the aug-
mented signature by hand (using where type clauses), then opaquely as-
cribe it to the structure. While this is true in principle, in practice it is simply
too inconvenient to require the programmer to be fully explicit about the
propagation of type information in signatures.3

Transparent ascription is a convenience akin to type inference. The com-
piler automatically fleshes out omitted information in a manner that is con-
venient for the programmer. However, this convenience comes at a price:
whenever you use transparent ascription, the compiler must have access to the
source code of the structure to determine the “true” signature of that structure.
This means that any code that makes reference to the ascribed structure
depends on the implementation of that structure, and not just its (apparent)
interface. With transparent ascription, what you see (the ascribed signature)
is not what you get! Rather, what you get is an augmentation of what you
see obtained by inspecting the implementation of that structure.

On the other hand, whereas transparent ascription therefore introduces
implementation dependencies, opaque ascription eliminates them. Once a
signature has been opaquely ascribed to a structure, all future uses of that
structure may rely only on the ascribed signature. Since the signature is
given independently of the implementation, client code is insulated from
changes to the implementation that do not also affect its interface. This
greatly facilitates team development and code evolution.

Implementation dependencies are fundamentally anti-modular.4 The
goal of modular programming is to isolate parts of programs from one
another so that they can be independently developed and modified with
minimal interference. The fewer the dependencies between modules, the
fewer the problems with integrating modules to form a complete system.

3Worse, for very technical reasons, it is not always possible to write the augmented sig-
nature by hand, because to do so requires access to “hidden” types.

4That’s why inheritance in class-based languages is a bad idea. If a class D inherits from
a class C, you have an implementation dependency of C on D. This is called the fragile base
class problem, because changes to C force reconsideration of D.

MAY 17, 2005 WORKING DRAFT

178 20.4 Transparency, Opacity, and Dependency

WORKING DRAFT MAY 17, 2005

Chapter 21

Module Hierarchies

So far we have confined ourselves to considering “flat” modules consisting
of a linear sequence of declarations of types, exceptions, and values. As
programs grow in size and complexity, it becomes important to introduce
further structuring mechanisms to support their growth. The ML module
language also supports module hierarchies, tree-structured configurations of
modules that reflect the architecture of a large system.

21.1 Substructures

A substructure is a “structure within a structure”. Structures bindings (ei-
ther opaque or transparent) are admitted as components of other struc-
tures. Structure specifications of the form

structure strid : sigexp

may appear in signatures. There is no distinction between transparent and
opaque specifications in a signature, because there is no structure to as-
cribe!

The type checking and evaluation rules for structures are extended to
substructures recursively. The principal signature of a sub-structure bind-
ing is determined according to the rules given in chapter 19. A sub-structure
binding in one signature matches the corresponding one in another iff their
signatures match according to the rules in chapter 19. Evaluation of a sub-
structure binding consists of evaluating the structure expression, then bind-
ing the resulting structure value to that identifier.

To see how substructures arise in practice, consider the following pro-
gramming scenario. The first version of a system makes use of a polymor-

179

180 21.1 Substructures

phic dictionary data structure whose search keys are strings. The signature
for such a data structure might be as follows:

signature MY STRING DICT =
sig
type ’a dict
val empty : ’a dict
val insert : ’a dict * string * ’a -> ’a dict
val lookup : ’a dict * string -> ’a option

end

The return type of lookup is ’a option, since there may be no entry in the
dictionary with the specified key.

The implementation of this abstraction looks approximately like this:

structure MyStringDict :> MY STRING DICT =
struct
datatype ’a dict =
Empty |
Node of ’a dict * string * ’a * ’a dict

val empty = Empty
fun insert (d, k, v) = ...
fun lookup (d, k) = ...

end

The omitted implementations of insert and lookup make use of the built-
in lexicographic ordering of strings.

The second version of the system requires another dictionary whose
keys are integers, leading to another signature and implementation for dic-
tionaries.

signature MY INT DICT =
sig
type ’a dict
val empty : ’a dict
val insert : ’a dict * int * ’a -> ’a dict
val lookup : ’a dict * int -> ’a option

end

structure MyIntDict :> MY INT DICT =
sig
datatype ’a dict =
Empty |

WORKING DRAFT MAY 17, 2005

21.1 Substructures 181

Node of ’a dict * int * ’a * ’a dict
val empty = Empty
fun insert (d, k, v) = ...
fun lookup (d, k) = ...

end

The ellided implementations of insert and lookup make use of the primi-
tive comparison operations on integers.

At this point we may observe an obvious pattern, that of a dictionary
with keys of a specific type. To avoid further repetition we decide to ab-
stract out the key type from the signature so that it can be filled in later.

signature MY GEN DICT =
sig

type key
type ’a dict
val empty : ’a dict
val insert : ’a dict * key * ’a -> ’a dict

end

Notice that the dictionary abstraction carries with it the type of its keys.
Specific instances of this generic dictionary signature are obtained using

where type.

signature MY STRING DICT =
MY GEN DICT where type key = string

signature MY INT DICT =
MY GEN DICT where type key = int

A string dictionary might then be implemented as follows:

structure MyStringDict :> MY STRING DICT =
struct

type key = string
datatype ’a dict =

Empty |
Node of ’a dict * key * ’a * ’a dict

val empty = Empty
fun insert (Empty, k, v) = Node (Empty, k, v, Empty)
fun lookup (Empty,) = NONE

| lookup (Node (dl, l, v, dr), k) =
if k < l then (* string comparison *)

MAY 17, 2005 WORKING DRAFT

182 21.1 Substructures

lookup (dl, k)
else if k > l then (* string comparison *)

lookup (dr, k)
else

v
end

By a similar process we may build an implementation MyIntDict of the
signature MY INT DICT, with integer keys ordered by the standard integer
comparison operations.

Now suppose that we require a third dictionary, with integers as keys,
but ordered according to the divisibility ordering.1 This implementation,
say MyIntDivDict, makes use of modular arithmetic to compare opera-
tions, but has the same signature MY INT DICT as MyIntDict.

structure MyIntDivDict :> MY INT DICT =
struct
type key = int
datatype ’a dict =
Empty |
Node of ’a dict * key * ’a * ’a dict

fun divides (k, l) = (l mod k = 0)
val empty = Empty
fun insert (None, k, v) = Node (Empty, k, v, Empty)
fun lookup (Empty,) = NONE
| lookup (Node (dl, l, v, dr), k) =

if divides (k, l) then (* divisibility test *)
lookup (dl, k)

else if divides (l, k) then (* divisibility test *)
lookup (dr, k)

else
v

end

Notice that we required an auxiliary function, divides, to implement the
comparison in the required sense.

With this in mind, let us re-consider our initial attempt to consolidate
the signatures of the various versions of dictionaries in play. In one sense
there is nothing to do — the signature MY GEN DICT suffices. However, as

1For which, m < n iff m divides n evenly.

WORKING DRAFT MAY 17, 2005

21.1 Substructures 183

we’ve just seen, the instances of this signature, which are ascribed to partic-
ular implementations, do not determine the interpretation. What we’d like
to do is to package the type with its interpretation so that the dictionary
module is self-contained. Not only does the dictionary module carry with
it the type of its keys, but it also carries the interpretation used on that type.

This is achieved by introducing a substructure binding in the dictionary
structure. To begin with we first isolate the notion of an ordered type.

signature ORDERED =
sig

type t
val lt : t * t -> bool
val eq : t * t -> bool

end

This signature describes modules that contain a type t equipped with an
equality and comparison operation on it.

An implementation of this signature specifies the type and the interpre-
tation, as in the following examples.

(* Lexicographically ordered strings. *)
structure LexString : ORDERED =

struct
type t = string
val eq = (op =)
val lt = (op <)

end

(* Integers ordered conventionally. *)
structure LessInt : ORDERED =

struct
type t = int
val eq = (op =)
val lt = (op <)

end

(* Integers ordered by divisibility.*)
structure DivInt : ORDERED =

struct
type t = int
fun lt (m, n) = (n mod m = 0)
fun eq (m, n) = lt (m, n) andalso lt (n, m)

end

MAY 17, 2005 WORKING DRAFT

184 21.1 Substructures

Notice that the use of transparent ascription is very natural here, since
ORDERED is not intended as a self-contained abstraction.

The signature of dictionaries is re-structured as follows:

signature DICT =
sig
structure Key : ORDERED
type ’a dict
val empty : ’a dict
val insert : ’a dict * Key.t * ’a -> ’a dict
val lookup : ’a dict * Key.t -> ’a option

end

The signature DICT includes as a substructure the key type together with
its interpretation as an ordered type.

To enforce abstraction we introduce specialized versions of this signa-
ture that specify the key type using a where type clause.

signature STRING DICT =
DICT where type Key.t=string

signature INT DICT =
DICT where type Key.t=int

These are, respectively, signatures for the abstract type of dictionaries whose
keys are strings and integers.

How are these signatures to be implemented? Corresponding to the
layering of the signatures, we have a layering of the implementation.

structure StringDict :> STRING DICT =
struct
structure Key : ORDERED = LexString
datatype ’a dict =
Empty |
Node of ’a dict * Key.t * ’a * ’a dict

val empty = Empty
fun insert (None, k, v) = Node (Empty, k, v, Empty)
fun lookup (Empty,) = NONE

| lookup (Node (dl, l, v, dr), k) =
if Key.lt(k, l) then

lookup (dl, k)
else if Key.lt (l, k) then

WORKING DRAFT MAY 17, 2005

21.1 Substructures 185

lookup (dr, k)
else

v
end

Observe that the implementation of insert and lookup make use of the
comparison operations Key.lt and Key.eq.

Similarly, we may implement IntDict, with the standard ordering, as
follows:

structure LessIntDict :> INT DICT =
struct

structure Key : ORDERED = LessInt
datatype ’a dict =

Empty |
Node of ’a dict * Key.t * ’a * ’a dict

val empty = Empty
fun insert (None, k, v) = Node (Empty, k, v, Empty)
fun lookup (Empty,) = NONE

| lookup (Node (dl, l, v, dr), k) =
if Key.lt(k, l) then

lookup (dl, k)
else if Key.lt (l, k) then

lookup (dr, k)
else

v
end

Similarly, dictionaries with integer keys ordered by divisibility may be
implemented as follows:

structure IntDivDict :> INT DICT =
struct

structure Key : ORDERED = IntDiv
datatype ’a dict =

Empty |
Node of ’a dict * Key.t * ’a * ’a dict

val empty = Empty
fun insert (None, k, v) = Node (Empty, k, v, Empty)
fun lookup (Empty,) = NONE

| lookup (Node (dl, l, v, dr), k) =

MAY 17, 2005 WORKING DRAFT

186 21.1 Substructures

if Key.lt(k, l) then
lookup (dl, k)

else if Key.lt (l, k) then
lookup (dr, k)

else
v

end

Taking stock of the development, what we have done is to structure
the signature of dictionaries to allow the type of keys, together with its
interpretation, to vary from one implementation to another. The Key sub-
structure may be viewed as a “parameter” of the signature DICT that is “in-
stantiated” by specialization to specific types of interest. In this sense sub-
structures subsume the notion of a parameterized signature found in some
languages. There are several advantages to this:

1. A signature with one or more substructures is still a complete signa-
ture. Parameterized signatures, in contrast, are incomplete signatures
that must be completed to be used.

2. Any substructure of a signature may play the role of a “parameter”.
There is no need to designate in advance which are “arguments” and
which are “results”.

In chapter 23 we will introduce the mechanisms needed to build a generic
implementation of dictionaries that may be instantiated by the key type
and its ordering.

WORKING DRAFT MAY 17, 2005

Chapter 22

Sharing Specifications

In chapter 21 we illustrated the use of substructures to express the depen-
dence of one abstraction on another. In this chapter we will consider the
problem of symmetric combination of modules to form larger modules.

22.1 Combining Abstractions

The discussion will be based on a representation of geometry in ML based
on the following (drastically simplified) signature.

signature GEOMETRY =
sig

structure Point : POINT
structure Sphere : SPHERE

end

For the purposes of this example, we have reduced geometry to two con-
cepts, that of a point in space and that of a sphere.

Points and vectors are fundamental to representing geometry. They are
described by the following (abbreviated) signatures:

signature VECTOR =
sig

type vector
val zero : vector
val scale : real * vector -> vector
val add : vector * vector -> vector
val dot : vector * vector -> real

187

188 22.1 Combining Abstractions

end

signature POINT =
sig
structure Vector : VECTOR
type point
(* move a point along a vector *)
val translate : point * Vector.vector -> point
(* the vector from a to b *)
val ray : point * point -> Vector.vector

end

The vector operations support addition, scalar multiplication, and inner
product, and include a unit element for addition. The point operations
support translation of a point along a vector and the creation of a vector as
the “difference” of two points (i.e., the vector from the first to the second).

Spheres are implemented by a module implementing the following (ab-
breviated) signature:

signature SPHERE =
sig
structure Vector : VECTOR
structure Point : POINT
type sphere
val sphere : Point.point * Vector.vector -> sphere

end

The operation sphere creates a sphere centered at a given point and with
the radius vector given.

These signatures are intentionally designed so that the dimension of
the space is not part of the specification. This allows us — using the mech-
anisms to be introduced in chapter 23 — to build packages that work in an
arbitrary dimension without requiring run-time conformance checks. It is
the structures, and not the signatures, that specify the dimension. Two- and
three-dimensional geometry are defined by structure bindings like these:

structure Geom2D :> GEOMETRY = ...
structure Geom3D :> GEOMETRY = ...

As a consequence of the use of opaque ascription, the types Geom2D.Point.point
and Geom3D.Point.point are distinct. This means that dimensional con-
formance is enforced by the type checker. For example, we cannot apply
Geom3D.Sphere.sphere to a point in two-space and a vector in three-space.

WORKING DRAFT MAY 17, 2005

22.1 Combining Abstractions 189

This is a good thing: the more static checking we have, the better off
we are. Closer inspection reveals that, unfortunately, we have too much
of a good thing. Suppose that p and q are two-dimensional points of type
Geom2D.Point.point. We might expect to be able to form a sphere centered
at p with radius determined by the vector from p to q:

Geom2D.Sphere.sphere (p, Geom2D.Point.ray (p, q)).

But this expression is ill-typed! The reason is that the types Geom2D.Point.Vector
and Geom2D.Sphere.Vector.vector are also distinct from one another, which
is not at all what we intend.

What has gone wrong? The situation is quite subtle. In keeping with the
guidelines discussed in section 21.1, we have incorporated as substructures
the structures on which a given structure depends. For example, forming
a ray from one point to another yields a vector, so an implementation of
POINT depends on an implementation of VECTOR. Thus, POINT has a sub-
structure implementing VECTOR, and, similarly, SPHERE has substructures
implementing VECTOR and POINT.

This leads to a proliferation of structures. Even in the very simplified
geometry signature given above, we have two “copies” of the point abstrac-
tion, and three “copies” of the vector abstraction! Since we used opaque as-
cription to define the two- and three-dimensional implementations of the
signature GEOMETRY, all of these abstractions are kept distinct from one an-
other, even though they may be implemented identically.

In a sense this is the correct state of affairs. The various “copies” of,
say, the vector abstraction might well be distinct from one another. In the
elided implementation of two-dimensional geometry, we might have used
completely incompatible notions of vector in each of the three places where
they are required. Of course, this may not be what is intended, but (so far)
there is nothing in the signature to prevent it. Hence, we are compelled to keep
these types distinct.

What is missing is the expression of the intention that the various “copies”
of vectors and points within the geometry abstraction be identical, so that
we can mix-and-match the vectors constructed in various components of
the package. To support this it is necessary to constrain the implementa-
tion to use the same notion of vector throughout. This is achieved using
a type sharing constraint. The revised signatures for the geometry package
look like this:

signature SPHERE =
sig

MAY 17, 2005 WORKING DRAFT

190 22.1 Combining Abstractions

structure Vector : VECTOR
structure Point : POINT
sharing type Point.Vector.vector = Vector.vector
type sphere
val sphere : Point.point * Vector.vector -> sphere

end

signature GEOMETRY =
sig
structure Point : POINT
structure Sphere : SPHERE
sharing type Point.point = Sphere.Point.point

and Point.Vector.vector = Sphere.Vector.vector
end

These equations specify that the two “copies” of the point abstraction, and
the three “copies” of the vector abstraction must coincide. In the presence
of the above sharing specification, the ill-typed expression above becomes
well-typed, since now the required type equation holds by explicit specifi-
cation in the signature.

As a notational convenience we may use a structure sharing constraint
instead to express the same requirements:

signature SPHERE =
sig
structure Vector : VECTOR
structure Point : POINT
sharing Point.Vector = Vector
type sphere
val sphere : Point.point * Vector.vector -> sphere

end

signature GEOMETRY =
sig
structure Point : POINT
structure Sphere : SPHERE
sharing Point = Sphere.Point

and Point.Vector = Sphere.Vector
end

Rather than specify the required sharing type-by-type, we can instead spec-
ify it structure-by-structure, with the meaning that corresponding types of

WORKING DRAFT MAY 17, 2005

22.1 Combining Abstractions 191

shared structures are required to share. Since each structure in our exam-
ple contains only one type, the effect of the structure sharing specification
above is identical to the preceding type sharing specification.

Not only does the sharing specification ensure that the desired equa-
tions hold amongst the various components of an implementation of GEOMETRY,
but it also constrains the implementation to ensure that these types are the
same. It is easy to achieve this requirement by defining a single implemen-
tation of points and vectors that is re-used in the higher-level abstractions.

structure Vector3D : VECTOR = ...

structure Point3D : POINT =
struct

structure Vector : VECTOR = Vector3D
...

end

structure Sphere3D : SPHERE =
struct

structure Vector : VECTOR = Vector3D
structure Point : POINT = Point3D
...

end

structure Geom3D :> GEOMETRY =
struct

structure Point = Point3D
structure Sphere = Sphere3D

end

The required type sharing constraints are true by construction.
Had we instead replaced the above declaration of Geom3D by the fol-

lowing one, the type checker would reject it on the grounds that the re-
quired sharing between Sphere.Point and Point does not hold, because
Sphere2D.Point is distinct from Point3D.

structure Geom3D :> GEOMETRY =
struct

structure Point = Point3D
structure Sphere = Sphere2D

end

It is natural to wonder whether it might be possible to restructure the
GEOMETRY signature so that the duplication of the point and vector compo-

MAY 17, 2005 WORKING DRAFT

192 22.1 Combining Abstractions

nents is avoided, thereby obviating the need for sharing specifications. One
can re-structure the code in this manner, but doing so would do violence to
the overall structure of the program. This is why sharing specifications are
so important.

