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Abstract— We present the design and implementation of
a multi-input and multi-controller system architecture for
mobile robots. The proposed system architecture is divided
into interchangeable modular subsystems with common inter-
faces. The paper details the development of a prototype to
test the proposed architecture and the implementation of the
architecture with the Robot Operating System. Results from
indoor and outdoor experiments are discussed. The prototype is
used to demonstrate person following for route teach-and-repeat
applications with collision avoidance and controller override.

I. INTRODUCTION

The complexity of human-robot interactions has increased
with advances in human interaction methods [1] and people
tracking and following [2]. Intelligent systems have been
developed for a variety of capacities, such as real time track-
ing [2], assistive home companions [3], and museum tour
guides [4]. The computational methods for people detection,
tracking and following are still active areas of research, [5],
[6], [7], [8], [9], [10]. These advances have allowed robotic
systems to conduct tasks of increasing difficulty.

Robotic systems used for multi-task operations have in-
creased complexity in their system architecture and high level
controllers. Multi-task operations require multi-controller
systems, for example people tracking and following with
collision avoidance, autonomous visual navigation, SLAM,
route-repeating applications, etc. Various studies have inves-
tigated case-specific system architectures but have not aimed
to propose a generalized system architecture for multi-task
operations [3], [11], [12], [13], [14], [15], [16]. A generalized
system architecture would provide reusability, expandabil-
ity, and possible collaborations between researchers using
robotic systems.

Partial teleoperation and partial autonomy are desired
characteristics of robots working in industrial settings. This
motivates the need of multi-input and multi-controller sys-
tems that can perform a variety of tasks. An example of
such a system is a robot that is trained by an operator to
navigate a predefined route in a dynamic environment. The
operator might train the robot by teleoperating it over the
route, or by letting the robot follow a person over the route.
In many cases, the robot may need to switch between modes
of operation in response to the environment or the input from
the operator.
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The aim of this paper is to present a multi-input and
multi-controller reusable system architecture for a mobile
robot used in a multi-task operation. The requirements and
proposed design solution will be discussed, followed by the
development of a prototype for people tracking and following
using laser range-finders. Next, the implementation using
the Robot Operating System (ROS) [17] will be detailed
and the results from indoor and outdoor field trails will
be discussed. Finally, future work will be identified and
conclusions presented.

II. SYSTEM ARCHITECTURE DESIGN REQUIREMENTS

In many robotics applications, a multi-input multi-
controller (MIMC) system architecture with modular subsys-
tems is required. MIMC agents are commonly used for tasks
with several operating modes. Multi-input systems use trans-
ducers to acquire information that is necessary to perform
different tasks. In the case of robot teleoperation, the input
can be a wireless joystick module used by the robot operator
to send velocity commands to the mobile robot, while in
the case of autonomous navigation, laser scanners can be
used to map an environment, localize the robot, and identify
objects of interest such as people. Multi-controller systems
use various independent controllers running in parallel to
modulate actuator input signals or set-points to lower level
controllers. In many cases the controllers modulate the same
control variables, such as the velocities of actuators, and
therefore must be managed based on the state of the system
or operating mode. For example, a mobile robot used in a
teach-and-repeat operation typically has several controllers
for person follower, collision avoidance and autonomous
navigation all requiring the control of the robot.

The subsystems of MIMC agents are required to be
modular. Modularity and common interfaces are character-
istics that allow the system architecture to be designed,
constructed, debugged, and most importantly, reused on a
variety of robots and applications. These characteristics allow
the robot designers and operators to interchange modules
depending on the technique or method used by the robot to
complete a task. Modular subsystems are also easy to isolate
and test independently and layers of abstraction help manage
the complexity of the entire system.

III. PROPOSED SYSTEM ARCHITECTURE

We have used the requirements discussed in the previous
subsection to design a generalized MIMC system architecture
with modular subsystems for navigating a mobile robot
(Fig. 1). The system architecture is divided into two main
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Fig. 1: Proposed system architecture. Three main PCS subsystems: system state machines, task perception and control and
a high level system controller. The arrows represent information flow between modules.

components: the mobile robotic platform (MRP) and the
perception and control system (PCS), each with subsystem
modules.

