
NAME: ___________________________________ STUDENT ID: __________________________ 
 

COMP 250 – Midterm 
October 17th 2014, 18:10 – 19:55 

 
- This exam has 7 questions. 
- This is an open book and open notes exam. No electronic equipment is allowed. 
 
Question 1 (15 points). Java programming 
 
What will the following Java program print when executed? 
 
class question1 { 

static public void questionA(int x) { 
x = x + 2;  

} 
 
static public int questionB(int x) { 

x = x + 3; 
return x; 

} 
 

static public void questionC(int array[]) { 
array[0] = array[0] + 4; 

} 
 
static public int questionD(int n) { 
 if (n<=1) return 1; 
 return questionD(n-1)+questionD(n-2); 
} 
 
public static void main(String args[]) { 

int x, y, z; 
int a[] = new int[10]; 
x = 1; 
y = 1; 
a[0] = 1; 
questionA(x); 
y = questionB(y); 
questionC(a); 
z = questionD(6); 
System.out.println("x = " + x); 
System.out.println("y = " + y); 
System.out.println("a[0] = " + a[0]); 
System.out.println("z = " + z); 

} 
} 
Answer: 

x = 
 
y = 
 
a[0] =  
 
z =  

1

4

5

13



Question 2 (20 points). Stacks and recursion 
 
Professor Stackbottom proposes the following recursive algorithm that is using a stack as argument. 
 

Algorithm mistery(Stack S) 
Input: Stack S 
Output: Modifies the stack S and returns a number 
 
value = S.pop() 
if (S is empty) then return value 
else { 

result = mistery(S)  
S.push(value) 
return result 

} 
 
The objective of this question is to discover the purpose of this algorithm. We start by executing the 
following commands. 
!

S = new Stack(); 
S.push(‘1’); 
S.push(‘2’); 
S.push(‘3’); 

 
a) (4 points) Draw the content of the stack at this point. 

 
 
Stack S:  
 
 
 

b) (8 points) If we now execute  
int x = mistery(S); 
 

What is the value of x, and what is the content of the stack after the execution of the algorithm? 
 

x =     Stack S:  
 
 
 
 
c) (4 points) In one sentence, explain what is this algorithm doing when given a stack S as input.  

 
 
 
 
d) (4 points) Using the big-Oh notation, give the running time of the mistery algorithm if it is executed 

on a stack of n elements. No justification is needed. 
  

3
2
1

3
2


It removes the object at the bottom of the stack and returns it.

O(n)



Question 3 (15 points). Proofs by induction 
 
Prove by induction on n that for every integer n � 0 and any real number a > 0, we have  

 
a0 + a1 + a2 + … + an = (an+1 – 1) / (a – 1). 

  
 
Base case: 
 
 
 
Induction hypothesis: 
 
 
 
Inductive step: 
 
 
 
 
 
 
 
  

WE’VE DONE THIS EXAMPLE IN CLASS



Question 4 (15 points). Recursive algorithms 
 
Complete the pseudocode of the RecursiveSum algorithm below to obtain a recursive algorithm such 
that given a positive integer n, it prints all the ways of expressing n as sums of positive integers. For 
example, given n=4, the output should looks like this: 
 
1+1+1+1=4 
1+1+2=4 
1+2+1=4 
1+3=4 
2+1+1=4 
2+2=4 
3+1=4 
4=4 
 
Note: This will be easier to do if we add, in addition to n itself, two additional arguments to the 
RecursiveSum algorithm:  

• an array A large enough to store up to n elements, which will be used to accumulate partial 
sums through recursive calls.  

• an integer soFar that keeps track of how many elements of A have been filled already.  
Then, the result shown above would be obtained by calling RecursiveSum(A[ ], 0, 4).  
 