Let’s try to re-organize the signature GEOMETRY so that duplication of
the point and vector structures is avoided. One step is to eliminate the sub-
structure Vector from SPHERE, replacing uses of Vector.vector by Vector.Point.vector.

signature SPHERE =
sig

structure Point : POINT
type sphere
val sphere :
Point.point * Point.Vector.vector -> sphere

end

After all, since the structure Point comes equipped with a notion of vector,
why not use it?

This cuts down the number of sharing specifications to one:

signature GEOMETRY =
sig

structure Point : POINT
structure Sphere : SPHERE
sharing Point = Sphere.Point

end

If we could further eliminate the substructure Point from the signature
SPHERE we would have only one copy of Point and no need for a sharing
specification.

But what would the signature SPHERE look like in this case?

signature SPHERE =
sig

type sphere
val sphere :
Point.point * Point.Vector.vector -> sphere

end

The problem now is that the signature SPHERE is no longer self-contained.
It makes reference to a structure Point, but which Point are we talking
about? Any commitment would tie the signature to a specific structure, and

WORKING DRAFT MAY 17, 2005

22.1 Combining Abstractions 193

hence a specific dimension, contrary to our intentions. Rather, the notion
of point must be a generic concept within SPHERE, and hence Point must
appear as a substructure. The substructure Point may be thought of as a
parameter of the signature SPHERE in the sense discussed earlier.

The only other move available to us is to eliminate the structure Point
from the signature GEOMETRY. This is indeed possible, and would eliminate
the need for any sharing specifications. But it only defers the problem,
rather than solving it. A full-scale geometry package would contain more
abstractions that involve points, so that there will still be copies in the other
abstractions. Sharing specifications would then be required to ensure that
these copies are, in fact, identical.

Here is an example. Let us introduce another geometric abstraction, the
semi-space.

signature SEMI SPACE =
sig

structure Point : POINT
type semispace
val side : Point.point * semispace -> bool option

end

The function side determines (if possible) whether a given point lies in one
half of the semi-space or the other.

The expanded GEOMETRY signature would look like this (with the elimi-
nation of the Point structure in place).

signature EXTD GEOMETRY =
sig

structure Sphere : SPHERE
structure SemiSpace : SEMI SPACE
sharing Sphere.Point = SemiSpace.Point

end

By an argument similar to the one we gave for the signature SPHERE, we
cannot eliminate the substructure Point from the signature SEMI SPACE,
and hence we wind up with two copies. Therefore the sharing specification
is required.

What is at issue here is a fundamental tension in the very notion of mod-
ular programming. On the one hand we wish to separate modules from one
another so that they may be treated independently. This requires that the
signatures of these modules be self-contained. Unbound references to a

MAY 17, 2005 WORKING DRAFT

194 22.1 Combining Abstractions

structure — such as Point — ties that signature to a specific implementa-
tion, in violation of our desire to treat modules separately from one another.
On the other hand we wish to combine modules together to form programs.
Doing so requires that the composition be coherent, which is achieved by
the use of sharing specifications. What sharing specifications do for you is
to provide an after the fact means of tying together several different abstrac-
tions to form a coherent whole. This approach to the problem of coherence
is a unique — and uniquely effective — feature of the ML module system.

WORKING DRAFT MAY 17, 2005

Chapter 23

Parameterization

To support code re-use it is useful to define generic, or parameterized, mod-
ules that leave unspecified some aspects of the implementation of a mod-
ule. The unspecified parts may be instantiated to determine specific in-
stances of the module. The common part is thereby implemented once and
shared among all instances.

In ML such generic modules are called functors. A functor is a module-
level function that takes a structure as argument and yields a structure as
result. Instances are created by applying the functor to an argument speci-
fying the interpretation of the parameters.

23.1 Functor Bindings and Applications

Functors are defined using a functor binding. There are two forms, the
opaque and the transparent. A transparent functor has the form

functor funid(decs):sigexp = strexp

where the result signature, sigexp, is transparently ascribed; an opaque func-
tor has the form

functor funid(decs):>sigexp = strexp

where the result signature is opaquely ascribed. A functor is a module-
level function whose argument is a sequence of declarations, and whose
result is a structure.

Type checking of a functor consists of checking that the functor body
matches the ascribed result signature, given that the parameters of the func-
tor have the specified signatures. For a transparent functor the result sig-
nature is the augmented signature determined by matching the principal

195

196 23.1 Functor Bindings and Applications

signature of the body (relative to the assumptions governing the parame-
ters) against the given result signature. For opaque functors the ascribed
result signature is used as-is, without further augmentation by type equa-
tions.

In chapter 21 we developed a modular implementation of dictionaries
in which the ordering of keys is made explicit as a substructure. The im-
plementation of dictionaries is the same for each choice of order structure
on the keys. This can be expressed by a single functor binding that defines
the implementation of dictionaries parametrically in the choice of keys.

functor DictFun
(structure K : ORDERED) :>
DICT where type Key.t = K.t =

struct
structure Key : ORDERED = K
datatype ’a dict =
Empty |
Node of ’a dict * Key.t * ’a * ’a dict

val empty = Empty
fun insert (None, k, v) =
Node (Empty, k, v, Empty)

fun lookup (Empty,) = NONE
| lookup (Node (dl, l, v, dr), k) =
if Key.lt(k, l) then

lookup (dl, k)
else if Key.lt (l, k) then

lookup (dr, k)
else

v
end

The functor DictFun takes as argument a single structure specifiying the or-
dered key type as a structure implementing signature ORDERED. The opaquely
ascribed result signature is

DICT where type Key.t = K.t.

This signature holds the type ’a dict abstract, but specifies that the key
type is the type K.t passed as argument to the functor. The body of the
functor has been written so that the comparison operations are obtained
from the Key substructure. This ensures that the dictionary code is inde-
pendent of the choice of key type and ordering.

WORKING DRAFT MAY 17, 2005

23.1 Functor Bindings and Applications 197

Instances of functors are obtained by application. A functor application
has the form

funid(binds)

where binds is a sequence of bindings of the arguments of the functor.
The signature of a functor application is determined by the following

procedure. We assume we are given the signatures of the functor parame-
ters, and also the “true” result signature of the functor (the given signature
for opaque functors, the augmented signature for the transparent functors).

1. For each argument, match the argument signature against the cor-
responding parameter signature of the functor. This determines an
augmentation of the parameter signature for each argument (as de-
scribed in chapter 20).

2. For each reference to a type component of a functor parameter in the
result signature, propagate the type definitions of the augmented pa-
rameter signature to the result signature.

The signature of the application determined by this procedure is then opaquely
ascribed to the application. This means that if a type is left abstract in the
result signature of a functor, that type is “new” in every instance of that
functor. This behavior is called generativity of the functor.1

Returning to the example of the dictionary functor, the three versions of
dictionaries considered in chapter 21 may be obtained by applying DictFun
to appropriate arguments.

structure LtIntDict = DictFun (structure K = LessInt)

structure LexStringDict = DictFun (structure K = LexString)

structure DivIntDict = DictFun (structure K = DivInt)

In each case the functor DictFun is instantiated by specifying a binding for
its argument stucture K. The argument structures are, as described in chap-
ter 21, implementations of the signature ORDERED. They specify the type of
keys and the sense in which they are ordered.

The signatures for the structures LtIntDict, LexStringDict, and DivIntDict
are determined by instantiating the result signature of the functor DictFun
according to the above procedure. Consider the application of DictFun to
LtIntDict. The augmented signature resulting from matching the signa-
ture of LtIntDict against the parameter signature ORDERED is the signature

1The alternative, called applicativity, means that there is one abstract type shared by all
instances of that functor.

MAY 17, 2005 WORKING DRAFT

198 23.2 Functors and Sharing Specifications

ORDERED where type t=int

Assigning this to the parameter K, we deduce that the type K.t is equivalent
to int, and hence the result signature of DictFun is

DICT where type Key.t = int

so that IntLtDict.Key.t is equivalent to int, as desired. By a similar pro-
cess we deduce that the signature of LexStringDict is

DICT where type Key.t = string

and that the signature of DivIntDict is

DICT where type Key.t = int.

23.2 Functors and Sharing Specifications

In chapter 22 we developed a signature of geometric primitives that con-
tained sharing specifications to ensure that the constituent abstractions may
be combined properly. The signature GEOMETRY is defined as follows:

signature GEOMETRY =
sig

structure Point : POINT
structure Sphere : SPHERE
sharing Point = Sphere.Point

and Point.Vector = Sphere.Vector
and Sphere.Vector = Sphere.Point.Vector

end

The sharing clauses ensure that the Point and Sphere components are
compatible with each other.

Since we expect to define vectors, points, and spheres of various di-
mensions, it makes sense to implement these as functors, according to the
following scheme:

functor PointFun
(structure V : VECTOR) : POINT = ...

functor SphereFun
(structure V : VECTOR
structure P : POINT) : SPHERE =

WORKING DRAFT MAY 17, 2005

23.2 Functors and Sharing Specifications 199

struct
structure Vector = V
structure Point = P
...

end

functor GeomFun
(structure P : POINT
structure S : SPHERE) : GEOMETRY =

struct
structure Point = P
structure Sphere = S

end

A two-dimensional geometry package may then be defined as follows:

structure Vector2D : VECTOR = ...

structure Point2D : POINT =
PointFun (structure V = Vector2D)

structure Sphere2D : SPHERE =
SphereFun (structure V = Vector2D and P = Point2D)

structure Geom2D : GEOMETRY =
GeomFun (structure P = Point2D and S = Sphere2D)

A three-dimensional version is defined similarly.
There is only one problem: the functors SphereFun and GeomFun are not

well-typed! The reason is that in both cases their result signatures require
type equations that are not true of their parameters! For example, the sig-
nature SPHERE requires that Point.Vector be the same as Vector, which is
not satisfied by the body of SphereFun. For these to be true, the structures
P.Vector and V must be equivalent. This is not true in general, because
the functors might be applied to arguments for which this is false. Similar
problems plague the functor GeomFun. The solution is to include sharing
constraints in the parameter list of the functors, as follows:

functor SphereFun
(structure V : VECTOR
structure P : POINT
sharing P.Vector = V) : SPHERE =

struct
structure Vector = V

MAY 17, 2005 WORKING DRAFT

200 23.3 Avoiding Sharing Specifications

structure Point = P
...

end

functor GeomFun
(structure P : POINT
structure S : SPHERE
sharing P.Vector = S.Vector and P = S.Point) : GEOMETRY =

struct
structure Point = P
structure Sphere = S

end

These equations preclude instantiations for which the required equations
do not hold, and are sufficient to ensure that the requirements of the result
signatures of the functors are met.

23.3 Avoiding Sharing Specifications

As with sharing specifications in signatures, it is natural to wonder whether
they can be avoided in functor parameters. Once again, the answer is “yes”,
but doing so does violence to the structure of your program. The chief
virtue of sharing specifications is that they express directly and concisely
the required relationships without requiring that these relationships be an-
ticipated when defining the signatures of the parameters. This greatly facil-
itates re-use of off-the-shelf code, for which it is impossible to assume any
sharing relationships that one may wish to impose in an application.

To see what happens, let’s consider the best-case scenario from chap-
ter 22 in which we have minimized sharing specifications to one tying to-
gether the sphere and semispace components. That is, we’re to implement
the following signature:

signature EXTD GEOMETRY =
sig

structure Sphere : SPHERE
structure SemiSpace : SEMI SPACE
sharing Sphere.Point = SemiSpace.Point

end

The implementation is a functor of the form

WORKING DRAFT MAY 17, 2005

23.3 Avoiding Sharing Specifications 201

functor ExtdGeomFun
(structure Sp : SPHERE
structure Ss : SEMI SPACE
sharing Sphere.Point = SemiSpace.Point) =

struct
structure Sphere = Sp
structure SemiSpace = Ss

end

To eliminate the sharing equation in the functor parameter, we must
arrange that the sharing equation in the signature EXTD GEOMETRY holds.
Simply dropping the sharing specification will not do, because then there
is no reason to believe that it will hold as required in the signature. A
natural move is to “factor out” the implementation of POINT, and use it to
ensure that the required equation is true of the functor body. There are
two methods for doing this, each with disadvtanges compared to the use
of sharing specifications.

One is to make the desired equation true by construction. Rather than
take implementations of SPHERE and SEMI SPACE as arguments, the functor
ExtdGeomFun takes only an implementation of POINT, then creates in the
functor body appropriate implementations of spheres and semi-spaces.

functor SphereFun
(structure P : POINT) : SPHERE =

struct
structure Vector = P.Vector
structure Point = P
...

end

functor SemiSpaceFun
(structure P : POINT) : SEMI SPACE =

struct
...

end

functor ExtdGeomFun1
(structure P : POINT) : GEOMETRY =

struct
structure Sphere =

SphereFun (structure P = Point)
structure SemiSpace =

MAY 17, 2005 WORKING DRAFT

202 23.3 Avoiding Sharing Specifications

SemiSpaceFun (structure P = Point)
end

The problems with this solution are these:

• The body of ExtdGeomFun1 makes use of the functors SphereFun and
SemiSpaceFun. In effect we are limiting the geometry functor to argu-
ments that are built from these specific functors, and no other. This
is a significant loss of generality that is otherwise present in the func-
tor ExtdGeomFun, which may be applied to any implementations of
SPHERE and SEMI SPACE.

• The functor ExtdGeomFun1 must have as parameter the common el-
ement(s) of the components of its body, which is then used to build
up the appropriate substructures in a manner consistent with the re-
quired sharing. This approach does not scale well when many ab-
stractions are layered atop one another. We must reconstruct the
entire hierarchy, starting with the components that are conceptually
“furthest away” as arguments.

• There is no inherent reason why ExtdGeomFun1 must take an imple-
mentation of POINT as argument. It does so only so that it can recon-
struct the hierarchy so as to satisfy the sharing requirements of the
result signature.

Another approach is to factor out the common component, and use this
to constrain the arguments to the functor to ensure that the possible argu-
ments are limited to situations for which the required sharing holds.

functor ExtdGeomFun2
(structure P : POINT
structure Sp : SPHERE where Point = P
structure Ss : SEMI SPACE where Point = P) =

struct
structure Sphere = Sp
structure SemiSpace = Ss

end

Now the required sharing requirements are met, but it is also clear that this
approach has no particular advantages over just using a sharing specifica-
tion. It has the disadvantage of requiring a third argument, whose only role
is to make it possible to express the required sharing. An application of this

WORKING DRAFT MAY 17, 2005

23.3 Avoiding Sharing Specifications 203

functor must provide not only implementations of SPHERE and SEMI SPACE,
but also an implementation of POINT that is used to build these!

A slightly more sophisticated version of this solution is as follows:

functor ExtdGeomFun3
(structure Sp : SPHERE
structure Ss : SEMI SPACE where Point = Sp.Point) =

struct
structure Sphere = Sp
structure SemiSpace = Ss

end

The “extra” parameter to the functor has been eliminated by choosing one
of the components as a “representative” and insisting that the others be
compatible with it by using a where clause.2

This solution has all of the advantages of the direct use of sharing spec-
ifications, and no further disadvantages. However, we are forced to violate
arbitrarily the inherent symmetry of the situation. We could just as well
have written

functor ExtdGeomFun4
(structure Ss : SEMI SPACE
structure Sp : SPHERE where Point = Sp.Point) =

struct
structure Sphere = Sp
structure SemiSpace = Ss

end

without changing the meaning.
Here is the point: sharing specifications allow a symmetric situation to be

treated in a symmetric manner. The compiler breaks the symmetry by choos-
ing representatives arbitrarily in the manner illustrated above. Sharing
specifications off-load the burden of making such tedious (because arbi-
trary) decisions to the compiler, rather than imposing it on the program-
mer.

2Officially, we must write where type Point.point = Sp.Point.point, but many
compilers accept the syntax above.

MAY 17, 2005 WORKING DRAFT

204 23.3 Avoiding Sharing Specifications

WORKING DRAFT MAY 17, 2005

Part IV

Programming Techniques

205

207

In this part of the book we will explore the use of Standard ML to build
elegant, reliable, and efficient programs. The discussion takes the form of
a series of worked examples illustrating various techniques for building
programs.

MAY 17, 2005 WORKING DRAFT

208

WORKING DRAFT MAY 17, 2005

Chapter 24

Specifications and Correctness

The most important tools for getting programs right are specification and
verification. In this Chapter we review the main ideas in preparation for
their subsequent use in the rest of the book.

24.1 Specifications

A specification is a description of the behavior of a piece of code. Specifica-
tions take many forms:

• Typing. A type specification describes the “form” of the value of an
expression, without saying anything about the value itself.

• Effect Behavior. An effect specification resembles a type specification,
but instead of describing the value of an expression, it describes the
effects it may engender when evaluated.

• Input-Output Behavior. An input-output specification is a mathemat-
ical formula, usually an implication, that describes the output of a
function for all inputs satisfying some assumptions.

• Time and Space Complexity. A complexity specification states the time
or space required to evaluate an expression. The specification is most
often stated asymptotically in terms of the number of execution steps
or the size of a data structure.

• Equational Specifications. An equational specification states that one
code fragment is equivalent to another. This means that wherever

209

210 24.1 Specifications

one is used we may replace it with the other without changing the
observable behavior of any program in which they occur.

This list by no means exhausts the possibilities. What specifications have
in common, however, is a descriptive, or declarative, flavor, rather than a
prescriptive, or operational, one. A specification states what a piece of code
does, not how it does it.

Good programmers use specifications to state precisely and concisely
their intentions when writing a piece of code. The code is written to solve
a problem; the specification records for future reference what problem the
code was intended to solve. The very act of formulating a precise speci-
fication of a piece of code is often the key to finding a good solution to a
tricky problem. The guiding principle is this: if you are unable to write a clear
specification, you do not understand the problem well enough to solve it correctly.

The greatest difficulty in using specifications is in knowing what to say.
A common misunderstanding is that a given piece of code has one specifi-
cation stating all there is to know about it. Rather you should see a spec-
ification as describing one of perhaps many properties of interest. In ML
every program comes with at least one specification, its type. But we may
also consider other specifications, according to interest and need. Some-
times only relatively weak properties are important — the function square
always yields a non-negative result. Other times stronger properties are
needed — the function fibb applied to n yields the nth and n-1st Fibonacci
number. It’s a matter of taste and experience to know what to say and how
best to say it.

