
17-03-10

1

Hash tables

Dictionary ADT

•  Reminder: A dictionary stores pairs
 (key, information)

•  Operations:
–  find(key k)
–  insert(key k, info i)
–  remove(key k)

•  Binary Search Trees implement all these
operations in time O(h), where h is the height of
the tree, which is O(log n) if we maintain the tree
balanced

•  We can sometimes do better...

Hash tables
•  Suppose keys are integers between 0 and K-1
•  Then, use an array A[0...K-1] containing

elements of type "info" to store the
dictionary:
–  insert(key k, info i): A[k] = i;
–  remove(key k): A[k] = null;
–  find(key k): return A[k]

•  Running time: All operations are O(1)
•  It's a miracle! Except that...

Problems with direct
 array implementation

•  If K is large, the array will be very big
– For McGill student ID, K = 1 000 000 000

•  The amount of memory needed (K) is
essentially independent of the number of
items in the dictionary.

•  Idea: compress the array...

Hash functions
Idea: Map the K possible keys to N integers, with N

being much smaller than K
Hash function f: [0...K-1] → [0...N-1]
Space of keys: 0 1 2 K-1
Hash function
Hashed key 0 1 2 N-1

insert(key k, info i): A[f(k)] = i;
remove(key k): A[f(k)] = null;
find(key k): return A[f(k)];

Hash tables
•  Collisions! Many keys map to the same index
•  Solution: Each element of the array is itself a

dictionary (called a bucket), implemented with
linked-list, binary search tree, or a hash table...

Hash table:

insert(key k, info i): A[f(k)].insert(k,i);
remove(key k, info i): A[f(k)].remove(k);
find(key k): return A[f(k)].find(k);

 | | | | | | | | | | | |
 0 1 2 3 4 5 6 7 8 9 ... N-1

17-03-10

2

Hash tables - example
•  Hashing student IDs:

–  K = 1,000,000,000
•  N= 10
•  Hash(ID) = lastDigit(ID)
•  Bucket implemented

 as linked-lists

 | | | | | | | | |
 0 1 2 3 4 5 6 7 8 9

Hash tables - example
•  Hashing student IDs:

–  K = 1,000,000,000
•  N= 10
•  Hash(ID) = lastDigit(ID)
•  Bucket implemented

 as linked-lists

(260053665,”Mathieu”)

(260053665,”Mathieu”)

Insert(260053665,”Mathieu”)

 | | | | | | | | |
 0 1 2 3 4 5 6 7 8 9

Hash tables - example
•  Hashing student IDs:

–  K = 1,000,000,000
•  N= 10
•  Hash(ID) = lastDigit(ID)
•  Bucket implemented

 as linked-lists

(260053665,”Mathieu”) 260625329,”John”

(260053665,”Mathieu”)

Insert(260625329,”John”)

260625322,”John”

 | | | | | | | | |
 0 1 2 3 4 5 6 7 8 9

Hash tables - example
•  Hashing student IDs:

–  K = 1,000,000,000
•  N= 10
•  Hash(ID) = lastDigit(ID)
•  Bucket implemented

 as linked-lists

(260053665,”Mathieu”) 260625329,”John”

260313595, “Laura”

(260053665,”Mathieu”)

26033595, “Laura”

Insert(260313595, “Laura”)

 | | | | | | | | |
 0 1 2 3 4 5 6 7 8 9

260625322,”John”

Hash tables - example
•  Hashing student IDs:

–  K = 1,000,000,000
•  N= 10
•  Hash(ID) = lastDigit(ID)
•  Bucket implemented

 as linked-lists

(260053665,”Mathieu”) 260625329,”John”

260313595, “Laura”

(260053665,”Mathieu”)

26033595, “Laura”

Insert(260435215,”Julie”)

260333595, “Julie”

260333595, “Julie”

 | | | | | | | | |
 0 1 2 3 4 5 6 7 8 9

260625322,”John”

Hash tables - example
•  Hashing student IDs:

–  K = 1,000,000,000
•  N= 10
•  Hash(ID) = lastDigit(ID)
•  Bucket implemented

 as linked-lists

Find(260435215)

(260053665,”Mathieu”) 260625329,”John”

260313595, “Laura”

(260053665,”Mathieu”)

26033595, “Laura”

260333595, “Julie”

260333595, “Julie”

 | | | | | | | | |
 0 1 2 3 4 5 6 7 8 9

260625322,”John”

17-03-10

3

Hash tables - example
•  Hashing student IDs:

–  K = 1,000,000,000
•  N= 10
•  Hash(ID) = lastDigit(ID)
•  Bucket implemented

 as linked-lists

(260053665,”Mathieu”) 260625322,”John”

260433595, “Laura”

(260053665,”Mathieu”)

26033595, “Laura”

Find(260435215)

260333595, “Julie”

260333595, “Julie”

 | | | | | | | | |
 0 1 2 3 4 5 6 7 8 9

Hash tables - example
•  Hashing student IDs:

–  K = 1,000,000,000
•  N= 10
•  Hash(ID) = lastDigit(ID)
•  Bucket implemented

 as linked-lists

(260053665,”Mathieu”) 260625322,”John”

260433595, “Laura”

(260053665,”Mathieu”)

26033595, “Laura”

Find(260435215)

260333595, “Julie”

260333595, “Julie”

 | | | | | | | | |
 0 1 2 3 4 5 6 7 8 9

Analysis of Hashing
with Chaining

 •  Search time = compute hash function +
search the list.

•  Time to compute hash function: O(1).
•  Worst time for searching happens when all

keys go in the same bucket. We need to
scan the full list => O(n).

•  Search time = O(1) + O(n) = O(n)
•  Insertion: O(1) time.
•  Deletion: O(1) + Search time.

Importance of good hash functions
•  Worst case complexity for hash table containing n

elements
–  if all keys end up in the same bucket and we use a

linked-list to store buckets??
–  if keys are evenly spread among the N buckets??

•  We want a hash function that spreads the keys
evenly among the buckets.

•  Example: N = 100, key = student ID #
 f(key k) = ⎣k/10 000 000⎦ = first 2 digits
 f(key k) = k mod 100 = last 2 digits
 f(key k) = (sum of digits of k) mod 100

Good hash functions
•  Choice of hash function depends on application
•  In general, f(k) = k mod N is good choice when

N is a prime number
•  Example: For student Ids, choose N = 101

–  f(k) = k mod 101

•  What if the key is not an integer (e.g. a String)?
– map key to integer first with some function g(key)
–  use f() to map the integer to [0...N-1]

Hash functions on Strings

•  We need a function g: String → Integers that
minimizes collisions
– Linear code:

 g(key k) = sum of ASCII values of each char.
 Problem:

– Polynomial code: Choose a small prime number a
 If key k = k0k1k2...ke , choose
 g(k) = k0 + k1 a + k2 a2 + ... + ke ae

