
Depth-First Search 1

Graph Traversal
 Depth-First Search
 Breadth-First Search

D B

A

C

E

Depth-First Search 2

Graph traversal - Idea
Problem:
n  you visit each node in a graph, but all you

have to start with is:
w One vertex A
w A method getNeighbors(vertex v) that returns

the set of vertices adjacent to v

D B

A

C

E

Depth-First Search 3

Graph traversal - Motivations
 Applications
n  Exploration of graph not known in advance, or too

big to be stored:
w Web crawling
w  Exploration of a maze

n  Graph may be computed as you go. Example:
game strategy:
w  Vertices = set of all configurations of a Rubik's cube
w  Edges connect pairs of configuration that are one

rotation away.

Depth-First Search 4

Depth-First Search

Idea: Go Deep!
n  Intuition: Adventurous web browsing: always

click the first unvisited link available. Click "back"
when you hit a deadend.

n  Start at some vertex v
n  Let w be the first neighbor of v that is not yet

visited. Move to w.
n  If no such unvisited neighbor exists, move back

to the vertex that lead to v

Depth-First Search 5

Example

D B

A

C

E

D B

A

C

E

D B

A

C

E

discovery edge

A visited vertex
A unexplored vertex

unexplored edge

Depth-First Search 6

Example (cont.)

D B

A

C

E

D B

A

C

E

D B

A

C

E

D B

A

C

E

Depth-First Search 7

DFS Algorithm
Algorithm DFS(G, v)
Input: graph G with no parallel edges and a start
 vertex v of G

Output: Visits each vertex once (as long as G is
 connected)
print v // or do some kind of processing on v

v.setLabel(VISITED)
 for all u ∈ v.getNeighbors()

 if (u.getLabel() != VISITED) then DFS(G, u)

Depth-First Search 8

DFS and Maze Traversal
The DFS algorithm is
similar to a classic
strategy for exploring
a maze
n  We mark each

intersection, corner
and dead end (vertex)
visited

n  We mark each corridor
(edge) traversed

n  We keep track of the
path back to the
entrance (start vertex)
by means of a rope
(recursion stack)

Depth-First Search 9

DFS and Rubik’s cube
Rubik’s cube game can be represented as a graph:
n  Vertices: Set of all possible configurations of the cube
n  Edges: Connect configurations that are just one rotation

away from each other

 Given a starting configuration S, find a path to the
“perfect” configuration P
Depth-first search could in principle be used:
n  start at S and making rotations until P is reached,

 avoiding configurations already visited

Problem: The graph is huge:
43,252,003,274,489,856,000 vertices

Depth-First Search 10

Running time of DFS

 DFS(G, v) is called once for every vertex v (if
G is connected)
When visiting node v, the number of iterations
of the for loop is deg(v).

 Conclusion: The total number of iterations of
all for loops is: Σv deg(v) = ?

 Thus, the total running time is O(|E|)

Depth-First Search 11

Applications of variants of DFS
DFS can be used to:
n  Determine if a graph is connected
n  Determine if a graph contains cycles
n  Solve games single-player games like Rubik’s cube

Depth-First Search 12

Breadth-First Search
Idea:
n  Explore graph layers by layers
n  Start at some vertex v
n  Then explore all the neighbors of v
n  Then explore all the unvisited neighbors of the

neighbors of v
n  Then explore all the unvisited neighbors of the

neighbors of the neighbors of v
n  until no more unvisited vertices remain

Depth-First Search 13

Example

C B

A

E

D

discovery edge

A visited vertex
A unexplored vertex

unexplored edge

L0

L1

F

C B

A

E

D

L0

L1

F

C B

A

E

D

L0

L1

F

Depth-First Search 14

Example (cont.)

C B

A

E

D

L0

L1

F

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

Depth-First Search 15

Example (cont.)

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

17-03-16 13:18 Depth-First Search 16

Iterative BFS
 Idea: use a queue to remember the set
of vertices on the frontier

Algorithm iterativeBFS(G, v)
 Input graph G with no parallel edges and a start vertex v of G
 Output Visits each vertex once (as long as G is connected)
 q ← new Queue()
 v.setLabel(VISITED)
 q.enqueue(v)
while (! q.empty()) do

 w ← s.deque()
 print w // or do some kind of processing on w
 for all u ∈ w.getNeighbors() do
 if (u.getLabel() != VISITED) then
 u.setLabel(VISITED)
 s.enqueue(u)

Depth-First Search 17

Running time and applications
Running time of BFS: Same as DFS, O(|E|)
BFS can be used to:
n  Find a shortest path between two vertices

n  Rubik’s cube’s fastest solution
n  Determine if a graph is connected
n  Determine if a graph contains cycles
n  Get out of an infinite maze...

17-03-16 13:18 Depth-First Search 18

Iterative DFS
 Use a stack to remember your path so far

Algorithm iterativeDFS(G, v)
Input graph G with no parallel edges and a start vertex v of G
Output Visits each vertex once (as long as G is connected)
s ← new Stack()
v.setLabel(VISITED)
s.push(v)
while (! s.empty()) do

 w ← s.pop()
 print w
 for all u ∈ w.getNeighbors() do
 if (u.getLabel() != VISITED) then
 u.setLabel(VISITED)
 s.push(u)

Notice: Code is identical to BFS,

but with a stack instead of a queue