A. Mobile Robotic Platform

The MRP is composed of sets of transducers and low level
controllers. Transducers can be subdivided into sensors and
actuators. Sensors detect proprioceptive and exteroceptive
signals in one form of energy and convert it to another which
can be processed, used or transmitted readily. Proprioceptive
signals are internal signals such as joint encoder outputs used
for feedback control while exteroceptive signals are external
signals from the environment or system operators. Actuators
receive energy and convert it to movement, such as DC
motors and linear actuators. Electric motor speed controllers
and joint position controllers are typical feedback controllers
in mobile platforms.

B. Perception and Control System

The main objective of the PCS is to perceive the state of
the system in an environment and modulate actuator input
signals or set-points to lower level controllers. It is composed
of three main subsystems: System State Machines (SSM),
Task Perception & Control (TPC) and a High Level System
Controller (HLSC).

1) System State Machines: The SSM is composed of a set
of modules that maintain a record of the state of the overall
system. Each module runs a state machine for a particular set
of related states and updates it based on the output signals
of the mobile platform sensors. For example, the current
operation mode of the mobile platform can be selected using
the signals from a set of joystick buttons controlled by a
system operator.

2) Task Perception & Control: Independent modules can
be used for specific task perception and control. In general,
each task requires dedicated information processing and actu-
ator modulation. Examples of such modules are: task-specific
actuator controllers, state estimators, perception algorithms,
tracking algorithms, etc. These modules operate in parallel,
may use the same sensor information, and may modulate the
same control variables.

3) High Level System Controller: The HLSC is composed
of a set of modules that are used to integrate the information
provided by the SSM and TPC subsystems, and output a
single command to each control signal. The current state

of the system is used to establish the operating mode of
the robot. The operating mode determines the priority of the
task controllers. For example, a collision avoidance controller
may override a person follower controller if another object
is too close to the robot, and a teleoperation controller may
override the collision avoidance controller in cases when
an operator needs to navigate the robot out of a difficult
situation. The software logic of the HLSC is responsible of
choosing what controller is in command of the robot based
on the current systems states. Once a controller is selected,
its output is used to modulate actuator input signals or set-
points to lower level controllers.

4) System stability: Output of high level task controllers
cannot affect low level controllers in such a way that they
cause the system to be unstable. In general, low level
controllers must have higher performance and bandwidth
than high level controllers and the transitions between con-
trollers must be stable. It is important that there not be
controller actions at a high level that cause lower level
controllers to generate positive reinforcement inputs to high
level controllers that would drive the system unstable. The
nature of the mobile platform needs to be taken into account
in the design of both the low and high level controllers. It is
expected that different controller architectures or parameters
are required for different platforms, specially if the locomo-
tion characteristics differ such as between aerial, humanoid,
and wheeled platforms.

IV. PROTOTYPE DEVELOPMENT

Using the general system architecture described in the
previous section, we have implemented a prototype for
people tracking and following applications (Fig. 2). The
system was designed to be a MIMC agent. The main features
we would like to demonstrate with this prototype are:

1) Multi-controller design:
a) teleoperation,
b) collision avoidance,
c) person tracker and follower (front),
d) person tracker and follower (side), and
e) autonomous navigation using route repeater.

2) Safety in unknown dynamic environments:
a) emergency stop when an object is too close to

the robot, and
b) controller overrides
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Fig. 2: Prototype mobile platform based on a Husky A200,
instrumented with two laser scanners and a camera.

A. Mobile platform
The prototype was built using a Husky A200. The skid-

steer platform has two geared DC motors, each driving the
wheels of either side of the robot [18]. The motors have
built-in encoders and independent motor driver. The platform
is controlled by an internal Micro-Controller Unit (MCU)
that communicates with an Intel Atom 1.6 GHz on-board
computer under Ubuntu 12.04 LTS OS.

