
1 COMP 250 Final examination, Winter 2013

Question 1: (30 points, 2 points each)
Indicate whether the following statements are true or false. Give a short justification for
each. Credits will be given only if the justification is correct.
a) If f(n) is Θ(h(n)), then 2f(n) is Θ(2h(n)).

b) n0.9 log(n) is O(n).

c) Let f(n) and g(n) be two non-negative functions. If there exists a number n0 such that

f(n0) < g(n0), then f(n) is O(g(n)).

d) Suppose that an algorithm A has worst-case running time O(n log(n)) and an algo. B

for the same problem has worst-case running time O(n2). Then it is possible that for
some value n0 > 0, the algorithm B runs faster than algorithm A on all inputs of size n0.

e) It is possible to write a sorting algorithm for which the best-case running time on an

array of n integers is O(n).

f) If one defines T(n) = 2 T(n-1) + n if n > 1
 1 if n = 1
 then the explicit formula for T(n) is T(n) = 2 n2 – 3 n + 2

g) The only important thing to consider when designing a hash function is that the

function needs to be easy to compute.

2 COMP 250 Final examination, Winter 2013

h) In a country where coins have values 1 ¢, 3 ¢, 5 ¢, and 8 ¢, the greedy algorithm for
making change is not optimal.

i) Suppose that the graph below represents a miniature web on which the Google page-

rank algorithm is executed. Which of page A or B would obtain the highest page-rank
score?

j) NP is the class of decision problems that cannot be solved by any polynomial-time

algorithm.

k) Nobody knows if the k-CLIQUE problem (the problem of determining if a graph

contains a clique of size at least k) is decidable.

l) If an algorithm uses random numbers during its execution, then there is always a small

probability that its output will be incorrect.

m) This question was encrypted using Ceasar’s cypher:
JO DPNQ-361, XF VTFE UIF KBWB QSPHSBNNJOH MBOHVBHF.

n) In a game between two players A and B where it is A’s turn to play, a position is a loss

for A if and only if no moves available to A lead to a losing position for B.

o) Given enough time to run, the hill-climbing heuristic will always find the optimal

solution to any optimization problem.

3 COMP 250 Final examination, Winter 2013

Question 2. (12 points)
Give the worst-case running time of the following algorithms, using the simplest Θ()
notation (big-Theta notation) possible. The running time may not necessarily be
expressed as a function n. No justification needed.

 Θ() Running time
Algorithm1(int n)
 i ← n2

while (i > 1) do
 i ← i / 2

Algorithm2(int A[0…n-1], int n)
// A is an array of n integers

 mergeSort(A, 0, n-1)
 quickSort(A, 0, n-1)

4 COMP 250 Final examination, Winter 2013

c) (4 points) Give the explicit formula for the following recurrence (no justification
needed):

T(n) = T(n-1) + n if n > 1
 5 if n = 1

d) (4 points) Draw a heap with 7 nodes, containing keys 1, 2, 3, 4, 5, 6, and 7, and such
that a post-order traversal would visit nodes in decreasing order. (No justification
needed).

e) (4 points) What is the result of running the partition algorithm, as defined in class in
the context of the QuickSort algorithm, on the following array:
A = [6 2 3 7 2 1 8 5]

5 COMP 250 Final examination, Winter 2013

Question 4. (10 points)

Consider the Fibonacci sequence F0, F1, F2,... defined in class:

F0 = 0
F1 = 1
Fn = Fn - 2 + Fn - 1 if n ≥ 2

The following recursive algorithm computes the n-th term of the Fibonacci sequence:

Algorithm Fib(int n)
Input: an integer n ≥ 0
Output: Returns Fn
if (n = 0) then

print “ A ”
return 0

if (n = 1) then
 print “ B B ”

return 1
for i = 0 to n do // note: this means 0 to n inclusively

print “ C ”
return Fib(n-2) + Fib(n-1)

a) (4 points) What will be printed when Fib(4) is executed?

b) (6 points)
Let A(n) be the total number of letters “A” that will be printed when executing Fib(n).
Let B(n) be the total number of letters “B” that will be printed when executing Fib(n).
Let C(n) be the total number of letters “C” that will be printed when executing Fib(n).
For example, A(3) = 1, B(3) = 4, and C(3) = 7.

Write a recurrence for A(n).

Write a recurrence for B(n).

Write a recurrence for C(n).

6 COMP 250 Final examination, Winter 2013

Question 5. (14 points)

Let T be a binary search tree storing distinct integers. Assume that you have a method
subtreeSize(treeNode n) that returns the number of nodes in the subtree rooted at n,
including n itself. Assume at any call to subtreeSize(treeNode n) takes time O(1).

Problem: Write an algorithm that finds the k-th smallest key contained in the tree (e.g.,
when k=0, it returns the smallest key. When k=1, it returns the second smallest, etc.).
Your algorithm must run in worst-case time O(h), where h is the height of the binary
search tree (but you don’t need to prove it).

Algorithm findKth(treeNode n, int k)
Input: A treeNode n and an integer k
Output: The k-th smallest key contained in the subtree rooted at n.
/* WRITE YOUR PSEUDOCODE HERE */

7 COMP 250 Final examination, Winter 2013

Question 6. (16 points)
In an undirected connected graph G=(V,E), the distance d(a,b) between vertices a and b
is the number of edges in the shortest path between a and b. The excentricity of a vertex a
is defined as the largest distance between vertex a and any other vertex:
excentricity(a) = max { d(a,b) : b ∈ V }

For example, in the graph to the right, excentricity(u) = 3 and
excentricity(v) = 2.

Problem: Write an algorithm to compute the excentricity of a given vertex in a graph.

Use the following standard graph ADT methods if needed.

• getNeighbors(vertex v) returns the list of vertices that are the adjacent to vertex v.
It is ok for you to write something like: for each vertex w in getNeighbors(v) do ...

• boolean getVisited(vertex v) returns TRUE if and only if vertex v has been
marked as visited.

• setVisited(vertex v, boolean b) sets the visited status of vertex v to b.
You may also want to associate to each vertex an integer called distance, which can be
set and accessed through

• int getDistance(vertex v) returns the distance stored in v.
• setDistance(vertex v, int d) sets the distance stored in v to d

Algorithm excentricity(vertex u)
Input: a vertex u from the graph
Output: the excentricity of u
/* WRITE YOUR PSEUDOCODE HERE */

