
Terrain-aided Navigation for an Underwater Glider

• •

Brian Claus
Department of Ocean and Naval Architecture Engineering, Memorial University, St. John’s, Newfoundland, Canada
Ralf Bachmayer
Department of Ocean and Naval Architecture Engineering, Memorial University, St. John’s, Newfoundland, Canada
e-mail: bachmayer@mun.ca

Received 21 January 2014; accepted 7 November 2014

A terrain-aided navigation method for an underwater glider is proposed that is suitable for use in ice-covered
regions or areas with heavy ship traffic where the glider may not be able to surface for GPS location updates.
The algorithm is based on a jittered bootstrap algorithm, which is a type of particle filter that makes use of the
vehicle’s dead-reckoned navigation solution, onboard altimeter, and a local digital elevation model (DEM). An
evaluation is performed through postprocessing offline location estimates from field trials that took place in
Holyrood Arm, Newfoundland, overlapping a previously collected DEM. During the postprocessing of these
trials, the number of particles, jittering variance, and DEM grid cell size were varied, showing that convergence
is maintained for 1,000 particles, a jittering variance of 15 m2, and a range of DEM grid cell sizes from the base
size of 2 m up to 100 m. Using nominal values, the algorithm is shown to maintain bounded error location
estimates with root-mean-square (RMS) errors of 33 and 50 m in two sets of trials. These errors are contrasted
with dead-reckoned errors of 900 m and 5.5 km in those same trials. Online open-loop field trials were performed
for which RMS errors of 76 and 32 m- were obtained during 2-h-long trials. The dead-reckoned error for these
same trials was 190 and 90 m, respectively. The online open-loop trials validate the filter despite the large
dead-reckoned errors, single-beam altitude measurements, and short test duration. C© 2015 Wiley Periodicals, Inc.

1. INTRODUCTION

Over the past decade, underwater gliders, a type of au-
tonomous underwater vehicle (AUV), have proven their
ability to persistently monitor ocean processes in a wide
range of conditions (Schofield et al., 2007). However, op-
erational gaps still exist in regions where surface access is
limited. Surface access is particularly challenging in regions
with ice cover or in regions with heavy ship traffic. Sus-
tained underwater observations in regions with ice cover
are of particular importance to climate change research and
polar exploration efforts, making tools to overcome these
observational obstacles a key development in improving
global climate change predictions (Rintoul et al., 2012).

Existing methods for underwater navigation may be
grouped into geophysical, acoustic, inertial, and model-
based techniques (Kinsey, Eustice, & Whitcomb, 2006; Paull,
Saeedi, Seto, & Li, 2014; Stutters, Liu, Tiltman, & Brown,
2008). Of the available methods, only the acoustic base-
line and geophysical-aided navigation methods provide
bounded location estimates. For long-range vehicles trav-
eling hundreds of kilometers, acoustic methods require ei-
ther a very-low-frequency sound source, a net of multiple
sound sources, or a surface vessel shadowing the AUV. In re-

Author to whom all correspondence should be addressed: Brian
Claus, bclaus@mun.ca

gions with periodic ice cover, a shadowing vehicle is often
not practical, and in shipping lanes it can present a nav-
igational hazard. Infrastructure costs for acoustic nets of
standard long baseline (LBL) systems are prohibitively ex-
pensive once the vehicle’s range extends past the nominal
range of tens of kilometers. Low-frequency sound sources
are perhaps the only alternative left for acoustic localiza-
tion of long-range vehicles with ranges of up to hundreds
of kilometers (Lee & Gobat, 2006; Webster, Lee, & Gobat,
2014). However, these systems are expensive to deploy and
maintain, particularly in regions with ice cover, which tend
to be remote. Terrain-aided methods have no infrastructure
requirements, making them attractive for long-range vehi-
cles from a cost perspective. They do have the limitations of
requiring a detailed digital elevation model (DEM) of the re-
gion and considerable design effort to tailor the algorithms
to a specific platform.

In general, geophysical techniques rely on feature vari-
ability in past measurements that are compared to a DEM.
Statistical estimators are then used to generate an estimate
of the current position of the vehicle given the prior mea-
surement and position estimates. A few successful demon-
strations of these techniques on real systems have been
shown (Meduna, Rock, & McEwen, 2010; Morice, Veres,
& McPhail, 2009; Nygren, 2008). The majority of these
demonstrations use the existing fused navigation solution
from the high-accuracy inertial navigation system (INS)

Journal of Field Robotics 00(0), 1–17 (2015) C© 2015 Wiley Periodicals, Inc.
View this article online at wileyonlinelibrary.com • DOI: 10.1002/rob.21563

2 • Journal of Field Robotics—2015

aided by a Doppler velocity log (DVL) as an input to the
terrain-aided navigation (TAN) algorithm (Chen, Wang,
McDonald-Maier, & Hu, 2013). This high-accuracy naviga-
tion update is then combined with the measurement up-
date from a multibeam sonar or DVL that measures the
bathymetry when combined with the vehicle depth given
by the pressure sensor (Bergem, 1993; Nygren, 2005). How-
ever, it has recently been shown that lower-grade inertial
sensors aided by a DVL may be used by directly includ-
ing the inertial and DVL measurements in the filter used for
the terrain-aided navigation (Meduna, 2011). This tight cou-
pling was achieved through increasing the number of states
in the terrain algorithm, increasing the reliability and accu-
racy. General limitations of bathymetric techniques are due
to the range of the acoustic sensors, generally around 100 m,
low terrain variability, which increases the uncertainty of
the estimate, and the power requirements of the inertial
and ranging sensors. Recent attempts have increased the ro-
bustness of terrain relative navigation techniques through
adapting to changes in terrain variability and employing a
series of statistical consistency checks (Dektor & Rock, 2012;
Houts, Dektor, & Rock, 2013).

Most TAN algorithms use a preexisting DEM to bound
the position error of an AUV through comparisons with
the vehicle’s water depth estimates, generating a location
estimate that is then integrated back into the navigation so-
lution. Alternatively, there has been some progress toward
simultaneous localization and mapping (SLAM) methods
on underwater vehicles. These techniques compile a DEM
as the vehicle gathers water depth estimates, ensuring all the
measurements are self-consistent, and using this to reduce
the navigation error (Barkby, Williams, Pizarro, & Jakuba,
2011). Other geophysical parameters, such as the earth’s
magnetic field, have been proposed to augment TAN meth-
ods to increase their robustness, but they have yet to have
a practical demonstration (Kato & Shigetomi, 2009; Teixeira
& Pascoal, 2008).

This work proposes a TAN method that has been de-
signed around a 200 m, Slocum Electric underwater glider
operating in profiling modes. The Slocum Electric underwa-
ter glider is already equipped with the sensors needed for
a rudimentary terrain-aided navigation scheme. As such, a
brief overview of the vehicle is presented followed by a look
at the theory for terrain-aided navigation using a jittered
sequential importance resampling (SIR) or bootstrap algo-
rithm. The SIR algorithm belongs to the class of algorithms
that have been termed particle filters. The jittered bootstrap
algorithm is then applied to the underwater glider. This
application makes use of the existing dead-reckoning algo-
rithm in the underwater glider for the navigation update.
The measurement update is composed of a water depth
model based on the ray-traced altitude, the vehicle depth,
and the tidal estimate. This application of terrain-aided nav-
igational techniques to an underwater glider using only a
single-beam altimeter and a low-accuracy dead-reckoning

algorithm is believed by the authors to be unique. The glider
TAN algorithm is possible through simultaneously relaxing
the accuracy requirements of the navigation estimate from
the order of meters in the case of the prior art to tens or
hundreds of meters and increasing the process noise added
to the navigation update. These modifications are comple-
mentary as the increased navigation update process noise
serves to increase the noise in the TAN estimate but also
makes the method more robust to complete divergence.

The resulting algorithm is presented in detail with the
necessary processing steps explained. It is then used to post-
process location estimates for an underwater glider using
data collected in offline field trials that took place in 2010
and 2012 in Holyrood Arm, Newfoundland, which over-
lap a ship-based multibeam bathymetric DEM collected by
Memorial University’s Marine Institute. The offline results
include an analysis of the number of particles required for
convergence, the effects of the jitter variance, and the im-
pact of coarser DEM grids, and they show that the algo-
rithm is capable of producing bounded location estimates
for underwater gliders without surface access. Finally, the
methodology is evaluated through online, open loop trials
which took place in 2014 in Holyrood Arm, Newfoundland.
In these trials, 1 h northward and southward missions were
performed that show the functionality of the algorithm on-
board an underwater glider.