The prototype includes two Hokuyo URG-04LX-UG01
Scanning Laser Rangefinders and a digital camera (Fig. 2).
Each laser range-finder has an angular resolution of 0.36
degrees, an accuracy of ±30 mm and a maximum range of
5600 mm [19].

The front laser was used for forward collision avoidance
and object tracking and following in front of the robot. It
was mounted approximately 45 cm above ground level, 10
cm to the right from the center of the robot, and 20 cm from
the front of the robot. It was pointed forwards at 0 degrees
from the horizontal plane.

The side laser was used for people tracking and following
on the side of the robot. It was mounted 45 cm above the
ground, 10 cm to the left from the center of the robot, and
20 cm from the front of the robot. It was pointed to the left
side of the robot, and pointed upwards at approximately 30
degrees from the horizontal plane in order to have the laser
scan pointing to the torso of a person walking beside the
robot.

B. People tracking and following modules
Two object tracking and following modules exist. The top

view of the robot with the laser scanners is pictured in Fig.
3. Each module is predefined with a static goal position. In
the case of the front laser, the goal is at point (dx

g

, dy

g

)1 =
(1.0, 0.10) in coordinate system x1, y1. For the side laser, the
goal is located at point (dx

g

, dy

g

)2 = (1.0, 0.0) in coordinate
system x2, y2. All the goal positions are given in meters.
The main task of the object following modules is to control
the linear and angular velocity set-points of the robot in
order to maintain the tracked object in the goal position.
The generalized feedback control design is shown in Fig.
4. For the object positions shown in Fig. 3, the direction
of motion required to reduce the distance between the goal
and the object is shown with red arrows. Depending on
the operation mode of the robot, the front or side object
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Fig. 3: Top view of the robot with front laser scanner (blue)
and side laser scanner (green). The dotted lines represent the
approximate field of view of each scanner.

following controller will be in control of the mobile platform.
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Fig. 4: Feedback control design for object detection, tracking
and following.

Abstraction layers are used to simplify the implementation
of multiple trackers and controllers. In Fig. 4, the blocks
“Object Following Controller” and “Object Detection and
Tracking” were designed to be modular and reusable with
the following features:

1) single position goal in coordinate system x0, y0,
2) generalized Object Following Controller, with input:

position error in coordinate system x0, y0, and
3) interchangeable Object Detection and Tracking meth-

ods, with outputs: positions of virtual objects in coor-
dinate system x0, y0.

We use virtual objects to be able to calculate position error
in coordinate system x0, y0 independently of the coordinate
system of the laser used to detect the object, so that only
one object following controller is necessary. For the front
laser, the virtual object position is calculated by translating
the measurements of the laser in coordinate system x1, y1,
by dy = 0.1 in the y1 direction. For the side laser, a virtual
object is created in front of the robot as shown in Fig. 5 with
dx0 = �dy2 and dy

o

= dx2.

V. DESIGN IMPLEMENTATION

This section presents the design implementation for the
prototype described in section IV. All components of the
MIMC system were integrated using ROS. A system diagram
is shown in Fig. 6. The different modules have been color



ROS Signals

Other Signals

Perception and Control SystemMobile Robot Platform

High Level System Controller

Wireless Joystick

Robot MCU

Geared Motors & Wheels

Environment

Operator

Laser scanner (font)

Laser scanner (side)

Camera (front)

Controller Selection

Controller Override

Collision Avoidance

Front Object Follower

Side Person Follower

Route Trainer

Route Repeater

Teleoperation

System State Machines
Task Perception & Control

High Level System Controller

Sensors

Actuators
Low Level Controllers

Motor Encoders

Motor Controllers

Fig. 6: System diagram of the ROS implementation of the proposed system architecture.
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Fig. 5: Top view of the robot with real object detected by
side laser scanner (green) and virtual object (purple) created
in front of the robot.

coded to represent the different components presented in the
generalized system architecture of Fig. 1.

