Computer graphics
Ray tracing

Putting it all together

Our last real lecture!!

17-04-06

Computer Graphics Rendering
» World is represented by a set of 3D objects, with
colors, reflectivity, transparence, etc.
— Primite objects: Polygons, spheres, cones
— Complex objects: i
Mesh of triangles

* Goal: Produce a realistic 2D
picture of the world

The input

O

Ray-tracing

Second hit

Ignored
/
-
-
-
-
t/.
3D World
2D image
eye
(xyz2) °

Ray-tracing algorithm

Input: - world: set of 3D objects
- (X,y,z) position of the eye
- Position of the 2D screen
Output: Image: array of colors of size nPixels by mPixels
Fori=1...nPixels
For j = 1...mPixels
r =ray(eye -> pixel(i,j))
object = getClosestIntersection(r, world)
if (object!=null) then
image[l,j] = object.getColor();

Opaque ball

Glass ball Glisstona

17-04-06

Finding intersections

¢ Suppose your world consists of Millions of objects

* How can you calculate closest intersection
quickly?

— Computing intersection between ray and each object is
much too slow

¢ Idea: Store your objects in a data structure that
allows you to quickly discard objects that can’ t
have intersection

Quad trees

For a 2D-world, K 2
Subdivide the world e &)
into four quadrants. [

Keep subdividing as long
there is more than one (] @c

object per square

For 3D-world,
Subdivide world into
eight octants

@° (%)

)

Quad trees

Subdivision is represented as a tree:
Root = complete world
Children = four quadrants

TopLeft ~ TopRight BottomLeft “BottomRight

K ALJ I H a F

Fast ray intersection dproblem

To quickly find intersection between ray and worl
Find which main quadrant is intersected
Find which of its subquadrant is intersected
... Keep going down the tree until a leaf is found

If leaf contains an object, test intersection

Continue until intersection is found 8 o
ry
* o -
‘e| '@ o
o' o

ra
Eye _/y,’—?—