2. UNDERWATER GLIDERS

The Slocum underwater glider uses active ballast changes as
its main propulsive force (Rudnick, Davis, Eriksen, Fratan-
toni, & Perry, 2004). The ballast system is located in the nose
of the vehicle and creates an upward or downward pitching
moment, assisting in the change in pitch necessary to form a
suitable glide path. A mass shifting mechanism attached to
one of the battery packs acts as a vernier pitch adjustment
mechanism to control the vehicle pitch to a precise angle.
The cyclic positive and negative vertical motion due to the
forces from the ballast system generates lift due to the wings
and vehicle body, which moves the vehicle forward when
the vehicle pitch is within a certain range of values. For
the Slocum glider, the pitch values that produce the most
forward movement are in the range of 20–30 deg.

Before a given deployment, a glider’s mass is adjusted
such that the vehicle is neutrally buoyant in seawater and
the center of mass is directly below the center of buoyancy
when the ballast system and the mass shifting mechanism
are both in the center of their range. At this stage, the glider
user plans the mission by selecting appropriate waypoints
for the vehicle to navigate to, as well as other vehicle pa-
rameters such as desired pitch, surfacing conditions, and
minimum altitude, among others. During the mission, the
vehicle attempts to reach the waypoints by moving for-
ward in its cyclic pattern and by steering using its rudder
and magnetic compass. If the vehicle reaches a surfacing

Journal of Field Robotics DOI 10.1002/rob

Claus and Bachmayer: Terrain Aided Navigation for an Underwater Glider • 3

condition, such as hitting a waypoint or being too long un-
derwater, it will surface, obtain a new GPS fix, reestablish
the range and bearing to the waypoint, and continue on
its way. In this navigational scheme, the vehicle tracks its
progress to the waypoints, using dead-reckoning while un-
derwater.

2.1. Dead Reckoning

Dead-reckoning systems keep track of the location of a ve-
hicle using an initial location and adding the incremental
displacements given by the product of the vehicle velocity
and the time difference between measurements. The glider’s
dead-reckoning system uses the pressure and attitude sen-
sors to estimate the horizontal velocity components. Toward
that end, the vehicle’s horizontal velocity vh is computed by

vh = vz

tan(ξ)
, (1)

where vz is the vertical velocity as given by the first deriva-
tive of the vehicle depth, measured by the pressure sensor,
and ξ is the glide path angle. The glide path angle ξ is com-
posed of the vehicle pitch θ and angle of attack α as in

ξ = θ + α. (2)

During the test deployments, the angle of attack was
not included in the glide path estimate, resulting in the
vehicle pitch being the same as the glide path angle. How-
ever, more recent versions of the vehicle software include
an estimator that calculates an angle of attack based on the
vehicle parameters, and measurements of the vehicle pitch
and depth rate (Merckelbach, Smeed, & Griffiths, 2010). The
horizontal vehicle velocity may be further decomposed into
the horizontal velocity components and multiplied by the
time between measurements �T to produce the state up-
dates �x and �y as in

�x = �T vh sin(ψ + δ), (3)

�y = �T vh cos(ψ + δ), (4)

where ψ is the vehicle magnetic heading and δ is the mag-
netic declination. The resulting dead-reckoning equations
add the state updates from Eqs. (3) and (4) to the prior state
as in

xk+1 = xk + �x, (5)

yk+1 = yk + �y, (6)

where k is the time step and x and y give the vehicle location
in the local coordinate frame. The dead-reckoning scheme
for underwater gliders described above works well for pro-
filing missions with ready access to the surface for GPS
updates. However, as the vehicle has no direct measure-
ment of its speed over ground, the accuracy of its velocity
estimates is subject to a priori unknown and changing water

velocities. The vehicle attempts to compensate for this by
assuming these water velocities are solely responsible for
the difference between the dead-reckoning location and the
first GPS fix upon surfacing. This depth averaged water ve-
locity estimate is then used as a corrective term to the vehicle
velocity estimate in the next dive cycle. In highly stratified
or dynamic areas of the ocean, this assumption breaks down
and as such the dead-reckoning algorithm can be subject to
significant error. Additionally, in regions where surface ac-
cess is denied, this water velocity estimation method is not
possible, resulting in a further degraded dead-reckoning
solution.

2.2. Water Depth Measurement Model

The water depth estimate from the glider combines the
depth of the vehicle given by the pressure sensor with the
altitude of the vehicle given by the altimeter. The altimeter
is a 170 kHz, narrow beam sonar (3◦), located in the nose of
the vehicle and angled at 26◦ forward of the vertical such
that at the nominal dive angle, the altimeter points straight
down. A first-generation 200 m Slocum glider has a 300 psi
pressure transducer ported in the rear bulkhead and con-
nected to the sensor located in the aft of the glider. Second
generation (G2) Slocum gliders have a 2,000 psi pressure
transducer for the vehicle control ported in the same man-
ner. The G2’s higher pressure rating degrades the accuracy
of the depth estimates, requiring the use of the conductivity,
temperature, and depth (CTD) sensor’s values instead. The
locations and orientations of these devices relative to the
center of buoyancy for a first-generation Slocum glider are
illustrated in Figure 1.

Since the altimeter and pressure transducer are not
colocated, their vertical separation must be accounted for
in the water depth estimate. Additionally, as the density of
water changes, the speed and direction of the sound through
the water change as well. To correct for this, a simple ray-
tracing procedure, shown in Algorithm 1, is performed that
uses Snell’s law to compute the path based on the sound

Figure 1. Locations of the altimeter and pressure transducer
relative to each other and the center of buoyancy, where CB is
the center of buoyancy.

Journal of Field Robotics DOI 10.1002/rob

4 • Journal of Field Robotics—2015

speed profile obtained from the glider’s CTD sensor and
the initial beam angle (Hodges, 2010).

Algorithm 1 Glider Altitude Ray Tracing

1: [ẑrt,k ,�xrt,k]=RAYTRACE [zg,k ,za,k ,φg,k ,θg,k ,ψg,k ,SV(z)]
2: initialize ẑrt,k to zg,k

3: initialize x and t to zero
4: set increment: �z = 0.1
5: compute beam angle from vertical:

θv = arccos[cos φg,k cos(θg,k − 26◦)]
6: compute one-way travel time: t1way = za,k

1,500
7: compute c: c =LINEARINT[SV(z),ẑrt,k]
8: compute a: a = sin θv

c

9: while t < t1way do
10: increment water depth estimate: ẑrt,k+ = �z

11: update x: x+ = �z tan(θv)

12: update t: t+ =
√

�z tan(θv)+�z2

c

13: update c: c =LINEARINT[SV (z),ẑrt,k]
14: update angle: θv = arcsin(ac)
15: end while
16: compute beam heading:

ψb,k = arctan
(√

2z2
rt,k (1−cos φg,k)

(ẑa,k−zg,k) tan(θg,k−26o)

)

17: compute x offset: �xrt,k = −x sin(ψg,k + ψb,k),
18: compute y offset: �yrt,k = −x cos(ψg,k + ψb,k)

The vehicle altimeter assumes a uniform sound speed
of 1,500 m/s and reports an altitude, za,k . The ray tracing is
performed by backing the travel time out of this initial esti-
mate, using the glider roll φg,k and pitch θg,k to compute the
beam angle from vertical θv , and using the vehicle depth
zg,k as the starting depth. Initial estimates of the speed of
sound c are computed through linear interpolation, which
is used to compute the ray-tracing constant a. The algorithm
then iterates the water depth estimate by �z until the one-
way travel time is exceeded, keeping track of the horizontal
distance x the beam travels. The results of this calculation
are the ray-traced water depth, ẑrt,k , and the measurement
location offsets, �xrt,k , which are computed using the hor-
izontal beam distance and the combined beam and vehicle
headings ψb,k and ψg,k .