Recall the following two ML functions from chapter 7:

fun fib 0 = 1
| fib 1 = 1
| fib n = fib (n-1) + fib (n-2)

fun fib’ 0 = (1, 0)
| fib’ 1 = (1, 1)
| fib’ n =
let
val (a, b) = fib’ (n-1)

in
(a+b, a)

end

Here are some specifications pertaining to these functions:

WORKING DRAFT MAY 17, 2005

24.2 Correctness Proofs 211

• Type specifications:

– val fib : int -> int

– val fib’ : int -> int * int

• Effect specifications:

– The application fib n may raise the exception Overflow.

– The application fib’ n may raise the exception Overflow.

• Input-output specifications:

– If n ≥ 0, then fib n evaluates to the nth Fibonacci number.

– If n ≥ 0, then fib’ n evaluates the nth and n − 1st Fibonacci
number, in that order.

• Time complexity specifications:

– If n ≥ 0, then fib n terminates in O(2n) steps.

– If n ≥ 0, then fib’ n terminates in O(n) steps.

• Equivalence specification:

For all n ≥ 0, fib n is equivalent to #1(fib’ n)

24.2 Correctness Proofs

A program satisfies, or meets, a specification iff its execution behavior is as
described by the specification. Verification is the process of checking that a
program satisfies a specification. This takes the form of proving a mathe-
matical theorem (by hand or with machine assistance) stating that the pro-
gram implements a specification.

There are many misunderstandings in the literature about specification
and verification. It is worthwhile to take time out to address some of them
here.

It is often said that a program is correct if it meets a specification. The
verification of this fact is then called a correctness proof. While there is noth-
ing wrong with this usage, it invites misinterpretation. As we remarked
in section 24.1, there is in general no single preferred specification of a
piece of code. Verification is always relative to a specification, and hence
so is correctness. In particular, a program can be “correct” with respect to

MAY 17, 2005 WORKING DRAFT

212 24.2 Correctness Proofs

one specification, and “incorrect” with respect to another. Consequently, a
program is never inherently correct or incorrect; it is only so relative to a
particular specification.

A related misunderstanding is the inference that a program “works”
from the fact that it is “correct” in this sense. Specifications usually make
assumptions about the context in which the program is used. If these as-
sumptions are not satisfied, then all bets are off — nothing can be said about
its behavior. For this reason it is entirely possible that a correct program will
malfunction when used, not because the specification is not met, but rather
because the specification is not relevant to the context in which the code is
used.

Another common misconception about specifications is that they can
always be implemented as run-time checks.1 There are at least two fallacies
here:

1. The specification is stated at the level of the source code. It may not
even be possible to test it at run-time. See chapter 31 for further dis-
cussion of this point.

2. The specification may not be mechanically checkable. For example,
we might specify that a function f of type int->int always yields a
non-negative result. But there is no way to implement this as a run-
time check — this is an undecidable, or uncomputable, problem.

For this reason specifications are strictly more powerful than run-time checks.
Correspondingly, it takes more work than a mere conditional branch to en-
sure that a program satisfies a specification.

Finally, it is important to note that specification, implementation, and
verification go hand-in-hand. It is unrealistic to propose to verify that an
arbitrary piece of code satisfies an arbitrary specification. Fundamental
computability and complexity results make clear that we can never succeed
in such an endeavor. Fortunately, it is also completely artificial. In practice
we specify, code, and verify simultaneously, with each activity informing
the other. If the verification breaks down, re-consider the code or the spec-
ification (or both). If the code is difficult to write, look for insights from
the specification and verification. If the specification is complex, rough out
the code and proof to see what it should be. There is no “magic bullet”,

1This misconception is encouraged by the C assert macro, which introduces an exe-
cutable test that a certain computable condition holds. This is a fine thing, but from this
many people draw the conclusion that assertions (specifications) are simply boolean tests.
This is false.

WORKING DRAFT MAY 17, 2005

24.2 Correctness Proofs 213

but these are some of the most important, and useful, tools for building
elegant, robust programs.

Verifications of specifications take many different forms.

• Type specifications are verified automatically by the ML compiler. If
you put type annotations on a function stating the types of the param-
eters or results of that function, the correctness of these annotations
is ensured by the compiler. For example, we may state the intended
typing of fib as follows:

fun fib (n:int):int =
case n
of 0 => 1
| 1 => 1
| n => fib (n-1) + fib (n-2)

This ensures that the type of fib is int->int.

• Effect specifications must be checked by hand. These generally state
that a piece of code “may raise” one or more exceptions. If an excep-
tion is not mentioned in such a specification, we cannot conclude that
the code does not raise it, only that we have no information. Notice
that a handler serves to eliminate a “may raise” specification. For ex-
ample, the following function may not raise the exception Overflow,
even though fib might:

fun protected fib n =
(fib n) handle Overflow => 0

A handler makes it possible to specify that an exception may not be
raised by a given expression (because the handler traps it).

• Input-output specifications require proof, typically using some form
of induction. For example, in chapter 7 we proved that fib n yields
the nth Fibonacci number by complete induction on n.

• Complexity specifications are often verified by solving a recurrence
describing the execution time of a program. In the case of fib we
may read off the following recurrence:

T(0) = 1
T(1) = 1

T(n + 2) = T(n) + T(n + 1) + 1

MAY 17, 2005 WORKING DRAFT

214 24.3 Enforcement and Compliance

Solving this recurrence yields the proof that T(n) = O(2n).

• Equivalence specifications also require proof. Since equivalence of
expressions must account for all possible uses of them, these proofs
are, in general, very tricky. One method that often works is “induc-
tion plus hand-simulation”. For example, it is not hard to prove by
induction on n that fib n is equivalent to #1(fib’ n). First, plug in
n = 0 and n = 1, and calculate using the definitions. Then assume
the result for n and n + 1, and consider n + 2, once again calculating
based on the definitions, to obtain the result.

24.3 Enforcement and Compliance

Most specifications have the form of an implication: if certain conditions
are met, then the program behaves a certain way. For example, type spec-
ifications are conditional on the types of its free variables. For example,
if x has type int, then x+1 has type int. Input-output specifications are
characteristically of this form. For example, if x is non-negative, then so is
x+1.

Just as in ordinary mathematical reasoning, if the premises of such a
specification are not true, then all bets are off — nothing can be said about
the behavior of the code. The premises of the specification are pre-conditions
that must be met in order for the program to behave in the manner de-
scribed by the conclusion, or post-condition, of the specification. This means
that the pre-conditions impose obligations on the caller, the user of the code,
in order for the callee, the code itself, to be well-behaved. A conditional
specification is a contract between the caller and the callee: if the caller
meets the pre-conditions, the caller promises to fulfill the post-condition.

In the case of type specifications the compiler enforces this obligation by
ruling out as ill-typed any attempt to use a piece of code in a context that
does not fulfill its typing assumptions. Returning to the example above, if
one attempts to use the expression x+1 in a context where x is not an integer,
one can hardly expect that x+1 will yield an integer. Therefore it is rejected
by the type checker as a violation of the stated assumptions governing the
types of its free variables.

What about specifications that are not mechanically enforced? For ex-
ample, if x is negative, then we cannot infer anything about x+1 from the
specification given above.2 To make use of the specification in reasoning

2There are obviously other specifications that carry more information, but we’re only

WORKING DRAFT MAY 17, 2005

24.3 Enforcement and Compliance 215

about its used in a larger program, it is essential that this pre-condition be
met in the context of its use.

Lacking mechanical enforcement of these obligations, it is all too easy
to neglect them when writing code. Many programming mistakes can be
traced to violation of assumptions made by the callee that are not met by
the caller.3 What can be done about this?

A standard method, called bullet-proofing, is to augment the callee with
run-time checks that ensure that its pre-conditions are met, raising an ex-
ception if they are not. For example, we might write a “bullet-proofed”
version of fib that ensures that its argument is non-negative as follows:

local
exception PreCond
fun unchecked fib 0 = 1
| unchecked fib 1 = 1
| unchecked fib n =

unchecked fib (n-1) + unchecked fib (n-2)
in

fun checked fib n =
if n < 0 then

raise PreCond
else

unchecked fib n
end

It is worth noting that we have structured this program to take the
pre-condition check out of the loop. It would be poor practice to define
checked fib as follows:

fun bad checked fib n =
if n < 0 then

raise PreCond
else

case n
of 0 => 1
| 1 => 1
| n => bad checked fib (n-1) + bad checked fib (n-2)

concerned here with the one given. Moreover, if f is an unknown function, then we will, in
general, only have the specification, and not the code, to reason about.

3Sadly, these assumptions are often unstated and can only be culled from the code with
great effort, if at all.

MAY 17, 2005 WORKING DRAFT

216 24.3 Enforcement and Compliance

Once we know that the initial argument is non-negative, it is assured that
recursive calls also satisfy this requirement, provided that you’ve done the
inductive reasoning to validate the specification of the function.

However, bullet-proofing in this form has several drawbacks. First, it
imposes the overhead of checking on all callers, even those that have en-
sured that the desired pre-condition is true. In truth the run-time overhead
is minor; the real overhead is requiring that the implementor of the callee
take the trouble to impose the checks.

Second, and far more importantly, bullet-proofing only applies to speci-
fications that can be checked at run-time. As we remarked earlier, not all
specifications are amenable to run-time checks. For these cases there is
no question of inserting run-time checks to enforce the pre-condition. For
example, we may wish to impose the requirement that a function argu-
ment of type int->int always yields a non-negative result. There is no
run-time check for this condition — we cannot write a function nonneg of
type (int->int)->bool that determines whether or not a function f al-
ways yields a non-negative result. In chapter 31 we will consider the use of
data abstraction to enforce at compile time specifications that may not be
checked at run-time.

WORKING DRAFT MAY 17, 2005

Chapter 25

Induction and Recursion

This chapter is concerned with the close relationship between recursionand
induction in programming. If a function is recursively-defined, an inductive
proof is required to show that it meets a specification of its behavior. The
motto is

when programming recursively, think inductively.

Doing so significantly reduces the time spent debugging, and often leads
to more efficient, robust, and elegant programs.

25.1 Exponentiation

Let’s start with a very simple series of examples, all involving the compu-
tation of the integer exponential function. Our first example is to compute
2n for integers n ≥ 0. We seek to define the function exp of type int->int
satisfying the specification

if n ≥ 0, then exp n evaluates to 2n.

The precondition, or assumption, is that the argument n is non-negative. The
postcondition, or guarantee, is that the result of applying exp to n is the num-
ber 2n. The caller is required to establish the precondition before applying
exp; in exchange, the caller may assume that the result is 2n.

Here’s the code:

fun exp 0 = 1
| exp n = 2 * exp (n-1)

217

218 25.1 Exponentiation

Does this function satisfy the specification? It does, and we can prove
this by induction on n. If n = 0, then exp n evaluates to 1 (as you can
see from the first line of its definition), which is, of course, 20. Otherwise,
assume that exp is correct for n − 1 ≥ 0, and consider the value of exp
n. From the second line of its definition we can see that this is the value of
2× p, where p is the value of exp (n− 1). Inductively, p ≥ 2n−1, so 2× p =
2 × 2n−1 = 2n, as desired. Notice that we need not consider arguments
n < 0 since the precondition of the specification requires that this be so. We
must, however, ensure that each recursive call satisfies this requirement in
order to apply the inductive hypothesis.

That was pretty simple. Now let us consider the running time of exp
expressed as a function of n. Assuming that arithmetic operations are ex-
ecuted in constant time, then we can read off a recurrence describing its
execution time as follows:

T(0) = O(1)
T(n + 1) = O(1) + T(n)

We are interested in solving a recurrence by finding a closed-form expres-
sion for it. In this case the solution is easily obtained:

T(n) = O(n)

Thus we have a linear time algorithm for computing the integer exponential
function.

What about space? This is a much more subtle issue than time because it
is much more difficult in a high-level language such as ML to see where the
space is used. Based on our earlier discussions of recursion and iteration
we can argue informally that the definition of exp given above requires
space given by the following recurrence:

S(0) = O(1)
S(n + 1) = O(1) + S(n)

The justification is that the implementation requires a constant amount of
storage to record the pending multiplication that must be performed upon
completion of the recursive call.

Solving this simple recurrence yields the equation

S(n) = O(n)

expressing that exp is also a linear space algorithm for the integer exponen-
tial function.

WORKING DRAFT MAY 17, 2005

25.1 Exponentiation 219

Can we do better? Yes, on both counts! Here’s how. Rather than count
down by one’s, multiplying by two at each stage, we use successive squar-
ing to achieve logarithmic time and space requirements. The idea is that
if the exponent is even, we square the result of raising 2 to half the given
power; otherwise, we reduce the exponent by one and double the result,
ensuring that the next exponent will be even. Here’s the code:

fun square (n:int) = n*n
fun double (n:int) = n+n

fun fast exp 0 = 1
| fast exp n =
if n mod 2 = 0 then

square (fast exp (n div 2))
else

double (fast exp (n-1))

Its specification is precisely the same as before. Does this code satisfy
the specification? Yes, and we can prove this by using complete induction,
a form of mathematical induction in which we may prove that n > 0 has
a desired property by assuming not only that the predecessor has it, but
that all preceding numbers have it, and arguing that therefore n must have it.
Here’s how it’s done. For n = 0 the argument is exactly as before. Suppose,
then, that n > 0. If nis even, the value of exp n is the result of squaring the
value of exp (n÷ 2). Inductively this value is 2(n÷2), so squaring it yields
2(ndiv2) × 2(n÷2) = 22×(n÷2) = 2n, as required. If, on the other hand, n is
odd, the value is the result of doubling exp (n− 1). Inductively the latter
value is 2(n−1), so doubling it yields 2n, as required.

Here’s a recurrence governing the running time of fast exp as a func-
tion of its argument:

T(0) = O(1)
T(2n) = O(1) + T(n)

T(2n + 1) = O(1) + T(2n)
= O(1) + T(n)

Solving this recurrence using standard techniques yields the solution

T(n) = O(lgn)

You should convince yourself that fast exp also requires logarithmic space
usage.

MAY 17, 2005 WORKING DRAFT

220 25.1 Exponentiation

Can we do better? Well, it’s not possible to improve the time require-
ment (at least not asymptotically), but we can reduce the space required to
O(1) by putting the function into iterative (tail recursive) form. However,
this may not be achieved in this case by simply adding an accumulator ar-
gument, without also increasing the running time! The obvious approach
is to attempt to satisfy the specification

if n ≥ 0, then skinny fast exp (n, a) evaluates to 2n × a.

Here’s some code that achieves this specification:

fun skinny fast exp (0, a) = a
| skinny fast exp (n, a) =
if n mod 2 = 0 then

skinny fast exp (n div 2,
skinny fast exp (n div 2, a))

else
skinny fast exp (n-1, 2*a)

It is easy to see that this code works properly for n = 0 and for n > 0
when n is odd, but what if n > 0 is even? Then by induction we compute
2(n÷2) × 2(n÷2)× a by two recursive calls to skinny fast exp.

This yields the desired result, but what is the running time? Here’s a
recurrence to describe its running time as a function of n:

T(0) = 1
T(2n) = O(1) + 2T(n)

T(2n + 1) = O(1) + T(2n)
= O(1) + 2T(n)

Here again we have a standard recurrence whose solution is

T(n) = O(nlgn).

Yuck! Can we do better? The key is to recall the following important fact:

2(2n) = (22)n = 4n.

We can achieve a logarithmic time and exponential space bound by a change
of base. Here’s the specification:

if n ≥ 0, then gen skinny fast exp (b, n, a) evaluates to bn ×
a.

WORKING DRAFT MAY 17, 2005

25.1 Exponentiation 221

Here’s the code:

fun gen skinny fast exp (b, 0, a) = a
| gen skinny fast exp (b, n, a) =

if n mod 2 = 0 then
gen skinny fast exp (b*b, n div 2, a)

else
gen skinny fast exp (b, n - 1, b * a)

Let’s check its correctness by complete induction on n. The base case
is obvious. Assume the specification for arguments smaller than n > 0.
If n is even, then by induction the result is (b × b)(n÷2) × a = bn × a, and
if n is odd, we obtain inductively the result b(n−1) × b × a = bn × a. This
completes the proof.

The trick to achieving an efficient implementation of the exponential
function was to compute a more general function that can be implemented
using less time and space. Since this is a trick employed by the implemen-
tor of the exponential function, it is important to insulate the client from
it. This is easily achieved by using a local declaration to “hide” the gen-
eralized function, making available to the caller a function satisfying the
original specification. Here’s what the code looks like in this case:

local
fun gen skinny fast exp (b, 0, a) =

| gen skinny fast exp (b, n, a) = ...
in

fun exp n = gen skinny fast exp (2, n, 1)
end

(The ellided code is the same as above.) The point here is to see how induc-
tion and recursion go hand-in-hand, and how we used induction not only
to verify programs after-the-fact, but, more importantly, to help discover
the program in the first place. If the verification is performed simultane-
ously with the coding, it is far more likely that the proof will go through
and the program will work the first time you run it.

It is important to notice the correspondence between strengthening the
specification by adding additional assumptions (and guarantees) and adding
accumulator arguments. What we observe is the apparent paradox that it
is often easier to do something (superficially) harder! In terms of proving, it
is often easier to push through an inductive argument for a stronger spec-
ification, precisely because we get to assume the result as the inductive

MAY 17, 2005 WORKING DRAFT

222 25.2 The GCD Algorithm

hypothesis when arguing the inductive step(s). We are limited only by the
requirement that the specification be proved outright at the base case(s);
no inductive assumption is available to help us along here. In terms of
programming, it is often easier to compute a more complicated function
involving accumulator arguments, precisely because we get to exploit the
accumulator when making recursive calls. We are limited only by the re-
quirement that the result be defined outright for the base case(s); no recur-
sive calls are available to help us along here.

25.2 The GCD Algorithm

Let’s consider a more complicated example, the computation of the greatest
common divisor of a pair of non-negative integers. Recall that m is a divisor
of n, written m|n, iff n is a multiple of m, which is to say that there is some
k ≥ 0 such that n = k × m. The greatest common divisor of non-negative
integers m and n is the largest p such that p|m and p|n. (By convention the
g.c.d. of 0 and 0 is taken to be 0.) Here’s the specification of the gcdfunction:

if m, n ≥ 0, then gcd(m,n) evaluates to the g.c.d. of m and n.

