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1 Exercise 1
Making the suggested change breaks several theorems in gAditer 3:

e Theorem 3.5.4, Determinacy of One-Step Evaluation, fails:

(new rule)

pred (succ (pred z)) — predz

but also
E-PRED-ZERO

E-SUCC
E-PRED

predz — z

succ (pred z) — succ z

pred (succ (pred z)) — pred (succ z)

e Theorem 3.5.12 fails: since there is no longer a rule withd (succ nv) on the left, terms of the form ...
pred (succ t) get stuck. (The may evaluate to a value, yieldinpged (succ nv), a stuck term.)

To be painfully explicit,
pred (succ z)

is stuck, which we verify by looking at every rule and seeifiggéan derivepred (succ z) — t for somet.

— Rule E-PRED-SUCC no longer exists.
— Rule E-PRED-ZERO does not match (it deriya®d z — z, but we havepred (succ z)).
— Rule E-SUCC does not match.

— Rule E-PRED matches #ucc z — t’ for somet’. Now we see if one can deriwacc z — t’. The only
plausible candidate is E-SUCC, which would conclgdec z — succ t’ if z — t’; howeverz — t’
cannot be derived. Therefore E-PRED cannot desiv&l (succ z) — t.

— Rules E-IF-TRUE, E-IF-FALSE, E-IF do not match.
— Rules E-ISZERO-ZERO, E-ISZERO-SUCC, and E-ISZERO do ndthma

We have shown that there exists h@uch thatpred (succ z) — t. Sincepred (succ z) is not a value,
pred (succ z) —* tis not derivable. Therefore 3.5.12, Termination of Evahratfails.

1.1 Grading notes

More than one theorem fails, but the homework only askedrier, so that was enough to (potentially) get full credit.
The above solution is much more verbose than was required.
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2 Exercise 2

Theorem 1. If visavalueandv —* v/ thenv = v’.

Proof. By reflexivity of —*, we havev —* v. Itis given thatv —* v’. All values are in normal form (Theorem
3.5.7), sov andv’ are in normal form. By Theorem 3.5.11 (Unigueness of Nornaaihts),v = v’. O

One can also prove this “from scratch”;
Proof. By case analysis on the number of steps im* v'.
e Case:v —* v’ in zero steps. By inversiom= v’, which was to be shown.

e Case:v —* v’ in one or more steps. By inversion, there existsuch thav — v; —* v’. But there is no rule
that can possibly conclude— vy, so this case is impossible. O

3 Exercise 3

We must shove |} v if and only if e —* v. We first show the left-to-right direction.
Remark 1. Note that rule B-Z is not really adequate to prove the righleft direction; we replace it as follows:

B-V

g viv

7~z

Equivalently, we could add rules fetrue andfalse, but B-V leads to shorter proofs. Since the assignment seéd “
concentrate here on the fragment for natural numbers”, stfime to only considet.

3.1 Left-to-right direction: If e |l vthene —* v

Lemma 2. If e —* e’ then succ e —* succ e’.

Proof. By induction on the number of stepsén—* e’.

If zero steps, we have= e’. By reflexivity, succ e —* succ e, bute = e’ so in factsucc e —* succ e’, which
was to be shown.

If one or more steps, we have—* e’ ande” — e’. The derivation ok —* e” has one less step than the given
derivation ofe —* e’, so we can apply the induction hypothesis, yieldiugc e —* succ e”’. We already know
e’ — e’. By rule E-SUCCgucc e” — succ e’. We now have

succ e —»* succe” and succe” — succe’

By transitivity,succ e —* succ e’, which was to be shown. O
Lemma 3. If e —* e’ then iszero e —* iszero e’.
Proof. Similar to LemmdR, using rule E-ISZERO instead of E-SUCC. O

Remark 2. This tactic of saying a proof is similar to another oeeept for some specific differences, is encouraged.
(Mentioning the differences is evidence that you actuailliytbde proof.)

Lemma4. Ife —* e’ thenpred e —* pred e’.

Proof. Similar to LemmdR, using rule E-PRED instead of E-SUCC. O
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Theorem 5. Ife L vthene —* v.

