COMP 204: Computer programming for Life
Sciences
Python programming: Lists

Mathieu Blanchette

based on material from Yue Li, Christopher J.F. Cameron and
Carlos G. Oliver

26

5 weight998
6 weight999

The need for compound data types

Until now, our variable could only hold one value at a time...
except for Strings, which is a sequence of many characters.

This is limiting. If we want to store 1000 numbers, we would need
1000 variables!

45.6
12.3
24.5

weight0
weightl
weight2

45.2
42.4

And what if we don't know the number of elements ahead of time?

2

26

Compound data types - Lists and Tuples

Compound types allow us to store multiple values in one variable.
The most basic compound type is called a Sequence. There are
many types of Sequences:
» Strings: Specifically for chains of characters
> Lists:
» Ordered collection of objects of any number of objects of any
types
» Mutable: They can grow or shrink, and their content can be
modified
» Useful when the number of objects to be stored is not known
ahead of time
> Tuples:
» Ordered collection of objects of a fixed number of objects of
any types
» Immutable: Once created, a tuple cannot be modified. Returns
new objects when attempting to update
» Useful when the number of objects to be stored is known
ahead of time
> Allows faster operations than lists

3/26

Lists and Tuples - examples

A list is created using square brackets, with items separated by commas
A tuple is created using parentheses, with items separated by commas.

1 # a list of 5 integers

> ages = [10, 20, 30, 40, 50]

3

4 # a list of 3 strings

5 names = [”Sarah” ,”John” ,” Mary"]

6

7 # a list of both strings and integers

8 mixed = [" Bill”, 50, "Amy”, 32, "Roger”, 76]
9

10 # an empty list

1 Lk=17]1]

12

13

14 # Example of tuples:

15

16 # a tuple of 3 float

17 xyz = (0.3, —0.5, 1.2)

18

19 # a tuple of one string and one integer
20 carbon = ("C",12)

/26

Lists and Tuples - more examples

The elements of lists or tuples can themselves be objects of
compound types!

1# a list of tuples (atom, mass)

2 periodicTable = [("H",1), ("C",12), ("N", 14)]

3

4 # a list of lists

5 molecules = [["C",”0",”0"], ['N",”0"], ["O","’0"]]
6

7# a list of tuples, where each tuple is a

8 # pair of a String and a list of Strings

9 moleculesWithNames = [(”carbon dioxyde”, ["C","0","0"]),

10 ("nitrous oxyde”, ["N","0"])]

/26

© o N oA W N R

e e N <
N o A W N~ O

=
©

Accessing elements of Lists or Tuples - indexing
Like for Strings, we can access elements of lists or tuples by
indexing.

Note: this example uses a List, but the same works for a Tuple.

names = ["Sarah”, "Zheng”, "Amol”, "Vladimir” ,”Juanita”]

firstName = names[0] # Sarah

secondName = names[1] # Zheng

lastName = names [4] # Juanita

nbNames = len(names) # 5

lastName = names|[nbNames —1 | # Still Juanita

wrong = names|[nbNames | # Error: list index out of range

penultimateName = names [nbNames — 2] # Vladimir

lastName = names[—1] # Juanita

penultimateName = names[—2] # Vladimir

someNames = names[1:3] # [”" Zheng” Kk "Amol"]

allButFirst = names[1:5] # [”" Zheng”, "Amol”, "Vladimir”,”
Juanita”]

allButLast = names[0:4] # [”" Sarah”, "Zheng”, "Amol”, "
Viadimir”]

26

Accessing elements of Lists or Tuples - indexing

We can also access values within a nested list

1 # a list of tuples (atom, mass)

2 periodicTable = [("H",1), ("C",12), ("N", 14)]

3

4 # a list of lists

5 molecules — [[HCH ’HOH yYYOH]' [HNH yHOH]y [HOH v”o”]]

6

7 # a list of tuples, where each tuple is a

8 # pair of a String and a list of Strings

9 moleculesWithNames = [("carbon dioxyde”, ["C",”0","0"]),

10 (" nitrous oxyde”, ["N","0"])]
11

12 # indexing tuple value in a list

13 periodicTable [1][1] # 12

14

15 # indexing list value inside a tuple inside another list

16 moleculesWithNames [1][1][0] # "N”

