
COMP 523: Language-based security

Brigitte Pientka
Winter 2008

Exercise 2

The big-step operational semantics we have discussed so far is not very efficient
in the sense that it re-evaluates expressions although they are already values.
Consider for example the expression: (lam x. (s x)) (s (s z)). Using the rules of
the big-step semantics the expression (s (s z)) will be evaluated twice.

Explore an alternative operational semantics in which expressions that are
known to be values (since they have been evaluated) are not evaluated again.
State and prove in which way the new semantics is equivalent to old one.

Hint: It may be necessary to extend the language of expressions or explicitly
separate the language of values from the language of expressions).

Solution

We solve this problem in two steps: First, we define the new semantics in which
any expression which has already been evaluated is marked by a new constructor
vl , and second we show that the new and the original semantics are equivalent.
Before we actually define the new semantics, let us clarify the equivalence relation
between new and original semantics.

As a first approximation, we might say two semantics are equivalent if any
expression e which evaluates to some value v in the original semantics evaluates
to the same value v in the new semantics (and vice versa). However, the ex-
pressions of the original semantics and the new semantics need not be the same.
Similarly, the definition of values in the original and new semantics need not be
identical.

For example, consider the evaluation of the following expression in the new
semantics: (lam x.lam y.y x) z The return value will be lam y.y (vl z) where
z is marked by vl indicating that z is already a value. In the original semantics,
(lam x.lam y.y x) z evaluates to lam y.y z. Clearly the value lam y.y (vl z) is
not identical to the value lam y.y z. Moreover, the evaluation of (lam x.lam y.y x) z
might be part of a larger computation of an expression like the following:

(lam x.lam y.y x) z (lam w.w)

Therefore intermediate steps of this evaluation require us to evaluate expres-
sions where vl v occurs as a subexpression. This example illustrates that the
relationship between expressions and values of the original and new semantics is
not trivial.

Therefore, we generalize our notion of equivalence. Two semantics are equiv-
alent if evaluating an expression in the new semantics simulates the evaluation
in the original semantics, and vice versa. This technique is called bisimulation
and is illustrated in the following commutative diagram.

e

F W

v

?

C : e
e

 e′

-
E : e′

v

→֒ v′

6
C′ : v

v

 v′

-D : e →֒ v

Fig. 1. Bisimulation

D represents the evaluation in the original semantics, while E denotes the
evaluation in the new semantics. The relationship between expressions of the
original and new semantics is described explicitly by e

e

 e′. The relation v
v

 v′

represents the correspondence between values in the original and new semantics.

To show soundness (see figure 2), we assume that we have an evaluation

E : e′
v

→֒ v′ in the new semantics and a relation C between expressions e′ of the
new semantics and expressions e of the original semantics. Given this evaluation
E and the relation C, we construct a derivation for D : e →֒ v in the original
semantics and a conversion C′ of v to v′.

e

F W

v

?

C : e
e

 e′

-
E : e′

v

→֒ v′

..

..

..

..6
C′ : v

v

 v′

. .-D : e →֒ v

Fig. 2. Soundness

Theorem 1 (Soundness). If E : e′
v

→֒ v′ and C : e
e

 e′ then there exists an

evaluation D : e →֒ v and C′ : v
v

 v′.

For completeness (see figure 3), we prove the opposite direction. Given an
evaluation D : e →֒ v in the original semantics and relation C between e and e′,

we construct a derivation E : e′
v

→֒ v′ and v′ corresponds to v.

e

F W

v

?

C : e
e

 e′

. .-
E : e′

v

→֒ v′

..

..

..

.

.6
C′ : v

v

 v′

-D : e →֒ v

Fig. 3. Completeness

Theorem 2 (Completeness). If D : e →֒ v and C : e
e

 e′ then there exists

an evaluation E : e′
v

→֒ v′ and C′ : v
v

 v′.

Expressions and Values in the new semantics

We start with the definition for expressions. To avoid confusion between expres-
sions of the original and new semantics, we distinguish between them syntacti-
cally.