Proof. By structural induction on the derivation efl} v. We write one case for each of the 6 rules that can derive
judgments of the forne | v.

e CaseB-V: v|v

Here we have = v, and need to show —* v, i.e. thatv evaluates te in zero or more steps. This follows by
reflexivity of —*.

e’ Jv’
e CaseB-SUCC: succe’ | succv’
H,—/ H/_/
(<4 v

We have a derivation af’ || v’ that is smaller than the given derivation, so we can applyrtlection hypoth-
esis, concluding

e/ _)* v/
By Lemmd2 succ e’ —* succ v/, which was to be shown.

e’z
e CaseB-ISZERO: iszeroe’ | true
— T~
e v
We havee’ || z by a smaller derivation than the given one. By induction higpsis,e’ —* z. By Lemma[3,
iszeroe’ —* iszeroz. By rule E-ISZERO-ZEROiszero z — true. We haveiszeroe’ —* iszeroz —
true, SO by transitivity,

iszeroe’ —* true
—— S~~~

e v

e’ || succv
e CaseB-ISSUCC: iszeroe’ || false

Similar to the previous case, applying E-ISZERO-SUCC mdtef E-ISZERO-ZERO.
e’ |z
e CaseB-PRED-ZERO: prede’ | z
—_—

e

Byi.h.,e’ —* z. By Lemmddlpred ¢/ —* pred z. By rule E-PRED-ZEROpred z — z. We now have:

prede’ —* predz — z
By transitivity, pred e’ —* z, which was to be shown.

e’ || succv
e CaseB-PRED-SUCC: prede’ | v
—
e
Byi.h.,e’ —* succv. By Lemmd¥pred e’ —* pred (succv).
By rule E-PRED-SUCCpred (succ v) — v. By transitivity,pred e’ —* v, which was to be shown. O
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3.2 Right-to-left direction: If e —* vthene || v
Lemma 6. For all valuesv, we can derivev || v.

Proof. By induction on the structure of.

e Case:v = z. The result follows by rule B-V.

e Case:v = true. The result follows by rule B-V.

e Case:v = false. The result follows by rule B-V.

e Casewv = succ v’. By induction hypothesis;’ || v’. By rule B-SUCC,succ v’ || succv’.

e Case:v = iszero v'. The termiszero v’ is not a value, so this case is impossible and there is notbibg
done.

e Case:v = pred v’. Similarly impossible. O

Lemma 7. If succ e’ —»* vinn stepsthene’ —* v/ in m steps, wherev = succ v/, and: if n > 0 thenm < n; if
n =0thenm = 0.

Proof. By induction on the number of stepsin the given derivation ofucc e’ —* v.

If n =0, we havev = succ e’. Letv’ = e’. Thene’ —* v’/ (by reflexivity), in0 steps, satisfying the obligation
that if n = 0 thenm = 0.

If in one or more steps, we have somsuch that

succe —e—*v

The only rule that can deriveucc e’ — e is E-SUCC. By inversiorg’ — e’ wheree = succe”.
Byi.h.,e” —* v/ in m steps, wheren < n — 1 andv = succ v’.
We havee’ — e” ande” —* v’ in m steps, so

e/ H* V/
in m+ 1 steps. We haver < n — 1, som + 1 < n, the last part of what was to be shown. O
Lemma 8. If pred e’ —* vthene’ —* v’ infewer steps, whereeither v =v =z or v’ = succv.

Proof. By induction on the number of stepsin the derivation obred e’ —* v.

If in zero stepsy = pred e’, but that is impossible singgred e’ is not a value.

If in one or more steps, we hayered e’ — e —* v. We proceed by cases on the rule used to conclude
pred e’ — e. Three rules have conclusions that can mateéd e’ — e.

e CaseE-PRED-SUCC: pred (gsucc nv) —>lw/

e’ e
nv = e is a value, which is a normal form, so the only way we could have* v is in zero stepse = v.
Let v/ = succ nv. Since we havewv = e ande = v, substituting yields)’’ = succ v. By reflexivity,

succ nv —* succv, thatis,e’ —* v’.
H/_/

e CaseE-PRED-ZERO: predz — z
—_—
e/
z = e is a value, which is a normal form, so we must haves* v in zero stepse = v = z. Letv’ =v. Then
e —* v,

e
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e/ —e”

e CaseE-PRED: prede’ — prede”
N —

e
We havepred e’ —* v in one less step than the given derivation. By ielf.,—* v’ in at least two fewer steps
than the given derivation, where eith€r=v = z orv’ = succv.