/26

© o N oA W N R

10
11
12

Modifying the content of a List

Because lists are mutable, their content can be modified.

names = ["Sarah”, "Zheng”, "Amol”, "Vladimir” ,” Juanita”]
names[1] = "Lin" # Zheng is replaced by Lin

names[4] = " Consuela” # Juanita is replaced by Consuela
names[5] = "John” # Error: Index of out range

we can replace multiple elements of the list at once
names[2:4] = ["Prakash”, " Boris”]

or replace a portion of a list with another one
names[2:4] = ["Prakash”, "Boris”, "John”, "Paul”]

Note: This would not work on tuples, because they are immutable.

/26

Assigning by copy versus assigning by reference

Assignments of values to variables behaves differently for simple
and compound types:
Assigning by copy

» For simple types (int, float, boolean), writing b = a creates a
new variable b, separate from a, whose value is set to that of a

Assigning by reference

» For compound types (lists, tuples, and more), writing b = a
creates a new variable b that refers to the same compound
object as a. Modifying the content of a also modifies the
content of b.

9/26

example with a simple type (e.g. float)
temperature = 36.7

newTemperature = temperature
print(temperature, new Temperature) # 36.7 36.7
temperature = 37.2

print(temperature, new Temperature) # 37.2 36.7

example with a compound type (e.g. list)

names = ["Sarah”, " Zheng", " Amol"]

otherNames = names

names[1] = "Lin" # Zheng is replaced by Lin

print(names, otherNames) # ["Sarah”, "Lin", " Amol"]
['Sarah”, "Lin", " Amol”]

otherNames[2] = " Ahmed”

print(names, otherNames) # [’Sarah”,”Lin"”,” Ahmed"]
['Sarah” " Lin”,” Ahmed”]

Global variables Computer memory

N,

10/26

example with a simple type (e.g. float)
temperature = 36.7

newTemperature = temperature
print(temperature, new Temperature) # 36.7 36.7
temperature = 37.2

print(temperature, new Temperature) # 37.2 36.7

example with a compound type (e.g. list)

names = ["Sarah”, " Zheng", " Amol"]

otherNames = names

names[1] = "Lin" # Zheng is replaced by Lin

print(names, otherNames) # ["Sarah”, "Lin", " Amol"]
['Sarah”, "Lin", " Amol”]

otherNames[2] = " Ahmed”

print(names, otherNames) # [’Sarah”,”Lin"”,” Ahmed"]
['Sarah” " Lin”,” Ahmed”]

Global variables Computer memory

temperature
newTemperature

11/26

example with a simple type (e.g. float)
temperature = 36.7

newTemperature = temperature
print(temperature, new Temperature) # 36.7 36.7
temperature = 37.2

print(temperature, new Temperature) # 37.2 36.7

example with a compound type (e.g. list)

names = ["Sarah”, " Zheng", " Amol"]

otherNames = names

names[1] = "Lin" # Zheng is replaced by Lin

print(names, otherNames) # ["Sarah”, "Lin", " Amol"]
['Sarah”, "Lin", " Amol”]

otherNames[2] = " Ahmed”

print(names, otherNames) # [’Sarah”,”Lin"”,” Ahmed"]
['Sarah” " Lin”,” Ahmed”]

Global variables Computer memory

temperature
newTemperature

12/26

Global variables Computer memory

example with a simple type (e.g. float)
temperature = 36.7

newTemperature = temperature

print(temperature, new Temperature) # 36.7 36.7
temperature = 37.2
print(temperature, new Temperature) # 37.2 36.7

example with a compound type (e.g. list)

names = ["Sarah”, " Zheng", " Amol”] -
names

otherNames = names
names[1] = "Lin" # Zheng is replaced by Lin [“sarah”,
print(names, otherNames) # ['Sarah”, "Lin", ” Amol”] ” ”
% [Sarah, "Lin" " Amol"] [~|"Zheng”,
“Amol”]

otherNames[2] = " Ahmed”
print(names, otherNames) # [’Sarah”,”Lin"”,” Ahmed"]
['Sarah” " Lin”,” Ahmed”]