The tidal variation is also included in the water depth
model to account for the time-varying signal of the water
depth. The tidal correction, zT,k , may be either historical
measurements or from a predictive model. In the offline
field trials, historical measurements from the St. John’s,
Newfoundland station in the Canadian Tides and Water
Levels Data Archive were used (DFO, 2013). In the online
trials, the tidal component was not included due to the short
duration of those tests.

The resulting water depth measurement model is given
as

zk = ẑrt,k + xap sin(θg,k) + zT,k + zb, (7)

where ẑa,k , θg,k , zg,k , and zT,k are the ray-traced altitude, ve-
hicle pitch, glider depth, and tidal signal at time step k. The
distance from the pressure sensor to the altimeter along the
vehicle axis is xap and the DEM depth bias is zb, which is
defined later in Section 4.

3. TERRAIN-AIDED NAVIGATION

The general terrain-aided navigation (TAN) problem at-
tempts to localize a body using a priori digital elevation
models (DEMs), some knowledge of the body’s movements,
and measurements that relate the body to the DEM. One set
of solutions to these types of problems are broadly based
on sequential importance sampling methods, also known
as particle filters. A visual explanation of the particle filter
is given by Fox, Hightower, Liao, Schulz, & Borriello (2003),
and more theoretical treatments by Sanjeev Arulampalam,
Maskell, Gordon, & Clapp (2002); Ristic, Arulampalam, &
Gordon (2004), and Doucet, Godsill, & Andrieu (2000). An-
other helpful treatment is presented by Simon (2006), which
provides some history of the particle filter and places it in
the context of other estimation techniques.

The generic particle filter algorithm draws many
guesses, or particles of where the most recent water depth
measurement might be, and it compares the measurement
to the DEM for each particle location. These particles are
drawn according to an importance density function, which
attempts to allocate particles to the important part of the
state space based on all of the prior states and all of the
prior measurements. The choice of importance density func-
tion is a significant consideration in the design of a particle
filter with respect to a particular application. Each parti-
cle’s location has an associated value from the DEM that is
compared to the water depth measurement to evaluate its
weight. These weights are normalized such that the sum of
all the weights is equal to 1, shaping them into a probability
distribution. The state estimate is then given by the sum
of the product of each particle’s location with its weight,
essentially computing the centroid of the particle cloud.

The classic particle filter algorithm presents several dif-
ficulties with its implementation. The first is related to the
choice of the importance density function, which for the
original formulation requires complete knowledge of the
entire set of states and measurements. While it has been
shown that an optimal form of the importance density can
be approximated, it is only usable if analytic forms of the
state transition probabilities are available such that the inte-
grals have closed-form solutions (Doucet et al., 2000). This
difficulty has led to suboptimal forms being used, such as
the transitional prior, which simply applies the state update
to the prior particle locations.

Journal of Field Robotics DOI 10.1002/rob

Claus and Bachmayer: Terrain Aided Navigation for an Underwater Glider • 5

However, in using the transitional prior, as the prior
densities accumulate, the weights of the particles become
concentrated on very few particles, with the majority of par-
ticles having little weight and therefore contributing very
little to the state estimate. This concentration of particle
weights is termed sample impoverishment or degeneracy.
To help improve this situation, the particles are often re-
sampled such that those particles with very little weight
are discarded and the particles with a lot of weight are di-
vided into more. This process leads to another problem in
which the particle cloud becomes very small and no longer
provides any corrective behavior, termed particle collapse.
One method used to deal with particle collapse is through
the jittering or roughening of the particles in which their
locations have some process noise added to spread them
back out in the state space (Gordon, Salmond, & Smith,
1993).

The result of these simplifications and fixes is termed
the sequential importance resampling method. In this
method, resampling is only done when needed as deter-
mined by some metric. When resampling is performed at
every time step, the method is often termed the bootstrap
method (Gordon et al., 1993). In the bootstrap method, the
evaluation of the weights is simplified as they will have
equal value after resampling, however the frequent re-
sampling also accentuates the particle collapse, requiring
stronger jittering. The addition of jittering to the algorithm
essentially introduces additional process noise into the es-
timator. This increased process noise has been shown to
improve the robustness of the estimator to complete fail-
ures, allowing reconvergence after periods of sparse mea-
surements, flat terrain, or DEM artifacts (Bar-Shalom, Li, &
Kirubarajan, 2004; Houts et al., 2013). The improved robust-
ness comes at the expense of higher estimator noise, which
for a survey grade AUV is problematic but is less of an issue
to localization for underwater gliders.

The jittered bootstrap method is used in the remainder
of this work and is presented in Algorithm 2 and illustrated
in Figure 2.

This algorithm takes as inputs the prior particles
{xi

k−1}Ni=1, the state update �xk , and the water depth esti-
mate zk at time step k, where N is the number of particles
and i is the particle index. The outputs of the method are
the state estimate x̂k and the particle locations {xi

k}Ni=1, which
are then saved for the next iteration. The operation of the
algorithm begins with computing a particle jitter rk based
on a normal distribution with zero mean and σ 2

j variance.
Particle i for time step k is then drawn by updating the prior
particle location xi

k−1 with the state update �xk and applying
the particle jitter computed previously. The weight of each
particle w̃i

k is then evaluated as the probability of the water
depth estimate given the particle’s location. This process is
repeated N times, drawing all of the particles and comput-
ing their weights. These weights are then normalized by the
sum of the weights sw . The particles are then resampled and

b)

d)

3 2

2
2

2

e)

a) c)

3 2

2
2

2

3 2

2
2

2

Figure 2. An illustration of the jittered bootstrap algorithm
with two state variables for a small number of particles, where
(a) shows the jittering of the particles; (b) shows the particles
before and after the state update, as indicated by the arrows,
is applied; (c) shows the particle weights, where larger parti-
cles indicate a higher weight based on how closely the water
depth measurement matches the DEM; (d) shows the resam-
pling process, where small particles are discarded as indicated
by the crosses and large particles divided; and (e) shows the
state estimation as indicated by the cross hair. Particles with
numbers overlaid represent a stack of particles.

Algorithm 2 Jittered Bootstrap

1: [x̂k ,{xi
k}N

i=1] =BOOTSTRAP [{xi
k−1}N

i=1,�xk ,zk]
2: for i = 1 TO N do
3: compute jitter: rk = N (0, σ 2

j)
4: state update: xi

k = xi
k−1 + �xk + rk

5: compute weights: w̃i
k = p(zk|xi

k)
6: end for

7: calculate total weight: sw =
N∑

i=1
w̃i

k

8: for i = 1 TO N do
9: normalize weights: wi

k = w̃i
k

sw
10: end for
11: resample: [{xi

k}N
i=1] =RESAMPLE[{xi

k ,wi
k}N

i=1]

12: estimate state: x̂k = 1
N

N∑
i=1

xi
k

the state estimate x̂k is computed through the sum of the
particles divided by the total number of particles.

The resampling algorithm selected for this work is the
systematic resampling method as outlined in Algorithm 3
(Kitagawa, 1996).

This method provides a fast and simple way to repre-
sent the probability density through evenly weighted parti-
cles, requiring the particle locations and weights as inputs
and providing the resampled particles as outputs. The algo-
rithm operates by first taking the cumulative sum, {ck}Ni=1,
of the particle weights, forming an increasing set of val-
ues from 0 to 1. A random number r is then drawn from a

Journal of Field Robotics DOI 10.1002/rob

6 • Journal of Field Robotics—2015

Algorithm 3 Systematic Re-Sampling

1: [{hi
k}N

i=1]=RESAMPLE[{xi
k ,wi

k}N
i=1]

2: cumulative sum: {ck}N
i=1 = CUSUM({wi

k}N
i=1)

3: for i = 0 TO N do
4: draw random number on [0 1]: r =RAND(0,1)
5: find where it belongs: si

k =FIND(r,{ck}N
i=1)

6: store particle: hi
k = {xi

k}N
i=1(si

k)
7: end for

uniform distribution on the interval [0,1] and the index si
k

of the cumulative sum found in which the random num-
ber is equal to the cumulative sum. The particle at that
index is then stored for output. In this way, particles with
high weight are divided into many particles as they occupy
a large portion of the cumulative sum, and particles with
small weights are discarded as they occupy a negligible
portion of the cumulative sum.