Euclid’s algorithm for computing the g.c.d. of m andn is defined by
complete induction on the product mn. Here’s the algorithm, written in
ML:

fun gcd (m:int, 0):int = m
| gcd (0, n:int):int = n
| gcd (m:int, n:int):int =

if m>n then
gcd (m mod n, n)

else
gcd (m, n mod m)

Why is this algorithm correct? We may prove that gcd satisfies the spec-
ification by complete induction on the product m × n. If m × n is zero,
then either mor n is zero, in which case the answer is, correctly, the other
number. Otherwise the product is positive, and we proceed according to
whether m > n or m ≤ n. Suppose that m > n. Observe that mmodn =
m − (m ÷ n) × n, so that (mmodn) × n = m × n − (m ÷ n)n2 < m × n,
so that by induction we return the g.c.d. of mmodn and n. It remains
to show that this is the g.c.d. of m and n. If d divides both mmodn and
n, then k × d = (mmodn) = (m − (m ÷ n) × n)and l × d = n for some

WORKING DRAFT MAY 17, 2005

25.2 The GCD Algorithm 223

non-negative k and l. Consequently, k × d = m − (m ÷ n) × l × d, so
m = (k + (m ÷ n) × l) × d, which is to say that d divides m. Now if d’
is any other divisor of m and n, then it is also a divisor of (mmodn) and n,
so d > d′. That is, d is the g.c.d. of m and n. The other case, m ≤ n, follows
similarly. This completes the proof.

At this point you may well be thinking that all this inductive reasoning
is surely helpful, but it’s no replacement for good old-fashioned “bullet-
proofing” — conditional tests inserted at critical junctures to ensure that
key invariants do indeed hold at execution time. Sure, you may be think-
ing, these checks have a run-time cost, but they can be turned off once the
code is in production, and anyway the cost is minimal compared to, say, the
time required to read and write from disk. It’s hard to complain about this
attitude, provided that sufficiently cheap checks can be put into place and
provided that you know where to put them to maximize their effectiveness.
For example, there’s no use checking i > 0 at the start of the then clause of
a test for i > 0. Barring compiler bugs, it can’t possibly be anything other
than the case at that point in the program. Or it may be possible to insert
a check whose computation is more expensive (or more complicated) than
the one we’re trying to perform, in which case we’re defeating the purpose
by including them!

This raises the question of where should we put such checks, and what
checks should be included to help ensure the correct operation (or, at least,
graceful malfunction) of our programs? This is an instance of the general
problem of writing self-checking programs. We’ll illustrate the idea by elab-
orating on the g.c.d. example a bit further. Suppose we wish to write a
self-checking g.c.d. algorithm that computes the g.c.d., and then checks
the result to ensure that it really is the greatest common divisor of the two
given non-negative integers before returning it as result. The code might
look something like this:

exception GCD ERROR

fun checked gcd (m, n) =
let

val d = gcd (m, n)
in

if m mod d = 0 andalso
n mod d = 0 andalso ???

then
d

else

MAY 17, 2005 WORKING DRAFT

224 25.2 The GCD Algorithm

raise GCD ERROR
end

It’s obviously no problem to check that putative g.c.d., d, is in fact a com-
mon divisor of mand n, but how do we check that it’s the greatest common
divisor? Well, one choice is to simply try all numbers between d and the
smaller of m and n to ensure that no intervening number is also a divisor,
refuting the maximality of d. But this is clearly so inefficient as to be im-
practical. But there’s a better way, which, it has to be emphasized, relies
on the kind of mathematical reasoning we’ve been considering right along.
Here’s an important fact:

d is the g.c.d. of m and n iff d divides both m and n and can be written
as a linear combination of m and n.

That is, d is the g.c.d. of mand n iff m = k× d for some k ≥ 0, n = l × d for
some l ≥ 0, and d = a × m + b × n for some integers (possibly negative!)
a and b. We’ll prove this constructively by giving a program to compute
not only the g.c.d. d of m and n, but also the coefficients a and b such that
d = a×m + b× n. Here’s the specification:

if m, n ≥ 0, then ggcd (m, n) evaluates to (d, a, b) such that d
divides m, d divides n, and d = a×m + b× n; consequently, d is the
g.c.d. of m and n.

And here’s the code to compute it:

fun ggcd (0, n) = (n, 0, 1)
| ggcd (m, 0) = (m, 1, 0)
| ggcd (m, n) =
if m>n then

let
val (d, a, b) = ggcd (m mod n, n)

in
(d, a, b - a * (m div n))

end
else

let
val (d, a, b) = ggcd (m, n mod m)

in
(d, a - b*(n div m), b)

end

WORKING DRAFT MAY 17, 2005

25.2 The GCD Algorithm 225

We may easily check that this code satisfies the specification by induction
on the product m × n. If m × n = 0, then either m or n is 0, in which case
the result follows immediately. Otherwise assume the result for smaller
products, and show it for m × n > 0. Suppose m > n; the other case
is handled analogously. Inductively we obtain d, a, and b such that d is
the g.c.d. of mmodn and n, and hence is the g.c.d. of m and n, and d =
a × (mmodn) + b × n. Since mmodn = m − (m ÷ n) × n, it follows that
d = a×m + (b− a× (m÷ n))× n, from which the result follows.

Now we can write a self-checking g.c.d. as follows:

exception GCD ERROR

fun checked gcd (m, n) =
let

val (d, a, b) = ggcd (m, n)
in

if m mod d = 0 andalso
n mod d = 0 andalso d = a*m+b*n

then
d

else
raise GCD ERROR

end

This algorithm takes no more time (asymptotically) than the original, and,
moreover, ensures that the result is correct. This illustrates the power of
the interplay between mathematical reasoning methods such as induction
and number theory and programming methods such as bulletproofing to
achieve robust, reliable, and, what is more important, elegant programs.

MAY 17, 2005 WORKING DRAFT

226 25.2 The GCD Algorithm

WORKING DRAFT MAY 17, 2005

Chapter 26

Structural Induction

The importance of induction and recursion are not limited to functions de-
fined over the integers. Rather, the familiar concept of mathematical induc-
tion over the natural numbers is an instance of the more general notion of
structural induction over values of an inductively-defined type. Rather than
develop a general treatment of inductively-defined types, we will rely on a
few examples to illustrate the point. Let’s begin by considering the natural
numbers as an inductively defined type.

26.1 Natural Numbers

The set of natural numbers, N, may be thought of as the smallest set con-
taining 0 and closed under the formation of successors. In other words, n is
an element of N iff either n = 0 or n = m + 1 for some min N. Still another
way of saying it is to define N by the following clauses:

1. 0 is an element of N.

2. If m is an element of N, then so is m + 1.

3. Nothing else is an element of N.

(The third clause is sometimes called the extremal clause; it ensures that we
are talking about N and not just some superset of it.) All of these definitions
are equivalent ways of saying the same thing.

Since N is inductively defined, we may prove properties of the natural
numbers by structural induction, which in this case is just ordinary mathe-
matical induction. Specifically, to prove that a property P(n) holds of every
n in N, it suffices to demonstrate the following facts:

227

228 26.1 Natural Numbers

1. Show that P(0) holds.

2. Assuming that P(m) holds, show that P(m + 1) holds.

The pattern of reasoning follows exactly the structure of the inductive def-
inition — the base case is handled outright, and the inductive step is han-
dled by assuming the property for the predecessor and show that it holds
for the numbers.

The principal of structural induction also licenses the definition of func-
tions by structural recursion. To define a function f with domain N, it suf-
fices to proceed as follows:

1. Give the value of f (0).

2. Give the value of f (m + 1) in terms of the value of f (m).

Given this information, there is a unique function f with domain N
satisfying these requirements. Specifically, we may show by induction on
n ≥ 0 that the value of f is uniquely determined on all values m ≤ n. If
n = 0, this is obvious since f (0) is defined by the first clause. If n = m + 1,
then by induction the value of f is determined for all values k ≤ m. But the
value of f at n is determined as a function of f (m), and hence is uniquely
determined. Thus f is uniquely determined for all values of n in N, as was
to be shown.

The natural numbers, viewed as an inductively-defined type, may be
represented in ML using a datatype declaration, as follows:

datatype nat = Zero | Succ of nat

The constructors correspond one-for-one with the clauses of the inductive
definition. The extremal clause is implicit in the datatype declaration since
the given constructors are assumed to be all the ways of building values of
type nat. This assumption forms the basis for exhaustiveness checking for
clausal function definitions.

(You may object that this definition of the type nat amounts to a unary
(base 1) representation of natural numbers, an unnatural and space-wasting
representation. This is indeed true; in practice the natural numbers are
represented as non-negative machine integers to avoid excessive overhead.
Note, however, that this representation places a fixed upper bound on the
size of numbers, whereas the unary representation does not. Hybrid repre-
sentations that enjoy the benefits of both are, of course, possible and occa-
sionally used when enormous numbers are required.)

Functions defined by structural recursion are naturally represented by
clausal function definitions, as in the following example:

WORKING DRAFT MAY 17, 2005

26.2 Lists 229

fun double Zero = Zero
| double (Succ n) = Succ (Succ (double n))

fun exp Zero = Succ(Zero)
| exp (Succ n) = double (exp n)

The type checker ensures that we have covered all cases, but it does not
ensure that the pattern of structural recursion is strictly followed — we may
accidentally define f (m + 1) in terms of itself or some f (k) where k > m,
breaking the pattern. The reason this is admitted is that the ML compiler
cannot always follow our reasoning: we may have a clever algorithm in
mind that isn’t easily expressed by a simple structural induction. To avoid
restricting the programmer, the language assumes the best and allows any
form of definition.

Using the principle of structure induction for the natural numbers, we
may prove properties of functions defined over the naturals. For example,
we may easily prove by structural induction over the type nat that for ev-
ery n ∈ N, exp n evaluates to a positive number. (In previous chapters we
carried out proofs of more interesting program properties.)

26.2 Lists

Generalizing a bit, we may think of the type ’a list as inductively defined
by the following clauses:

1. nil is a value of type ’a list

2. If h is a value of type ’a, and t is a value of type ’a list, then h::t is
a value of type ’a list.

3. Nothing else is a value of type ’a list.

This definition licenses the following principle of structural induction
over lists. To prove that a property P holds of all lists l, it suffices to proceed
as follows:

1. Show that P holds for nil.

2. Show that P holds for h::t, assuming that P holds for t.

Similarly, we may define functions by structural recursion over lists as
follows:

1. Define the function for nil.

MAY 17, 2005 WORKING DRAFT

230 26.3 Trees

2. Define the function for h::t in terms of its value for t.

The clauses of the inductive definition of lists correspond to the follow-
ing (built-in) datatype declaration in ML:

datatype ’a list = nil | :: of ’a * ’a list

(We are neglecting the fact that :: is regarded as an infix operator.)
The principle of structural recursion may be applied to define the re-

verse function as follows:

fun reverse nil = nil
| reverse (h::t) = reverse t @ [h]

There is one clause for each constructor, and the value of reverse for h::t is
defined in terms of its value for t. (We have ignored questions of time and
space efficiency to avoid obscuring the induction principle underlying the
definition of reverse.)

Using the principle of structural induction over lists, we may prove that
reverse l evaluates to the reversal of l. First, we show that reverse nil
yields nil, as indeed it does and ought to. Second, we assume that reverse
t yields the reversal of t, and argue that reverse (h::t) yields the reversal
of h::t, as indeed it does since it returns reverse (t @ [h]).

26.3 Trees

Generalizing even further, we can introduce new inductively-defined types
such as 2-3 trees in which interior nodes are either binary (have two chil-
dren) or ternary (have three children). Here’s a definition of 2-3 trees in
ML:

datatype ’a twth tree =
Empty |
Bin of ’a * ’a twth tree * ’a twth tree |
Ter of ’a * ’a twth tree * ’a twth tree * ’a twth tree

How might one define the “size” of a value of this type? Your first
thought should be to write down a template like the following:

fun size Empty = ???

| size (Bin (, t1, t2)) = ???

| size (Ter (, t1, t2, t3)) = ???

WORKING DRAFT MAY 17, 2005

26.4 Generalizations and Limitations 231

We have one clause per constructor, and will fill in the ellided expressions
to complete the definition. In many cases (including this one) the function
is defined by structural recursion. Here’s the complete definition:

fun size Empty = 0
| size (Bin (, t1, t2)) =

1 + size t1 + size t2
| size (Ter (, t1, t2, t3)) =

1 + size t1 + size t2 + size t3

Obviously this function computes the number of nodes in the tree, as you
can readily verify by structural induction over the type ’a twth tree.

26.4 Generalizations and Limitations

Does this pattern apply to every datatype declaration? Yes and no. No
matter what the form of the declaration it always makes sense to define a
function over it by a clausal function definition with one clause per con-
structor. Such a definition is guaranteed to be exhaustive (cover all cases),
and serves as a valuable guide to structuring your code. (It is especially
valuable if you change the datatype declaration, because then the compiler
will inform you of what clauses need to be added or removed from func-
tions defined over that type in order to restore it to a sensible definition.)
The slogan is:

To define functions over a datatype, use a clausal definition
with one clause per constructor

The catch is that not every datatype declaration supports a principle
of structural induction because it is not always clear what constitutes the
predecessor(s) of a constructed value. For example, the declaration

datatype D = Int of int | Fun of D->D

is problematic because a value of the form Fun(f) is not constructed di-
rectly from another value of type D, and hence it is not clear what to regard
as its predecessor. In practice this sort of definition comes up only rarely;
in most cases datatypes are naturally viewed as inductively defined.

MAY 17, 2005 WORKING DRAFT

232 26.5 Abstracting Induction

26.5 Abstracting Induction

It is interesting to observe that the pattern of structural recursion may be di-
rectly codified in ML as a higher-order function. Specifically, we may asso-
ciate with each inductively-defined type a higher-order function that takes
as arguments values that determine the base case(s) and step case(s) of the
definition, and defines a function by structural induction based on these
arguments. An example will illustrate the point. The pattern of structural
induction over the type nat may be codified by the following function:

fun nat rec base step =
let

fun loop Zero = base
| loop (Succ n) = step (loop n)

in
loop

end

This function has the type ’a -> (’a -> ’a) -> nat -> ’a.
Given the first two arguments, nat rec yields a function of type nat

-> ’a whose behavior is determined at the base case by the first argument
and at the inductive step by the second. Here’s an example of the use of
nat rec to define the exponential function:

val double =
nat rec Zero (fn result => Succ (Succ result))

val exp =
nat rec (Succ Zero) double

Note well the pattern! The arguments to nat rec are

1. The value for Zero.

2. The value for Succ n defined in terms of its value for n.

Similarly, the pattern of list recursion may be captured by the following
functional:

fun list recursion base step =
let

fun loop nil = base
| loop (h::t) = step (h, loop t)

in

WORKING DRAFT MAY 17, 2005

26.5 Abstracting Induction 233

loop
end

The type of the function list recursion is

’a -> (’b * ’a -> ’a) -> ’b list -> ’a

It may be instantiated to define the reverse function as follows:

val reverse = list recursion nil (fn (h, t) => t @ [h])

Finally, the principle of structural recursion for values of type ’a twth tree
is given as follows:

fun twth rec base bin step ter step =
let

fun loop Empty = base
| loop (Bin (v, t1, t2)) =
bin step (v, loop t1, loop t2)

| loop (Ter (v, t1, t2, t3)) =
ter step (v, loop t1, loop t2, loop t3)

in
loop

end

Notice that we have two inductive steps, one for each form of node. The
type of twth rec is

’a -> (’b * ’a * ’a -> ’a) -> (’b * ’a * ’a * ’a -> ’a) -> ’b twth tree -> ’a

We may instantiate it to define the function size as follows:

val size =
twth rec 0

(fn (, s1, s2)) => 1+s1+s2)
(fn (, s1, s2, s3)) => 1+s1+s2+s3)

Summarizing, the principle of structural induction over a recursive datatype
is naturally codified in ML using pattern matching and higher-order func-
tions. Whenever you’re programming with a datatype, you should use the
techniques outlined in this chapter to structure your code.

MAY 17, 2005 WORKING DRAFT

234 26.5 Abstracting Induction

WORKING DRAFT MAY 17, 2005

Chapter 27

Proof-Directed Debugging

In this chapter we’ll put specification and verification techniques to work in
devising a regular expression matcher. The code is similar to that sketched
in chapter 1, but we will use verification techiques to detect and correct a
subtle error that may not be immediately apparent from inspecting or even
testing the code. We call this process proof-directed debugging.

The first task is to devise a precise specification of the regular expres-
sion matcher. This is a difficult problem in itself. We then attempt to verify
that the matching program developed in chapter 1 satisfies this specifica-
tion. The proof attempt breaks down. Careful examination of the failure
reveals a counterexample to the specification — the program does not sat-
isfy it. We then consider how best to resolve the problem, not by change of
implementation, but instead by change of specification.

27.1 Regular Expressions and Languages

Before we begin work on the matcher, let us first define the set of regular ex-
pressions and their meaning as a set of strings. The set of regular expressions
is given by the following grammar:

r : : = 0 | 1 | a | r1 r2 | r1 + r2 | r∗

Here a ranges over a given alphabet, a set of primitive “letters” that may
be used in a regular expression. A string is a finite sequence of letters of
the alphabet. We write ε for the null string, the empty sequence of letters.
We write s1 s2 for the concatenation of the strings s1 and s2, the string s
consisting of the letters in s1 followed by those in s2. The length of a string
is the number of letters in it. We do no distinguish between a character and

235

236 27.1 Regular Expressions and Languages

the unit-length string consisting solely of that character. Thus we write a s
for the extension of s with the letter a at the front.

