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Python programming: Lists
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The need for compound data types

Until now, our variable could only hold one value at a time...
except for Strings, which is a sequence of many characters.

This is limiting. If we want to store 1000 numbers, we would need
1000 variables!
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And what if we don't know the number of elements ahead of time?
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Compound data types - Lists and Tuples

Compound types allow us to store multiple values in one variable.
The most basic compound type is called a Sequence. There are
many types of Sequences:
» Strings: Specifically for chains of characters
> Lists:
» Ordered collection of objects of any number of objects of any
types
» Mutable: They can grow or shrink, and their content can be
modified
» Useful when the number of objects to be stored is not known
ahead of time
> Tuples:
» Ordered collection of objects of a fixed number of objects of
any types
» Immutable: Once created, a tuple cannot be modified. Returns
new objects when attempting to update
» Useful when the number of objects to be stored is known
ahead of time
> Allows faster operations than lists
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Lists and Tuples - examples

A list is created using square brackets, with items separated by commas
A tuple is created using parentheses, with items separated by commas.

1 # a list of 5 integers

> ages = [10, 20, 30, 40, 50]

3

4 # a list of 3 strings

5 names = [”Sarah” ,”John” ,” Mary" ]

6

7 # a list of both strings and integers

8 mixed = [" Bill”, 50, "Amy”, 32, "Roger”, 76]
9

10 # an empty list

1 Lk=17]1]

12

13

14 # Example of tuples:

15

16 # a tuple of 3 float

17 xyz = (0.3, —0.5, 1.2)

18

19 # a tuple of one string and one integer
20 carbon = ("C",12)

/26



Lists and Tuples - more examples

The elements of lists or tuples can themselves be objects of
compound types!

1# a list of tuples (atom, mass)

2 periodicTable = [ ("H",1), ("C",12), ("N", 14) ]

3

4 # a list of lists

5 molecules = [ ["C",”0",”0"], ['N",”0"], ["O","’0"] ]
6

7# a list of tuples, where each tuple is a

8 # pair of a String and a list of Strings

9 moleculesWithNames = [ (”carbon dioxyde”, ["C","0","0"]),

10 ("nitrous oxyde”, ["N","0"] ) ]
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Accessing elements of Lists or Tuples - indexing
Like for Strings, we can access elements of lists or tuples by
indexing.

Note: this example uses a List, but the same works for a Tuple.

names = ["Sarah”, "Zheng”, "Amol”, "Vladimir” ,”Juanita”]

firstName = names[0] # Sarah

secondName = names[1] # Zheng

lastName = names [4] # Juanita

nbNames = len(names) # 5

lastName = names|[ nbNames —1 | # Still Juanita

wrong = names|[ nbNames | # Error: list index out of range

penultimateName = names [ nbNames — 2] # Vladimir

lastName = names[—1] # Juanita

penultimateName = names[—2] # Vladimir

someNames = names[1:3] # [”" Zheng” Kk "Amol"]

allButFirst = names[1:5] # [”" Zheng”, "Amol”, "Vladimir”,”
Juanita”]

allButLast = names[0:4] # [”" Sarah”, "Zheng”, "Amol”, "
Viadimir” ]
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Accessing elements of Lists or Tuples - indexing

We can also access values within a nested list

1 # a list of tuples (atom, mass)

2 periodicTable = [ ("H",1), ("C",12), ("N", 14) ]

3

4 # a list of lists

5 molecules — [ [HCH ’HOH yYYOH]' [HNH yHOH]y [HOH v”o”] ]

6

7 # a list of tuples, where each tuple is a

8 # pair of a String and a list of Strings

9 moleculesWithNames = [ ("carbon dioxyde”, ["C",”0","0"]),

10 (" nitrous oxyde”, ["N","0"] ) ]
11

12 # indexing tuple value in a list

13 periodicTable [1][1] # 12

14

15 # indexing list value inside a tuple inside another list

16 moleculesWithNames [1][1][0] # "N”
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Modifying the content of a List

Because lists are mutable, their content can be modified.

names = ["Sarah”, "Zheng”, "Amol”, "Vladimir” ,” Juanita”]
names[1] = "Lin" # Zheng is replaced by Lin

names[4] = " Consuela” # Juanita is replaced by Consuela
names[5] = "John” # Error: Index of out range

# we can replace multiple elements of the list at once
names[2:4] = ["Prakash”, " Boris”]

# or replace a portion of a list with another one
names[2:4] = ["Prakash”, "Boris”, "John”, "Paul”]

Note: This would not work on tuples, because they are immutable.
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Assigning by copy versus assigning by reference

Assignments of values to variables behaves differently for simple
and compound types:
Assigning by copy