Expressions

e′ ::= z | s e′ | case e′
1

of z∗ ⇒ e′
2
| s∗ x ⇒ e′

3
| lam x.e′ | e′

1
e′
2
| vl v′ | . . .

The next question which arises is whether we want to distinguish between
values and expression in the new semantics. Recall that in the original semantics
we introduced a judgement to identify expressions which are values, but we did
not separate expressions and values into two different syntactic categories. In the
new semantics it is useful (but not necessary) to distinguish between expressions
and values. One reason to enforce this distinction is, that the additional struc-
ture will give us more guidance during the development of the new semantics.
Therefore we define values separately from expressions.

Values

v′ ::= z∗ | s∗ v′ | lam∗ x.e′ | . . .

Next, we need to decide how expressions and values fit together. Clearly, the
constructor vl should take values as arguments and coerce values to expressions.

The more interesting question is whether we want to make the relationship
between expressions and values in other expressions like lam x.e more explicit.
In fact our intention is to substitute a value for the bound variable x in the
body e of the function lam x.e and not arbitrary expressions. Similarly, when
evaluating the case-statement case e′1 of z∗ ⇒ e′2 | s

∗ x ⇒ e′3, we substitute a
value for x in e′

3
. Therefore, we require any bound variable to stand for a value.

To represent the identity function for example, we write lam x.(vl x).

Evaluation rules

The judgement e′
v

→֒ v′ takes expressions e′ and returns their value v′. We only
present a few evaluation rules to illustrate the main principle.

ev zv

z
v

→֒ z
∗

e′
v

→֒ v′

ev sv

s e′
v

→֒ s
∗ v′

e1

v

→֒ z
∗ e2

v

→֒ v
ev case zv

case e1 of z
∗ ⇒ e2 | s

∗ x ⇒ e3

v

→֒ v

e1

v

→֒ s
∗ v2 [v2/x]e3

v

→֒ v
ev case sv

case e1 of z
∗ ⇒ e2 | s

∗ x ⇒ e3

v

→֒ v

ev lamv

lam x.e
v

→֒ lam
∗ x.e

e1

v

→֒ lam
∗ x.e′ e2

v

→֒ v2 [v2/x]e′
v

→֒ v
ev app

v

e1e2

v

→֒ v

e1

v

→֒ v1 [v1/x]e2

v

→֒ v
ev letvv

let val x = e1 in e2

v

→֒ v

Conversions

Next, we explicitly define the relation of expressions in the original and new
semantics. The interesting case is the relation between functions in both seman-
tics. Let us recall again the previous example. The expression lam y.y (vl z) in
the new semantics should be related to lam y.y z in the original semantics. This
example illustrates two important aspects of the conversion: First, we need to
convert the function body. Second, the bound variable y in lam y.y (vl z) repre-
sents a value, while the bound variable y in lam y.y z denotes an expression.
Let us rename the variable y to x in lam y.y z to avoid confusion. To convert
lam x.x z to lam y.y (vl z), we convert x z to y (vl z) under the assumption
that the expression x converts to the value y where x and y are new parameters.
We can represent this idea using hypothetical and parametric judgements. The
inference rule c lam is parametric in x and y and hypothetical in u : x

v

 y.

c z

z
e

 z

e
e

 e′
c s

s e
e

 s e′

e1

e

 e1

′ e2

e

 e2

′

c app

e1 e2

e

 e′1 e′2

v
v

 v′

c vl
v

e

 vl v′

e1

e

 e1

′ e2

e

 e2

′

u
x

v

 y
...

e3

e

 e3
′

c case z

case e1 of z ⇒ e2 | s x ⇒ e3

e

 case e′1 of z
∗ ⇒ e′2 | s

∗ y ⇒ e′3

u
x

v

 y
...

e
e

 e′

c lamx,y,u

lam x.e
e

 lam y.e′

Note that the inference system is non-deterministic. In the case where e is
also a value two rules apply. For example, to convert s e we can apply the c s and
th c vl rule. We also note that this conversion between expressions of the original
and new semantics can be used in both directions, i.e. to translate expressions
of the original semantics to the expressions in the new semantics (and vice versa).