A language is a set of strings. Every regular expression r stands for a
particular language L(r), the language of r, which is defined by induction
on the structure of r as follows:

L(0) = 0
L(1) = 1
L(a) = { a }

L(r1 r2) = L(r1) L(r2)
L(r1 + r2) = L(r1) + L(r2)

L(r∗) = L(r)∗

This definition employs the following operations on languages:

0 = ∅
1 = { ε }

L1 + L2 = L1 ∪ L2
L1 L2 = { s1 s2 | s1 ∈ L1, s2 ∈ L2 }

L(0) = 1
L(i+1) = L L(i)

L∗ =
⋃

i≥0 L(i)

An important fact about L∗ is that it is the smallest language L′ such
that 1 + L L′ ⊆ L′. Spelled out, this means two things:

1. 1 + L L∗ ⊆ L∗, which is to say that

(a) ε ∈ L∗, and

(b) if s ∈ L and s′ ∈ L∗, then s s′ ∈ L∗.

2. If 1 + L L′ ⊆ L′, then L∗ ⊆ L′.

This means that L∗ is the smallest language (with respect to language con-
tainment) that contains the null string and is closed under concatenation
on the left by L.

Let’s prove that this is the case. First, since L(0) = 1, it follows immedi-
ately that ε ∈ L∗. Second, if l ∈ L and l′ ∈ L∗, then l′ ∈ L(i) for some i ≥ 0,
and hence l l′ ∈ L(i+1) by definition of concatentation of languages. This
completes the first step. Now suppose that L′ is such that 1 + L L′ ⊆ L′. We
are to show that L∗ ⊆ L′. We show by induction on i ≥ 0 that L(i) ⊆ L′,
from which the result follows immediately. If i = 0, then it suffices to show

WORKING DRAFT MAY 17, 2005

27.2 Specifying the Matcher 237

that ε ∈ L′. But this follows from the assumption that 1 + L L′ ⊆ L′, which
implies that 1 ⊆ L′. To show that L(i+1) ⊆ L′, we observe that, by defini-
tion, L(i+1) = L L(i). By induction L(i) ⊆ L′, and hence L L(i) ⊆ L′, since
L L′ ⊆ L′ by assumption.

Having proved that L∗ is the smallest language L′ such that 1 + L L′ ⊆
L′, it is not hard to prove that L∗ satisfies the recurrence L∗ = 1 + L L∗.
We just proved the right to left containment. For the converse, it suffices
to observe that 1 + L (1 + L L∗) ⊆ 1 + L L∗, for then the result follows by
minimality the result. This is easily established by a simple case analysis.

Exercise 1
Give a full proof of the fact that L∗ = 1 + L L∗.

Finally, a word about implementation. We will assume in what follows
that the alphabet is given by the type char of characters, that strings are
elements of the type string, and that regular expressions are defined by
the following datatype declaration:

datatype regexp =
Zero | One | Char of char |
Plus of regexp * regexp |
Times of regexp * regexp |
Star of regexp

We will also work with lists of characters, values of type char list, using
ML notation for primitive operations on lists such as concatenation and
extension. Occasionally we will abuse notation and not distinguish (in the
informal discussion) between a string and a list of characters. In particular
we will speak of a character list as being a member of a language, when in
fact we mean that the corresponding string is a member of that language.

27.2 Specifying the Matcher

Let us begin by devising a specification for the regular expression matcher.
As a first cut we write down a type specification. We seek to define a func-
tion match of type regexp -> string -> bool that determines whether or
not a given string matches a given regular expression. More precisely, we
wish to satisfy the following specification:

For every regular expression r and every string s, match r s ter-
minates, and evaluates to true iff s ∈ L(r).

MAY 17, 2005 WORKING DRAFT

238 27.2 Specifying the Matcher

We saw in chapter 1 that a natural way to define the procedure match
is to use a technique called continuation passing. We defined an auxiliary
function match is with the type

regexp -> char list -> (char list -> bool) -> bool

that takes a regular expression, a list of characters (essentially a string,
but in a form suitable for incremental processing), and a continuation, and
yields a boolean. The idea is that match is takes a regular expression r, a
character list cs, and a continuation k, and determines whether or not some
initial segment of cs matches r, passing the remaining characters cs′ to k in
the case that there is such an initial segment, and yields false otherwise.
Put more precisely,

For every regular expression r, character list cs, and continua-
tion k, if cs = cs′@cs′′ with cs′ ∈ L(r) and k cs′′ evaluates to true,
then match is r cs k evaluates true; otherwise, match is r cs
k evaluates to false.

Unfortunately, this specification is too strong to ever be satisfied by any
program! Can you see why? The difficulty is that if k is not guaranteed to
terminate for all inputs, then there is no way that match is can behave as
required. For example, if there is no input on which k terminates, the spec-
ification requires that match is return false. It should be intuitively clear
that we can never implement such a function. Instead, we must restrict
attention to total continuations, those that always terminate with true or
false on any input. This leads to the following revised specification:

For every regular expression r, character list cs, and total con-
tinuation k, if cs = cs′ cs′′ with cs′ ∈ L(r) and k cs′′ evalu-
ates to true, then match is r cs k evaluates to true; otherwise,
match is r cs k evaluates to false.

Observe that this specification makes use of an implicit existential quan-
tification. Written out in full, we might say “For all . . . , if there exists cs′ and
cs′′ such that cs = cs′ cs′′ with . . . , then . . . ”. This observation makes clear
that we must search for a suitable splitting of cs into two parts such that the
first part is in L(r) and the second is accepted by k. There may, in general, be
many ways to partition the input to as to satisfy both of these requirements;
we need only find one such way. Note, however, that if cs = cs′@cs′′ with
cs′ ∈ L(r) but k cs′′ yielding false, we must reject this partitioning and
search for another. In other words we cannot simply accept any partition-
ing whose initial segment matches r, but rather only those that also induce

WORKING DRAFT MAY 17, 2005

27.2 Specifying the Matcher 239

k to accept its corresponding final segment. We may return false only if
there is no such splitting, not merely if a particular splitting fails to work.

Suppose for the moment that match is satisfies this specification. Does
it follow that match satisfies the original specification? Recall that the func-
tion match is defined as follows:

fun match r s =
match is r

(String.explode s)
(fn nil => true | false)

Notice that the initial continuation is indeed total, and that it yields true
(accepts) iff it is applied to the null string. Therefore match satisfies the fol-
lowing property obtained from the specification of mathc is by plugging
in the initial continuation:

For every regular expression r and string s, if s ∈ L(r), then
match r s evaluates to true, and otherwise match r s evalu-
ates to false.

This is precisely the property that we desire for match. Thus match is correct
(satisfies its specification) if match is is correct.

So far so good. But does match is satisfy its specification? If so, we are
done. How might we check this? Recall the definition of match is given in
the overview:

fun match is Zero k = false
| match is One cs k = k cs
| match is (Char c) nil k = false
| match is (Char c) (d::cs) k =

if c=d then k cs else false
| match is (Times (r1, r2)) cs k =

match is r1 cs (fn cs’ => match is r2 cs’ k)
| match is (Plus (r1, r2)) cs k =
match is r1 cs k orelse match is r2 cs k

| match is (Star r) cs k =
k cs orelse
match is r cs (fn cs’ => match is (Star r) cs’ k)

Since match is is defined by a recursive analysis of the regular expression
r, it is natural to proceed by induction on the structure of r. That is, we treat
the specification as a conjecture about match is, and attempt to prove it by
structural induction on r.

MAY 17, 2005 WORKING DRAFT

240 27.2 Specifying the Matcher

We first consider the three base cases. Suppose that r is 0. Then no string
is in L(r), so match is must return false, which indeed it does. Suppose
that r is 1. Since the null string is an initial segment of every string, and
the null string is in L(1), we must yield true iff k cs yields true, and false
otherwise. This is precisely how match is is defined. Suppose that r is
a. Then to succeed cs must have the form a cs′ with k cs′ evaluating to
true; otherwise we must fail. The code for match is checks that cs has
the required form and, if so, passes cs′ to k to determine the outcome, and
otherwise yields false. Thus match is behaves correctly for each of the
three base cases.

We now consider the three inductive steps. For r = r1 + r2, we observe
that some initial segment of cs matches r and causes k to accept the corre-
sponding final segment of cs iff either some initial segment matches r1 and
drives k to accept the rest or some initial segment matches r2 and drives k
to accept the rest. By induction match is works as specified for r1 and r2,
which is sufficient to justify the correctness of match is for r = r1 + r2.

For r = r1 r2, the proof is slightly more complicated. By induction
match is behaves according to the specification if it is applied to either
r1 or r2, provided that the continuation argument is total. Note that the
continuation k′ given by fn cs’ => match is r2 cs’ k is total, since by
induction the inner recursive call to match is always terminates. Suppose
that there exists a partitioning cs = cs′@cs′′ with cs′ ∈ L(r)and k cs′′ eval-
uating to true. Then cs′ = cs′1 cs′2 with cs′1 ∈ L(r1) and cs′2 ∈ L(r2), by
definition of L(r1 r2). Consequently, match is r2 (cs′2 cs′′) k evaluates to
true, and hence match is r1 cs′1 cs′2 cs′′ k′ evaluates to true, as required.
If, however, no such partitioning exists, then one of three situations occurs:

1. either no initial segment of cs matches r1, in which case the outer
recursive call yields false, as required, or

2. for every initial segment matching r1, no initial segment of the corre-
sponding final segment matches r2, in which case the inner recursive
call yields false on every call, and hence the outer call yields false,
as required, or

3. every pair of successive initial segments of cs matching r1 and r2 suc-
cessively results in k evaluating to false, in which case the inner re-
cursive call always yields false, and hence the continuation k′ al-
ways yields false, and hence the outer recursive call yields false, as
required.

WORKING DRAFT MAY 17, 2005

27.2 Specifying the Matcher 241

Be sure you understand the reasoning involved here, it is quite tricky to get
right!

We seem to be on track, with one more case to consider, r = r1
∗. This

case would appear to be a combination of the preceding two cases for al-
ternation and concatenation, with a similar argument sufficing to establish
correctness. But there is a snag: the second recursive call to match is leaves
the regular expression unchanged! Consequently we cannot apply the in-
ductive hypothesis to establish that it behaves correctly in this case, and the
obvious proof attempt breaks down.

What to do? A moment’s thought suggests that we proceed by an inner
induction on the length of the string, based on the idea that if some initial
segment of cs matches L(r), then either that initial segment is the null string
(base case), or cs = cs′@cs′′ with cs′ ∈ L(r1) and cs′′ ∈ L(r) (induction
step). We then handle the base case directly, and handle the inductive case
by assuming that match is behaves correctly for cs′′ and showing that it
behaves correctly for cs. But there is a flaw in this argument — the string
cs′′ need not be shorter than cs in the case that cs′ is the null string! In that
case the inductive hypothesis does not apply, and we are once again unable
to complete the proof.

This time we can use the failure of the proof to obtain a counterexample
to the specification! For if r = 1∗, for example, then match is r cs k does
not terminate! In general if r = r1

∗ with ε ∈ L(r1), then match is r cs k
fails to terminate. In other words, match is does not satisfy the specifica-
tion we have given for it. Our conjecture is false!

Our failure to establish that match is satisfies its specification lead to a
counterexample that refuted our conjecture and uncovered a genuine bug
in the program — the matcher may not terminate for some inputs. What
to do? One approach is to explicitly check for looping behavior during
matching by ensuring that each recursive calls matches some non-empty
initial segment of the string. This will work, but at the expense of cluttering
the code and imposing additional run-time overhead. You should write
out a version of the matcher that works this way, and check that it indeed
satisfies the specification we’ve given above.

An alternative is to observe that the proof goes through under the ad-
ditional assumption that no iterated regular expression matches the null
string. Call a regular expression r standard iff whenever r′∗ occurs within r,
the null string is not an element of L(r′). It is easy to check that the proof
given above goes through under the assumption that the regular expres-
sion r is standard.

MAY 17, 2005 WORKING DRAFT

242 27.2 Specifying the Matcher

This says that the matcher works correctly for standard regular expres-
sions. But what about the non-standard ones? The key observation is that
every regular expression is equivalent to one in standard form. By “equivalent”
we mean “accepting the same language”. For example, the regular expres-
sions r + 0 and r are easily seen to be equivalent. Using this observation we
may avoid the need to consider non-standard regular expressions. Instead
we can pre-process the regular expression to put it into standard form, then
call the matcher on the standardized regular expression.

The required pre-processing is based on the following definitions. We
will associate with each regular expression r two standard regular expres-
sions δ(r) and r− with the following properties:

1. L(δ(r)) = 1 iff ε ∈ L(δ(r)) and L(δ(r)) = 0 otherwise.

2. L(r−) = L(r) \ 1.

With these equations in mind, we see that every regular expression r may
be written in the form δ(r) + r−, which is in standard form.

The function δ mapping regular expressions to regular expressions is
defined by induction on regular expressions by the following equations:

δ(0) = 0
δ(1) = 1
δ(a) = 0

δ(r1 + r2) = δ(r1)⊕ δ(r2)
δ(r1 r2) = δ(r1)⊗ δ(r2)

δ(r∗) = 1

Here we define 0 ⊕ 1 = 1 ⊕ 0 = 1 ⊕ 1 = 1 and 0 ⊕ 0 = 0 and 0 ⊗ 1 =
1⊗ 0 = 0⊗ 0 = 0 and 1⊗ 1 = 1.

Exercise 2
Show that L(δ(r)) = 1 iff ε ∈ L(r).

The definition of r− is given by induction on the structure of r by the
following equations:

0− = 0
1− = 0
a− = 0

(r1 + r2)− = r−1 + r−2
(r1 r2)− = δ(r1) r−2 + r1 δ(r2) + r−1 r−2

(r∗)− = δ(r) + r−∗

WORKING DRAFT MAY 17, 2005

27.2 Specifying the Matcher 243

The only tricky case is the one for concatenation, which must take account
of the possibility that r1 or r2 accepts the null string.

Exercise 3
Show that L(r−) = L(r) \ 1.

MAY 17, 2005 WORKING DRAFT

244 27.2 Specifying the Matcher

WORKING DRAFT MAY 17, 2005

Chapter 28

Persistent and Ephemeral Data
Structures

This chapter is concerned with persistent and ephemeral abstract types. The
distinction is best explained in terms of the logical future of a value. When-
ever a value of an abstract type is created it may be subsequently acted
upon by the operations of the type (and, since the type is abstract, by no
other operations). Each of these operations may yield (other) values of that
abstract type, which may themselves be handed off to further operations
of the type. Ultimately a value of some other type, say a string or an inte-
ger, is obtained as an observable outcome of the succession of operations
on the abstract value. The sequence of operations performed on a value of
an abstract type constitutes a logical future of that type — a computation
that starts with that value and ends with a value of some observable type.
We say that a type is ephemeral iff every value of that type has at most one
logical future, which is to say that it is handed off from one operation of
the type to another until an observable value is obtained from it. This is
the normal case in familiar imperative programming languages because in
such languages the operations of an abstract type destructively modify the
value upon which they operate; its original state is irretrievably lost by the
performance of an operation. It is therefore inherent in the imperative pro-
gramming model that a value have at most one logical future. In contrast,
values of an abstract type in functional languages such as ML may have
many different logical futures, precisely because the operations do not “de-
stroy” the value upon which they operate, but rather create fresh values of
that type to yield as results. Such values are said to be persistent because
they persist after application of an operation of the type, and in fact may

245

246

serve as arguments to further operations of that type.
Some examples will help to clarify the distinction. The primitive list

types of ML are persistent because the performance of an operation such
as cons’ing, appending, or reversing a list does not destroy the original list.
This leads naturally to the idea of multiple logical futures for a given value,
as illustrated by the following code sequence:

(* original list *)
val l = [1,2,3]
val m1 = hd l

(* first future of l *)
val n1 = rev m1
(* second future of l *)
val m2 = l @ [4,5,6]

Notice that the original list value, [1,2,3], has two distinct logical futures,
one in which we remove its head, then reverse the tail, and the other in
which we append the list [4,5,6] to it. The ability to easily handle multiple
logical futures for a data structure is a tremendous source of flexibility and
expressive power, alleviating the need to perform tedious bookkeeping to
manage “versions” or “copies” of a data structure to be passed to different
operations.

The prototypical ephemeral data structure in ML is the reference cell.
Performing an assignment operation on a reference cell changes it irrevo-
cably; the original contents of the cell are lost, even if we keep a handle on
it.

val r = ref 0
(* original cell *)
val s = r
val = (s := 1)
val x = !r
(* 1! *)

Notice that the contents of (the cell bound to) r changes as a result of per-
forming an assignment to the underlying cell. There is only one future for
this cell; a reference to its original binding does not yield its original con-
tents.

More elaborate forms of ephemeral data structures are certainly possi-
ble. For example, the following declaration defines a type of lists whose
tails are mutable. It is therefore a singly-linked list, one whose predecessor
relation may be changed dynamically by assignment:

WORKING DRAFT MAY 17, 2005

247

datatype ’a mutable list =
Nil |
Cons of ’a * ’a mutable list ref

Values of this type are ephemeral in the sense that some operations on
values of this type are destructive, and hence are irreversible (so to speak!).
For example, here’s an implementation of a destructive reversal of a muta-
ble list. Given a mutable list l, this function reverses the links in the cell so
that the elements occur in reverse order of their occurrence in l.

local
fun ipr (Nil, a) = a

| ipr (this as (Cons (, r as ref next)), a) =
ipr (next, (r := a; this))

in
(* destructively reverse a list *)
fun inplace reverse l = ipr (l, Nil)

end

As you can see, the code is quite tricky to understand! The idea is the
same as the iterative reverse function for pure lists, except that we re-use
the nodes of the original list, rather than generate new ones, when moving
elements onto the accumulator argument.

The distinction between ephemeral and persistent data structures is
essentially the distinction between functional (effect-free) and imperative
(effect-ful) programming — functional data structures are persistent; im-
perative data structures are ephemeral. However, this characterization is
oversimplified in two respects. First, it is possible to implement a persis-
tent data structure that exploits mutable storage. Such a use of mutation
is an example of what is called a benign effect because for all practical pur-
poses the data structure is “purely functional” (i.e., persistent), but is in fact
implemented using mutable storage. As we will see later the exploitation
of benign effects is crucial for building efficient implementations of persis-
tent data structures. Second, it is possible for a persistent data type to be
used in such a way that persistence is not exploited — rather, every value
of the type has at most one future in the program. Such a type is said to be
single-threaded, reflecting the linear, as opposed to branching, structure of
the future uses of values of that type. The significance of a single-threaded
type is that it may as well have been implemented as an ephemeral data
structure (e.g., by having observable effects on values) without changing
the behavior of the program.