» For simple types (int, float, boolean), writing b = a creates a
new variable b, separate from a, whose value is set to that of a

Assigning by reference

» For compound types (lists, tuples, and more), writing b = a
creates a new variable b that refers to the same compound
object as a. Modifying the content of a also modifies the
content of b.
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# example with a simple type (e.g. float)
temperature = 36.7

newTemperature = temperature
print(temperature, new Temperature) # 36.7 36.7
temperature = 37.2

print(temperature, new Temperature) # 37.2 36.7

# example with a compound type (e.g. list)

names = ["Sarah”, " Zheng", " Amol"]

otherNames = names

names[1] = "Lin" # Zheng is replaced by Lin

print(names, otherNames) # ["Sarah”, "Lin", " Amol"]
# ['Sarah”, "Lin", " Amol”]

otherNames[2] = " Ahmed”

print(names, otherNames) # [’Sarah”,”Lin"”,” Ahmed"]
# ['Sarah” " Lin”,” Ahmed”]

Global variables Computer memory

N,
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Global variables Computer memory

# example with a simple type (e.g. float)
temperature = 36.7

newTemperature = temperature

print(temperature, new Temperature) # 36.7 36.7
temperature = 37.2
print(temperature, new Temperature) # 37.2 36.7

# example with a compound type (e.g. list)

names = ["Sarah”, " Zheng", " Amol”] -
names

otherNames = names
names[1] = "Lin" # Zheng is replaced by Lin [ “sarah”,
print(names, otherNames) # ['Sarah”, "Lin", ” Amol”] ” ”
% [ Sarah, "Lin" " Amol"] [~|"Zheng”,
“Amol” ]

otherNames[2] = " Ahmed”
print(names, otherNames) # [’Sarah”,”Lin"”,” Ahmed"]
# ['Sarah” " Lin”,” Ahmed”]
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temperature
newTemperature

names

[ “Sarah”,
"Zheng”,
“Amol” ]

otherNames }’
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Global variables Computer memory

# example with a simple type (e.g. float)
temperature = 36.7

newTemperature = temperature

print(temperature, new Temperature) # 36.7 36.7
temperature = 37.2 g
print(temperature, new Temperature) # 37.2 36.7

# example with a compound type (e.g. list) \

names = ["Sarah”, " Zheng", " Amol"] .
otherNames = names

names[1] = "Lin" # Zheng is replaced by Lin [ “sarah”,
print(names, otherNames) # ['Sarah”, "Lin", ” Amol"]

# ["Sarah”, "Lin", " Amol”] ) Lin,

otherNames[2] = " Ahmed” “Amol” |
print(names, otherNames) # [’Sarah”,”Lin"”,” Ahmed"] otherNames
# ['Sarah”,"Lin",” Ahmed"]

Important: Here, both variables names and otherNames point to
the same list. So modifying the names list also modifies the
content of otherNames. names and otherNames are aliases for the
same list.
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# example with a simple type (e.g. float)
temperature = 36.7

newTemperature = temperature
print(temperature, new Temperature) # 36.7 36.7
temperature = 37.2

print(temperature, new Temperature) # 37.2 36.7

# example with a compound type (e.g. list)

names = ["Sarah”, " Zheng", " Amol"]

otherNames = names

names[1] = "Lin" # Zheng is replaced by Lin

print(names, otherNames) # ["Sarah”, "Lin", " Amol"]
# ['Sarah”, "Lin”, " Amol”]

otherNames[2] = " Ahmed”

print(names, otherNames) # ["Sarah”,”Lin",” Ahmed"]
# ['Sarah” " Lin”,” Ahmed”]

and vice-versa modifying the content of the list otherNames

also modifies names

Global variables Computer memory

i)
\

names

P

[ “Sarah”,
"Lin”,
“Ahmed” ]

otherNames }’
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Cloning lists

What if we want names and otherNames to actually correspond to
different lists, but we want otherNames to be initialized from

names?

names = ["Sarah”, " Zheng", " Amol”]

otherNames = names[:] # this clones the List names

names[1] = "Lin" # Zheng is replaced by Lin

print(names, otherNames) # [’Sarah”, "Lin", " Amol"]
# ['Sarah”, " Zheng", " Amol”]

Global variables Computer memory

names

$

[ “Sarah”,
"Zheng”,
“Amol” ]
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Cloning lists
What if we want names and otherNames to actually correspond to
different lists, but we want otherNames to be initialized from
names?