ROS is a software platform commonly used for research
robotics. As described in [20] and [21], “ROS is an open
source, meta-operating system”, meaning that it provides ser-
vices such as “hardware abstraction, low-level device control,
implementation of commonly-used functionality, message-
passing between processes, and package management.” ROS
works on top of traditional operating systems and “provides
tools and libraries for obtaining, building, writing, and run-
ning code across multiple computers” [20]. ROS has several
advantages such as distributed computation, software reuse
and rapid testing/prototyping [21].

A. System modularity with ROS

As outlined in section II, modularity and common in-
terfaces are requirements in a sound system architecture.
ROS provides methods and techniques to produce modu-
lar systems that can be shared and reused. Computation
requirements are organized into interchangeable software
modules called nodes. Nodes can communicate between
each other by publishing messages to topics. Messages are

predefined data structures, while topics are the channels used
to broadcast these messages. Nodes can subscribe or publish
to topics to transmit and receive information. A complete
description of ROS can be found in [17]. Modularity of
the proposed system architecture was achieved by organizing
the subsystems into nodes or groups of nodes and common
interfaces was achieved by the standardization of messages
and topics.

B. Mobile Robot Platform: sensors, actuators and low-level
controllers

The main components of the MRP are listed in Fig. 6.
Two laser scanners, a wireless joystick, and a camera collect
the inputs and measurements used by the robot. All sensors
are interfaced through ROS nodes running on an on-board
Linux computer. Two identical ROS nodes communicate with
the Hokuyo laser scanners and publish the range finders
measurements to unique ROS topics. Another ROS node
publishes the positions and states of the wireless joystick
sticks and buttons. The camera module is built with its own
ROS node that publishes raw and compressed images. All
sensor measurements are timestamped.

A Husky A200 ROS node was provided by the base
platform manufacturers. We use the Husky node as a bridge
between the on-board computer with the robot MCU. The
node subscribes and publishes to ROS topics to receive
control commands and publish actuator sensory feedback
respectively. The control commands are composed of set-
points for the linear and angular velocities of the robot.
We use the robot’s velocities to calculate the corresponding
angular velocities for it’s wheels. The on-board computer
transmits these angular velocities set-points to the robot
MCU which relays them to the two motor controllers. The
angular speeds of the wheels are controlled with closed-loop
PID controllers using optical encoders on the shaft of the
motors. The feedback from the encoders is transmitted to
the on-board computer and published in ROS.

C. Task Perception & Control

Our prototype was developed to demonstrate six different
tasks. Each task required specific perception and control



subsystems. Teleoperation was accomplished by mapping the
feedback from the wireless joystick to the linear and angular
velocities set-points of the robot. An ROS node was built
for linear mapping between the position of the sticks and the
velocities but in the future we can use exponential mapping
to reduce the joystick sensitivity for motion at slow speeds.

We built a collision avoidance subsystem for the prototype
demonstration. Collisions are avoided by stopping the robot
when objects were detected to be closer than 0.3 m to the
robot. The front laser scanner is used for this task. We
selected this approach because the robot was tested around
dynamic objects, such as people walking beside and in front
of the robot and we found that people feel safer if the robot
stopped if it gets too close, rather than if it would try to
navigate around them.

A front Object Following Controller was implemented
as described in section IV-B. The front laser scanner is
used to estimate the position of the objects ahead of the
robot. An Object Detection and Tracking subsystem was
built with an ROS node that subscribes to the range finder
measurements and uses a nearest point detector to track an
object’s positions. The estimated position is published to
an ROS topic and is used to control the robot’s linear and
angular velocities. Two PID controllers are used for object
following based on the position error. One PID controller
modulates the robot’s linear velocity set-point while a second
PID controller modulates the robot’s angular velocity set-
point. The PID gains were tunned using the classical Ziegler-
Nichols method and were fined tunned manually. The Object
Following Controller was packaged into an ROS node.

The Object Following Controller ROS node was reused for
the side Person Following Controller. Similarly to the front
Object Detection and Tracking subsystem, an ROS node was
built to subscribe the the side range finder measurements
and publish the estimated object’s position. As described
in section IV-B, the Object Following Controller ROS node
could be reused because of the standardization of coordinate
systems, the generalization of the Object Following Con-
troller, and the interchangeability of the Object Detection
and Tracking methods.

