COMP 364: Computer Tools for Life Sciences

Regular expressions

Christopher J.F. Cameron and Carlos G. Oliver

/26

Key course information

Hw4
> due tonight at 11:59:59 pm

HW5
> available now!
» due Thursday, December 7th at 11:59:59 pm

Course evaluations
» available now at the following link:

» https://horizon.mcgill.ca/pbanl/twbkwbis.P_
WWWLogin?ret_code=f

2/26

https://horizon.mcgill.ca/pban1/twbkwbis.P_WWWLogin?ret_code=f
https://horizon.mcgill.ca/pban1/twbkwbis.P_WWWLogin?ret_code=f

Outline

Today, we're going to cover regular expressions in Python

» what they are

v

why they're useful

v

how to implement/use them

> etc.

Why not interpreted vs. compiled languages?

» we (lightly) covered this topic earlier of the semester
» Carlos will have more to say about it in Friday's lecture
> dynamic vs. static typing

3/26

Problem

Let’s say you have a large file stored on your laptop
» contains many different email addresses

How would you obtain all email addresses associated with Gmail?
> all Gmail addresses with the letter ‘a’ in them?

» all Gmail addresses with the substrings ‘luv’ and ‘cats’?
» all Gmail addresses with the substrings ‘luv’ and ‘cats’
separated by two characters?
» luv..cats@gmail.com

» luvmycats@gmail.com
» luv48cats@gmail.com

4/26

What are regular expressions?

A regular expression (or regex) is a sequence of characters
» that helps match or find other strings or sets of strings

> using a specialized syntax held in a pattern

For example:
> r‘(.*) are (.*7) .*’ is a regex pattern

> that would match the following string:
"Cats are smarter than dogs"

Regular expressions are widely used in the world of UNIX
» UNIX is a multitasking, multiuser computer operating systems
» Mac OS is based on UNIX

5/26

Why use regex?

Once you learn the syntax of regex

» you'll gain a powerful time-saving tool

It's much faster to write regex patterns
> than to write multiple:

» conditional statements
> loops

> lists

> variables

Python also makes it very easy to implement regular expressions
> using the re module
> API: https://docs.python.org/3/1library/re.html

6

26

https://docs.python.org/3/library/re.html

Regex in Python and raw stings

When particular characters are used in regular expressions
> they take on a special meaning
> e.g., r'." means to match any single character except a newline

» does anyone remember what the newline character is?

To avoid any confusion while dealing with regular expressions

> in Python, we use raw strings for the pattern

To indicate a raw string in python
> prefix the pattern string with the ‘r’ character
> e.g., r‘regex pattern’

> e.g., r‘.*’ is different than ¢.x*’

7/26

Regular Expression Patterns

Except for control characters, all characters match themselves
» control characters: + 7 .« AS () []{} I\
> meta characters that give special meaning to the regex

For example, without a control character:
» the pattern r‘a’ means match the letter ‘a’
> applying the pattern to the string ‘David likes naan’

» would return ‘a’ from ‘David’ and two ‘a’s from ‘naan’

With a control character:
» r‘a{2}’ means match exactly two occurrences of ‘a’

» would return ‘aa’ from ‘naan’

8/26

Control characters

. A’ - matches the start of a string
. r‘$’ - matches the end of a string

. r‘.’- matches any single character except newline

. r‘[...]° - matches any single character in brackets

» e.g.,, r‘[a-zA-Z]’ matches one occurrence of any ASCII
character

. r*[A...]° - matches any single character not in brackets

» similar to Python's ‘not’ in this context

9/26

10.

Control characters #2

. r¢*’ - matches 0 or more occurrences of preceding expression

r‘+’ - matches 1 or more occurrence of preceding expression

r‘?’ - matches 0 or 1 occurrence of preceding expression

r‘n’ - matches exactly n occurrences of the preceding
expression

» r‘a{2}’ matches ‘aa’ in ‘naan’

r‘a | b’ - matches either ‘a’ or ‘b’

10/26

Regex character classes

Character classes (or sets)

» define patterns that match only one out of several characters

For example:
1. r‘ [Pplython’ - match ‘Python’ or ‘python’

2. r‘[aeiou] ’ - match any one lowercase vowel

3. r‘[0-9]’ - match any digit
» same as r‘[0123456789]°

4. v [A0-9]’ - match anything other than a digit

5. r‘[a-zA-Z0-9]1’ - match any ASCII letter or digit

11/26

Quiz

Using the online regex tester at: https://pythex.org/

> includes a regex cheatsheet

Provide regex patterns to complete the following:

1.