4. DIGITAL ELEVATION MODEL

The DEM used in this work is constructed from ship-based
multibeam surveys done by Memorial University’s Marine
Institute. The DEM is gridded by latitude and longitude at
an equivalent distance of roughly 2 m. Since the DEM is
generated from data collected by a ship, an error model is
used with variance σ 2

DEM as in Lagadec, Cecchi, Rixen, &
Grasso (2010),

σ 2
DEM = 1

2

√
1 + (0.023zDEM)2, (8)

where zDEM is the water depth of a particular location of the
DEM. The value of the DEM at each particle’s location is
then obtained through bilinear interpolation of the gridded
data. The DEM was found to have a depth bias of several
meters, which is accounted for in the water depth estimate
as zb. The depth bias is due to a combination of a misregis-
tration of the multibeam data during processing, errors in
the vehicle pressure sensor, and errors in the tidal estimates.

Two flags are inserted into the DEM, one at the shore-
line and one at the DEM boundary, to allow for decisions to
be made when particles return one of these flags. The shore-
line flag prevents values for the DEM being returned where
there is no water, but it does not transition the algorithm to
a dead-reckoned solution. The DEM boundary flag allows
the algorithm to check if there is a new DEM to load, and if
not, it reverts to the dead-reckoned navigation solution.

5. GLIDER TAN

An unmodified Slocum Electric underwater glider has rudi-
mentary versions of all of the components necessary for an
implementation of the jittered bootstrap method shown in
Algorithm 2. It computes a dead-reckoned navigation solu-
tion that may be used for the state update as in Eqs. (5) and

(6), and it has an altimeter and pressure sensor that, when
combined, allows for a water depth estimate as in Eq. (7).
The only other inputs to the bootstrap algorithm are the
prior particles, which once initialized are propagated from
time step to time step, and the DEM. After initialization of
the method, the algorithm computes a location estimate for
every time step corresponding to each successful altimeter
reading. The complete glider TAN method is shown in Al-
gorithm 4 as an extension of the bootstrap method shown
in Algorithm 2 with the initialization procedure as follows:

1. get initial Lat/Lon: ˆLatk−1, ˆLonk−1 = LatGPS,LonGPS

2. set local mission coordinate frame: x̂k−1 ={0,0}
3. set prior particles: {xi

k−1}Ni=1 = 0
4. wait for first altimeter reading

The initialization procedure requires an initial location,
which, on an underwater glider, is obtained by the GPS
while the vehicle is at the surface before the mission be-
gins. This initial location sets the origin for the local mission
coordinate (LMC) reference frame in units of meters. The
prior particles are initialized to zero, relying on the jittering
of the particles to spread the particles by the appropriate
amount. The glider TAN algorithm is now ready to iterate
through each time step, where a time step corresponds to a
successful altimeter reading.

The glider TAN algorithm’s inputs are the prior par-
ticles {xi

k−1}Ni=1, the prior state estimate x̂k−1 in LMC and in
latitude ˆLatk−1 and longitude ˆLonk−1, the state update �xk

from the glider, the glider depth zg,k , and the glider altitude
za,k . Other inputs include φg,k , θg,k , and ψg,k , which are the
glider’s roll, pitch, and heading, the sound velocity profile
SV(z), and the DEM.

The outputs of the algorithm are the glider TAN state
estimate x̂k in LMC, and in latitude ˆLatk and longitude ˆLonk ,
and the particles {xi

k}Ni=1.
The algorithm begins by ray-tracing the altitude to ob-

tain the ray-traced water depth ẑrt,k and the water depth
measurement offsets �xrt,k using Algorithm 1. The water
depth estimate zk is then computed according to Eq. (7)
by adding the pressure sensor and altimeter vertical sep-
aration, the tidal signal, and the DEM depth bias to the
ray-traced water depth. For the offline field trials, the DEM
depth bias was computed by taking the average water depth
estimate error over the entire set of measurements. How-
ever, an estimate of the DEM depth bias for the online trials
was computed using the values from a set of initialization
profiles.

The algorithm next enters the particle update and
weight computation loop, which first checks the dead-
reckoning flag. If the algorithm’s dead-reckoning flag is not
set, it proceeds to compute the particle’s jitter rk , which is
randomly generated using a normally distributed pseudo-
random number generator based on the Mersenne Twister
with variance σ 2

j and zero mean (Matsumoto & Nishimura,

Journal of Field Robotics DOI 10.1002/rob

Claus and Bachmayer: Terrain Aided Navigation for an Underwater Glider • 7

Algorithm 4 Glider TAN

1: [x̂k ,{xi
k}N

i=1, ˆLatk , ˆLonk]=gTAN[{xi
k−1}N

i=1,x̂k−1,
ˆLatk−1, ˆLonk−1,�xk ,zg,k ,za,k ,φg,k ,θg,k ,ψg ,SV(z),DEM]

2: Ray trace altitude: [ẑrt,k ,�xrt,k] =RAYTRACE
[zg,k ,za,k ,φg,k ,θg,k ,ψg,k ,SV(z)]

3: Compute water depth estimate:
zk = ẑrt,k + xap sin(θg,k) + zT,k + zb

4: for i = 0 TO N do
5: if Not Dead-Reckoning then
6: Compute jitter: rk = N (0, σ 2

j)
7: Compute particle location in LMC:

xi
k = xi

k−1 + �xk + rk + �xrt,k

8: Convert LMC to Lat/Lon:
[Latik ,Loni

k]=LMC2LL[xi
k ,x̂k−1, ˆLatk−1, ˆLonk−1]

9: if Latik ,Loni
k within DEM bounds then

10: get DEM water depth:
zDEM,k=BILINEAR[Latik ,Loni

k ,DEM]
11: if Shoreline Flag then
12: Set DEM water depth to zero: zDEM,k=0
13: end if
14: if Map Bounds Flag then
15: Check for new DEM
16: Set Dead-Reckon Flag
17: end if
18: compute DEM variance:

σ 2
DEM = 1/2

√
1 + (0.023zDEM,k)2

19: compute weight: w̃i
k =

NORMPDF[zk ,zDEM,k ,σ 2
DEM]

20: else
21: Set Dead-Reckon Flag
22: end if
23: end if

24: end for
25: if Not Dead-Reckoning then

26: compute particle weight sum: sw =
N∑

i=1
w̃i

k

27: for i = 1 TO N do
28: normalize weights: wi

k = w̃i
k

sw
29: end for
30: resample: {xi

k}N
i=1=RESAMPLE[{xi

k ,wi
k}N

i=1]

31: compute state estimate in LMC: x̂k = 1
N

N∑
i=1

xi
k

32: convert LMC to Lat/Lon:
[ˆLatk , ˆLonk]=LMC2LL[x̂k ,x̂k−1, ˆLatk−1, ˆLonk−1]

33: else
34: compute state estimate in LMC: x̂k = x̂k−1 + �xk

35: convert LMC to Lat/Lon:
[ˆLatk , ˆLonk]=LMC2LL[x̂k ,x̂k−1, ˆLatk−1, ˆLonk−1]

36: Reset particles: {xi
k}N

i=1 = x̂k

37: Reset Dead-Reckon Flag
38: end if

1998). The particle’s location is then computed in LMC
through adding the state update �xk , the particle jitter, and
the water depth measurement offsets to the prior particle’s
locations. To interface with the DEM, the LMC location is
converted to latitude and longitude by assuming the change
in the LMC location, indicated by �x and �y, is equal to the
length of an arc, as in

Latk = Latk−1 + (�y)/Re, (9)

Lonk = Lonk−1 + (�x)/[Re cos(Latk−1)], (10)

where Re is the radius of the earth.
Once the particle’s latitude and longitude are com-

puted, the particle’s location may be checked against the
general DEM bounds. If it is within the bounds, the DEM
water depth zDEM,k is retrieved through bilinear interpola-
tion, otherwise the dead-reckoning flag is set. If the DEM
water depth is equal to the shoreline flag, then it is ze-
roed. If it is equal to the map bounds flag, then the dead-
reckoning flag is set. Otherwise, the DEM variance is σ 2

DEM
computed as in Eq. (8). The particle weight is then com-
puted by comparing the water depth estimate to the DEM
water depth through a normal probability density function
with the DEM variance. This procedure is repeated for all
N particles.