13 /26

example with a simple type (e.g. float)
temperature = 36.7

newTemperature = temperature
print(temperature, new Temperature) # 36.7 36.7
temperature = 37.2

print(temperature, new Temperature) # 37.2 36.7

example with a compound type (e.g. list)

names = ["Sarah”, " Zheng", " Amol"]

otherNames = names

names[1] = "Lin" # Zheng is replaced by Lin

print(names, otherNames) # ["Sarah”, "Lin", " Amol"]
['Sarah”, "Lin", " Amol”]

otherNames[2] = " Ahmed”

print(names, otherNames) # [’Sarah”,”Lin"”,” Ahmed"]
['Sarah” " Lin”,” Ahmed”]

Global variables Computer memory

temperature
newTemperature

names

[“Sarah”,
"Zheng”,
“Amol”]

otherNames }’

14 /26

Global variables Computer memory

example with a simple type (e.g. float)
temperature = 36.7

newTemperature = temperature

print(temperature, new Temperature) # 36.7 36.7
temperature = 37.2 g
print(temperature, new Temperature) # 37.2 36.7

example with a compound type (e.g. list) \

names = ["Sarah”, " Zheng", " Amol"] .
otherNames = names

names[1] = "Lin" # Zheng is replaced by Lin [“sarah”,
print(names, otherNames) # ['Sarah”, "Lin", ” Amol"]

["Sarah”, "Lin", " Amol”]) Lin,

otherNames[2] = " Ahmed” “Amol” |
print(names, otherNames) # [’Sarah”,”Lin"”,” Ahmed"] otherNames
['Sarah”,"Lin",” Ahmed"]

Important: Here, both variables names and otherNames point to
the same list. So modifying the names list also modifies the
content of otherNames. names and otherNames are aliases for the
same list.

15/26

example with a simple type (e.g. float)
temperature = 36.7

newTemperature = temperature
print(temperature, new Temperature) # 36.7 36.7
temperature = 37.2

print(temperature, new Temperature) # 37.2 36.7

example with a compound type (e.g. list)

names = ["Sarah”, " Zheng", " Amol"]

otherNames = names

names[1] = "Lin" # Zheng is replaced by Lin

print(names, otherNames) # ["Sarah”, "Lin", " Amol"]
['Sarah”, "Lin”, " Amol”]

otherNames[2] = " Ahmed”

print(names, otherNames) # ["Sarah”,”Lin",” Ahmed"]
['Sarah” " Lin”,” Ahmed”]

and vice-versa modifying the content of the list otherNames

also modifies names

Global variables Computer memory

i)
\

names

P

[“Sarah”,
"Lin”,
“Ahmed”]

otherNames }’

16

26

Cloning lists

What if we want names and otherNames to actually correspond to
different lists, but we want otherNames to be initialized from

names?

names = ["Sarah”, " Zheng", " Amol”]

otherNames = names[:] # this clones the List names

names[1] = "Lin" # Zheng is replaced by Lin

print(names, otherNames) # [’Sarah”, "Lin", " Amol"]
['Sarah”, " Zheng", " Amol”]

Global variables Computer memory

names

$

[“Sarah”,
"Zheng”,
“Amol”]

17 /26

Cloning lists
What if we want names and otherNames to actually correspond to
different lists, but we want otherNames to be initialized from
names?

Global variables Computer memory

names = ["Sarah”, " Zheng", " Amol”]
otherNames = names[:] # this clones the List names

names[1] = "Lin" # Zheng is replaced by Lin e on |
print(names, otherNames) # [’Sarah”, "Lin", " Amol"] [“Sarah”,
['Sarah”, "Zheng", " Amol"] '7 "Zheng”,
“Amol” |

[“Sarah”,
[~|"Zheng”,
“Amol”]

otherNames

Note the use of [:]. This is what tells the interpreter to clone the
names list. Now names and otherNames point to different lists,

which just happen to contain identical content.
18 /26

Cloning lists

What if we want names and otherNames to actually correspond to
different lists, but we want otherNames to be initialized from
names?

