
Sample Solution to COMP 523 Assignment 2

Joshua Dunfield
McGill University

February 10, 2008

1 Lazy evaluation

1.1 Force function (10pts)

force = λx. (let delay y = x in y)

Typing derivation (not required):

x:susp α ∈ x:susp α

x:susp α ⊢ x : susp α

y:α ∈ (x:susp α, y:α)

x:susp α, y:α ⊢ y : α

x:susp α ⊢ let delay y = x in y : α

· ⊢ λx. (let delay y = x in y)
︸ ︷︷ ︸

force

: susp α → α

Remark 1. Several people wrote something like

force (x) = λx. (let delay y = x in y)

which says thatforce is parameterized by somex; but a lambda-expression is already parameterized, indeed, that’s the
point of being a function.

Several people also took an accidental (and incorrect) shortcut by saying something like

force (delay e) = let delay y = delay e in y

But the term on the left,force (delay e), simply uses anabbreviation, “force”; force (delay e) is equal only to

(λx. let delay y = x in y) (delay e)

1.2 Inverse (10pts)

Show thatforce (delay e) ⇓ v iff e ⇓ v (that is,force is the inverse ofdelay).

1.2.1 Right-to-left: If e ⇓ v then force (delay e) ⇓ v

Proof. By the first big-step rule in the question,delay e ⇓ delay e.
e ⇓ v is given. By definition of substitution,e = [e/y]y. Therefore[e/y]y ⇓ v.
Using the second big-step rule in the question gives

delay e ⇓ delay e [e/y]y ⇓ v

let delay y = delay e in y ⇓ v

1

1 LAZY EVALUATION 2

Again by definition of substitution,(let delay y = delay e in y) = [(delay e)/x] (let delay y = x in y); substituting,
we get

[(delay e)/x] (let delay y = x in y) ⇓ v

We obtaineddelay e ⇓ delay e above. By the big-step rule for functions,

(λx. let delay y = x in y
︸ ︷︷ ︸

force

) (delay e) ⇓ v

1.2.2 Left-to-right: If force (delay e) ⇓ v then e ⇓ v

Proof. It is given thatforce (delay e) ⇓ v. We first expand our definition offorce :

(λx. let delay y = x in y) (delay e) ⇓ v

By inversion on the derivation of the above judgment, we havedelay e ⇓ v1 for somev1 andlet delay y = v1 in y ⇓ v.
By inversion,v1 = delay e. Substituting, we get

let delay y = delay e in y ⇓ v

which can only be derived with the second big-step rule givenin the question; inverting that rule gives

delay e ⇓ delay e1 and [e1/y]y ⇓ v

By inversion on the first judgment,e1 = e, so the second judgment is[e/y]y ⇓ v. By definition of substitution,
[e/y]y = e, soe ⇓ v, which was to be shown.

1.3 Type preservation (10pts)

Theorem 1. If e ⇓ v and · ⊢ e : τ then · ⊢ v : τ.

Proof. By induction on the derivation ofe ⇓ v.

• CaseFirst rule: delay e ′

︸ ︷︷ ︸
e

⇓ delay e ′

︸ ︷︷ ︸
v

· ⊢ delay e ′ : τ is given, and sincev = delay e ′, we have· ⊢ v : τ, exactly what we needed to show.

• CaseSecond rule:
e1 ⇓ delay e ′ [e ′/x]e2 ⇓ v

let delay x = e1 in e2︸ ︷︷ ︸
e

⇓ v

· ⊢ let delay x = e1 in e2 : τ Given
· ⊢ e1 : susp τ ′ By inversion on second typing rule

x:τ ′ ⊢ e2 : τ ditto

e1 ⇓ delay e ′ Subderivation
· ⊢ e1 : susp τ ′ Above
· ⊢ delay e ′ : susp τ ′ By i.h.
· ⊢ e ′ : τ ′ By inversion on first typing rule

x:τ ′ ⊢ e2 : τ Above
· ⊢ [e ′/x]e2 : τ By substitution lemma

[e ′/x]e2 ⇓ v Subderivation
· ⊢ v : τ By i.h.

1 LAZY EVALUATION 3

Inducting on the derivation of· ⊢ e : τ, as several people did, doesn’t work: in the “Second rule” case, the substitu-
tion lemma can give abigger typing derivation. Think about the case whene ′ has an enormous typing derivation, and
e2 is some variablex; the derivation ofx:τ ′ ⊢ x : τ ′ is very short, but the substitution lemma produces the enormous
derivation of· ⊢ e ′ : τ ′. Inducting one ⇓ v avoids this, because[e ′/x]e2 ⇓ v is a subderivation ofe ⇓ v.

1.4 Failure of type preservation under modified rule (10pts)

The problem is that the proposed rule substitutese1, which is a suspension—e1 = delay e ′

1
for somee ′

1
—yet in the

evaluation rule, we substitutee ′

1
, the suspended expression. When we invert the rule in the proof above, instead of

x:τ ′ ⊢ e2 : τ (the old rule), we would get· ⊢ [e1/x]e2 : τ. This does not match the relevant evaluation subderivation
[e ′/x]e2 : τ, and we cannot apply the i.h.

A simple counterexample islet delay x=delay e ′ in x, wheree ′ has typeα. We can easily obtain· ⊢ [(delay e ′)/x]x :

susp α, so by the proposed rule· ⊢ let delay x =delay e ′ in x : susp α. However, the operational semantics (supposing
e ′ ⇓ v ′) gives

let delay x = delay e ′ in x ⇓ v ′

(becausedelay e ′ ⇓ delay e ′ and[e ′/x]x ⇓ v ′), but · ⊢ v ′ : α, not · ⊢ v ′ : susp α.