The algorithm now moves on to check once more if the
dead-reckoning flag is not set before computing the parti-
cle weight sum sw and using it to normalize the weights.
The particles are next resampled using the systematic re-
sampling method described in Algorithm 3. After the re-
sampling process, all of the particles have equal weight,
allowing the state estimate to be computed in LMC using
the mean of the particle locations. The state estimate is then
converted to latitude and longitude, and the algorithm is
done for this iteration.

If the dead-reckoning flag is set, meaning that at least
one of the particles is outside of the map bounds, the algo-
rithm skips directly to the dead-reckoning state estimation.
In this case, the state estimates in LMC, latitude, and lon-
gitude are computed using only the state update, and the
particles states are reset to the dead-reckoned state estimate.
The dead-reckoning flag is then reset in case, for the next
iteration, all of the particles are back within the map bounds.

6. OFFLINE FIELD TRIALS

The glider TAN algorithm was evaluated offline through
two sets of field trials that overlapped the region of the
DEM in Holyrood Arm of Conception Bay, Newfoundland.
These experiments took place in October 2010 and Octo-
ber 2012 using a 200 m electric Slocum underwater glider.
In the 2010 trials, the glider flew straight out of Holyrood
Arm and past the boundary of the DEM for a total distance
of approximately 12 km, and in the 2012 trials the vehicle
flew in overlapping rectangles up Holyrood Arm for a total
distance of approximately 91 km, as illustrated in Figure 3.

Journal of Field Robotics DOI 10.1002/rob

8 • Journal of Field Robotics—2015

−53.14 −53.13 −53.12 −53.11

47.39

47.4

47.41

47.42

47.43

47.44

47.45

47.46

Lon [deg]

La
t [

de
g]

Dead−Reckoned
GPS−Corrected
Glider TAN −100

−90

−80

−70

−60

−50

−40

−30

−20

−10

−53.14 −53.135 −53.13 −53.125
47.385

47.39

47.395

47.4

47.405

47.41

47.415

Lon [deg]

La
t [

de
g]

Dead−Reckoned
GPS−Corrected
Glider TAN

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

Figure 3. Location estimates from the glider TAN algorithm (black) against the GPS-corrected dead-reckoned locations (red) and
the dead-reckoned locations (blue) from the 2010 offline field trials (left) and from the first 10 km 2012 offline field trials (right).

In both experiments, the glider recorded its navigation
data to allow for the glider TAN algorithm to be evaluated
through post-processing. As no independent localization
method, such as an ultrashort baseline system, was avail-
able, the glider was programmed to surface approximately
every hour and correct for the drift in its position estimate.
The glider’s recorded dead-reckoned locations were then
able to be postprocessed using these GPS updates, as illus-
trated in Figure 4.

The GPS-corrected glider locations are used as the base-
line locations for comparison of the performance of the
glider TAN algorithm. This method of baseline compari-
son is most accurate at the locations of the GPS updates
during surfacing events, with the uncertainty increasing to
a maximum halfway between updates. It should also be
noted that because the glider does not record data, in par-
ticular attitude and altitude, during surfacing events the
surface drift, that is, the surfacing GPS location minus the
diving GPS location, is removed from the offline glider TAN
postprocessing. Otherwise, the glider TAN algorithm uses
the GPS information only for initialization of the algorithm
prior to the first dive.

Moreover, since the altimeter is oriented at a 26◦ angle
from the vertical, altitude measurements are only acquired
on the downward glide due to the shallow grazing angle on
the upward glide, as is illustrated in Figure 5.

The period between altitude measurements is not con-
stant, generally being around 30 s, decreasing when it ap-
proaches the seafloor to a minimum of 4 s. This behavior
is due to the vehicle’s altimeter filter, which attempts to re-
ject bad values and limit the power use of the device. The
histogram of the time between altimeter measurements is
shown in Figure 6, with longer periods associated with the
gap in measurements due to the climbing segments.

The large gaps in measurements when the glider is
climbing are dependent on the depth of the profiles the
glider is performing. For the field trials in Holyrood Arm,
the maximum profile depth was around 100 m, limiting the
maximum time between measurement updates to around
20 min. The nonconstant frequency of the altitude measure-
ments during the downward glide followed by the large
amount of time during the upward glide with no altitude
measurements creates a unique challenge for a TAN algo-
rithm. The structure of the bootstrap algorithm with jittering

Journal of Field Robotics DOI 10.1002/rob

Claus and Bachmayer: Terrain Aided Navigation for an Underwater Glider • 9

−53.13 −53.125 −53.12 −53.115 −53.11 −53.105

47.44

47.442

47.444

47.446

47.448

47.45

47.452

47.454

47.456

47.458

Lon [deg]

La
t [

de
g]

Dead−reckoned
GPS Corrected
Surfacing GPS Fix
Diving GPS Fix
Last Dead−Reckoned Fix

Figure 4. GPS-corrected dead-reckoned location estimates computed from the dead-reckoned estimates using the difference
between the last dead-reckoned estimate and the GPS fix upon surfacing applied as a constant disturbance from the diving GPS
fix to the last dead-reckoned estimate.

is well suited to this problem as it makes no assumptions
about the frequency of the measurements. Additionally, be-
cause jittering and resampling are performed at every time
step, the particle distribution rapidly adjusts to an accurate
representation of the prior density function. This behavior
is particularly helpful in maintaining convergence during
large measurement update gaps due to a climbing section
and in reconvergence after the vehicle leaves the bounds of
the map.

6.1. Software Implementation

The software for the glider TAN postprocessing was writ-
ten using MATLAB R©. Postprocessing the field trials from
2010 and 2012 required computing the baseline locations us-
ing the GPS-corrected dead-reckoning and computing the
dead-reckoning solutions with no GPS influence. The glider
uses a correction algorithm to compensate for water veloc-
ities based on the difference between the dead-reckoned
and first GPS location upon surfacing. This correction is
embedded in the dead-reckoning solutions the vehicle com-
putes, requiring the MATLAB R© code to strip out this effect
to obtain the state updates independent of any GPS influ-
ence. The code then initializes the particle filter and runs
through Algorithm 4 for every altimeter measurement. Lo-
cation errors are computed as the difference between the

GPS-corrected dead-reckoning locations and the location
estimates produced by the glider TAN algorithm.

6.2. Parameter Tuning

The glider TAN algorithm has several variables that require
tuning to allow the algorithm to retain its convergence.
These parameters include the number of particles N and
the jittering variance σ 2

j . The grid cell size of the DEM was
also varied to investigate its impact on the convergence of
the algorithm. The jittering variance was tested first using
a relatively large number of particles, N = 1000, and the
highest resolution DEM, which is gridded at 2 m. These
tests were run five times for a range of levels between 2 and
30 m2, with the results shown in Figure 7.

The results of these tests show that there is a minimum
jittering variance required for the algorithm to achieve con-
vergence in both cases of around 10 m2. The best values for
the jittering variance in the 2010 trials appear to be in the
range of 16–26 m2, while for the 2012 trials the best jitter-
ing variances are in the range of 10–14 m2 with the RMS
errors increasing steadily past this point. The differences in
the RMS errors between the two trials for the jittering vari-
ance tests are attributed to the trials operating in different
regions of the DEM and to variations in the accuracy of the
dead-reckoning algorithm.

The effect of the grid size of the DEM was investigated
next by regridding the DEM to a range of values from 2 m

Journal of Field Robotics DOI 10.1002/rob

10 • Journal of Field Robotics—2015

0 100 200 300 400 500 600
−40

−35

−30

−25

−20

−15

−10

−5

0

D
ep

th
 [m

]

Time [s]

Trajectory Measurement Locations Depth Altitude

Figure 5. A sequence of measurements illustrating the construction of the water depth estimate using the vehicle depth and
altitude measurements.

0 50 100 150
0

100

200

300

400

C
ou

nt
s

Period [s]

200 300 400 500 600 700 800 900 1000 1100 1200
0

5

10

15

C
ou

nt
s

Period [s]

Figure 6. Histogram of the period between altimeter measurements in 5 s bins for periods between close together pings (top) and
far apart pings (bottom) where the large gaps in measurements are due to the climbing portion of the profile.

up to 180 m. The DEM was regridded by taking the mean
of all of the points in the multibeam survey data that fell
within each grid cell. The tests were run for 1,000 particles
and a jittering variance of 10, 15, and 20 m2, as shown in
Figure 8.