Global variables Computer memory

names = ["Sarah”, " Zheng", " Amol”]
otherNames = names[:] # this clones the List names

names[1] = "Lin" # Zheng is replaced by Lin “ ”
print(names, otherNames) # [’Sarah”, "Lin", " Amol"] [“Sarah”,
['Sarah”, "Zheng", " Amol"] '7 "Zheng”,

“Amol”]

[“Sarah”,
[~ "Lin”,

“Amol”]

otherNames

Changing names does not change otherNames.

19/26

© 0 N o U R WwN R

=
= o

More on adding items to a list

.append(someObject) adds a single item to the end of the list

.extend(somelList) adds items from another list to the end of
the list

.insert(index, someObject) inserts an item at a given index

> Moves the remaining items to the right

names = ["Zheng” , "Amol"]
otherNames = [” Chris” " Irene"]
names.append (" Bill”) # names is now

[" Zheng”, "Amol”, " Bill"]

names. extend (otherNames) # names is now
[" Zheng”, "Amol”, " Bill”, " Chris”,” Irene”]

names.insert (2,” Laura”) # names is now
[" Zheng”, "Amol”, "Laura”, "Bill"”, "Chris” " Irene”]

20/26

N o s W N

QR W N =

Deleting items from a list

del someSlice statement can be used to remove an item or slice
of items

names = [”"Sarah”, "Zheng”, "Amol”, "Vladimir”]
del names[l] # removes Zheng from the list
names is now [” Sarah”, "Amol”, "Vladimir”]

del names[0:2] # removed Sarah and Amol
names is now [" Vladimir”]

.pop(index) will remove an individual and return it

names = [”Sarah”, "Zheng”, "Amol”, "Vladimir”]
removedName = names.pop(2)
names is now [”" Sarah”, "Zheng”, "Vladimir"]

removedName is now " Amol”

del statement and .pop() behave quite similarly, except .pop()
returns the removed item

21/26

© o N oA W N

Deleting items from a list

.remove(someObject) removes the first instance of a matching
item in a list

names = ["Sarah”, "Zheng”, "Amol”, "Vladimir”, "Zheng"]
names.remove (" Zheng”)

names is now [” Sarah”, "Vladimir”, "Amol”, "Zheng"]
names.remove (" Zheng”)

names is now [”Sarah”, "Vladimir”, "Amol”]
names.remove(” Billy”) # causes exception: not in list

If no matching item is found in the list, Python raises a
ValueError exception

22/26

W N oA W N

g A W N e

Searching lists
.index(someObject) returns the index of the first matching item
in a list
names = [”Sarah”, "Zheng”, "Amol”, "Vladimir”, "Zheng"]

indexVlad = names.index(” Vladimir”) # indexVlad is 3
indexZheng = names.index (" Zheng”) # indexZheng is 1

indexBob = names.index("Bob”) # ValueError Exception
Bob is not in list
.index(someObject) performs a linear search, and stops at the
first match
> If no matching item is found, Python raises a
ValueError exception
.count(someObject) returns the number of occurrences of the
object in the list
names = ["Sarah”, "Zheng”, "Amol”, "Vladimir”, "Zheng"]

nbZheng = names.count(”Zheng”) # 2
nbAmol = names.count(”Amol”) # 1
nbBob = names.count(”"Bob”) # 0

23 /26

Reversing the order of a list

.reverse() allows you to quickly reverse the order of a list

names = ["Sarah”, "Zheng”, "Amol”, "Vladimir”, "Zheng"]
names. reverse ()
names is now [” Zheng”, Vladimir”, "Amol”, "Zheng"”,” Sarah”]

Reversing is fast
» Temporarily reversing a list can often speed things up

» Remove and insert many items at the end of the list

24 /26

-

N N

Sorting lists

.sort() sorts a list in place

L=1[2.1,3,4,5,1,6]
L.sort ()
print (L) # prints '[1,1,2,3,4,5,6]"

If you require a clone of the sorted list, use the sorted() function

L=1[2,1,3,4,5,1,6]

sorted_L = sorted (L)

print(L) # prints '[2,1,3,4,5,1,6]"
print(sorted_L) # prints '[1,1,2,3,4,5,6]"

25 /26

Other useful functions/methods

min() returns the smallest item in a list

L=1[0,1,2,3,4,56,7,8,9]
print(min(L)) # prints '0’

max() returns the largest items in a list
print(max(L)) # prints '9’

26 /26

