Hash tables

17-03-10

Dictionary ADT

* Reminder: A dictionary stores pairs
(key, information)
« Operations:
— find(key k)
— insert(key k, info i)
— remove(key k)

* Binary Search Trees implement all these
operations in time O(h), where h is the height of
the tree, which is O(log n) if we maintain the tree
balanced

* We can sometimes do better...

Hash tables

Suppose keys are integers between 0 and K-1
Then, use an array A[0...K-1] containing
elements of type "info" to store the
dictionary:

— insert(key k, info i): Alk]=1;
— remove(key k): A[k] = null;
— find(key k): return A[k]

* Running time: All operations are O(1)
It's a miracle! Except that...

Problems with direct
array implementation
» If K is large, the array will be very big
~ For McGill student ID, K = 1 000 000 000

* The amount of memory needed (K) is
essentially independent of the number of
items in the dictionary.

* Idea: compress the array...

Hash functions

Idea: Map the K possible keys to N integers, with N
being much smaller than K

Hash function f: [0...K-1] — [0...N-1]

Space of keys: 012 oo cee e v e
Hash function
Hashed key 0 1 2 N-1

.K-1

insert(key k, info 1): Alfk)]1=1;
remove(key k): Al f(k)] = null;
find(key k): return A[f(k)];

Hash tables

 Collisions! Many keys map to the same index

 Solution: Each element of the array is itself a
dictionary (called a bucket), implemented with
linked-list, binary search tree, or a hash table...

012 3 4567 809 . N-1
Ll b by by by gy gyl |
BB8668086088680
insert(key k, info 1): A[f(k)].insert(k,1);

remove(key k, infoi): A[f(k)].remove(k);
find(key k): return A[f(k)].find(k);

Hash table:

Hash tables - example

» Hashing student IDs:
— K =1,000,000,000 012 3 4567 89

* N=10 Lyl by Dyl Iyl
BB65060868

» Hash(ID) = lastDigit(ID)
* Bucket implemented
as linked-lists

17-03-10

Hash tables - example

« Hashing student IDs: Insert(260053665,”Mathieu”)

— K =1,000,000,000
* N=10
» Hash(ID) = lastDigit(ID)
* Bucket implemented

0123 4567 809
Ll by by by

(260053665,"Mathicu”)

as linked-lists

Hash tables - example

. Hashing student IDs: Insert(260625329,”John”)
- K=1,000,000,000 012 3 4567 809

L besbophteg

as linked-lists

» Hash(ID) = lastDigit(ID)
[(260053665, Mathicu™)][260625329, John”

* Bucket implemented
I

Hash tables - example

. I (260313595, “L ”
» Hashing student IDs: nsert(aura”)

— K =1,000,000,000
* N=10
» Hash(ID) = lastDigit(ID)
» Bucket implemented
as linked-lists

012 3 4567809
Ll b by gl
[(260053665, Mathicu”) || 260625329, John" |

— |
§
—

Hash tables - example
« Hashing student IDs: Insert(260435215,”Julie”)
- K =1,000,000,000 012 3 4567 89

L gebbagetes

* Bucket implemented

» Hash(ID) = lastDigit(ID)
as linked-lists [(260053665, Mathicu™)][260625329, John”

260313595, “Laura”

260333595, “Julie”

Hash tables - example

. i 5
» Hashing student IDs: Find(260435213)

— K =1,000,000,000
* N=10
» Hash(ID) = lastDigit(ID)
» Bucket implemented
as linked-lists

0123 aK67 80
[l by 1yl [0
[(260053665, Mathicu™) || 260625329, John" |

| | \
v

260313595, “Laura”

260333595, “Julie”

.

Hashing student IDs:

N=10
Hash(ID) = lastDigit(ID)

Bu

Hash tables - example
Find(260435215)

K =1,000,000,000 012 3 4567 89

Lyl by bbby by |
6865806808

cket implemented

as linked-lists

((260053665, Mathicu™) [\260625322,"John”

260433595, “Laura”

260333595, “Julie”

17-03-10

Hash tables - example

. i 35215
Hashing student IDs: Find(260435213)

— K =1,000,000,000
N=10
Hash(ID) = lastDigit(ID)
Bucket implemented

as linked-lists

0123 4567 809
Ll by Pyl by byl

[(260053665, Mathicu”) || 260625322, John" |

N ——
' 260433595, “Laura” '
S—

260333595, “Julie”

Analysis of Hashing
with Chaining

Search time = compute hash function +
search the list.

Time to compute hash function: O(1).

Worst time for searching happens when all
keys go in the same bucket. We need to
scan the full list => O(n).

Search time = O(1) + O(n) = O(n)
Insertion: O(1) time.
Deletion: O(1) + Search time.

Importance of good hash functions

« Worst case complexity for hash table containing n
elements

— if all keys end up in the same bucket and we use a
linked-list to store buckets??

— if keys are evenly spread among the N buckets??
* We want a hash function that spreads the keys
evenly among the buckets.
« Example: N = 100, key = student ID #
f(key k) = [k/10 000 000 = first 2 digits
f(key k) =k mod 100 = last 2 digits
f(key k) = (sum of digits of k) mod 100

Good hash functions

Choice of hash function depends on application
In general, f(k) =k mod N is good choice when
N is a prime number

Example: For student Ids, choose N = 101

~ (k) = k mod 101

What if the key is not an integer (e.g. a String)?
— map key to integer first with some function g(key)
— use f() to map the integer to [0...N-1]

Hash functions on Strings

* We need a function g: String — Integers that

minimizes collisions

— Linear code:
g(key k) = sum of ASCII values of each char.
Problem:

— Polynomial code: Choose a small prime number a
Ifkey k =kk k,..k, , choose
gk)=k,+katk,a’+.. +k,a°