MAY 17, 2005 WORKING DRAFT

248 28.1 Persistent Queues

28.1 Persistent Queues

Here is a signature of persistent queues:

signature QUEUE = sig
type ’a queue
exception Empty
val empty : ’a queue
val insert : ’a * ’a queue -> ’a queue
val remove : ’a queue -> ’a * ’a queue

end

This signature describes a structure providing a representation type for
queues, together with operations to create an empty queue, insert an ele-
ment onto the back of the queue, and to remove an element from the front
of the queue. It also provides an exception that is raised in response to
an attempt to remove an element from the empty queue. Notice that re-
moving an element from a queue yields both the element at the front of
the queue, and the queue resulting from removing that element. This is
a direct reflection of the persistence of queues implemented by this signa-
ture; the original queue remains available as an argument to further queue
operations.

By a sequence of queue operations we shall mean a succession of uses of
empty, insert, and remove operations in such a way that the queue argu-
ment of one operation is obtained as a result of the immediately preceding
queue operation. Thus a sequence of queue operations represents a single-
threaded time-line in the life of a queue value. Here is an example of a
sequence of queue operations:

val q0 : int queue = empty
val q1 = insert (1, q0)
val q2 = insert (2, q1)
val (h1, q3) = remove q2 (* h1 = 1, q3 = q1 *)
val (h2, q4) = remove q3 (* h2 = 2, q4 = q0 *)

By contrast the following operations do not form a single thread, but
rather a branching development of the queue’s lifetime:

val q0 : int queue = empty
val q1 = insert (1, q0)
val q2 = insert (2, q0) (* NB: q0, not q1! *)
val (h1, q3) = remove q1 (* h1 = 1, q3 = q0 *)

WORKING DRAFT MAY 17, 2005

28.1 Persistent Queues 249

val (h2, q4) = remove q3 (* raise Empty *)
val (h2, q4) = remove q2 (* h2 = 2,, q4 = q0 *)

In the remainder of this section we will be concerned with single-threaded
sequences of queue operations.

How might we implement the signature QUEUE? The most obvious ap-
proach is to represent the queue as a list with, say, the head element of
the list representing the “back” (most recently enqueued element) of the
queue. With this representation enqueueing is a constant-time operation,
but dequeuing requires time proportional to the number of elements in the
queue. Thus in the worst case a sequence of n enqueue and dequeue op-
erations will take time O(n2), which is clearly excessive. We can make de-
queue simpler, at the expense of enqueue, by regarding the head of the list
as the “front” of the queue, but the time bound for n operations remains
the same in the worst case.

Can we do better? A well-known “trick” achieves an O(n) worst-case
performance for any sequence of n operations, which means that each op-
eration takes O(1) steps if we amortize the cost over the entire sequence.
Notice that this is a worst-case bound for the sequence, yielding an amortized
bound for each operation of the sequence. This means that some operations
may be relatively expensive, but, in compensation, many operations will
be cheap.

How is this achieved? By combining the two naive solutions sketched
above. The idea is to represent the queue by twolists, one for the back “half”
consisting of recently inserted elements in the order of arrival, and one for
the front “half” consisting of soon-to-be-removed elements in reverse order
of arrival (i.e., in order of removal). We put “half” in quotes because we
will not, in general, maintain an even split of elements between the front
and the back lists. Rather, we will arrange things so that the following
representation invariants holds true:

1. The elements of the queue listed in order of removal are the elements
of the front followed by the elements of the back in reverse order.

2. The front is empty only if the back is empty.

These invariants are maintained by using a “smart constructor” that
creates a queue from two lists representing the back and front parts of the
queue. This constructor ensures that the representation invariant holds by
ensuring that condition (2) is always true of the resulting queue. The con-
structor proceeds by a case analysis on the back and fron parts of the queue.

MAY 17, 2005 WORKING DRAFT

250 28.1 Persistent Queues

If the front list is non-empty, or both the front and back are empty, the re-
sulting queue consists of the back and front parts as given. If the front is
empty and the back is non-empty, the queue constructor yields the queue
consisting of an empty back part and a front part equal to the reversal of the
given back part. Observe that this is sufficient to ensure that the represen-
tation invariant holds of the resulting queue in all cases. Observe also that
the smart constructor either runs in constant time, or in time proportional
to the length of the back part, according to whether the front part is empty
or not.

Insertion of an element into a queue is achieved by cons’ing the element
onto the back of the queue, then calling the queue constructor to ensure
that the result is in conformance with the representation invariant. Thus
an insert can either take constant time, or time proportional to the size of
the back of the queue, depending on whether the front part is empty. Re-
moval of an element from a queue requires a case analysis. If the front is
empty, then by condition (2) the queue is empty, so we raise an exception.
If the front is non-empty, we simply return the head element together with
the queue created from the original back part and the front part with the
head element removed. Here again the time required is either constant or
proportional to the size of the back of the queue, according to whether the
front part becomes empty after the removal. Notice that if an insertion or
removal requires a reversal of k elements, then the next k operations are
constant-time. This is the fundamental insight as to why we achieve O(n)
time complexity over any sequence of n operations. (We will give a more
rigorous analysis shortly.)

Here’s the implementation of this idea in ML:

structure Queue :> QUEUE = struct
type ’a queue = ’a list * ’a list
fun make queue (q as (nil, nil)) = q

| make queue (bs, nil) = (nil, rev bs)
| make queue (q as (bs, fs)) = q

val empty = make queue (nil, nil)
fun insert (x, (back,front)) =

make queue (x::back, front)
exception Empty
fun remove (, nil) = raise Empty

| remove (bs, f::fs) = (f, make queue (bs, fs))
end

WORKING DRAFT MAY 17, 2005

28.2 Amortized Analysis 251

Notice that we call the “smart constructor” make queue whenever we
wish to return a queue to ensure that the representation invariant holds.
Consequently, some queue operations are more expensive than others, ac-
cording to whether or not the queue needs to be reorganized to satisfy
the representation invariant. However, each such reorganization makes a
corresponding number of subsequent queue operations “cheap” (constant-
time), so the overall effort required evens out in the end to constant-time
per operation. More precisely, the running time of a sequence of n queue
operations is now O(n), rather than O(n2), as it was in the naive imple-
mentation. Consequently, each operation takes O(1) (constant) time “on
average,” i.e., when the total effort is evenly apportioned among each of
the operations in the sequence. Note that this is a worst-case time bound
for each operation, amortized over the entire sequence, not an average-case time
bound based on assumptions about the distribution of the operations.

28.2 Amortized Analysis

How can we prove this claim? First we given an informal argument, then
we tighten it up with a more rigorous analysis. We are to account for the
total work performed by a sequence of n operations by showing that any
sequence of noperations can be executed in cn steps for some constant c.
Dividing by n, we obtain the result that each operations takes c steps when
amortized over the entire sequence. The key is to observe first that the work
required to execute a sequence of queue operations may be apportioned to
the elements themselves, then that only a constant amount of work is ex-
pended on each element. The “life” of a queue element may be divided
into three stages: it’s arrival in the queue, it’s transit time in the queue,
and it’s departure from the queue. In the worst case each element passes
through each of these stages (but may “die young”, never participating in
the second or third stage). Arrival requires constant time to add the ele-
ment to the back of the queue. Transit consists of being moved from the
back to the front by a reversal, which takes constant time per element on
the back. Departure takes constant time to pattern match and extract the el-
ement. Thus at worst we require three steps per element to account for the
entire effort expended to perform a sequence of queue operations. This is
in fact a conservative upper bound in the sense that we may need less than
3n steps for the sequence, but asymptotically the bound is optimal — we
cannot do better than constant time per operation! (You might reasonably
wonder whether there is a worst-case, non-amortized constant-time imple-

MAY 17, 2005 WORKING DRAFT

252 28.2 Amortized Analysis

mentation of persistent queues. The answer is “yes”, but the code is far
more complicated than the simple implementation we are sketching here.)

This argument can be made rigorous as follows. The general idea is to
introduce the notion of a charge scheme that provides an upper bound on
the actual cost of executing a sequence of operations. An upper bound on
the charge will then provide an upper bound on the actual cost. Let T(n)
be the cumulative time required (in the worst case) to execute a sequence of
n queue operations. We will introduce a charge function, C(n), representing
the cumulative charge for executing a sequence of n operations and show
that T(n) ≤ C(n) = O(n). It is convenient to express this in terms of
a function R(n) = C(n) − T(n) representing the cumulative residual, or
overcharge, which is the amount that the charge for n operations exceeds
the actual cost of executing them. We will arrange things so that R(n) ≥ 0
and that C(n) = O(n), from which the result follows immediately.

Down to specifics. By charging 2 for each insert operation and 1 for
each remove, it follows that C(n) ≤ 2n for any sequence of n inserts and
removes. Thus C(n) = O(n). After any sequence of n ≥ 0 operations
have been performed, the queue contains 0 ≤ b ≤ n elements on the back
“half” and 0 ≤ f ≤ n elements on the front “half”. We claim that for every
n ≥ 0, R(n) = b. We prove this by induction on n ≥ 0. The condition
clearly holds after performing 0 operations, since T(0) = 0, C(0) = 0,
and hence R(0) = C(0) − T(0) = 0. Consider the n + 1st operation. If
it is an insert, and f > 0, T(n + 1) = T(n) + 1, C(n + 1) = C(n) + 2,
and hence R(n + 1) = R(n) + 1 = b + 1. This is correct because an insert
operation adds one element to the back of the queue. If, on the other hand,
f = 0, then T(n + 1) = T(n) + b + 2 (charging one for the cons and one
for creating the new pair of lists), C(n + 1) = C(n) + 2, so R(n + 1) =
R(n) + 2− b − 2 = b + 2− b − 2 = 0. This is correct because the back is
now empty; we have used the residual overcharge to pay for the cost of the
reversal. If the n + 1st operation is a remove, and f > 0, then T(n + 1) =
T(n) + 1 and C(n + 1) = C(n) + 1 and hence R(n + 1) = R(n) = b. This
is correct because the remove doesn’t disturb the back in this case. Finally,
if we are performing a remove with f = 0, then T(n + 1) = T(n) + b + 1,
C(n + 1) = C(n) + 1, and hence R(n + 1) = R(n)− b = b − b = 0. Here
again we use of the residual overcharge to pay for the reversal of the back
to the front. The result follows immediately since R(n) = b ≥ 0, and hence
C(n) ≥ T(n).

It is instructive to examine where this solution breaks down in the multi-
threaded case (i.e., where persistence is fully exploited). Suppose that we
perform a sequence of n insert operations on the empty queue, resulting in

WORKING DRAFT MAY 17, 2005

28.2 Amortized Analysis 253

a queue with n elements on the back and none on the front. Call this queue
q. Let us suppose that we have n independent “futures” for q, each of which
removes an element from it, for a total of 2n operations. How much time
do these 2n operations take? Since each independent future must reverse
all n elements onto the front of the queue before performing the removal,
the entire collection of 2n operations takes n + n2 steps, or O(n) steps per
operation, breaking the amortized constant-time bound just derived for a
single-threaded sequence of queue operations. Can we recover a constant-
time amortized cost in the persistent case? We can, provided that we share
the cost of the reversal among all futures of q — as soon as one performs
the reversal, they all enjoy the benefit of its having been done. This may be
achieved by using a benign side effect to cache the result of the reversal in a
reference cell that is shared among all uses of the queue. We will return to
this once we introduce memoization and lazy evaluation.

MAY 17, 2005 WORKING DRAFT

254 28.2 Amortized Analysis

WORKING DRAFT MAY 17, 2005

Chapter 29

Options, Exceptions, and
Continuations

In this chapter we discuss the close relationships between option types, ex-
ceptions, and continuations. They each provide the means for handling
failure to produce a value in a computation. Option types provide the
means of explicitly indicating in the type of a function the possibility that it
may fail to yield a “normal” result. The result type of the function forces the
caller to dispatch explicitly on whether or not it returned a normal value.
Exceptions provide the means of implicitly signalling failure to return a
normal result value, without sacrificing the requirement that an application
of such a function cannot ignore failure to yield a value. Continuations pro-
vide another means of handling failure by providing a function to invoke
in the case that normal return is impossible.

29.1 The n-Queens Problem

We will explore the trade-offs between these three approaches by consider-
ing three different implementations of the n-queens problem: find a way to
place n queens on an n × n chessboard in such a way that no two queens
attack one another. The general strategy is to place queens in successive
columns in such a way that it is not attacked by a previously placed queen.
Unfortunately it’s not possible to do this in one pass; we may find that we
can safely place k < n queens on the board, only to discover that there is
no way to place the next one. To find a solution we must reconsider earlier
decisions, and work forward from there. If all possible reconsiderations of
all previous decisions all lead to failure, then the problem is unsolvable.

255

256 29.1 The n-Queens Problem

For example, there is no safe placement of three queens on a 3x3 chess-
board. This trial-and-error approach to solving the n-queens problem is
called backtracking search.

A solution to the n-queens problem consists of an n× n chessboard with
n queens safely placed on it. The following signature defines a chessboard
abstraction:

signature BOARD =
sig

type board
val new : int -> board
val complete : board -> bool
val place : board * int -> board
val safe : board * int -> bool
val size : board -> int
val positions : board -> (int * int) list

end

The operation new creates a new board of a given dimension n ≥ 0. The op-
eration complete checks whether the board contains a complete safe place-
ment of n queens. The function safe checks whether it is safe to place a
queen at row i in the next free column of a board B. The operation place
puts a queen at row i in the next available column of the board. The func-
tion size returns the size of a board, and the function positions returns
the coordinates of the queens on the board.

The board abstraction may be implemented as follows:

structure Board :> BOARD =
struct

(* rep: size, next free column, number placed, placements
inv: size>=0, 1<=next free<=size,
length(placements) = number placed

*)
type board = int * int * int * (int * int) list

fun new n = (n, 1, 0, nil)

fun size (n, , ,) = n
fun complete (n, , k,) = (k=n)
fun positions (, , , qs) = qs

fun place ((n, i, k, qs),j) =
(n, i+1, k+1, (i,j)::qs)

WORKING DRAFT MAY 17, 2005

29.2 Solution Using Options 257

fun threatens ((i,j), (i’,j’)) =
i=i’ orelse j=j’ orelse
i+j = i’+j’ orelse
i-j = i’-j’

fun conflicts (q, nil) =
false

| conflicts (q, q’::qs) =
threatens (q, q’) orelse conflicts (q, qs)

fun safe ((, i, , qs), j) =
not (conflicts ((i,j), qs))

end

The representation type contains “redundant” information in order to make
the individual operations more efficient. The representation invariant en-
sures that the components of the representation are properly related to one
another (e.g., the claimed number of placements is indeed the length of the
list of placed queens, and so on.)

Our goal is to define a function

val queens : int -> Board.board option

such that if n ≥ 0, then queens n evaluates either to NONE if there is no safe
placement of n queens on an n× n board, or to SOME B otherwise, with B a
complete board containing a safe placement of n queens. We will consider
three different solutions, one using option types, one using exceptions, and
one using a failure continuation.

29.2 Solution Using Options

Here’s a solution based on option types:

(* addqueen bd yields SOME bd’ with bd’ a
complete safe placement extending bd,
if one exists, and yields NONE otherwise

*)
fun addqueen bd =

let
fun try j =

if j > Board.size bd then
NONE

MAY 17, 2005 WORKING DRAFT

258 29.3 Solution Using Exceptions

else if Board.safe (bd, j) then
case addqueen (Board.place (bd, j))

of NONE => try (j+1)
| r as (SOME bd’) => r

else
try (j+1)

in
if Board.complete bd then

SOME bd
else

try 1
end

fun queens n = addqueen (Board.new n)

The characteristic feature of this solution is that we must explicitly check
the result of each recursive call to addqueen to determine whether a safe
placement is possible from that position. If so, we simply return it; if not,
we must reconsider the placement of a queen in row j of the next available
column. If no placement is possible in the current column, the function
yields NONE, which forces reconsideration of the placement of a queen in
the preceding row. Eventually we either find a safe placement, or yield
NONE indicating that no solution is possible.

29.3 Solution Using Exceptions

The explicit check on the result of each recursive call can be replaced by
the use of exceptions. Rather than have addqueen return a value of type
Board.board option, we instead have it return a value of type Board.board,
if possible, and otherwise raise an exception indicating failure. The case
analysis on the result is replaced by a use of an exception handler. Here’s
the code:

exception Fail

(* addqueen bd yields bd’, where bd’ is a complete safe
placement extending bd, if one exists, and raises Fail otherwise

*)
fun addqueen bd =

let
fun try j =

if j > Board.size bd then

WORKING DRAFT MAY 17, 2005

29.3 Solution Using Exceptions 259

raise Fail
else if Board.safe (bd, j) then

addqueen (Board.place (bd, j))
handle Fail => try (j+1)

else
try (j+1)

in
if Board.complete bd then

bd
else

try 1
end

fun queens n =
SOME (addqueen (Board.new n))
handle Fail => NONE

The main difference between this solution and the previous one is that both
calls to addqueen must handle the possibility that it raises the exception
Fail. In the outermost call this corresponds to a complete failure to find a
safe placement, which means that queens must return NONE. If a safe place-
ment is indeed found, it is wrapped with the constructor SOME to indicate
success. In the recursive call within try, an exception handler is required to
handle the possibility of there being no safe placement starting in the cur-
rent position. This check corresponds directly to the case analysis required
in the solution based on option types.

What are the trade-offs between the two solutions?

1. The solution based on option types makes explicit in the type of the
function addqueen the possibility of failure. This forces the program-
mer to explicitly test for failure using a case analysis on the result of
the call. The type checker will ensure that one cannot use a Board.board
option where a Board.board is expected. The solution based on ex-
ceptions does not explicitly indicate failure in its type. However, the
programmer is nevertheless forced to handle the failure, for other-
wise an uncaught exception error would be raised at run-time, rather
than compile-time.

2. The solution based on option types requires an explicit case analysis
on the result of each recursive call. If “most” results are successful,
the check is redundant and therefore excessively costly. The solution
based on exceptions is free of this overhead: it is biased towards the

MAY 17, 2005 WORKING DRAFT

260 29.4 Solution Using Continuations

“normal” case of returning a board, rather than the “failure” case of
not returning a board at all. The implementation of exceptions en-
sures that the use of a handler is more efficient than an explicit case
analysis in the case that failure is rare compared to success.

