COMP 250 Fall 2004 - Midterm examination

October 18th 2003, 13:35-14:25

1 Running time analysis (20 points)

For each algorithm below, indicate the running time using the simplest and
most accurate big-Oh notation, as a function of n. Assume that all arithmetic
operations can be done in constant time. The first algorithm is an example. No
justifications are required.

Algorithm Running time in big-Oh notation

Algorithm Example(n)

0

for i +— 1 ton do
r—zx+1

O(n)

Algorithm examl(n)
11
while (i < n) do

1 1% 2

Algorithm exam?2(n)
z—0
for i — 1 ton do

for j — 1ton—1ido

. r—ux+1
Alggrithm exam3(n) Hint: Don’t spend more than a constant
for i — 1 to 1000 amount of time on this one!

g1

while j < i do
j—ji+1+1log(i)++7

Algorithm exam4(n)

R 1)
while (i > 0) do
i —1—10

2 Short answer questions (16 points)

a) True or false? Justify your answer. If the worst-case running time of
an algorithm A is O(n'-%®) and the worst-case running time of an algorithm B
is O(n?), then algorithm A will run faster than algorithm B on all input.

b) What does it mean for an algorithm A to run in constant time (i.e. in time

o))?

¢) What kind of utilization of a list abstract data type would make an im-
plementation using an array more efficient (in terms of running time) than an
implementation using a linked-list?

d) Explain why, in an induction proof, it is absolutely necessary to prove the
base case. Use at most three lines of text.

3 Linked lists and stacks (14 points)

The following algorithm takes a linked list as input and check if it has a certain
property. What is that property? Under what condition will the checkProperty
method return true?

Algorithm checkProperty(linkedList L)
Input: A linked-list L
Output: Returns true if the list L has the property, and false otherwise
Stack s < new Stack();
node n < L.head;
while (n # null) do
s.push(n.getValue());
. n «— n.getNext();
while (L.head # null) do
if (L.getFirst() + s.top() # 10) then return false;
L.removeFirst();
5.pop();
return true;

4 Big-Oh relations (16 points)

a) Prove, using only the definition of the big-Oh notation, that
3+(sin(n))? - n<" € O(n).

b) Prove, using any valid technique you want, that n? + 10log(n) 4+ 10 € ©(n?).

5 Analysis of recursive algorithms (16 points)

Recall the pseudocode for the mergeSort algorithm:

Algorithm mergeSort(A,[,r)
Input: An array A of numbers, and indices [and 7.
Output: The elements of A[l...r] are sorted.
if (I < r) then
mid «— [(I+71)/2]
mergeSort(A4, I, mid)
mergeSort(A, mid + 1,7)
merge(A, I, mid,r)

Suppose that by some miracle, someone provided you with a version of the
"merge” algorithm for which the number of primitive operations performed was
constant, say 100, instead of the linear-time algorithm seen in class.

a) (6 points) Let T'(n) be the total number of primitive operations performed by
this miracle mergeSort when sorting an array of n = r — [+ 1 elements. Write
a recurrence equation for 7'(n). For simplicity, assume that n is an exact power
of two.

b) (10 points) Solve this recurrence equation to obtain an explicit formula for
T(n), using any method you want. Again, for simplicity, assume that n is an
exact power of two.

6 Recursive algorithms (18 points)

You are a biologist conducting an experiment where you have prepared an array
of n samples S[0...n —1]. You know that at most one of your samples is infected
with a virus, but you don’t know which one (if any). You have a machine that
can take any consecutive subset of samples Si...j] and determine, using a single
test kit, whether one of the samples in S[i...j] is infected, but without telling
exactly which sample it is. You have the time to conduct only [log, n] such
test. Suppose this test is provided to you in the form of an algorithm:

Algorithm testSample(S, 1, j)

Input: An array of samples S, and two indices i and j.

Output: Returns true if one of the samples in Si...j] is infected, and false
otherwise.

Question: Write a recursive algorithm that returns the index of the infected
sample, or -1 if no sample is infected. When executed on an array of n samples,
your algorithm should call the testSample method at most [log,(n)] times (but
you don’t need to prove that it does).

Algorithm findInfected(S, start, stop)
Input: An array S of samples. Indices start and stop.
Output: The index of the infected sample between start and stop inclusively,

or -1 if A[start...stop] contains no infected sample.
/* WRITE YOUR PSEUDOCODE HERE */

7 Bonus question (5 points)

Prove that log(n!) € O(nlog(n)).