For both trials, the algorithm maintained convergence
for grid cell sizes ranging from 2 to 100 m. The different
values for the jittering variance are insignificant in the case
of the 2010 trials but show a slight preference for 15 m2 in
the 2012 trials at the smaller grid cell sizes. In both cases,

Journal of Field Robotics DOI 10.1002/rob

Claus and Bachmayer: Terrain Aided Navigation for an Underwater Glider • 11

0 5 10 15 20 25 30 35
0

50

100

150

200

250
E

rr
or

 [m
]

Jitter Variance [m2]

10 15 20 25

30

35

40

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

1400

1600

1800

2000

E
rr

or
 [m

]

Jitter Variance [m2]

10 15 20 25 30
40

60

80

100

Figure 7. RMS errors of the glider TAN algorithm for different values of the jittering variance for the 2010 offline field trials (left)
and the 2012 offline field trials (right), where the number of particles was 1,000 and the DEM was gridded at 2 m. The cross marks
the mean RMS error and the upper and lower bars represent the maximum and minimum RMS error over a total of five Monte
Carlo runs at each level. Insets show a closeup of the area bounded by the box in each case.

0 20 40 60 80 100 120 140 160 180
20

40

60

80

100

120

140

160

180

Map Grid Size [m]

E
rr

or
 [m

]

10m2

15m2

20m2

0 20 40 60 80 100 120 140 160 180
0

200

400

600

800

1000

1200

Map Grid Size [m]

E
rr

or
 [m

]
10m2

15m2

20m2

Figure 8. Average RMS errors of the glider TAN algorithm over five runs for different values of the grid cell size for the 2010
offline field trials (left) and the 2012 offline field trials (right), where the number of particles was 1,000 and the jittering variance
was 10, 15, and 20 m2.

the tests with a jittering variance of 10 m2 showed a higher
probability of divergence and no significant improvement
in the RMS error.

The number of particles for convergence was also tested
for different numbers particles between 100 and 2,000, as
shown in Figure 9. In these tests, the jittering variance was
15 m2 and the grid cell size was 2 m.

In general, for particle filter algorithms, more particles
provide a better estimate of the underlying probability den-
sity function and thereby more confidence at the expense of
processing time. Finding the number of particles to use for
a particular application becomes an exercise in determin-
ing the minimum number of particles required to reliably
retain convergence of the algorithm. In this case, 0.105 s was

required for each time step at 1,000 particles for the offline
postprocessing. For the five Monte Carlo runs examining
the number of particles needed for convergence during the
2010 and 2012 field trials, the average RMS error levels out
at around 500 particles in both cases. To ensure convergence,
1,000 particles were selected for nominal use.

6.3. Results

The offline glider TAN location estimates are computed
through 100 Monte Carlo simulations with the RMS and
peak errors shown in Figure 10.

Convergence was maintained in all of the 100 Monte
Carlo simulations of the glider TAN algorithm for a jittering
variance of 15 m2, 1,000 particles, and a grid cell size of 2 m

Journal of Field Robotics DOI 10.1002/rob

12 • Journal of Field Robotics—2015

0 200 400 600 800 1000 1200 1400 1600 1800 2000
20

25

30

35

40

45

50

Number of Particles

E
rr

or
 [m

]

0 200 400 600 800 1000 1200 1400 1600 1800 2000
40

60

80

100

120

140

160

180

Number of Particles

E
rr

or
 [m

]

Figure 9. RMS errors of the glider TAN algorithm for different values of the number of particles for the 2010 offline field trials
(left) and the 2012 offline field trials (right) where the jittering variance was 15 m2 and the grid cell size was 2 m. The cross marks
the mean RMS error and the upper and lower bars represent the maximum and minimum RMS error over a total of five Monte
Carlo runs at each level.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Monte Carlo Run

E
rr

or
 [m

]

RMSE
PeakE

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

Monte Carlo Run

E
rr

or
 [m

]

RMSE
PeakE

Figure 10. RMS error and peak error from 100 Monte Carlo simulations of the glider TAN algorithm for the 2010 offline trials
(left) and the 2012 offline trials (right) with a jittering variance of 15 m2, 1,000 particles, and a grid cell size of 2 m.

for both trials. The average RMS error in the 2010 trials was
33 m, with an average peak error of 96 m. For the 2012
trials, the average RMS error was 50 m, with an average
peak error of 532 m. A comparison of the mean error with
the dead-reckoned location estimates along with the Monte
Carlo lower bound (MCLB) is shown in Figure 11, where the
MCLB is the minimum value over the set of Monte Carlo
runs.

The improvement of the glider TAN location estimates
over the dead-reckoned location estimates is shown by the
bounded error location estimates provided. In the 2010 tri-
als, the dead-reckoned error reaches around 900 m during
the time the algorithm is within the bounds of the DEM,

while the glider TAN error at the same time step is only
around 44 m. In the 2012 trials, the dead-reckoned error
reaches over 5.5 km, while at the end of the mission the
glider TAN error is only 16 m. Additionally, while the glider
TAN algorithm shows occasional periods of divergence, the
algorithm is able to reconverge shortly after. These periods
of divergence along with a closer look at the mean error,
MCUB, MCLB, and DEM flags are illustrated in Figure 12.

In the 2010 trials, the main divergence is after the
map bounds flag goes high due to the vehicle, leaving the
bounds of the DEM. At this point, the dead reckoned loca-
tion estimates take over. For the 2012 trials, the glider TAN
algorithm maintains convergence during most of the

Journal of Field Robotics DOI 10.1002/rob

Claus and Bachmayer: Terrain Aided Navigation for an Underwater Glider • 13

0 2000 4000 6000 8000 10000 12000
0

200

400

600

800

1000

1200

Distance Travelled [m]

E
rr

or
 [m

]

MCLB[m]
Mean Error [m]
Ded−reckoned Error [m]

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

Distance Travelled [km]

E
rr

or
 [k

m
]

MCLB[km]
Mean Error [km]
Dead−Reckoned Error [km]

Figure 11. Improvement of the glider TAN algorithm over the dead-reckoned error computed from 100 Monte Carlo simulations
of the glider TAN algorithm from the 2010 offline trials (left) and the 2012 offline trials (right).

0 2000 4000 6000 8000 10000 12000
0

50

100

150

200

250

300

350

E
rr

or
 [m

]

MCLB[m]
MCUB[m]
Mean Error [m]

0 2000 4000 6000 8000 10000 12000
0

1

2

M
ap

 B
ou

nd
s

Distance Travelled [m]

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

1.4
E

rr
or

 [k
m

]
MCLB[km]
MCUB[km]
Mean Error [km]

0 10 20 30 40 50 60 70 80 90
0

1

2

S
ho

re
lin

e

Distance Travelled [km]

Figure 12. Mean RMS error, Monte Carlo upper bound (MCUB), and Monte Carlo lower bound (MCLB) from 100 Monte Carlo
simulations of the glider TAN algorithm from the 2010 offline trials (top left) with the map bounds flag shown (bottom left). The
mean RMS error, MCUB, and MCLB from the 2012 offline trials (top right) with the shoreline flag are shown (bottom right). The
flag markers are shown at every altimeter reading, with a 1 indicating a particle is out of bounds.

deployment. Occasional spikes in the error are noticeable,
with the largest occurring around 38 km into the mission
and reaching 532 m. This large error corresponds with the
shoreline flag and is due the glider being in shallow wa-
ter during this portion of the trials. In shallow water, the
glider’s 200 m pump is not fast enough to keep the vehi-
cle’s speed up, resulting in the dead reckoning algorithm
deteriorating on the vehicle and many altimeter measure-
ments being performed in the same region. In effect, the
vehicle thinks it is moving faster than it is and the water
depth estimates are not changing very much during this
time. However, once the vehicle leaves the proximity of the
shoreline, the algorithm quickly reconverges. Large errors

due to shallow water can be prevented during online trials
through planning the mission with a suitable buffer around
these areas.

The MCUB and MCLB represent the maximum and
minimum value observed at a time step over the entire set of
Monte Carlo runs. The MCUB and MCLB give an indication
of the absolute worst and best possible scenario.

A visual representation of the performance of the glider
TAN algorithm for the 2010 trials and for the first 10 km
of the 2012 trials is presented in Figure 3. These figures
highlight the improvement provided by the glider TAN
algorithm over the pure dead-reckoning location estimates,
and they reinforce online localization efforts.