A Route Trainer and Route Repeater ROS nodes were
integrated to the prototype. Images are used for Graph-
SLAM to construct maps and use them to navigate the robot
autonomously. These modules were used for demonstration
purposes of the multi-controller agent and their details are
not within the scope of this paper.

D. High Level System Controller and System State Machines
The HLSC was designed to select which of the six

Task Controllers described above is in control of the robot.
Once a Task Controller is selected, the HLSC transmits the
commands of the selected controller to the mobile platform.
The HLSC selects the Task Controller based on the state
of the Controller Selection and Controller Override state
machines.

The Controller Selection state machine tracks the oper-
ator’s desired Task Controller based on the state of the

buttons of the wireless joystick. We designed our prototype
so that the operator can quickly change the desired Task
Controller. For example, if the object following or route
repeating is operational, the operator can quickly switch
to manual control by pressing any button of the joystick.
Then, autonomous navigation can be resumed by pressing
predetermined buttons linked to specific Task Controllers.
This allows for short interventions of manual control and
easy switching between autonomous controllers.

The Controller Override state machine determines if the
Collision Avoidance subsystem needs to take precedence
over an autonomous Task Controller such as object following
or route repeating. If an object is detected to be too close
to the robot, the state is changed so that the HLSC can give
priority to the Collision Avoidance subsystem which stops
the robot.

The HLSC is required to make the transitions between
controllers stable. The smoothness of the transitions might
also be important in some applications. In such cases, inter-
polation between control commands during controller tran-
sitions might eliminate sudden jumps in actuator inputs. No
high level control action should cause low level controllers to
create positive reinforcement to high level controllers which
can drive the system unstable.

VI. APPLICATIONS

To determine the feasibility of real-world application of
the proposed architecture, we tested our prototype during the
completion of two tasks: side person following for teach-and-
repeat route following and outdoor robot following. Figures
7a and 7b show images during the experiments of side
person following. Side person following was initially tested
in open environments (Fig 7b) and then on a dynamic indoor
environment (Fig 7a). During the indoor experiments the
collision avoidance and controller selection features of the
prototype were successfully demonstrated. The side person
follower was used to train the robot to follow a route though
a mall. Once the robot was trained over a path, the operator
selected the Route Following Task Controller to let the robot
autonomously navigate the path. The collision avoidance
subsystem was essential to avoid collisions with people and
objects that moved into the robot’s path as the robot was
autonomously following the route.

Front Object Following was used to follow another mobile
platform as shown in Figure 7c. Experiments in the Canadian
Space Agency’s Mars Yard were conducted over various
terrains. The object following methods were successfully
demonstrated on trajectories that included sharp turns and
reverse maneuvers.

VII. CONCLUSIONS AND FUTURE WORK

We have presented the design and implementation of
a reusable system architecture for mobile robots. Desired
characteristics for the proposed system architecture were
identified to be multi-input, multi-controller, modular and
with common interfaces. The proposed system architecture is
divided into two main components, the Mobile Platform and



(a) Person following in a dynamic
indoor environment.

(b) Person following in an outdoors en-
vironment.

(c) Robot following experiments at CSA’s Mars
Yard.

Fig. 7: Indoor and outdoor field trials.

the Perception and Control Systems. The Mobile Platform
integrates the sensors, actuators and low level controllers,
while the Perception and Control system integrates the
system state machines, tasks perception and control modules
and high level system controller. System stability issues were
addressed. The details of the development of a prototype to
test the proposed system architecture were detailed. System
modularity and common interfaces were achieved through
the ROS implementation of the proposed subsystems. The
systems architecture was successfully demonstrated in multi-
task operation of people following for route teach-and-repeat
applications as well as for robot following in outdoor envi-
ronments with collision avoidance. Future work will include
the addition of extra payloads to the robotic system. In-
strumentation for terramechanics and environmental studies
will be integrated to the platform within the existing system
architecture as a set of actuators, perception and control
modules. The new subsystems will be integrated using ROS.
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