We havee’ — e” as a subderivation, ared’ —* v’. Thereforee’ —* v/, in at most one less step than the given
derivation. O

Lemma 9. If iszero e’ —* vthene’ —* nv in fewer steps, where either nv = zand v = true, or v = succ nv’
andv = false.

Proof. By induction on the number of steps in the given derivation.

If zero stepsy = iszero e’, but terms of the forniszero e’ are not values, so this case is impossible.

If in n steps wherex > 0, we haveiszero e’ — e” ande” —* v. We proceed by cases on the rule used to
deriveiszero e’ — e”; there are three possible rules.

e CaseE-ISZERO-ZERO: by inversiore’ = z, a numeric value, and = false. z —* z in zero steps.

e CaseE-ISZERO-SUCC: by inversior,’ = succ nv, a numeric value, and = true. succ nv —* succ nv
in zero steps.

e’ — e
o CaseE-ISZERO: iszeroe’ — iszero e
—_———

e//
We havee” —* v, thatis,iszero e; —* v, inn— 1 steps. By i.h.e; —* nv in fewer tham — 1 steps, where
eithernv = z andv = true ornv = succ nv’ andv = false. We have as a subderivatien — e;. By
transitivity,e’ —* nv in at mostn — 1 steps. O

Theorem 10. If e —* vthene | v.

Proof. By induction on the number of stepsén—* v.
If zero, we havee = v. The result follows by Lemnid 6.
Otherwise, we proceed by cases on the forra.of

e If e = succ e’, then by Lemm@l7e’ —* v/, in fewer steps, and = succ v’. Sincee’ —* v’ in fewer steps
than the given derivation, we can apply the i.h., yieldirigll v/. By B-SUCC,succ e’ || succ v/, that is,
el v.

e If e = prede’, then by Lemm&l8’ —* v’, in fewer steps, and eithef =v =z orv’ = succv.

—Ifv  =v =2z Byih., e’ | v/, thatis,e’ || z. By B-PRED-ZEROpred e’ |} z. Substituting gives us
el v.
— If v/ = succv: Byi.h., e’ || v/, thatis,e’ || succv. By B-PRED-SUCCprede’ || v.

o If e = iszero e’, then by Lemm@l9’ —* nv in fewer steps. By i.h.e’ || nv. A numeric valuenv is, by
definition, eitherz or succ nv’ for somenv’.

If nv = z, the lemma also tells us that= true. Applying B-ISZERO toe’ || nv yieldsiszero e’ || true,
which ise |l v, which was to be shown.

Thenv = succ nv’ case is similar to thewv = z case, with the lemma giving us= false and applying
B-ISZERO-SUCC instead of B-ISZERO.

e If eis avalue £, true, or false), we have a contradictiore —* v in more than zero steps, but values are
normal forms. This case is therefore impossible. O
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4 General comments

e If you're proving something by induction, say that you aned &ay what you're inducting on. Yotan leave
out “structural” or “the structure of” if you want: “By inddion on the derivation of ...” is fine. Then induct
on that, not on something else, no matter how convenienstehs for that one case. ..

e You don't need to explicitly state the induction hypothesihat’s clear from the statement of what you're
inducting on.

Similarly, you don't need to explicitly separate base ardliztive cases when you're inducting on the structure
of a derivation. This isn’t necessary; in most situation® yust go straight into a case analysis on the rule
concluding the derivation.

I’'m guessing some of you were told to write inductive prodfs tway when you learned how to do proofs by
induction on natural numbers. It made more sense then, bethe cases were exactly= 0 andn > 0: one
base case, one inductive case, and you had to label thosssoasbow. It makes much less sense when you're
inducting on the structure of a derivation, because you eae Imany “base cases” (one for each rule with no
premises) and many “inductive cases” (one for each rule snigor more premises).

If you find it helpful to write out the i.h. explicitly, or to kzel cases, you can. But you don'’t have to.

e Clearly distinguish lemmas from “main” proofs. Otherwiss hard to see where the lemma ends and the
main proof resumes. If you're writing by hand, it's OK to $tithe lemma within a main proof, but indent it or
something so it's clearly separated.

e Distinguish between applying a rule (when you know the psemiand want to obtain the conclusion) and
inverting a rule (when you know the conclusion and know tloats particular rule was applied to reach it).

e Please feel free to contact me (joshua.dunfietd gmail.com) if you have any questions.
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