For the n-queens problem it is not clear which solution is preferable. In
general, if efficiency is paramount, we tend to prefer exceptions if failure is
a rarity, and to prefer options if failure is relatively common. If, on the other
hand, static checking is paramount, then it is advantageous to use options
since the type checker will enforce the requirement that the programmer
check for failure, rather than having the error arise only at run-time.

29.4 Solution Using Continuations

We turn now to a third solution based on continuation-passing. The idea is
quite simple: an exception handler is essentially a function that we invoke
when we reach a blind alley. Ordinarily we achieve this invocation by rais-
ing an exception and relying on the caller to catch it and pass control to the
handler. But we can, if we wish, pass the handler around as an additional
argument, the failure continuation of the computation. Here’s how it’s done
in the case of the n-queens problem:

(* addqueen bd yields bd’, where bd’ is a complete safe
placement extending bd, if one exists, and otherwise,
yields the value of fc ()

*)
fun addqueen (bd, fc) =

let
fun try j =

if j > Board.size bd then
fc ()

else if Board.safe (bd, j) then
addqueen

(Board.place (bd, j),
fn () => try (j+1))

else
try (j+1)

in
if Board.complete bd then

SOME bd

WORKING DRAFT MAY 17, 2005

29.4 Solution Using Continuations 261

else
try 1

end

fun queens n =
addqueen (Board.new n, fn () => NONE)

Here again the differences are small, but significant. The initial continua-
tion simply yields NONE, reflecting the ultimate failure to find a safe place-
ment. On a recursive call we pass to addqueen a continuation that resumes
search at the next row of the current column. Should we exceed the number
of rows on the board, we invoke the failure continuation of the most recent
call to addqueen.

The solution based on continuations is very close to the solution based
on exceptions, both in form and in terms of efficiency. Which is prefer-
able? Here again there is no easy answer, we can only offer general advice.
First off, as we’ve seen in the case of regular expression matching, failure
continuations are more powerful than exceptions; there is no obvious way
to replace the use of a failure continuation with a use of exceptions in the
matcher. However, in the case that exceptions would suffice, it is gener-
ally preferable to use them since one may then avoid passing an explicit
failure continuation. More significantly, the compiler ensures that an un-
caught exception aborts the program gracefully, whereas failure to invoke
a continuation is not in itself a run-time fault. Using the right tool for the
right job makes life easier.

MAY 17, 2005 WORKING DRAFT

262 29.4 Solution Using Continuations

WORKING DRAFT MAY 17, 2005

Chapter 30

Higher-Order Functions

Higher-order functions — those that take functions as arguments or return
functions as results — are powerful tools for building programs. An in-
teresting application of higher-order functions is to implement infinite se-
quences of values as (total) functions from the natural numbers (non-negative
integers) to the type of values of the sequence. We will develop a small
package of operations for creating and manipulating sequences, all of which
are higher-order functions since they take sequences (functions!) as argu-
ments and/or return them as results. A natural way to define many se-
quences is by recursion, or self-reference. Since sequences are functions,
we may use recursive function definitions to define such sequences. Alter-
natively, we may think of such a sequence as arising from a “loopback” or
“feedback” construct. We will explore both approaches.

Sequences may be used to simulate digital circuits by thinking of a
“wire” as a sequence of bits developing over time. The ith value of the
sequence corresponds to the signal on the wire at time i. For simplicity we
will assume a perfect waveform: the signal is always either high or low
(or is undefined); we will not attempt to model electronic effects such as
attenuation or noise. Combinational logic elements (such as and gates or
inverters) are operations on wires: they take in one or more wires as in-
put and yield one or more wires as results. Digital logic elements (such as
flip-flops) are obtained from combinational logic elements by feedback, or
recursion — a flip-flop is a recursively-defined wire!

263

264 30.1 Infinite Sequences

30.1 Infinite Sequences

Let us begin by developing a sequence package. Here is a suitable signature
defining the type of sequences:

signature SEQUENCE =
sig

type ’a seq = int -> ’a

(* constant sequence *)
val constantly : ’a -> ’a seq
(* alternating values *)
val alternately : ’a * ’a -> ’a seq
(* insert at front *)
val insert : ’a * ’a seq -> ’a seq

val map : (’a -> ’b) -> ’a seq -> ’b seq

val zip : ’a seq * ’b seq -> (’a * ’b) seq
val unzip : (’a * ’b) seq -> ’a seq * ’b seq
(* fair merge *)
val merge : (’a * ’a) seq -> ’a seq

val stretch : int -> ’a seq -> ’a seq
val shrink : int -> ’a seq -> ’a seq

val take : int -> ’a seq -> ’a list
val drop : int -> ’a seq -> ’a seq
val shift : ’a seq -> ’a seq

val loopback : (’a seq -> ’a seq) -> ’a seq

end

Observe that we expose the representation of sequences as functions. This
is done to simplify the definition of recursive sequences as recursive func-
tions. Alternatively we could have hidden the representation type, at the
expense of making it a bit more awkward to define recursive sequences.
In the absence of this exposure of representation, recursive sequences may
only be built using the loopback operation which constructs a recursive se-
quence by “looping back” the output of a sequence transformer to its input.
Most of the other operations of the signature are adaptations of familiar op-
erations on lists. Two exceptions to this rule are the functions stretch and
shrink that dilate and contract the sequence by a given time parameter —
if a sequence is expanded by k, its value at i is the value of the original
sequence at i/k, and dually for shrinking.

Here’s an implementation of sequences as functions.

WORKING DRAFT MAY 17, 2005

30.1 Infinite Sequences 265

structure Sequence :> SEQUENCE =
struct

type ’a seq = int -> ’a

fun constantly c n = c
fun alternately (c,d) n =

if n mod 2 = 0 then c else d
fun insert (x, s) 0 = x

| insert (x, s) n = s (n-1)

fun map f s = f o s

fun zip (s1, s2) n = (s1 n, s2 n)
fun unzip (s : (’a * ’b) seq) =

(map #1 s, map #2 s)
fun merge (s1, s2) n =

(if n mod 2 = 0 then s1 else s2) (n div 2)

fun stretch k s n = s (n div k)
fun shrink k s n = s (n * k)

fun drop k s n = s (n+k)
fun shift s = drop 1 s
fun take 0 = nil
| take n s = s 0 :: take (n-1) (shift s)

fun loopback loop n = loop (loopback loop) n

end

Most of this implementation is entirely straightforward, given the ease with
which we may manipulate higher-order functions in ML. The only tricky
function is loopback, which must arrange that the output of the function
loop is “looped back” to its input. This is achieved by a simple recursive
definition of a sequence whose value at n is the value at n of the sequence
resulting from applying the loop to this very sequence.

The sensibility of this definition of loopback relies on two separate
ideas. First, notice that we may not simplify the definition of loopback
as follows:

(* bad definition *)
fun loopback loop = loop (loopback loop)

The reason is that any application of loopback will immediately loop for-
ever! In contrast, the original definition is arranged so that application of

MAY 17, 2005 WORKING DRAFT

266 30.1 Infinite Sequences

loopback immediately returns a function. This may be made more appar-
ent by writing it in the following form, which is entirely equivalent to the
definition given above:

fun loopback loop =
fn n => loop (loopback loop) n

This format makes it clear that loopback immediately returns a function
when applied to a loop functional.

Second, for an application of loopback to a loop to make sense, it must
be the case that the loop returns a sequence without “touching” the argu-
ment sequence (i.e., without applying the argument to a natural number).
Otherwise accessing the sequence resulting from an application of loop-
back would immediately loop forever. Some examples will help to illus-
trate the point.

First, let’s build a few sequences without using the loopback function,
just to get familiar with using sequences:

val evens : int seq = fn n => 2*n
val odds : int seq = fn n => 2*n+1
val nats : int seq = merge (evens, odds)

fun fibs n =
(insert
(1, insert

(1, map (op +)
(zip (drop 1 fibs, fibs)))))(n)

We may “inspect” the sequence using take and drop, as follows:

take 10 nats (* [0,1,2,3,4,5,6,7,8,9] *)
take 5 (drop 5 nats) (* [5,6,7,8,9] *)
take 5 fibs (* [1,1,2,3,5] *)

Now let’s consider an alternative definition of fibs that uses the loopback
operation:

fun fibs loop s =
insert (1, insert (1,

map (op +) (zip (drop 1 s, s))))
val fibs = loopback fibs loop;

WORKING DRAFT MAY 17, 2005

30.2 Circuit Simulation 267

The definition of fibs loop is exactly like the original definition of fibs,
except that the reference to fibs itself is replaced by a reference to the ar-
gument s. Notice that the application of fibs loop to an argument s does
not inspect the argument s!

One way to understand loopback is that it solves a system of equations
for an unknown sequence. In the case of the second definition of fibs, we
are solving the following system of equations for f :

f 0 = 1
f 1 = 1

f (n + 2) = f (n + 1) + f (n)

These equations are derived by inspecting the definitions of insert, map,
zip, and drop given earlier. It is obvious that the solution is the Fibonacci
sequence; this is precisely the sequence obtained by applying loopback to
fibs loop.

Here’s an example of a loop that, when looped back, yields an unde-
fined sequence — any attempt to access it results in an infinite loop:

fun bad loop s n = s n + 1
val bad = loopback bad loop

val = bad 0 (* infinite loop! *)

In this example we are, in effect, trying to solve the equation sn = sn + 1 for
s, which has no solution (except the totally undefined sequence). The prob-
lem is that the “next” element of the output is defined in terms of the next
element itself, rather than in terms of “previous” elements. Consequently,
no solution exists.

30.2 Circuit Simulation

With these ideas in mind, we may apply the sequence package to build an
implementation of digital circuits. Let’s start with wires, which are repre-
sented as sequences of levels:

datatype level = High | Low | Undef
type wire = level seq
type pair = (level * level) seq

val Zero : wire = constantly Low
val One : wire = constantly High

MAY 17, 2005 WORKING DRAFT

268 30.2 Circuit Simulation

(* clock pulse with given duration of each pulse *)
fun clock (freq:int):wire =

stretch freq (alternately (Low, High))

We include the “undefined” level to account for propagation delays and
settling times in circuit elements.

Combinational logic elements (gates) may be defined as follows. We in-
troduce an explicit unit time propagation delay for each gate — the output
is undefined initially, and is then determined as a function of its inputs. As
we build up layers of circuit elements, it takes longer and longer (propor-
tional to the length of the longest path through the circuit) for the output to
settle, exactly as in “real life”.

(* apply two functions in parallel *)
infixr **;
fun (f ** g) (x, y) = (f x, g y)

(* hardware logical and *)
fun logical and (Low,) = Low

| logical and (, Low) = Low
| logical and (High, High) = High
| logical and = Undef

fun logical not Undef = Undef
| logical not High = Low
| logical not Low = High

fun logical nop l = l

(* a nor b = not a and not b *)
val logical nor =

logical and o (logical not ** logical not)

type unary gate = wire -> wire
type binary gate = pair -> wire

fun gate f w 0 = Undef

(* logic gate with unit propagation delay *)
| gate f w i = f (w (i-1))

val delay : unary gate = gate logical nop (* unit delay *)
val inverter : unary gate = gate logical not
val nor gate : binary gate = gate logical nor

It is a good exercise to build a one-bit adder out of these elements, then to
string them together to form an n-bit ripple-carry adder. Be sure to present

WORKING DRAFT MAY 17, 2005

30.2 Circuit Simulation 269

the inputs to the adder with sufficient pulse widths to ensure that the circuit
has time to settle!

Combining these basic logic elements with recursive definitions allows
us to define digital logic elements such as the RS flip-flop. The propaga-
tion delay inherent in our definition of a gate is fundamental to ensuring
that the behavior of the flip-flop is well-defined! This is consistent with
“real life” — flip-flop’s depend on the existence of a hardware propagation
delay for their proper functioning. Note also that presentation of “illegal”
inputs (such as setting both the R and the S leads high results in metastable
behavior of the flip-flop, here as in real life Finally, observe that the flip-flop
exhibits a momentary “glitch” in its output before settling, exactly as in the
hardware case. (All of these behaviors may be observed by using take and
drop to inspect the values on the circuit.)

fun RS ff (S : wire, R : wire) =
let

fun X n = nor gate (zip (S, Y))(n)
and Y n = nor gate (zip (X, R))(n)

in
Y

end

(* generate a pulse of b’s n wide, followed by w *)
fun pulse b 0 w i = w i

| pulse b n w 0 = b
| pulse b n w i = pulse b (n-1) w (i-1)

val S = pulse Low 2 (pulse High 2 Zero);
val R = pulse Low 6 (pulse High 2 Zero);
val Q = RS ff (S, R);
val = take 20 Q;
val X = RS ff (S, S); (* unstable! *)
val = take 20 X;

It is a good exercise to derive a system of equations governing the RS flip-
flop from the definition we’ve given here, using the implementation of the
sequence operations given above. Observe that the delays arising from the
combinational logic elements ensure that a solution exists by ensuring that
the “next” element of the output refers only the “previous” elements, and
not the “current” element.

Finally, we consider a variant implementation of an RS flip-flop using
the loopback operation:

MAY 17, 2005 WORKING DRAFT

270 30.2 Circuit Simulation

fun loopback2 (f : wire * wire -> wire * wire) =
unzip (loopback (zip o f o unzip))

fun RS ff’ (S : wire, R : wire) =
let

fun RS loop (X, Y) =
(nor gate (zip (S, Y)),
nor gate (zip (X, R)))

in
loopback2 RS loop

end

Here we must define a “binary loopback” function to implement the flip-
flop. This is achieved by reducing binary loopback to unary loopback by
composing with zip and unzip.

WORKING DRAFT MAY 17, 2005

Chapter 31

Data Abstraction

An abstract data type (ADT) is a type equipped with a set of operations for
manipulating values of that type. An ADT is implemented by providing
a representation type for the values of the ADT and an implementation for
the operations defined on values of the representation type. What makes
an ADT abstract is that the representation type is hidden from clients of the
ADT. Consequently, the only operations that may be performed on a value
of the ADT are the given ones. This ensures that the representation may be
changed without affecting the behavior of the client — since the represen-
tation is hidden from it, the client cannot depend on it. This also facilitates
the implementation of efficient data structures by imposing a condition,
called a representation invariant, on the representation that is preserved by
the operations of the type. Each operation that takes a value of the ADT as
argument may assume that the representation invariant holds. In compen-
sation each operation that yields a value of the ADT as result must guarantee
that the representation invariant holds of it. If the operations of the ADT
preserve the representation invariant, then it must truly be invariant — no
other code in the system could possibly disrupt it. Put another way, any
violation of the representation invariant may be localized to the implemen-
tation of one of the operations. This significantly reduces the time required
to find an error in a program.

31.1 Dictionaries

To make these ideas concrete we will consider the abstract data type of
dictionaries. A dictionary is a mapping from keys to values. For simplic-
ity we take keys to be strings, but it is possible to define a dictionary for

271

272 31.2 Binary Search Trees

any ordered type; the values associated with keys are completely arbitrary.
Viewed as an ADT, a dictionary is a type ’a dict of dictionaries mapping
strings to values of type ’a together with empty, insert, and lookup op-
erations that create a new dictionary, insert a value with a given key, and
retrieve the value associated with a key (if any). In short a dictionary is an
implementation of the following signature:

signature DICT =
sig
type key = string
type ’a entry = key * ’a
type ’a dict
exception Lookup of key
val empty : ’a dict
val insert : ’a dict * ’a entry -> ’a dict
val lookup : ’a dict * key -> ’a

end

Notice that the type ’a dict is not specified in the signature, whereas the
types key and ’a entry are defined to be string and string * ’a, respec-
tively.

31.2 Binary Search Trees

A simple implementation of a dictionary is a binary search tree. A binary
search tree is a binary tree with values of an ordered type at the nodes ar-
ranged in such a way that for every node in the tree, the value at that node
is greater than the value at any node in the left child of that node, and
smaller than the value at any node in the right child. It follows immedi-
ately that no two nodes in a binary search tree are labelled with the same
value. The binary search tree property is an example of a representation
invariant on an underlying data structure. The underlying structure is a
binary tree with values at the nodes; the representation invariant isolates a
set of structures satisfying some additional, more stringent, conditions.

We may use a binary search tree to implement a dictionary as follows:

structure BinarySearchTree :> DICT =
struct
type key = string
type ’a entry = key * ’a

WORKING DRAFT MAY 17, 2005

31.3 Balanced Binary Search Trees 273

(* Rep invariant: ’a tree is a binary search tree *)
datatype ’a tree =

Empty |
Node of ’a tree * ’a entry * ’a tree

type ’a dict = ’a tree

exception Lookup of key

val empty = Empty

fun insert (Empty, entry) =
Node (Empty, entry, Empty)

| insert (n as Node (l, e as (k,), r), e’ as (k’,)) =
(case String.compare (k’, k)

of LESS => Node (insert (l, e’), e, r)
| GREATER => Node (l, e, insert (r, e’))
| EQUAL => n)

fun lookup (Empty, k) = raise (Lookup k)
| lookup (Node (l, (k, v), r), k’) =

(case String.compare (k’, k)
of EQUAL => v
| LESS => lookup (l, k’)
| GREATER => lookup (r, k’))

end

Notice that empty is defined to be a valid binary search tree, that insert
yields a binary search tree if its argument is one, and that lookup relies on
its argument being a binary search tree (if not, it might fail to find a key that
in fact occurs in the tree!). The structure BinarySearchTree is sealed with
the signature DICT to ensure that the representation type is held abstract.

31.3 Balanced Binary Search Trees

The difficulty with binary search trees is that they may become unbalanced.
In particular if we insert keys in ascending order, the representation is es-
sentially just a list! The left child of each node is empty; the right child is
the rest of the dictionary. Consequently, it takes O(n) time in the worse case
to perform a lookup on a dictionary containing n elements. Such a tree is
said to be unbalanced because the children of a node have widely varying
heights. Were it to be the case that the children of every node had roughly
equal height, then the lookup would take O(lg n) time, a considerable im-
provement.

MAY 17, 2005 WORKING DRAFT

274 31.3 Balanced Binary Search Trees

Can we do better? Many approaches have been suggested. One that
we will consider here is an instance of what is called a self-adjusting tree,
called a red-black tree (the reason for the name will be apparent shortly). The
general idea of a self-adjusting tree is that operations on the tree may cause
a reorganization of its structure to ensure that some invariant is maintained.
In our case we will arrange things so that the tree is self-balancing, meaning
that the children of any node have roughly the same height. As we just
remarked, this ensures that lookup is efficient.

