Assignment 3 — COMP 523
Language-based security

Brigitte Pientka

Winter 2008
Due Feb 21st 2008

In many functional programming languages, we find support for defining
functions via pattern matching. In this exercise, we explore the use of pattern
matching. For example, we can write a simple function which accepts as input
a tuple and adds up both parts as follows in SML: fn (x,y) => x + y.

Unfortunately, we cannot write functions via pattern matching in the
language we have defined so far. To allow for pattern matching we change
the rule for A-abstraction and application.

Terms to=...\tita| (fnpr=ti|...| pn=tn)
Patterns p ::= x| true | false | z | succ (p) | (p1, p2)

The goal is to replace the case-expression for natural numbers and the first
and second projections for tuples by this general pattern matching facility.
To illustrate, we define a function and and a function pred as follows:

and = fn (true,z) = z | (false,z) = false
pred =fnz=z|succ (z) ==z

When we apply for example (true,false) to the function and we will
match (true, false) against the pattern (true,x). This will yield an instan-
tiation for x s.t. these two terms are equal. In this case z will be instantiated
with false.

15 pts First we consider valid patterns. A valid pattern must be linear,
i.e. every variable occurring in a pattern must occur uniquely and only
once. For example, z is clearly linear. So is succ (x), or (z,succ (y)).
However, (x,succ (z)) is not linear, since = occurs twice.

Using the judgement I' F p linear, define via axioms and inference rules
whether a given pattern is linear. You can think of I' as a list of
variables occurring in p, i.e. I' =x,...,2,.

Hint: Note that you can simply split a context by writing I'y, I's.

15 pts Define the typing rule for (fnp; = ¢, | ... | pn, = t,). Since we are
defining a function, the type of this term should be 77 — T5. In fact
for every branch p; = t;, we must have that p; has type T} and the
body of the function t; has type T>. But wait, patterns may contain
variables and simply checking that p; has type 77 is not sufficient —
while verifying that p; has type T} we must also extract the type of the
variables occurring in p;. This is achieved by the judgement p; : 77 /T".

So the typing rule for our new functions which support pattern match-
ing looks as follows:

for every i p;: Ty /T ?
Fl_(fnplitlyypnitn)TlﬁTg

Your task is to first define p : T/ T, s.t. indeed the pattern p is linear
and has type T' in the typing context I'. We write I' to the right, to
emphasize this I' must be constructed and is not given as an input. This
will follow closely what you have done already in the first question.

Second, complete the rule above by filling in the correct second premise.

30 pts Matching is obviously an important operation which we will use in
the operational semantics. We say a term ¢ matches a pattern p if

e t is ground, i.e. t does not contain any free variables, and

e there exists an instantiation @ for the free variables in the pattern
ps.t. [flp=t.

Some examples:

match(z, z) = [z/x]
match((succ (z), (true,z)), (succ (x),y)) = [z/z,(true,z)/y]
match((succ (z), true), (succ (z),false)) = no match

We only allow matching between a value and a pattern if both have
the same type. Moreover, you can assume that the pattern p is linear,
i.e. every variable in p occurs only once.

15pts Define match(t, p) = 0 using axioms and inference rules. Remem-
ber that p is linear.

15pts Prove the soundness of your algorithm by showing the following:

If-F¢:Tandp:T /) x:Th..., 2z, T, and
match(t,p) =0 s.t. 0 = [v1/x1,...,0,/x,]
then for every v; we have - - v; : T; and t = [0]p.

20 pts Define small-step evaluation rules for evaluating a function applica-
tion. — Do we need any special assumptions about the different pat-
terns to ensure our language is deterministic? What about if we want
to ensure progress? State clearly the assumptions you are making, and
devise a check which will ensure that these assumptions are satisfied.

20 pts Prove type preservation for this extension.

