
NAME: ______________________________ STUDENT ID: ________________

COMP 250 – Midterm #2 - 1
March 11th 2013

- This exam has 6 pages
- This is an open book and open notes exam. No electronic equipment is allowed.

1) Questions with short answers (28 points; 4 points each)

a) (No justification needed) If a dictionary containing N keys it implemented using a hash
table with K buckets, where each bucket is implemented using a linked-list, what is the

i) best-case running time?

O(N/K)

ii) worst-case running time?

O(N)

b) Consider a sorted linked list containing n nodes, each storing an integer. On such a list,
why is it not possible to do a binary search that runs in worst-case time O(log n)?

Because, unlike with an array, it is not possible to do random access within a linked list,
i.e. to access in time O(1) element at a given index. With a linked list, this requires time
O(n), which means that the running time of binarySearch is O(n).

c) A ternary tree is a tree where each node has up to three children. What is the maximum
number of nodes in a ternary tree of height h? Justify your answer.

Maximum #nodes = 1 + 3 + 32 + … + 3h = (3h+1 – 1)/ (3 – 1) = (3h+1 – 1) / 2

d) True or False? Justify your answer. A pre-order traversal executed on a heap will print
the keys in increasing order.

False. If the heap is
 1
 / \
 3 2
then a pre-order traversal will output 1 3 2, which is not in increasing order.

e) When using a singly-linked list (not doubly-linked) to implement a queue ADT, is it
better to implement the enqueue operation with the addLast() method and the dequeue
operation with the removeFirst() method, or to implement enqueue with addFirst() and
dequeue with removeLast()? Why?

It is better to use enqueue = addLast() and dequeue = removeFirst(), because these two
operations run in time O(1), whereas removeLast() takes times O(n), where n is the
number of nodes in the linked list.

f) (2 points each) What Abstract Data Type would be the most appropriate to represent
each of the following situations? No justifications are needed.

1) When a student is busy taking several courses, he works on his assignments in the
order he receives them, completing first the assignment that was assigned first.

Queue

2) When another (wiser) student is busy taking several courses, she works on her
assignments in the order of their due dates, completing first on the assignment that is
due first.

Priority queue

3) When you go to the doctor, he/she can access your medical record by simply typing
in your Health Insurance number.

Dictionnary

4) Mathieu receives a lot of e-mails. He always replies to the most recently received
un-answered e-mail, deletes it, and then repeats the process.

Stack

Question 2. (20 Points)

Consider the Java implementation of a linked list given below. Implement in Java the
method removeElements(int marker), which remove all nodes with value equal to marker
from the link list, leaving the rest intact. If no node with value marker exists in the list,
then the list is left unchanged. For example:
calling removeElements(12) on the linked list: 5 à 12 à 6 à 3 à 12 à 12 à 9
results in : 5 à 6 à 3 à 9

class node {
 public int value;
 public node next;
};

class linkedList {
 public node head;
 public node tail;

public void removeElements(int marker) {

 node current=head;
 while (current!=null) {
 if (current.next!=null && current.next.value==marker) {
 node newNext=current.next.next;
 while (newNext!=null && newNext.value==marker) {

newNext=newNext.next;
}
current.next=newNext;
if (newNext==null) tail=current;

 }
 current = current.next;
 }
 }
};

Question 3 (20 points)

Let T be a Binary Search Tree that contains a set of keys with distinct integers. Assume
that you have a method subtreeSize(treeNode n) that returns the number of nodes in the
subtree rooted at n, including n itself. Assume at any call to subtreeSize(treeNode n) takes
time O(1).

Problem: Write an algorithm that computes the number of nodes with a key greater or
equal to a given integer k. Your algorithm should run in worst-case time O(h), where h is
the height of the binary search tree (but you don’t need to prove it).

Algorithm nbGreaterEqual(treeNode n, int k)
Input: A treeNode n and an integer k
Output: The number of nodes with key greater or equal to k in the subtree rooted at n.
/* WRITE YOUR PSEUDOCODE HERE */

if (n = null) return 0;
if (n.value < k) return nbGreateEqual(n.leftChild , k) + subtreeSize(n. rightChild) + 1
if (n.value = k) return subtreeSize(n. rightChild) + 1
if (n.value > k) return nbGreateEqual(n.rightChild, k)

4) Tree traversal algorithms (12 points)

Consider the following binary tree traversal
algorithm.

Algorithm WeirdTraversal(treeNode n, int depth)
if (n!= null) then {

if (depth is even) then {
WeirdTraversal(n.getLeftChild() , depth+1)
WeirdTraversal(n.getRightChild() , depth+1)
Print n.getKey()

}
else {

Print n.getKey()
WeirdTraversal(n.getRightChild(), depth+1)
WeirdTraversal(n.getLeftChild(), depth+1)

}
}

What would be printed when executing WeirdTraversal(root, 0)? No justification is
needed.

Call stack Printed
WT(2,0)
 WT(6,1)
 Print 6 6
 WT(8,2)
 WT(null,3)
 WT(null,3)
 Print 8 8
 WT(7,2)
 WT(null,3)
 WT(null,3)
 Print 7 7
 WT(3,1)
 Print 3 3
 WT(5,2)
 WT(null,3)
 WT(null,3)
 Print 5 5
 WT(9,2)
 WT(null,3)
 WT(null,3)
 Print 9 9
 Print 2 2

Root à

Question 5. Binary Search Trees and Heaps (20 points)

a) (10 points)
Consider the following Binary Search Tree.
Draw the Binary Search Tree after the remove(20)
operation has been performed, as seen in class.

b) (10 points)
Consider the following heap.
Draw the Heap after the insert(8) operation
has been performed, as seen in class.