Algorithm RecursiveSum(A[ ], soFar, n) 
Inputs: A[] is an array of integers, where elements A[0,..., soFar-1] are already filled 
  n is an integer 
Output: The algorithm prints out every possible ways to complete the partial sum  

   already stored in A[0,…,soFar-1] so that the numbers add up to n.   
 

sumSoFar = A[0] + A[1] + ... + A[soFar-1] 
 

if ( sumSoFar = n ) then print A[0] "+" A[1] "+" ... "+" A[soFar-1] "=" n 
else { /* WRITE YOUR PSEUDOCODE HERE */ 

  
 
 
 
 
 
 
 
 
 
 
 

} 

for i = 1 to n - sumSoFar do
	A[soFar] = i
	ResursiveSum(A, soFar+1, n)



Question 5 (10 points). Big-Oh notation 
 
Prove, using only the definition of the big-Oh notation, that log (n2 + 1) + n + 1 is O(n). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

To prove this, we need to find constants  c and n0 such that log(n^2+1) + n +1 <= c n  for all n>=n0.

We note that:
log(n^2 + 1) + n + 1 <= log (n^2 + n^2) + n + 1       (if n>=1)
			      = log ( 2 n^2) + n + 1
			      = log(2) + 2 log (n) + n + 1
			      = 2 log(n) + n + 2
			      <= 2 n + n + 2 n                      (if n>=1)
			       = 5 n

So, if we choose n0=1 and c = 5, we get that log(n^2 + 1) + n + 1 <= c n for all n>=n0. 
Thus, log(n^2+1) + n +1 is O(n)








Question 6 (10 points). Solving recurrences 
 
Using the substitution method, obtain an explicit formula for the following recurrence: 
T(n) = T(n-1) + 2 n + 1  if n > 0 

0 if n = 0 
 
 
 
 
! !

Let’s first obtain the first few values of T(n), for verification purposes.
T(0) = 0;   T(1) = 0 + 2*1 + 1 = 3;    T(2) = 3 + 2*2+1 = 8;    T(3) = 8 + 2*3 + 1 = 15;  T(4) = 15 + 2*4 +1 = 24

Now, we use the substitution method to obtain an explicit formula for T(n).
T(n) = T(n-1) + 2 n +1									(1)
	= (T(n-2) + 2 (n-1) +1) + 2n + 1 = T(n-2) + 4n + 2 - 2		(2)
	= (T(n-3) + 2 (n-2) + 1) + 4n + 2 - 2= T(n-3)+ 6n + 3 -2-4		(3)
	= (T(n-4) + 2 (n-3) + 1) + 6n +3 -2-4 = T(n-4) + 8n + 4 -2-4-6	(4)
	…
	= T(n-k) + 2 k n + k - 2 sum_{i=0}^{i=k-1} i				(k)
	
We hit the base case when n-k = 0, i.e. k=n. We then get
T(n) = T(0) +  2 n^2 + n - 2 sum_{i=0}^{i=n-1}
	= 0 + 2 n^2 + n - 2 (n-1)*n/2 = 2 n^2 + n - n^2 + n = n^2 + 2 n

Verification: From the explicit formula, we get T(0) = 0, T(1) = 1+2 = 3, T(2) = 4+4 = 9, T(3) = 9 + 6 = 15, 
T(4) = 16 + 8 = 24. So all looks good.



Question 7 (15 points). Running time of algorithms 
Give the worst-case running time of the following algorithms, using the simplest Θ() notation (big-
Theta notation) possible. No justification needed. 
 
   Θ() Running time 
Algorithm1 ( int n ) 
      i ← 2 * 2n 

while ( i > 1 ) do { 
  i ← i / 2 
} 

 

 

Algorithm2 ( int n )                                                   
      for i = 1 to n do { 
            for j = 1 to 999 do { 
                  print “Bazinga!” 
            } 
       } 
 

 

Algorithm3( A[ ], int n ) 
      for i = 0 to n-1 do { A[i]=i } 
      merge(A, 0, n/2, n-1) 
      pivot = partition(A, 0, n-1)  
 
Note: merge and partition refer to the algorithms seen in 
class. 
 

 

 
 
  

Theta(n)

Theta(n)

Theta(n)



This page is left intentionally empty. You can use it for drafting your solutions. 
  


