COMP 426 Automated Reasoning Homework 3, Exercise 1: Solutions Prepared by Maja Frydrychowicz Posted 2007.10.09

Exercise 1: Prove subject reduction for the rules for natural numbers (see page 44 of the Constructive Logic course notes). You need to show that if $\cdot \vdash t \in \tau$ and $t \Longrightarrow t'$ then $\cdot \vdash t' \in \tau$.

Solution: 4 cases

1. case 0 of $0 \Rightarrow t_0 | s(x) \Rightarrow t_s \implies t_0$

By assumption, we have that (case 0 of $0 \Rightarrow t_0 | s(x) \Rightarrow t_s) \in \tau$ We want to show that $\cdot \vdash t_0 \in \tau$ By inversion of the **nat** E^x rule, we have that $\cdot \vdash t_0 \in \tau$, so we're done.

2. case s(n) of $0 \Rightarrow t_0 | s(x) \Rightarrow t_s \implies [n/x]t_s$

By assumption, we have that (case s(n) of $0 \Rightarrow t_0 | s(x) \Rightarrow t_s) \in \tau$ We want to show that $\cdot \vdash [n/x]t_s \in \tau$ By inversion of the $\operatorname{nat} E^x$ rule, we have that $\cdot \vdash s(n) \in \operatorname{nat}$, and that $x \in \operatorname{nat} \vdash t_s \in \tau$. By inversion of the $\operatorname{nat} I_s$ rule, we have that $\cdot \vdash n \in \operatorname{nat}$. By the substitution property of hypothetical judgments, we may conclude that $\cdot \vdash [n/x]t_s \in \tau$

3. rec 0 of
$$f(0) \Rightarrow t_0 \mid f(s(x)) \Rightarrow t_s \implies t_0$$

This case is very similar to Case 1. We arrive at the desired conclusion by inversion of the $\mathbf{nat}E^{f,x}$ rule.

4. rec s(n) of $f(0) \Rightarrow t_0 \mid f(s(x)) \Rightarrow t_s$ $\implies [\text{rec } n \text{ of } f(0) \Rightarrow t_0 \mid f(s(x)) \Rightarrow t_s/f(x)][n/x]t_s$

By assumption, we have that (rec s(n) of $f(0) \Rightarrow t_0 | f(s(x)) \Rightarrow t_s) \in \tau$ We want to show that $\cdot \vdash [\text{rec } n \text{ of } f(0) \Rightarrow t_0 | f(s(x)) \Rightarrow t_s/f(x)][n/x]t_s \in \tau$ By inversion of the $\text{nat}E^{f,x}$ rule, we have that $\cdot \vdash s(n) \in \text{nat}$, $x \in \text{nat}$, $f(x) \in \tau \vdash t_s \in \tau$ and $\cdot \vdash t_0 \in \tau$. By inversion of the $\text{nat}I_s$ rule, we have that $\cdot \vdash n \in \text{nat}$. From all this, and by the $\text{nat}E^{f,x}$ rule, we have that

 $\cdot \vdash \mathbf{rec} \ n \ \mathbf{of} \ f(0) \Rightarrow t_0 \mid f(\mathbf{s}(x)) \Rightarrow t_s \in \tau.$ By the substitution property of hypothetical judgments (applied twice), we arrive at the desired conclusion.