
COMP 250 Fall 2004 - Midterm examination

October 18th 2003, 13:35-14:25

1 Running time analysis (20 points)

For each algorithm below, indicate the running time using the simplest and
most accurate big-Oh notation, as a function of n. Assume that all arithmetic
operations can be done in constant time. The first algorithm is an example. No
justifications are required.

Algorithm Running time in big-Oh notation
Algorithm Example(n)
x← 0
for i← 1 to n do
. x← x + 1

O(n)

Algorithm exam1(n)
i← 1
while (i < n) do
. i← i ∗ 2
Algorithm exam2(n)
x← 0
for i← 1 to n do
. for j ← 1 to n− i do
. x← x + 1
Algorithm exam3(n)
for i← 1 to 1000
. j ← 1
. while j < i do
. j ← j + 1 + log(i) +

√
j

Hint: Don’t spend more than a constant
amount of time on this one!

Algorithm exam4(n)
i← n
while (i > 0) do
. i← i− 10

1

2 Short answer questions (16 points)

a) True or false? Justify your answer. If the worst-case running time of
an algorithm A is O(n1.58) and the worst-case running time of an algorithm B
is O(n2), then algorithm A will run faster than algorithm B on all input.

b) What does it mean for an algorithm A to run in constant time (i.e. in time
O(1))?

c) What kind of utilization of a list abstract data type would make an im-
plementation using an array more efficient (in terms of running time) than an
implementation using a linked-list?

d) Explain why, in an induction proof, it is absolutely necessary to prove the
base case. Use at most three lines of text.

2

3 Linked lists and stacks (14 points)

The following algorithm takes a linked list as input and check if it has a certain
property. What is that property? Under what condition will the checkProperty
method return true?

Algorithm checkProperty(linkedList L)
Input: A linked-list L
Output: Returns true if the list L has the property, and false otherwise
Stack s← new Stack();
node n← L.head;
while (n 6= null) do
. s.push(n.getValue());
. n ← n.getNext();
while (L.head 6= null) do
. if (L.getFirst() + s.top() 6= 10) then return false;
. L.removeFirst();
. s.pop();
return true;

3

4 Big-Oh relations (16 points)

a) Prove, using only the definition of the big-Oh notation, that
3+(sin(n))2 · ncos n ∈ O(n).

b) Prove, using any valid technique you want, that n2 +10 log(n)+10 ∈ Θ(n2).

4

5 Analysis of recursive algorithms (16 points)

Recall the pseudocode for the mergeSort algorithm:

Algorithm mergeSort(A, l, r)
Input: An array A of numbers, and indices l and r.
Output: The elements of A[l...r] are sorted.
if (l < r) then
. mid← b(l + r)/2c
. mergeSort(A, l, mid)
. mergeSort(A,mid + 1, r)
. merge(A, l, mid, r)

Suppose that by some miracle, someone provided you with a version of the
”merge” algorithm for which the number of primitive operations performed was
constant, say 100, instead of the linear-time algorithm seen in class.

a) (6 points) Let T (n) be the total number of primitive operations performed by
this miracle mergeSort when sorting an array of n = r − l + 1 elements. Write
a recurrence equation for T (n). For simplicity, assume that n is an exact power
of two.

b) (10 points) Solve this recurrence equation to obtain an explicit formula for
T (n), using any method you want. Again, for simplicity, assume that n is an
exact power of two.

5

6 Recursive algorithms (18 points)

You are a biologist conducting an experiment where you have prepared an array
of n samples S[0...n−1]. You know that at most one of your samples is infected
with a virus, but you don’t know which one (if any). You have a machine that
can take any consecutive subset of samples S[i...j] and determine, using a single
test kit, whether one of the samples in S[i...j] is infected, but without telling
exactly which sample it is. You have the time to conduct only dlog2 ne such
test. Suppose this test is provided to you in the form of an algorithm:

Algorithm testSample(S, i, j)
Input: An array of samples S, and two indices i and j.
Output: Returns true if one of the samples in S[i...j] is infected, and false
otherwise.

Question: Write a recursive algorithm that returns the index of the infected
sample, or -1 if no sample is infected. When executed on an array of n samples,
your algorithm should call the testSample method at most dlog2(n)e times (but
you don’t need to prove that it does).

Algorithm findInfected(S, start, stop)
Input: An array S of samples. Indices start and stop.
Output: The index of the infected sample between start and stop inclusively,
or -1 if A[start...stop] contains no infected sample.
/* WRITE YOUR PSEUDOCODE HERE */

6

7 Bonus question (5 points)

Prove that log(n!) ∈ Θ(n log(n)).

7

