Sample Solution to COMP 523 Assignment 2

Joshua Dunfield
McGill University

February 10, 2008

1 Lazy evaluation
1.1 Force function (10pts)
force = Ax.(letdelayy=xiny)
Typing derivation (not required):

XISUSP & € X:SUSp & Yy:x € (xisusp &, y:x)

x:susp o - x : susp xisusp &, y:x Fy o

x:susp x - letdelayy=xiny: «

-+ Ax. (let delayy =xiny) :susp &« — «

force
Remark 1. Several people wrote something like
force (x) = Ax. (letdelayy=xiny)

which says thaforce is parameterized by some but a lambda-expression is already parameterized, inde&ts the
point of being a function.
Several people also took an accidental (and incorrect}ahidsy saying something like

force (delay e) = let delayy =delayeiny
But the term on the lefforce (delay e), simply uses a@mbbreviation, “force”; force (delay e) is equal only to

(Ax. let delay y = x in y) (delay e)

1.2 Inverse (10pts)
Show thaforce (delay e) | v iff e || v (that is,force is the inverse odielay).

1.2.1 Right-to-left: If e || v then force (delay e) || v

Proof. By the first big-step rule in the questiodelay e | delay e.
e | vis given. By definition of substitutiore, = [e/yly. Thereforde/yly | v.
Using the second big-step rule in the question gives

delay e |} delay e le/yly Jv
let delay y =delay einy {} v

1 LAZY EVALUATION 2

Again by definition of substitution(let delay y = delay e in y) = [(delay e)/x] (let delay y = x in y); substituting,
we get

[(delay e)/x] (let delayy =xiny) J v
We obtainedielay e |} delay e above. By the big-step rule for functions,

(Ax.let delay y =x iny) (delay e) | v O

force

1.2.2 Left-to-right; If force (delay e) |, vthene || v
Proof. Itis given thatforce (delay e) || v. We first expand our definition dérce :
(Ax.let delay y =x iny) (delay e) |} v

By inversion on the derivation of the above judgment, we hialgy e || v¢ for somev; andlet delayy=vyiny | v.
By inversion,v; = delay e. Substituting, we get

let delayy =delayeiny | v
which can only be derived with the second big-step rule gimeghe question; inverting that rule gives
delay e |l delaye; and [e;/yly J v
By inversion on the first judgmeng; = e, so the second judgmentfe/yly | v. By definition of substitution,

le/yly = e, soe |} v, which was to be shown. O

1.3 Type preservation (10pts)
Theorem 1. Ife{vand-+e:tthen-Fv:mT.

Proof. By induction on the derivation af |} v.

e CaseFirstrule: delay e’ | delay e’
—_— ——
e v

- delay e’ : T is given, and since = delay e’, we have F v : T, exactly what we needed to show.

ey J delay e’ le’/xles I v
e CaseSecond rule: let delay x =€y inez v

e

-k letdelayx=ejine; : T Given

-k ey :suspt’ By inversion on second typing rule
xt'Fe:T ditto
e; | delay e’ Subderivation
-k ey :suspt’ Above
-+ delay e’ : susp T’ By i.h.
el By inversion on first typing rule
xt'Fe:t Above
- le’/xlex:T By substitution lemma
le’/xlex J v Subderivation

Pyt By i.h. O

1 LAZY EVALUATION 3

Inducting on the derivation oft- e : T, as several people did, doesn’t work: in the “Second ruleécthe substitu-
tion lemma can give higger typing derivation. Think about the case wherhas an enormous typing derivation, and
e, is some variable; the derivation ofc:t’ - x : T/ is very short, but the substitution lemma produces the eaosm
derivation of- - e’ : t’. Inducting one | v avoids this, becaude’/x]e; | v isa subderivation o¢ || v.

1.4 Failure of type preservation under modified rule (10pts)

The problem is that the proposed rule substiteteswvhich is a suspensioner = delay e} for somee;—yet in the
evaluation rule, we substitute, the suspended expression. When we invert the rule in thef ptove, instead of
x:1’ - ez : T (the old rule), we would gett [e; /x]e; : T. This does not match the relevant evaluation subderivation
le’/x]e; : T, and we cannot apply the i.h.

A simple counterexample st delay x=delay e’ in x, wheree’ has typex. We can easily obtain [(delay e’)/x]x :
susp «, SO by the proposed rule- let delay x =delay e’ in x : susp . However, the operational semantics (supposing
e’ |l v') gives

let delay x = delay e’ in x | v’

(becauselelay e’ || delay e’ and[e’/x]x | v/), but- - v’ : &, not- - v’ : susp «.