1.5 Values (10pts)

From the first big-step evaluation rule given,

delay e ⇓ delay e

it is apparent thatdelay e must be among the values: value soundness (which we’re aboutto try to prove) says that
e1 ⇓ e2 is derivable only ife2 is a value. So we adddelay e to the values.

Theorem 2(Value soundness). If e ⇓ e ′ then e ′ is a value.1

Proof. By induction on the derivation ofe ⇓ e ′.
We case-analyze the rule concluding that derivation, showing the cases for the new rules.

• CaseFirst rule: delay e1︸ ︷︷ ︸
e

⇓ delay e1︸ ︷︷ ︸
e ′

By our definition of values,delay e1 is a value, which was to be shown.

• CaseSecond rule:
e1 ⇓ delay e ′′ [e ′′/x]e2 ⇓

e
′

︷︸︸︷
v

let delay x = e1 in e2︸ ︷︷ ︸
e

⇓ v︸︷︷︸
e ′

We have a subderivation of[e ′′/x]e2 ⇓ e ′. By i.h.,e ′ is a value, which was to be shown.

1.6 Alternate primitives (10pts)

An appropriate evaluation rule forforce e is:

e ⇓ delay e ′ e ′ ⇓ v

force e ⇓ v

1The statement in the assignment, “ife ⇓ v thenv is a value”, is problematic:v is a value just by virtue of being written with the letterv and
not, say,e′—but that is not what was intended.

2 CASE EXPRESSION 4

Where we wrotelet delay x = e in e2 before, we can write(λx. e2) (force e1) and produce the same result. In that
sense, the two sets of primitives are equivalent. But we can also ask whether the same terms are evaluated. The given
rule for let delay is call-by-name, in the sense that it does not force evaluation of the delayed term; for example, in
let delay x = delay e1 in w, the variablex does not appear inw, and soe1 will not be evaluated at all. If functions
are call-by-name, this is equivalent to(λx. e2) (force e1). However, with call-by-value functions,e1 will always be
evaluated in(λx. e2) (force e1), unlike let delay.

2 Case expression

2.1 Predecessor and iszero (5pts)

pred = λx. (case x of z ⇒ z || succ x ′ ⇒ x ′)

iszero = λx. (case x of z ⇒ true || succ x ′ ⇒ false)

2.2 Typing rule (5pts)

Γ ⊢ t : NAT Γ ⊢ t1 : T Γ, x:NAT ⊢ t2 : T

Γ ⊢ case t of z ⇒ t1 || succ x ⇒ t2 : T

2.3 Type preservation (10pts)

Theorem 3. If t ⇓ v and · ⊢ t : T then · ⊢ v : T .

Proof. By induction on the derivation oft ⇓ v.
There are four “new” cases; we show the two that are relevant to our new typing rule. In both cases,t =

case t0 of z ⇒ t1 || succ x ⇒ t2 and we obtain the following by inversion on the new typing rule:

· ⊢ t0 : NAT · ⊢ t1 : T x:NAT ⊢ t2 : T

• Case:
t0 ⇓ z t1 ⇓ v

case t0 of z ⇒ t1 || succ x ⇒ t2 ⇓ v

· ⊢ t1 : T Above
t1 ⇓ v Subderivation

· ⊢ v : T By i.h.

• Case:
t0 ⇓ succ v2 [v2/x]t2 ⇓ v

case t0 of z ⇒ t1 || succ x ⇒ t2 ⇓ v

t0 ⇓ succ v2 Subderivation
· ⊢ t0 : NAT Above
· ⊢ v2 : NAT By i.h.

x:NAT ⊢ t2 : T Above
⊢ [v2/x]t2 : T By substitution lemma

[v2/x] t2 ⇓ v Subderivation

· ⊢ v : T By i.h.

2 CASE EXPRESSION 5

2.4 Small-step evaluation (10pts)

t → t ′

case t of z ⇒ t1 || succ x ⇒ t2 → case t ′ of z ⇒ t1 || succ x ⇒ t2

case z of z ⇒ t1 || succ x ⇒ t2 → t1 case succ v of z ⇒ t1 || succ x ⇒ t2 → [v/x]t2

2.5 Progress (10pts)

Theorem 4. If · ⊢ t : T then either t is a value or there exists t ′ such that t → t ′.

Proof. By structural induction on the derivation of· ⊢ t : T .
We show the “new” case for our typing rule above.

• Case:
· ⊢ t0 : NAT · ⊢ t1 : T x:NAT ⊢ t2 : T

· ⊢ case t0 of z ⇒ t1 || succ x ⇒ t2 : T

We have a subderivation of· ⊢ t0 : NAT . By i.h., eithert0 is a value or there existst ′
0

such thatt0 → t ′
0
. The

second case is easier, so we give it first.

– If t0 → t ′
0
: Let t ′ = case t ′

0
of z ⇒ t1 || succ x ⇒ t2. By our first small-step rule,t → t ′, which was

to be shown.

– If t0 is a value, then by inversion on· ⊢ t0 : NAT , it must be eitherz or succ v for somev.

∗ If t0 = z: Let t ′ = t1. By our second small-step rule,t → t1, which was to be shown.

∗ If t0 = succ v: Let t ′ = [v/x]t2. By our third small-step rule,t → [v/x]t2, which was to be
shown.

	Lazy evaluation
	Force function (10pts)
	Inverse (10pts)
	Right-to-left: If e "362B37F v then force (delay e) "362B37F v
	Left-to-right: If force (delay e) "362B37F v then e "362B37F v

	Type preservation (10pts)
	Failure of type preservation under modified rule (10pts)
	Values (10pts)
	Alternate primitives (10pts)

	Case expression
	Predecessor and iszero (5pts)
	Typing rule (5pts)
	Type preservation (10pts)
	Small-step evaluation (10pts)
	Progress (10pts)