Journal of Field Robotics DOI 10.1002/rob

14 • Journal of Field Robotics—2015

Figure 13. The Beagle Bone Black 1 GHz ARM Cortex-A8 pro-
cessor with 512 Mb of RAM and 4 Gb of onboard flash.

Figure 14. Diagram of the glider terrain-aided navigation
hardware integration showing the power and communication
connections to the science computer.

7. INTEGRATION

As the microprocessors onboard underwater gliders have
minimal computational ability, an additional single board
computer was deemed necessary for the integration of the
algorithm into the glider. For this work, the Beagle Bone
Black (BBB) (Figure 13) single board computer was selected
for use, which has a 1 GHz ARM Cortex-A8 processor with
512 Mb of RAM, 4 Gb of onboard flash, and a standard set
of embedded peripheral options.

The BBB was loaded with Ubuntu 13.04, allowing the
particle filter to be programmed in C/C++. The BBB is
powered through a separate switching regulator from the
standard power pins in the payload module, which supplies

10–15 V, consuming on average 0.5 W. The communication
interface connects from the 5 V UART on the BBB through
a logic level converter to the standard RS232 port on the
science computer of the glider. In this way, the BBB connects
to the glider as any payload or science sensor would, as
illustrated in Figure 14.

The particle filter program that runs on the BBB is con-
figured to run as a background process once the operating
system has booted. The UART and processor options are
also configured at boot. The particle filter code accepts an
initialization command and an update command from the
vehicle. The initialization command sets the reference loca-
tion for the local mission coordinate frame and resets the
particle locations to this initial location. The update com-
mand computes one iteration of the particle filter and sends
back to the vehicle a location update as well as a status flag.
The status flag indicates if the location update is nominal,
near shore, or near the map bounds. The computation time
for the update command is approximately 10 ms, improv-
ing on the MATLAB implementation by over 10 times, and
this is more than adequate for the fastest possible update
rate of 4 s.

The particle filter program on the BBB is controlled
by the science processor. The science processor runs a
glider TAN “proglet,” which requests the attitude, alti-
tude, depth, dead-reckoned latitude and longitude, GPS
latitude and longitude, and the local mission coordinate
locations from the glider computer. The transmission of
these variables from the glider processor to the science
processor is triggered upon their being updated on the
glider processor. Whenever the GPS latitude and longitude
variables are updated on the science processor, it sends
the initialization command to the BBB. In this way, the
best navigation data are always used. Subsequent to the
first initialization, any updates to the altitude variable trig-
ger the transmission of the update command to the BBB.
The BBB then computes a location based on the TAN par-
ticle filter and sends a location update and status flag
back to the science computer, where the open-loop loca-
tions are logged for future analysis. While requesting vari-
ables from the glider processor is straightforward, sending
variables back requires modification of the glider proces-
sor’s source code, which was not possible at this time. For
this reason, closed-loop trials were not performed for this
work.

8. ONLINE FIELD TRIALS

Online tests of the glider TAN method were performed in
Holyrood Arm of Conception Bay, Newfoundland during
September, 2014. During these tests, the glider was flown
in a northward and southward straight line segment for
roughly 1 h in each direction, and the glider TAN proces-
sor was allowed to compute open-loop location estimates.
An initial set of three profiles was performed to extract

Journal of Field Robotics DOI 10.1002/rob

Claus and Bachmayer: Terrain Aided Navigation for an Underwater Glider • 15

−53.14 −53.135 −53.13 −53.125
47.385

47.39

47.395

47.4

47.405

47.41

47.415

Lon [deg]

La
t [

de
g]

Dead−Reckoned
GPS−Corrected
Online Glider TAN

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

−53.14 −53.135 −53.13 −53.125
47.385

47.39

47.395

47.4

47.405

47.41

47.415

Lon [deg]

La
t [

de
g]

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

Dead−Reckoned
GPS Corrected
Online Glider TAN

Figure 15. Online open-loop location estimates from the glider TAN algorithm (black) against the GPS locations (red) and the
dead-reckoned locations (blue) from the 2014 online trials northward leg (left) and southward leg (right).

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

140

160

180

200

Distance Travelled [m]

E
rr

or
 [m

]

Online Error [m]
Dead−Reckoned Error [m]

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

Distance Travelled [m]

E
rr

or
 [m

]

Online Error [m]
Dead−Reckoned Error [m]

Figure 16. Improvement of the glider TAN algorithm over the dead-reckoned error during the 2014 online trials northward leg
(left) and southward leg (right).

the depth bias and confirm the generation of glider TAN
location estimates. These estimates were recorded on the
Science computer for analysis later. The vehicle was con-
figured to not correct for water velocities, which requires
multiple surfacing events, as this is most representative
of a longer distance closed-loop mission. The results of
the open-loop glider TAN locations are shown relative to

the dead-reckoning location estimates and GPS locations in
Figure 15.

During the northward trial, the GPS-corrected esti-
mates are slightly east of the dead-reckoned estimates likely
due to some local tidal current. The online glider TAN es-
timates converge to the correct water depth after a short
period with some along track error.

Journal of Field Robotics DOI 10.1002/rob

16 • Journal of Field Robotics—2015

During the southward trial, the GPS-corrected esti-
mates are again slightly east of the dead-reckoned estimates.
As these trials occurred immediately following the north-
ward leg, this further supports an easterly tidal current,
albeit one that is decreasing in magnitude. For these trials,
the online glider TAN estimates again converge to the vehi-
cle track after a short period, this time with less along track
error.

The error between the GPS-corrected location estimates
and the online glider TAN estimates is shown against the
dead-reckoned error in Figure 16.

The online glider TAN errors in both the northward
and the southward leg improve upon the dead-reckoned
error. Specifically, the RMS error in the northward leg was
76 m and the southward leg was 32 m. The dead-reckoned
error growth rates were 25.6% and 11.6% of distance trav-
eled for the northward and southward legs, respectively.
The larger RMS error of the online glider TAN estimates in
the northward leg is therefore attributed to this larger dead-
reckoning error growth rate. These large error growth rates
are due to the vehicles’ slow speed relative to the water cur-
rents during the tests and the dead-reckoning computation
relying on the speed through water instead of the speed
over ground.

9. CONCLUSIONS

An underwater glider terrain-aided navigation (TAN) al-
gorithm has been presented for a 200 m, Slocum electric
underwater glider based on a particle filter known as the
jittered bootstrap filter. The glider TAN algorithm allows
for location estimates to be computed through comparisons
of the water depth estimate measured by the vehicle with
a digital elevation model (DEM) of the bathymetry. The
method makes use of the underwater glider’s altimeter,
pressure sensor, dead-reckoning solution, and attitude. The
algorithm has been shown to be suitable for postprocessing
of underwater glider data collected in water depths, which
allow for altimeter measurements but in which GPS up-
dates are denied. Additionally, the method was validated
through online trials in which a more powerful single board
computer was integrated to run the filter.

The method was evaluated through two sets of of-
fline field trials that took place in October 2010 and 2012 in
Holyrood Arm of Conception Bay, Newfoundland, which
overlaps a DEM collected previously through a ship-based
survey by Memorial University’s Marine Institute. During
these trials, the underwater glider was allowed to obtain
GPS updates during its periodic surfacings to provide a
baseline to compare against the glider TAN location es-
timates. The data collected during these trials were then
used to compute location estimates using the glider TAN
algorithm, which uses the first predive GPS location for
initialization. The algorithm was evaluated for a range of
values of the jittering variance, the DEM grid cell size,

and the number of particles. It was found that the algo-
rithm finds good convergence for a jittering variance of
15 m2, 1,000 particles, and for DEM grid cell sizes rang-
ing from the base grid cell size of 2 m up to a cell size of
100 m.