1.5 Values (10pts)

From the first big-step evaluation rule given,

delay e |} delay e

it is apparent thatlelay e must be among the values: value soundness (which we're abdytto prove) says that
e1 | ez is derivable only ife, is a value. So we addklay e to the values.

Theorem 2(Value soundness)fe |l e’ then e’ isavalue.

Proof. By induction on the derivation of || e’.
We case-analyze the rule concluding that derivation, shgwie cases for the new rules.

e CaseFirstrule: delay ey | delay e;
—_— Y=
e e’
By our definition of valuesjelay e; is a value, which was to be shown.

’

e
e1 | delay e” le”/xles L 7V
e CaseSecond rule: letdelay x=ejinex | v
~—

e e’

We have a subderivation &” /x]e; |} e’. By i.h., e’ is a value, which was to be shown. O

1.6 Alternate primitives (10pts)
An appropriate evaluation rule fésrce e is:

el delay e’ e v
forcee || v

1The statement in the assignment, &if|l v thenv is a value”, is problematicy is a value just by virtue of being written with the letteand
not, say,e’—but that is not what was intended.

2 CASE EXPRESSION 4

Where we wrotdet delay x = e in e, before, we can writ¢Ax. e,) (force e;) and produce the same result. In that
sense, the two sets of primitives are equivalent. But we tssmask whether the same terms are evaluated. The given
rule for let delay is call-by-name, in the sense that it does not force evalnaif the delayed term; for example, in
let delay x = delay e in w, the variablex does not appear iw, and soe; will not be evaluated at all. If functions
are call-by-name, this is equivalent {tdx. e,) (force e1). However, with call-by-value functiong; will always be
evaluated ifAx. e;) (force eq), unlikelet delay.

2 Case expression
2.1 Predecessor and iszero (5pts)

pred = Ax.(casexof z= z | succx’ = x')

iszero = Ax. (case x of z = true | succ x’ = false)

2.2 Typing rule (5pts)

I'Et:NAT et T DX:NAT Hto: T
Fcasetof z=t1 lsuccx =1t : T

2.3 Type preservation (10pts)
Theorem 3. Ift { vand-+t:Tthen-Fv:T.

Proof. By induction on the derivation af || v.
There are four “new” cases; we show the two that are relevamur new typing rule. In both cases, =
case tp of z = t1 | succ x = t, and we obtain the following by inversion on the new typingerul

- Fto : NAT Rt T X:NAT Fto: T

tollz tilv
e Case: casetpof z=ty lsuccx =1t v

-Ft;: T Above
t; J v Subderivation
v T By i.h.

to | succ vy vo/x]t2 v
e Case: casetpofz=t; lsuccx=1t, v

to { succv, Subderivation

- to 1 NAT Above
- vy 1 NAT By i.h.
XINAT Fto: T Above

F [va/x]t2: T By substitution lemma
vo/x]ta v Subderivation

v T By i.h. O

2 CASE EXPRESSION 5

2.4 Small-step evaluation (10pts)

t—t
casetof z=t1 lsuccx =1t — caset’of z=t; |succx =t;

casezofz=t; lsuccx=t, — casesuccvof z= t; lsuccx =t — [v/x]t2

2.5 Progress (10pts)
Theorem 4. If - -t : T then either t isa value or thereexists t’ suchthat t — t’.

Proof. By structural induction on the derivation of t: T.
We show the “new” case for our typing rule above.

-F to : NAT Et T XNAT Hto: T
e Case: ‘Fcasetpofz=ty lsuccx=1t, : T

We have a subderivation of- to : NAT. By i.h., eithert, is a value or there existg such that, — t}. The
second case is easier, so we give it first.

—If to = ty: Lett’ = caset]of z= t1 | succ x = t,. By our first small-step rule;, — t’, which was
to be shown.
— If to is a value, then by inversion an- ty : NAT, it must be either or succ v for somev.

x If tp =z: Lett’ =1t;. By our second small-step rule— t;, which was to be shown.

x If to = succv: Lett’ = [v/x]t;. By our third small-step rulet — [v/x]t2, which was to be
shown. O

	Lazy evaluation
	Force function (10pts)
	Inverse (10pts)
	Right-to-left: If e "362B37F v then force (delay e) "362B37F v
	Left-to-right: If force (delay e) "362B37F v then e "362B37F v

	Type preservation (10pts)
	Failure of type preservation under modified rule (10pts)
	Values (10pts)
	Alternate primitives (10pts)

	Case expression
	Predecessor and iszero (5pts)
	Typing rule (5pts)
	Type preservation (10pts)
	Small-step evaluation (10pts)
	Progress (10pts)

