
Internet search engines

The Source for Java Technology
The Source for Java Technology. The Java 2 Platform ... Get Java. Highlights
November 4, 2003 Play Ball! Tendu's Java software applications ...
Description: Sun's home for Java. Offers Windows, Solaris, and Linux Java Development Kits (JDKs),
extensions,...
Category: Computers > Programming > Languages > Java
java.sun.com/ - 46k - 9 Nov 2003 - Cached - Similar pages
The Java Tutorial
... Developer Services. Java BluePrints. Java Tutorial. ... Your First Cup of Java: Detailed
instructions to help you run your first program: UNIX, Microsoft Windows, Mac. ...
Description: On-line version of book from Addison-Wesley.
Category: Computers > Programming > ... > Tutorials
java.sun.com/docs/books/tutorial/ - 40k - 9 Nov 2003 - Cached - Similar pages
[More results from java.sun.com]
Java(TM) Boutique - Free Java Applets, Games, Programming ...
The Java Boutique is a collection of java applets, games, scripts, and tutorials.
Learn programming and download free java applets and source code. ...
Description: Collection of Java applets, script information and tutorials.
Category: Kids and Teens > Computers > ... > CGI and Programming > Java
javaboutique.internet.com/ - 50k - 9 Nov 2003 - Cached - Similar pages

Query: "Java"

Pigeon-ranking system
The technology behind Google's great results
 As a Google user, you're familiar with the speed and accuracy of a Google search. How exactly does

Google manage to find the right results for every query as quickly as it does? The heart of Google's
search technology is PigeonRank™, a system for ranking web pages developed by Google founders
Larry Page and Sergey Brin at Stanford University.

Why Google's patented PigeonRank™ works so well
 PigeonRank's success relies primarily on the superior trainability of the domestic pigeon (Columba

livia) and its unique capacity to recognize objects regardless of spatial orientation. The common gray
pigeon can easily distinguish among items displaying only the minutest differences, an ability that
enables it to select relevant web sites from among thousands of similar pages. By collecting flocks of
pigeons in dense clusters, Google is able to process search queries at speeds superior to traditional
search engines, which typically rely on birds of prey, brooding hens or slow-moving waterfowl to do
their relevance rankings. When a search query is submitted to Google, it is routed to a data coop
where monitors flash result pages at blazing speeds. When a relevant
result is observed by one of the pigeons in the cluster, it strikes a rubber-coated
steel bar with its beak, which assigns the page a PigeonRank value of one. For
each peck, the PigeonRank increases. Those pages receiving the most pecks, are
returned at the top of the user's results page with the other results displayed in
pecking order.

•  Read more at http://www.google.com/technology/pigeonrank.html

How google really works
1.  Web crawling:

•  Use depth-first or breadth-first search to:
 Learn the structure (vertices+edges) of the graph

•  Build an index of the web:
 Use a hash table to store pairs (word, list-of-sites)

for each web site S do

 for each word w in S do
 index.get(w).addLast(S)

... | "jack" | "java" | "jet"|
http://www.sun.com
http://www.mcb.mcgill.ca
...

http://www.jackdaniels.com
http://www.jackinthebox.com
...

index:

Page ranking system
•  Idea #1: Web pages reported should contain

 the query words.
– Easy: Simply use the index
– Variants:

•  Better to have several occurrences of the words in the
query.

•  Allow synonyms
•  Use context to determine meaning of words:
 Query: "java error"
 Bad site: "It is an error to serve java coffee with

milk"

Exploiting graph structure
•  Idea #2:

– Website authors know good sites of a particular
domain and have links to them

– Good sites (a.k.a. authorities) are cites by many
other sites

– Prefer websites with large in-degree

Exploiting graph structure
•  Idea #3:

– Websites that link to a large number of other
sites (a.k.a hubs) are less valuable references

– Weight less heavily references from sites that
have large out-degree

Exploiting graph structure
•  Idea #4:

– Websites that are themselves authorities are
more valuable references

– Weight more heavily references from sites that
have high page-rank (even if they don't contain
words from the query)

Putting it all together
•  How to incorporate ideas #2, #3, #4?
•  The page-rank PR(v) of vertex v describes how

authoritative this site v is
–  based only on the graph structure, not on the actual

query)
•  High page-rank is good
•  To answer a query:

– Find all sites that contain the words of the query
– Sort them in decreasing order of page-rank

Computing page-ranks

•  Let PR(v) be the page-rank of vertex v
•  Let C(v) be the out-degree of vertex v
•  Let w1, w2, ..., wk be the sites that have links to v
PR(v) = PR(w1) + PR(w2) + ... + PR(wk)

 C(w1) C(w2) C(wk)
•  For technical reasons, add a damping factor d:

PR(v) = (1-d) + d *(PR(w1) + PR(w2) + ... + PR(wk))
 C(w1) C(w2) C(wk)

Solving for PR(v)
•  PR(v) is expressed as a function of PR(w1),...,PR(wk)
•  Let v1,,..., vn be all the vertices of the internet graph
•  We have a system of linear equations with unknowns

PR(v1), PR(vn)
•  We could use linear algebra to solve for PR(v1),

PR(vn)
–  Gaussian elimination. Problem: runs in O(n3)

•  Instead we use a simple numerical approximation
method...

Fixed-point iterative solution
•  To solve a system of equations

x1 = f1(x1, x2, ..., xn)
x2 = f2(x1, x2, ..., xn)

...
xn = fn(x1, x2, ..., xn)

Repeat

 for i = 1 to n do xi = 1
 for i = 1 to n do ti = fi(x1, x2, ..., xn)
 for i = 1 to n do xi = ti

until convergence

with d=1/2, we get

0-th iteration: PR(A)=PR(B)=PR(C)=PR(D)=PR(E)=PR(F)=1

1-st iteration (using the values from iteration 0)

PR(A) = 1/2 + 1/2 * (PR(E) / 2) = 3/4,
PR(B) = 1/2 + 1/2 * () =
PR(C) = 1/2 + 1/2 * () =
PR(D) = 1/2+1/2 * ()=
PR(E) = 1/2 + 1/2 * () =
PR(F) = 1/2 + 1/2* () =

PR(v) = (1-d) + d *(PR(w1) + PR(w2) + ... + PR(wk))
 C(w1) C(w2) C(wk)

1-st iteration (just repeating last slide's result)
PR(A)=3/4, PR(B)=5/8, PR(C)=7/8, PR(D)=13/8, PR(E)=5/8, PR(F)=1

2-nd iteration (using values of the previous iteration)

PR(A) = 1/2 + 1/2 * (PR(E) / 2) = 21/32
PR(B) = 1/2 + 1/2 * (PR(A) / 4) = 19/32
PR(C) = 1/2 + 1/2 * (PR(A) / 4 + PR(B) / 2) = 3/4
PR(D) = 1/2+1/2*(PR(A)/4 + PR(B)/2 + PR(C)/1 +PR(E)/2)= 43/32
PR(E) = 1/2 + 1/2 * (PR(A) / 4) = 19/32
PR(F) = 1/2 + 1/2* (PR(D) / 1) = 42/32

After 10 iterations, all PR() are stabilized to the 10th decimal:

PR(A) = 0.645..., PR(B) = 0.581..., PR(C) = 0.726...,
PR(D) = 1.234..., PR(E) = 0.581..., PR(F) = 1.117...

Ordering of the pages based on page-rank: D, F, C, A, B, E