AR A

match all occurrences of alphabetical letters
match any integer number

match any character that precedes the pattern ‘zz’'
match any string that does not start with ‘p’

matches: ‘affgfking’, ‘rafgkahe’, and ‘bafghk’
but not match: ‘fgok’, ‘a fgk’, and ‘affgm’

You will need to create your own example strings to test for 7's 1-3

12/26

https://pythex.org/

Quiz - solutions

Solutions:
1. r‘[a-zA-Z]+’
» r‘[a-zA-Z]’ - matches one occurrence of an ASCII character
» r‘+’ - matches one or more occurrences of preceding pattern
2. r‘-7[0-9]+
» r‘-7’ - matches zero or one occurrence of ‘-’
» r‘[0-9]’ - matches one occurrence of any digit

3. r‘.zz’

» r‘.’ - matches one occurrence of any character
» r‘zz’ - matches one occurrence of ‘zz'

4. rN[Apl+
» A’ - match start of string
» r‘[Ap 1’ - do not match ‘p’

5. r‘AlAmo 1+$’
» r‘$’ - match end of string

13 /26

Regex in Python

The match() function

> function attempts to match regex pattern at beginning of
the string

> syntax:
re.match(pattern, string, flags=0)

> parameters:
1. pattern - regular expression to be matched
2. string - string to be searched
3. flags - we'll ignore this optional keyword argument

14 /26

Regex in Python #2

The match() function

> returns a match object on success
» None on failure

> to get the matching string
1. group(num=0) - method returns entire match
> or specific subgroup num
2. groups() - returns all matching subgroups in a tuple
> empty if there weren't any

15/26

10

11

12

match() example

import re
line = "Cats are smarter than dogs"
matchObj = re.match(r'(.*) are (.*7) .*x', line)

if matchObj:
print ("match0bj.group() : ", matchObj.group())
print("matchObj.group(1l) : ", matchObj.group(1))
print("match0bj.group(2) : ", matchObj.group(2))
else:
print ("No match!!")

16 /26

match() example #2

If the previous code was implemented correctly:

matchObj.group() : Cats are smarter than dogs
matchObj.group(1l) : Cats
matchObj.group(2) : smarter

By using the () control characters

» specify groups to be matched

17 /26

Regex in Python #3

The search() function

» function searches for first occurrence of pattern anywhere
within string

> syntax:
re.search(pattern, string, flags=0)

> parameters:
1. pattern - regular expression to be matched
2. string - string to be searched
3. flags - we'll ignore this optional keyword argument

18 /26

Regex in Python #4

The search() function

> returns a match object on success
» None on failure

> to get the matching string
1. group(num=0) - method returns entire match
> or specific subgroup num
2. groups() - returns all matching subgroups in a tuple
> empty if there weren't any

19/26

10

11

12

search() example

import re
line = "Cats are smarter than dogs"
searchObj = re.search(r'(.*) are (.*7) .x', line)

if searchObj:

print("searchObj.group() : ", searchObj.group())

print("searchObj.group(1) : ", searchObj.group(1l))

print("searchObj.group(2) : ", searchObj.group(2))
else:

print ("No match!!")

20/26

search() example #2

If the previous code was implemented correctly:

searchObj.group() : Cats are smarter than dogs
searchObj.group(l) : Cats
searchObj.group(2) : smarter

Wait, re.search() is behaving the same as re.match()

» what'’s the point of having two functions that perform the
same operation?

21/26

Matching versus searching

Python offers two different operations based on regular expressions

1. re.match()

» checks for a pattern match only at the beginning of the
string

2. re.search()
» checks for a pattern match anywhere in the string

The second operation is the default of most regex implementations

22/26

10

11

12

13

14

15

16

17

import re

line = "Cats are smarter than dogs"
matchObj = re.match(r'dogs', line)
if matchObj:
print("match --> matchObj.group() : ",
matchObj.group())
else:
print("No match!!")
prints: No match!!
searchObj = re.search(r'dogs', line)
if searchObj:
print("search --> searchObj.group() : ",
searchObj.group())
else:
print("Nothing found!!")
prints: search —--> matchObj.group() : dogs

23/26

Search and Replace

The sub() function

>

>

one of the most important re methods

replaces all occurrences of the pattern in string with repl

syntax:
re.sub(pattern, repl, string, max=0)

parameters:

1. repl - string to replace pattern
2. max - replace all occurrences unless set

returns a modified string

24 /26

10

11

12

13

import re
phone = "2004-959-559 # This is a Phone Number"

Delete Python-style comments

num = re.sub(r'#.*$', "", phone)
print ("Phone Num : ", num)

prints: Phone Num : 2004-959-559

Remove anything other than digits
num = re.sub(r'[70-9]', "", phone)
print ("Phone Num : ", num)

prints: Phone Num : 2004959559

25 /26

Closing comments

We've only covered the basics of regular expressions
> there is A LOT more to regex

» for more information:
https://docs.python.org/3/howto/regex.html

Regular expressions are not only limited to Python
» try the BASH command awk
» one of the most powerful command line tools

26

26

https://docs.python.org/3/howto/regex.html