Using nominal values for the jittering variance, the
number of particles, and the base grid cell size, 100 Monte
Carlo simulations were run to confirm the convergence at
those values. In both the 2010 and 2012 trials, the algorithm
maintained its convergence for all 100 runs. During the runs
for the 2010 trials, the peak error was 96 m and the RMS error
was 33 m. The total distance traversed over the DEM was
approximately 9 km and the error before the vehicle left the
bounds of the DEM was 44 m compared the dead-reckoned
error of 900 m. During the runs for the 2012 trials, the peak
error was 532 m and the RMS error was 50 m. The total
distance traveled by the vehicle was approximately 91 km
and the error at the end of the mission was 16 m, compared
with the dead-reckoned error of 5.5 km. The peak error of
532 m during the 2012 trials was found to correspond to a
period of shallow water profiles near shore, and it was at-
tributed to an increase in the dead-reckoning error rate and
many water depth estimates in the same location. These tri-
als show the glider TAN algorithm’s utility in postprocess-
ing bounded location estimates of glider data in GPS-denied
areas.

Online, open-loop trials were performed in Septem-
ber of 2014 in Holyrood Arm, in which independent, hour-
long northward and southward tests were run. For these
trials, a Beagle Bone Black (BBB) single board computer
was integrated into the payload bay of the underwater
glider. The BBB runs the filter, programmed in C/C++,
in around 10 ms while consuming just over 0.5 W on av-
erage. During the northward and southward legs of the
online trials, the RMS errors were 76 and 32 m, respectively.
The larger error in the northward leg was attributed to the
large dead-reckoned error growth rate 25.6% of distance
traveled. In both cases, the glider TAN estimates provided
bounded error location estimates that improved on the
dead-reckoned estimates in spite of the short duration of the
tests and larger than normal dead-reckoning error growth
rate.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and En-
gineering Research Council (NSERC) through the NSERC
Canadian Field Robotics Network (NCFRN), the Research
Development Corporation, the Marine Institute, and Memo-
rial University of Newfoundland.

REFERENCES

Bar-Shalom, Y., Li, X. R., & Kirubarajan, T. (2004). Estimation
with applications to tracking and navigation: Theory algo-
rithms and software. John Wiley & Sons.

Journal of Field Robotics DOI 10.1002/rob

Claus and Bachmayer: Terrain Aided Navigation for an Underwater Glider • 17

Barkby, S., Williams, S. B., Pizarro, O., & Jakuba, M. V. (2011).
A featureless approach to efficient bathymetric slam using
distributed particle mapping. Journal of Field Robotics,
28(1), 19–39.

Bergem, O. (1993). Bathymetric navigation of autonomous
underwater vehicles using a multibeam sonar and a
Kalman filter with relative measurement covariance ma-
trices. Ph.D. thesis, University of Trondheim.

Chen, L., Wang, S., McDonald-Maier, K., & Hu, H. (2013). To-
wards autonomous localization and mapping of AUVs:
A survey. International Journal of Intelligent Unmanned
Systems, 1(2), 97–120.

Dektor, S., & Rock, S. M. (2012). Improving robustness
of terrain-relative navigation for AUVs in regions
with flat terrain. In IEEE AUV 2012, Southampton,
England.

DFO (2013). Archived tidal data for station 905. Accessed on
Dec. 12th, 2013.

Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequential
Monte Carlo sampling methods for Bayesian filtering.
Statistics and Computing, 10(3), 197–208.

Fox, D., Hightower, J., Liao, L., Schulz, D., & Borriello, G. (2003).
Bayesian filtering for location estimation. Pervasive Com-
puting, IEEE, 2(3), 24–33.

Gordon, N., Salmond, D., & Smith, A. F. M. (1993). Novel
approach to nonlinear/non-Gaussian Bayesian state es-
timation. Radar and Signal Processing, IEE Proceedings F,
140(2), 107–113.

Hodges, R. (2010). Underwater acoustics: Analysis, design and
performance of sonar (chap. 5, pp. 84–91). John Wiley and
Sons, Ltd.

Houts, S. E., Dektor, S. G., & Rock, S. M. (2013). A robust frame-
work for failure detection and recovery for terrain-relative
navigation. In Unmanned Untethered Submersible Tech-
nology 2013, Portsmouth, NH.

Kato, N., & Shigetomi, T. (2009). Underwater navigation
for long-range autonomous underwater vehicles using
geomagnetic and bathymetric information. Advanced
Robotics, 23(7-8), 787–803.

Kinsey, J. C., Eustice, R. M., & Whitcomb, L. L. (2006). A sur-
vey of underwater vehicle navigation: Recent advances
and new challenges. In IFAC Conference of Manoeuver-
ing and Control of Marine Craft, Lisbon, Portugal. Invited
paper.

Kitagawa, G. (1996). Monte Carlo filter and smoother for non-
Gaussian nonlinear state space models. Journal of Com-
putational and Graphical Statistics, 5(1), 1–25.

Lagadec, J., Cecchi, D., Rixen, M., & Grasso, R. (2010). Ter-
rain navigation for underwater autonomous gliders. In
MREA10, Lerici, Italy, October 18–22.

Lee, C. M., & Gobat, J. I. (2006). Acoustic navigation and com-
munication for high-latitude ocean research workshop.
Eos, Transactions American Geophysical Union, 87(27),
268–268.

Matsumoto, M., & Nishimura, T. (1998). Mersenne twister:
A 623-dimensionally equidistributed uniform pseudo-

random number generator. ACM Transactions in Mod-
elling and Computer Simulations, 8(1), 3–30.

Meduna, D. (2011). Terrain relative navigation for sensor-
limited systems with application to underwater vehicles.
Ph.D. thesis, Stanford University.

Meduna, D., Rock, S., & McEwen, R. (2010). Closed-loop ter-
rain relative navigation for AUVs with non-inertial grade
navigation sensors. In Autonomous Underwater Vehicles
(AUV), 2010 IEEE/OES (pp. 1–8).

Merckelbach, L., Smeed, D., & Griffiths, G. (2010). Vertical wa-
ter velocities from underwater gliders. Journal of Atmo-
spheric Oceanic Technology, 27(3), 547–563.

Morice, C., Veres, S., & McPhail, S. (2009). Terrain referencing for
autonomous navigation of underwater vehicles. In Oceans
2009–Europe (pp. 1–7).

Nygren, I. (2005). Terrain navigation for underwater vehicles.
Ph.D. thesis, KTH Electrical Engineering, Stockholm, Swe-
den.

Nygren, I. (2008). Robust and efficient terrain navigation of
underwater vehicles. In Position, Location and Navigation
Symposium, 2008 IEEE/ION (pp. 923–932).

Paull, L., Saeedi, S., Seto, M., & Li, H. (2014). AUV navigation
and localization: A review. IEEE Journal of Oceanic Engi-
neering, 39(1), 131–149.

Rintoul, S. R., Sparrow, M., Meredith, M. P., Wadley, V., Speer,
K., Hofmann, E., Summerhayes, C., Urban, E., Bellerby,
R., Ackley, S., et al. (2012). The Southern Ocean observing
system: Initial science and implementation strategy. SCAR
and SCOR.

Ristic, B., Arulampalam, S., & Gordon, N. (2004). Beyond the
Kalman filter: Particle filters for tracking applications.
Artech House.

Rudnick, D., Davis, R., Eriksen, C., Fratantoni, D., & Perry,
M. (2004). Underwater gliders for ocean research. Marine
Technology Society Journal, 38, 73–84.

Sanjeev Arulampalam, M., Maskell, S., Gordon, N., &
Clapp, T. (2002). A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking. IEEE Trans-
actions on Signal Processing, 50(2), 174–188.

Schofield, O., Kohut, J., Aragon, D., Creed, L., Graver, J., Halde-
man, C., Kerfoot, J., Roarty, H., Jones, C., Webb, D., and
Glenn, S. (2007). Slocum gliders: Robust and ready. Journal
of Field Robotics, 24(6), 473–485.

Simon, D. (2006). Optimal state estimation: Kalman, H infinity,
and nonlinear approaches. John Wiley & Sons.

Stutters, L., Liu, H., Tiltman, C., & Brown, D. (2008). Navigation
technologies for autonomous underwater vehicles. IEEE
Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, 38(4), 581–589.

Teixeira, F.C., & Pascoal, A. M. (2008). Geophysical navigation
of autonomous underwater vehicles using geomagnetic in-
formation. In 2nd IFAC Workshop, Navigation, Guidance
and Control of Underwater Vehicles.

Webster, S., Lee, C., & Gobat, J. (2014). Preliminary results in
under-ice acoustic navigation for seagliders in Davis Strait.
In Oceans 2014 (pp. 1–5).

Journal of Field Robotics DOI 10.1002/rob

