
Assignment 2 – COMP 523
Language-based security

Brigitte Pientka

Winter 2008
Due Feb 7th 2008

1 Lazy evaluation (60 pts)

Consider the following extension of Mini-ML, which supports lazy evaluation
via a new type susp τ and the two new expressions delay e and let delay x =
e1 in e2. delay e suspends the evaluation of e. let delay x = e1 in e2 allows us
to continue evaluating an expression e1 which has been suspended.

Typing Rules:

Γ ` e : τ
Γ ` delay e : susp τ

Γ ` e1 : susp τ ′ Γ, x:τ ′ ` e2 : τ

Γ ` let delay x = e1 in e2 : τ

Evaluation Rules (Big-step):

delay e ⇓ delay e

e1 ⇓ delay e′ [e′/x]e2 ⇓ v

let delay x = e1 in e2 ⇓ v

1. (10 pts) Define a function force which has type susp α → α for a type
variable α. force e forces the evaluation of e, i.e. e will be evaluated.

2. (10 pts) Prove that force(delay (e)) evaluates to v if and only if e eval-
uates to v according to our new operational semantics.

3. (10pts) Give the type preservation proof for the rules above.

4. (10 pts) Show how type preservation breaks down when we choose the
following typing rule:

Γ ` e1 : susp τ ′ Γ ` [e1/x]e2 : τ

Γ ` let delay x = e1 in e2 : τ

1

5. (10 pts) Extend the values for Mini-ML and prove value-soundness for
the new constructs, i.e. if e ⇓ v then v is a value.

6. (10 pts) Another choice of primitives to model suspension are delay e
and force e. State the appropriate evaluation rule for force e and com-
pare this to the primitives delay e and let delay x = e1 in e2 used above.
Do you see any advantages or disadvantages?

2 Case-statement(40 points)

An alternative definition for numbers is as follows:

Terms t ::= x | z | succ t | (case t of z ⇒ t1 | succ x ⇒ t2)
Types T ::= nat

Here we can analyze numbers using a case-expression where we pattern
match against the possible shapes of numbers. So, if the subject t of the case-
expression case t of z ⇒ t1 | succ x ⇒ t2 evaluates to z then we choose the first
branch t1. Otherwise t must evaluate to some value of the form succ v. In
this case we match succ x against succ v which will yield the instantiation
of x to v. We then proceed to evaluate the second branch t2 under this
instantiation by applying the substitution [v/x] to t2. The evaluation for
these terms can be then defined as follows:

z ⇓ z
t ⇓ v

succ t ⇓ succ v

t ⇓ z t1 ⇓ v

case t of z ⇒ t1 | succ x ⇒ t2 ⇓ v

t ⇓ succ v2 [v2/x]t2 ⇓ v

case t of z ⇒ t1 | succ x ⇒ t2 ⇓ v

1. (5pts) Assuming we also have functions, function application, and booleans,
show how we can define functions for predecessor and iszero as abbre-
viations.

2. (5pts) Define the appropriate typing rule for the case-expression.

3. (10pts) Show that type preservation holds for this rule.

2

4. (10pts) Give the corresponding small-step evaluation rules.

5. (10 pts) Show progress holds for the small step semantics you propose.

3