The conversions between values of the original and new semantics follows the
same principle as above.

cv z

z
v

 z
∗

e
v

 v′

cv s

s e
v

 s v′

u
x

v

 y
...

e
e

 e′

cv lamx,y,u

lam x.e
v

 lam y.e′

Completeness Proof

After carefully designing the evaluation and conversion rules, we prove equiv-

alence of the new and the original semantics. We focus on the completeness
proof.

Theorem 3. If D : e →֒ v and C : e
e

 e′ then E : e′
v

→֒ v′ and C′ : v
v

 v′.

The proof is by induction on the structure of D. We will consider all possible
cases for D, and apply inversion on C. As pointed out earlier, inversion on e

e

 e′

is not unique. Consider the following case for ev s rule.

D =

D1

e →֒ v
ev s

s e′ →֒ v

By assumption we know C : s e
e

 s e′. Note that two possible rules apply
c vl and c s depending on whether s e is already a value or not. This phenomena
will occur for any expression which is also a value and we have one general case
to cover this possibility.

D = e →֒ v C :
e

v

 v′
c vl

e
e

 vl v′

Note, that we will not be able to prove this case directly and we leads to the
following lemma:

Lemma 1. If D : e →֒ v and C : e
v

 v′ then C′ : v
v

 v′.

Proof. By Induction on the structure of D.

In the following, we consider a few characteristic cases of the completeness
proof in detail.

Proof.
The proof of the completeness theorem follows by induction on the structure of D

Case D = e →֒ v

C : e
e

 vl v′ by assumption

C : e
v

 v′ by inversion on c vl

C′ : v
v

 v′ by lemma

E : vl v′
e

 v′ by ev vl

Case D = ev z
z →֒ z

By assumption we know C : z
e

 z. Then by rule ev zv we know E : z
v

→֒ z∗

and by rule cv z we know C′ : z
v

 z∗.

Case D =

D1

e →֒ v
ev s

s e′ →֒ v

C : s e
e

 s e′ by assumption

C1 : e
e

 e′ by inversion on c s

E1 : e′
v

→֒ v′ by IH on D1

C′

1
: v

v

 v′

E : s e′
v

→֒ s∗ v′ by ev sv

C′ : s v
v

 s∗ v′ by cv s

Case D = ev lam
lam x.e →֒ lam x.e

C : lam x.e
e

 lam y.e′ by assumption

C1 : u : x
v

 y ⊢ e
e

 e′ by inversion on c lam

C′ : lam x.e
v

 lam∗ y.e′ by rule cv lam on C1

E : lam y.e′
v

→֒ lam∗ y.′ by rule ev lamv

Case D =

D1

e1 →֒ lam x.e
D2

e2 →֒ v2

D3

[v2/x]e →֒ v
ev app

(e1 e2) →֒ v

C : e1 e2

e

 e′1 e′2 by assumption

C1 : e1

e

 e1
′ by inversion on C using c app

C2 : e2

e

 e2
′

E1 : e′1
v

→֒ v′1 by IH on D1, C1

C′

1 : lam x.e
e

 v1

C′

3 : u : x
v

 y ⊢ e
e

 e′ and by inversion on C′

1
using c lam

v1 = lam y.e′

E2 : e′2
v

→֒ v′2 by IH on D2, C2

C′

2 : v2

v

 v′2
C′

4
: [v2/x]e

e

 [v′
2
/y]e′ by substitution lemma C′

3
, C′

2

E3 : [v′2/y]e′
v

→֒ v′ by IH on D3, C
′

4

C′ : v
v

 v′

E : e′1e
′

2

v

→֒ v′ by E1, E2, E3 using ev app
v

Soundness Proof

Theorem 4. If E : e′
v

→֒ v′ and C : e
e

 e′ then D : e →֒ v and C′ : v
v

 v′.

Proof. The proof is by induction on the structure of E . The proof follows the
same principles as the completeness proof.

Implementation

The implementation in Twelf covers the full mini-ml language and all the cases
for the completeness and soundness proofs.