How is this achieved? By imposing a clever representation invariant on
the binary search tree, called the red-black tree condition. A red-black tree
is a binary search tree in which every node is colored either red or black
(with the empty tree being regarded as black) and such that the following
properties hold:

1. The children of a red node are black.

2. For any node in the tree, the number of black nodes on any two paths
from that node to a leaf is the same. This number is called the black
height of the node.

These two conditions ensure that a red-black tree is a balanced binary
search tree. Here’s why. First, observe that a red-black tree of black height
h has at least 2h − 1 nodes. We may prove this by induction on the structure
of the red-black tree. The empty tree has black-height 1 (since we consider
it to be black), which is at least 21 − 1, as required. Suppose we have a red
node. The black height of both children must be h, hence each has at most
2h − 1 nodes, yielding a total of 2× (2h − 1) + 1 = 2h+1 − 1 nodes, which is
at least 2h − 1. If, on the other hand, we have a black node, then the black
height of both children is h− 1, and each have at most 2h−1 − 1 nodes, for
a total of 2× (2h−1 − 1) + 1 = 2h − 1 nodes. Now, observe that a red-black
tree of height h with n nodes has black height at least h/2, and hence has at
least 2h/2 − 1 nodes. Consequently, lg(n + 1) ≥ h/2, so h ≤ 2× lg(n + 1).
In other words, its height is logarithmic in the number of nodes, which
implies that the tree is height balanced.

To ensure logarithmic behavior, all we have to do is to maintain the
red-black invariant. The empty tree is a red-black tree, so the only question
is how to perform an insert operation. First, we insert the entry as usual
for a binary search tree, with the fresh node starting out colored red. In
doing so we do not disturb the black height condition, but we might intro-
duce a red-red violation, a situation in which a red node has a red child. We
then remove the red-red violation by propagating it upwards towards the

WORKING DRAFT MAY 17, 2005

31.3 Balanced Binary Search Trees 275

root by a constant-time transformation on the tree (one of several possibil-
ities, which we’ll discuss shortly). These transformations either eliminate
the red-red violation outright, or, in logarithmic time, push the violation
to the root where it is neatly resolved by recoloring the root black (which
preserves the black-height invariant!).

The violation is propagated upwards by one of four rotations. We will
maintain the invariant that there is at most one red-red violation in the tree.
The insertion may or may not create such a violation, and each propagation
step will preserve this invariant. It follows that the parent of a red-red vio-
lation must be black. Consequently, the situation must look like this. This
diagram represents four distinct situations, according to whether the up-
permost red node is a left or right child of the black node, and whether the
red child of the red node is itself a left or right child. In each case the red-
red violation is propagated upwards by transforming it to look like this.
Notice that by making the uppermost node red we may be introducing a
red-red violation further up the tree (since the black node’s parent might
have been red), and that we are preserving the black-height invariant since
the great-grand-children of the black node in the original situation will ap-
pear as children of the two black nodes in the re-organized situation. No-
tice as well that the binary search tree conditions are also preserved by this
transformation. As a limiting case if the red-red violation is propagated to
the root of the entire tree, we re-color the root black, which preserves the
black-height condition, and we are done re-balancing the tree.

Let’s look in detail at two of the four cases of removing a red-red vio-
lation, those in which the uppermost red node is the left child of the black
node; the other two cases are handled symmetrically. If the situation looks
like this, we reorganize the tree to look like this. You should check that the
black-height and binary search tree invariants are preserved by this trans-
formation. Similarly, if the situation looks like this, then we reorganize the
tree to look like this (precisely as before). Once again, the black-height and
binary search tree invariants are preserved by this transformation, and the
red-red violation is pushed further up the tree.

Here is the ML code to implement dictionaries using a red-black tree.
Notice that the tree rotations are neatly expressed using pattern matching.

structure RedBlackTree :> DICT =
struct
type key = string
type ’a entry = string * ’a

(* Inv: binary search tree + red-black conditions *)
datatype ’a dict =

MAY 17, 2005 WORKING DRAFT

images/rbt-red-red.gif
images/rbt-resolve.gif
images/rbt-ll.gif
images/rbt-rot.gif
images/rbt-lr.gif
images/rbt-rot.gif

276 31.3 Balanced Binary Search Trees

Empty |
Red of ’a entry * ’a dict * ’a dict |
Black of ’a entry * ’a dict * ’a dict

val empty = Empty

exception Lookup of key

fun lookup dict key =
let

fun lk (Empty) = raise (Lookup key)
| lk (Red tree) = lk’ tree
| lk (Black tree) = lk’ tree

and lk’ ((key1, datum1), left, right) =
(case String.compare(key,key1)
of EQUAL => datum1
| LESS => lk left
| GREATER => lk right)

in
lk dict

end

fun restoreLeft
(Black (z, Red (y, Red (x, d1, d2), d3), d4)) =

Red (y, Black (x, d1, d2), Black (z, d3, d4))
| restoreLeft

(Black (z, Red (x, d1, Red (y, d2, d3)), d4)) =
Red (y, Black (x, d1, d2), Black (z, d3, d4))

| restoreLeft dict = dict

fun restoreRight
(Black (x, d1, Red (y, d2, Red (z, d3, d4)))) =

Red (y, Black (x, d1, d2), Black (z, d3, d4))
| restoreRight

(Black (x, d1, Red (z, Red (y, d2, d3), d4))) =
Red (y, Black (x, d1, d2), Black (z, d3, d4))

| restoreRight dict = dict

fun insert (dict, entry as (key, datum)) =
let

(* val ins : ’a dict->’a dict insert entry *)
(* ins (Red) may have red-red at root *)
(* ins (Black) or ins (Empty) is red/black *)
(* ins preserves black height *)
fun ins (Empty) = Red (entry, Empty, Empty)
| ins (Red (entry1 as (key1, datum1), left, right)) =
(case String.compare (key, key1)

of EQUAL => Red (entry, left, right)
| LESS => Red (entry1, ins left, right)
| GREATER => Red (entry1, left, ins right))

WORKING DRAFT MAY 17, 2005

31.4 Abstraction vs. Run-Time Checking 277

| ins (Black (entry1 as (key1, datum1), left, right)) =
(case String.compare (key, key1)

of EQUAL => Black (entry, left, right)
| LESS => restoreLeft (Black (entry1, ins left, right))
| GREATER => restoreRight (Black (entry1, left, ins right)))

in
case ins dict
of Red (t as (, Red ,)) => Black t (* re-color *)
| Red (t as (, , Red)) => Black t (* re-color *)
| dict => dict

end

end

It is worthwhile to contemplate the role played by the red-black invariant
in ensuring the correctness of the implementation and the time complexity
of the operations.

31.4 Abstraction vs. Run-Time Checking

You might wonder whether we could equally well use run-time checks to
enforce representation invariants. The idea would be to introduce a “debug
flag” that, when set, causes the operations of the dictionary to check that the
representation invariant holds of their arguments and results. In the case of
a binary search tree this is surely possible, but at considerable expense since
the time required to check the binary search tree invariant is proportional
to the size of the binary search tree itself, whereas an insert (for example)
can be performed in logarithmic time. But wouldn’t we turn off the debug
flag before shipping the production copy of the code? Yes, indeed, but
then the benefits of checking are lost for the code we care about most! (To
paraphrase Tony Hoare, it’s as if we used our life jackets while learning
to sail on a pond, then tossed them away when we set out to sea.) By
using the type system to enforce abstraction, we can confine the possible
violations of the representation invariant to the dictionary package itself,
and, moreover, we need not turn off the check for production code because
there is no run-time penalty for doing so.

A more subtle point is that it may not always be possible to enforce
data abstraction at run-time. Efficiency considerations aside, you might
think that we can always replace static localization of representation errors
by dynamic checks for violations of them. But this is false! One reason is
that the representation invariant might not be computable. As an example,
consider an abstract type of total functions on the integers, those that are

MAY 17, 2005 WORKING DRAFT

278 31.4 Abstraction vs. Run-Time Checking

guaranteed to terminate when called, without performing any I/O or hav-
ing any other computational effect. It is a theorem of recursion theory that
no run-time check can be defined that ensures that a given integer-valued
function is total. Yet we can define an abstract type of total functions that,
while not admitting every possible total function on the integers as values,
provides a useful set of such functions as elements of a structure. By using
these specified operations to create a total function, we are in effect encod-
ing a proof of totality in the code itself.

Here’s a sketch of such a package:

signature TIF = sig
type tif
val apply : tif -> (int -> int)
val id : tif
val compose : tif * tif -> tif
val double : tif
...

end
structure Tif :> TIF = struct

type tif = int->int
fun apply t n = t n
fun id x = x
fun compose (f, g) = f o g
fun double x = 2 * x
...

end

Should the application of such some value of type Tif.tif fail to terminate,
we know where to look for the error. No run-time check can assure us that
an arbitrary integer function is in fact total.

Another reason why a run-time check to enforce data abstraction is im-
possible is that it may not be possible to tell from looking at a given value
whether or not it is a legitimate value of the abstact type. Here’s an exam-
ple. In many operating systems processes are “named” by integer-value
process identifiers. Using the process identifier we may send messages to
the process, cause it to terminate, or perform any number of other opera-
tions on it. The thing to notice here is that any integer at all is a possible
process identifier; we cannot tell by looking at the integer whether it is in-
deed valid. No run-time check on the value will reveal whether a given
integer is a “real” or “bogus” process identifier. The only way to know is

WORKING DRAFT MAY 17, 2005

31.4 Abstraction vs. Run-Time Checking 279

to consider the “history” of how that integer came into being, and what
operations were performed on it. Using the abstraction mechanisms just
described, we can enforce the requirement that a value of type pid, whose
underlying representation is int, is indeed a process identifier. You are
invited to imagine how this might be achieved in ML.

MAY 17, 2005 WORKING DRAFT

280 31.4 Abstraction vs. Run-Time Checking

WORKING DRAFT MAY 17, 2005

Chapter 32

Representation Independence
and ADT Correctness

This chapter is concerned with proving correctness of ADT implementa-
tions by exhibiting a simulation relation between a reference implemen-
tation (taken, or known, to be correct) and a candidate implementation
(whose correctness is to be established). The methodology generalizes Hoare’s
notion of abstraction functions to an arbitrary relation, and relies on Reynolds’
notion of parametricity to conclude that related implementations engender
the same observable behavior in all clients.

281

282

WORKING DRAFT MAY 17, 2005

Chapter 33

Modularity and Reuse

1. Naming conventions.

2. Exploiting structural subtyping (type t convention).

3. Impedance-matching functors.

283

284

WORKING DRAFT MAY 17, 2005

Chapter 34

Dynamic Typing and Dynamic
Dispatch

This chapter is concerned with dynamic typing in a statically typed lan-
guage. It is commonly thought that there is an “opposition” between statically-
typed languages (such as Standard ML) and dynamically-typed languages
(such as Scheme). In fact, dynamically typed languages are a special case of
statically-typed languages! We will demonstrate this by exhibiting a faith-
ful representation of Scheme inside of ML.

285

286

WORKING DRAFT MAY 17, 2005

Chapter 35

Concurrency

In this chapter we consider some fundamental techniques for concurrent
programming using CML.

287

288

WORKING DRAFT MAY 17, 2005

Part V

Appendices

289

The Standard ML Basis Library

The Standard ML Basis Library is a collection of modules providing a basic
collection of abstract types that are shared by all implementations of Stan-
dard ML. All of the primitive types of Standard ML are defined in struc-
tures in the Standard Basis. It also defines a variety of other commonly-
used abstract types.

Most implementations of Standard ML include module libraries imple-
menting a wide variety of services. These libraries are usually not portable
across implementations, particularly not those that are concerned with the
internals of the compiler or its interaction with the host computer system.
Please refer to the documentation of your compiler for information on its
libraries.

291

http://cm.bell-labs.com/cm/cs/what/smlnj/basis/pages/sml-std-basis.html

292

WORKING DRAFT MAY 17, 2005

Compilation Management

All program development environments provide tools to support building
systems out of collections of separately-developed modules. These tools
usually provide services such as:

1. Source code management such as version and revision control.

2. Separate compilation and linking to support simultaneous development
and to reduce build times.

3. Libraries of re-usable modules with consistent conventions for identify-
ing modules and their components.

4. Release management for building and disseminating systems for gen-
eral use.

Different languages, and different vendors, support these activities in dif-
ferent ways. Some rely on generic tools, such as the familiar Unix tools,
others provide proprietary tools, commonly known as IDE’s (integrated
development environments).

Most implementations of Standard ML rely on a combination of generic
program development tools and tools specific to that implementation of the
language. Rather than attempt to summarize all of the known implemen-
tations, we will instead consider the SML/NJ Compilation Manager (CM) as
a representative program development framework for ML. Other compil-
ers provide similar tools; please consult your compiler’s documentation for
details of how to use them.

35.1 Overview of CM

35.2 Building Systems with CM

293

294 35.2 Building Systems with CM

WORKING DRAFT MAY 17, 2005

Sample Programs

A number of example programs illustrating the concepts discussed in the
preceding chapters are available on the world-wide web at the following
URL:

http://www.cs.cmu.edu/~rwh/smlbook/examples

295

296

WORKING DRAFT MAY 17, 2005

Bibliography

[1] Emden R. Gansner and John H. Reppy, editors. The Standard ML Basis
Library. Cambridge University Press, 2000.

[2] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). MIT Press, 1997.

297

	Preface
	I Overview
	1 Programming in Standard ML
	1.1 A Regular Expression Package
	1.2 Sample Code

	II The Core Language
	2 Types, Values, and Effects
	2.1 Evaluation and Execution
	2.2 The ML Computation Model
	2.2.1 Type Checking
	2.2.2 Evaluation

	2.3 Types, Types, Types
	2.4 Type Errors

	3 Declarations
	3.1 Variables
	3.2 Basic Bindings
	3.2.1 Type Bindings
	3.2.2 Value Bindings

	3.3 Compound Declarations
	3.4 Limiting Scope
	3.5 Typing and Evaluation

	4 Functions
	4.1 Functions as Templates
	4.2 Functions and Application
	4.3 Binding and Scope, Revisited

	5 Products and Records
	5.1 Product Types
	5.1.1 Tuples
	5.1.2 Tuple Patterns

	5.2 Record Types
	5.3 Multiple Arguments and Multiple Results

	6 Case Analysis
	6.1 Homogeneous and Heterogeneous Types
	6.2 Clausal Function Expressions
	6.3 Booleans and Conditionals, Revisited
	6.4 Exhaustiveness and Redundancy

	7 Recursive Functions
	7.1 Self-Reference and Recursion
	7.2 Iteration
	7.3 Inductive Reasoning
	7.4 Mutual Recursion

	8 Type Inference and Polymorphism
	8.1 Type Inference
	8.2 Polymorphic Definitions
	8.3 Overloading

	9 Programming with Lists
	9.1 List Primitives
	9.2 Computing With Lists

	10 Concrete Data Types
	10.1 Datatype Declarations
	10.2 Non-Recursive Datatypes
	10.3 Recursive Datatypes
	10.4 Heterogeneous Data Structures
	10.5 Abstract Syntax

	11 Higher-Order Functions
	11.1 Functions as Values
	11.2 Binding and Scope
	11.3 Returning Functions
	11.4 Patterns of Control
	11.5 Staging

	12 Exceptions
	12.1 Exceptions as Errors
	12.1.1 Primitive Exceptions
	12.1.2 User-Defined Exceptions

	12.2 Exception Handlers
	12.3 Value-Carrying Exceptions

	13 Mutable Storage
	13.1 Reference Cells
	13.2 Reference Patterns
	13.3 Identity
	13.4 Aliasing
	13.5 Programming Well With References
	13.5.1 Private Storage
	13.5.2 Mutable Data Structures

	13.6 Mutable Arrays

	14 Input/Output
	14.1 Textual Input/Output

	15 Lazy Data Structures
	15.1 Lazy Data Types
	15.2 Lazy Function Definitions
	15.3 Programming with Streams

	16 Equality and Equality Types
	17 Concurrency

	III The Module Language
	18 Signatures and Structures
	18.1 Signatures
	18.1.1 Basic Signatures
	18.1.2 Signature Inheritance

	18.2 Structures
	18.2.1 Basic Structures
	18.2.2 Long and Short Identifiers

	19 Signature Matching
	19.1 Principal Signatures
	19.2 Matching
	19.3 Satisfaction

	20 Signature Ascription
	20.1 Ascribed Structure Bindings
	20.2 Opaque Ascription
	20.3 Transparent Ascription
	20.4 Transparency, Opacity, and Dependency

	21 Module Hierarchies
	21.1 Substructures

	22 Sharing Specifications
	22.1 Combining Abstractions

	23 Parameterization
	23.1 Functor Bindings and Applications
	23.2 Functors and Sharing Specifications
	23.3 Avoiding Sharing Specifications

	IV Programming Techniques
	24 Specifications and Correctness
	24.1 Specifications
	24.2 Correctness Proofs
	24.3 Enforcement and Compliance

	25 Induction and Recursion
	25.1 Exponentiation
	25.2 The GCD Algorithm

	26 Structural Induction
	26.1 Natural Numbers
	26.2 Lists
	26.3 Trees
	26.4 Generalizations and Limitations
	26.5 Abstracting Induction

	27 Proof-Directed Debugging
	27.1 Regular Expressions and Languages
	27.2 Specifying the Matcher

	28 Persistent and Ephemeral Data Structures
	28.1 Persistent Queues
	28.2 Amortized Analysis

	29 Options, Exceptions, and Continuations
	29.1 The n-Queens Problem
	29.2 Solution Using Options
	29.3 Solution Using Exceptions
	29.4 Solution Using Continuations

	30 Higher-Order Functions
	30.1 Infinite Sequences
	30.2 Circuit Simulation

	31 Data Abstraction
	31.1 Dictionaries
	31.2 Binary Search Trees
	31.3 Balanced Binary Search Trees
	31.4 Abstraction vs. Run-Time Checking

	32 Representation Independence and ADT Correctness
	33 Modularity and Reuse
	34 Dynamic Typing and Dynamic Dispatch
	35 Concurrency

	V Appendices
	The Standard ML Basis Library
	Compilation Management
	35.1 Overview of CM
	35.2 Building Systems with CM

	Sample Programs