Global variables Computer memory

names = ["Sarah”, " Zheng", " Amol”]
otherNames = names[:] # this clones the List names

names[1] = "Lin" # Zheng is replaced by Lin e on |
print(names, otherNames) # [’Sarah”, "Lin", " Amol"] [ “Sarah”,
# ['Sarah”, "Zheng", " Amol"] '7 "Zheng”,
“Amol” |

[ “Sarah”,
[~|"Zheng”,
“Amol” ]

otherNames

Note the use of [:]. This is what tells the interpreter to clone the
names list. Now names and otherNames point to different lists,

which just happen to contain identical content.
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Cloning lists

What if we want names and otherNames to actually correspond to
different lists, but we want otherNames to be initialized from
names?

Global variables Computer memory

names = ["Sarah”, " Zheng", " Amol”]
otherNames = names[:] # this clones the List names

names[1] = "Lin" # Zheng is replaced by Lin “ ”
print(names, otherNames) # [’Sarah”, "Lin", " Amol"] [ “Sarah”,
# ['Sarah”, "Zheng", " Amol"] '7 "Zheng”,

“Amol” ]

[ “Sarah”,
[~ "Lin”,

“Amol” ]

otherNames

Changing names does not change otherNames.
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More on adding items to a list

.append( someObject ) adds a single item to the end of the list

.extend( somelList ) adds items from another list to the end of
the list

.insert(index, someObject) inserts an item at a given index

> Moves the remaining items to the right

names = ["Zheng” , "Amol"]
otherNames = [” Chris” " Irene"]
names.append (" Bill”) # names is now

# [" Zheng”, "Amol”, " Bill"]

names. extend (otherNames) # names is now
# [" Zheng”, "Amol”, " Bill”, " Chris”,” Irene”]

names.insert (2,” Laura”) # names is now
# [" Zheng”, "Amol”, "Laura”, "Bill"”, "Chris” " Irene”]
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Deleting items from a list

del someSlice statement can be used to remove an item or slice
of items

names = [”"Sarah”, "Zheng”, "Amol”, "Vladimir”]
del names[l] # removes Zheng from the list
# names is now [” Sarah”, "Amol”, "Vladimir”]

del names[0:2] # removed Sarah and Amol
# names is now [" Vladimir”]

.pop( index ) will remove an individual and return it

names = [”Sarah”, "Zheng”, "Amol”, "Vladimir”]
removedName = names.pop(2)
# names is now [”" Sarah”, "Zheng”, "Vladimir"]

# removedName is now " Amol”

del statement and .pop() behave quite similarly, except .pop()
returns the removed item
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Deleting items from a list

.remove( someObject ) removes the first instance of a matching
item in a list

names = ["Sarah”, "Zheng”, "Amol”, "Vladimir”, "Zheng"]
names.remove (" Zheng”)

# names is now [” Sarah”, "Vladimir”, "Amol”, "Zheng"]
names.remove (" Zheng”)

# names is now [”Sarah”, "Vladimir”, "Amol”]
names.remove(” Billy”) # causes exception: not in list

If no matching item is found in the list, Python raises a
ValueError exception
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Searching lists
.index( someObject ) returns the index of the first matching item
in a list
names = [”Sarah”, "Zheng”, "Amol”, "Vladimir”, "Zheng"]

indexVlad = names.index(” Vladimir”) # indexVlad is 3
indexZheng = names.index (" Zheng”) # indexZheng is 1

indexBob = names.index("Bob”) # ValueError Exception
# Bob is not in list
.index( someObject ) performs a linear search, and stops at the
first match
> If no matching item is found, Python raises a
ValueError exception
.count( someObject) returns the number of occurrences of the
object in the list
names = ["Sarah”, "Zheng”, "Amol”, "Vladimir”, "Zheng"]

nbZheng = names.count(”Zheng”) # 2
nbAmol = names.count(”Amol”) # 1
nbBob = names.count(”"Bob”) # 0
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Reversing the order of a list

.reverse() allows you to quickly reverse the order of a list

names = ["Sarah”, "Zheng”, "Amol”, "Vladimir”, "Zheng"]
names. reverse ()
# names is now [” Zheng”, Vladimir”, "Amol”, "Zheng"”,” Sarah”]

Reversing is fast
» Temporarily reversing a list can often speed things up

» Remove and insert many items at the end of the list
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Sorting lists

.sort() sorts a list in place

L=1[2.1,3,4,5,1,6]
L.sort ()
print (L) # prints '[1,1,2,3,4,5,6]"

If you require a clone of the sorted list, use the sorted() function

L=1[2,1,3,4,5,1,6]

sorted_L = sorted (L)

print(L) # prints '[2,1,3,4,5,1,6]"
print(sorted_L) # prints '[1,1,2,3,4,5,6]"
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Other useful functions/methods

min() returns the smallest item in a list

L=1[0,1,2,3,4,56,7,8,9]
print(min(L)) # prints '0’

max() returns the largest items in a list
print(max(L)) # prints '9’
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