Solution without separating values and expressions

Of course there are many solutions to the problem stated in exercise 2.7. To
highlight some of the advantages of the presented solution, we briefly outline a
solution which does not explicitly distinguish between values and expressions and
compare it to the solution presented earlier. Any expression which has already
been evaluated and is substituted into another expression is marked with vl .

ev zv

z
v

→֒ z

e′
v

→֒ v′

ev sv

s e′
v

→֒ (s v′)

e1

v

→֒ z e2

v

→֒ v
ev case zv

case e1 of z
∗ ⇒ e2 | s

∗ x ⇒ e3

v

→֒ v

e1

v

→֒ (s v2) [vl v2/x]e3

v

→֒ v
ev case sv

case e1 of z
∗ ⇒ e2 | s

∗ x ⇒ e3

v

→֒ v

ev lamv

lam x.e
v

→֒ lam x.e

e1

v

→֒ lam x.e′ e2

v

→֒ v2 [vl v2/x]e′
v

→֒ v
ev app

v

e1e2

v

→֒ v

e1

v

→֒ v1 [vl v1/x]e2

v

→֒ v
ev letvv

let val x = e1 in e2

v

→֒ v

ev vl

vl v
v

→֒ v

We only show the conversion rule for functions.

u
x

e

 y
...

e
e

 e′

c lamx,y,u

lam x.e
e

 lam y.e′

We will discuss the completeness proof next.

Theorem 5 (Completeness). If D : e →֒ v and C : e
e

 e′ then there exists

an evaluation E : e′
v

→֒ v′ and C′ : v
e

 v′.

Proof. Proof by induction on the structure of D. We will only consider the case
for ev app rule.

Case D =

D1

e1 →֒ lam x.e
D2

e2 →֒ v2

D3

[v2/x]e →֒ v
ev app

(e1 e2) →֒ v

C : e1 e2

e

 e′1 e′2 by assumption

C1 : e1

e

 e1
′ by inversion on C using c app

C2 : e2

e

 e2
′

E1 : e′1
v

→֒ v′1 by IH on D1, C1

C′

1 : lam x.e
e

 v′1

We would like to apply inversion on C′

1
to determine the value v1. However,

two inference rules could have been applied: c lam and c vl. In fact there
is a hidden invariant that v1 must be a value where values are defined as
before except that lam x.e now may contain vl . To appeal to the inversion
principle, we need to prove first a value soundness theorem about the new
semantics. Therefore we know that v1 must be a value and the only possible
rule which could have been applied to C′

1
where v′

1
is a value is the c lam

rule.

v1 = lam y.e′

C′

3
: u : x

e

 y ⊢ e
e

 [vl y/y]e′ and by inversion on C′

1
using c lam

E2 : e′2
v

→֒ v′2 by IH on D2, C2

C′

2 : v2

e

 v′2
C′

4 : [v2/x]e
e

 [vl v′2/y]e′ by substitution lemma C′

3
, C′

2

E3 : [v′
2
/y]e′

v

→֒ v′ by IH on D3, C′

4

C′ : v
e

 v′

E : e′1e
′

2

v

→֒ v′ by E1, E2, E3 using ev app
v

Case D = e →֒ v

C : e
e

 vl e′ by assumption

To prove this case, we need to first show that e and e′ are values. Second we
prove that values evaluate to themselves in both semantics. Therefore there

exists a E : e′
v

→֒ e′. By assumption we know C : e
e

 (vle′). By inversion on

C, we obtain C′ : e
e

 e′ which is what we needed to prove.

There are a lot of choices to be made when designing a new semantics. The
distinction between values and expressions in the first solution provides guidance
through the design and development of the semantics and proofs about them.
Implementing the semantics and proofs is relatively straightforward if structural
properties are exposed. In addition, type checking will enforce invariants such
as the value soundness property.

If we do not distinguish between expressions and values, we must prove prop-
erties like value soundness separately. In addition, the appeal to the inversion
principle is not straightforward and we need to prove additional lemmata to han-
dle the c vl case. This causes considerable overhead. Finally, it is easy to make
mistakes if we do not distinguish between values and expressions.

